51
|
Integrative Physiological and Transcriptome Analysis Reveals the Mechanism for the Repair of Sub-Lethally Injured Escherichia coli O157:H7 Induced by High Hydrostatic Pressure. Foods 2022; 11:foods11152377. [PMID: 35954143 PMCID: PMC9368309 DOI: 10.3390/foods11152377] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/26/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
The application of high hydrostatic pressure (HHP) technology in the food industry has generated potential safety hazards due to sub-lethally injured (SI) pathogenic bacteria in food products. To address these problems, this study explored the repair mechanisms of HHP-induced SI Escherichia coli O157:H7. First, the repair state of SI E. coli O157:H7 (400 MPa for 5 min) was identified, which was cultured for 2 h (37 °C) in a tryptose soya broth culture medium. We found that the intracellular protein content, adenosine triphosphate (ATP) content, and enzyme activities (superoxide dismutase, catalase, and ATPase) increased, and the morphology was repaired. The transcriptome was analyzed to investigate the molecular mechanisms of SI repair. Using cluster analysis, we identified 437 genes enriched in profile 1 (first down-regulated and then tending to be stable) and 731 genes in profile 2 (up-regulated after an initial down-regulation). KEGG analysis revealed that genes involved in cell membrane biosynthesis, oxidative phosphorylation, ribosome, and aminoacyl-tRNA biosynthesis pathways were enriched in profile 2, whereas cell-wall biosynthesis was enriched in profile 1. These findings provide insights into the repair process of SI E. coli O157:H7 induced by HHP.
Collapse
|
52
|
Choi JS, Ju SY. A Study of Food Safety Knowledge for Sustainable Foodservice Management of Childcare Centers in South Korea Using Importance-Performance Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:9668. [PMID: 35955026 PMCID: PMC9368346 DOI: 10.3390/ijerph19159668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
This study aims to evaluate the importance and performance level of knowledge about sanitary management among foodservice employees in childcare centers that were registered at Center for Children’s Food Service Management in Chungju city according to their work duration, type of childcare center, and number of enrolled children. The self-administered questionnaire was conducted to examine food safety attributes of sanitary management at 150 childcare centers without qualified dietitians registered at Center for Children’s Food Service Management of Chungju city. The questionnaire consisted of 15 questions about perceived importance and performance regarding sanitation management (personal hygiene, ingredient control, temperature control of food, facility, equipment, and utensils sanitation) using IPA (importance−performance analysis). The results show that overall mean scores of the importance and performance of sanitary knowledge were 4.71 and 4.67 out of 5, respectively. ‘Checking the center temperature at 75 °C for 1 min in the thickest part of meat (3 times or more check for each serving)’ (p = 0.047) and ‘Keeping preserved meals (at least 100 g of each menu) for 144 h. with −18 °C or less’ (p < 0.001) show significantly lower scores of performance than those of importance. The results of importance and performance for sanitary management according to work duration of foodservice employees show that those who have worked more than 10 years had the highest scores of importance and performance for overall sanitary management among them. For the types of childcare centers, the overall performance scores of national/public employees for sanitary management were lower than those of private or home type (p < 0.001). Additionally, the result showed that the overall importance (p < 0.001) and performance scores (p < 0.001) of employees for sanitary management in centers with <50 children were higher than those in centers with ≥50 children. This result should provide more useful information to develop food safety programs for employees and sustainable foodservice management in childcare centers.
Collapse
Affiliation(s)
| | - Se-Young Ju
- Department of Food Science, College of Biomedical and Health Science, Konkuk University, Chungju 27478, Chungbuk, Korea
| |
Collapse
|
53
|
Beneficial effects of high pressure processing on the interaction between RG-I pectin and cyanidin-3-glucoside. Food Chem 2022; 383:132373. [PMID: 35183967 DOI: 10.1016/j.foodchem.2022.132373] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/29/2022] [Accepted: 02/05/2022] [Indexed: 11/20/2022]
Abstract
In the present study, the effects of high-pressure processing (HPP) on the binding capacity, structural properties, antioxidant capacity and stability of rhamngalacturonan I (RG-I) pectin and cyanidin-3-glucoside (C3G) were investigated. HPP was found to have a positive effect on the binding between the two molecules, and the binding rate was increased by 32.8% after treatment (500 MPa/15 min). The increase in the binding rate is mainly due to the influence of high pressure on noncovalent effects such as hydrogen bonding and hydrophobicity. The results indicate that high pressure can be used to maintain the antioxidant capacity of C3G and improve the stability of C3G. The C3G retention rate is increased by 34.0% and 38.3% after heat treatment and simulated digestion, respectively. The results indicate that HPP improved stability of the C3G-RG-I pectin complex through interaction between C3G and RG-I pectin.
Collapse
|
54
|
Hoque M, McDonagh C, Tiwari BK, Kerry JP, Pathania S. Effect of High-Pressure Processing on the Packaging Properties of Biopolymer-Based Films: A Review. Polymers (Basel) 2022; 14:polym14153009. [PMID: 35893971 PMCID: PMC9331499 DOI: 10.3390/polym14153009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/10/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Suitable packaging material in combination with high-pressure processing (HPP) can retain nutritional and organoleptic qualities besides extending the product’s shelf life of food products. However, the selection of appropriate packaging materials suitable for HPP is tremendously important because harsh environments like high pressure and high temperature during the processing can result in deviation in the visual and functional properties of the packaging materials. Traditionally, fossil-based plastic packaging is preferred for the HPP of food products, but these materials are of serious concern to the environment. Therefore, bio-based packaging systems are proposed to be a promising alternative to fossil-based plastic packaging. Some studies have scrutinized the impact of HPP on the functional properties of biopolymer-based packaging materials. This review summarizes the HPP application on biopolymer-based film-forming solutions and pre-formed biopolymer-based films. The impact of HPP on the key packaging properties such as structural, mechanical, thermal, and barrier properties in addition to the migration of additives from the packaging material into food products were systemically analyzed. HPP can be applied either to the film-forming solution or preformed packages. Structural, mechanical, hydrophobic, barrier, and thermal characteristics of the films are enhanced when the film-forming solution is exposed to HPP overcoming the shortcomings of the native biopolymers-based film. Also, biopolymer-based packaging mostly PLA based when exposed to HPP at low temperature showed no significant deviation in packaging properties indicating the suitability of their applications. HPP may induce the migration of packaging additives and thus should be thoroughly studied. Overall, HPP can be one way to enhance the properties of biopolymer-based films and can also be used for packaging food materials intended for HPP.
Collapse
Affiliation(s)
- Monjurul Hoque
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (M.H.); (C.M.)
- School of Food and Nutritional Sciences, University College Cork, T12 R229 Cork, Ireland;
| | - Ciara McDonagh
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (M.H.); (C.M.)
| | - Brijesh K. Tiwari
- Food Chemistry and Technology Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland;
| | - Joseph P. Kerry
- School of Food and Nutritional Sciences, University College Cork, T12 R229 Cork, Ireland;
| | - Shivani Pathania
- Food Industry Development Department, Teagasc Food Research Centre, Ashtown, D15 KN3K Dublin, Ireland; (M.H.); (C.M.)
- Correspondence:
| |
Collapse
|
55
|
Zhang Y, Zhang ZH, He R, Xu R, Zhang L, Gao X. Improving Soy Sauce Aroma Using High Hydrostatic Pressure and the Preliminary Mechanism. Foods 2022; 11:2190. [PMID: 35892775 PMCID: PMC9330850 DOI: 10.3390/foods11152190] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 07/07/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Using high hydrostatic pressure (HHP) to treat liquid foods can improve their aroma; however, no information about the effects of HHP on soy sauce aroma has yet been reported. The effects of HHP on the aroma of soy sauce fermented for 30 d were investigated using quantitative descriptive analysis (QDA), SPME-GC-olfactometry/MS, hierarchical cluster analysis (HCA) and principal component analysis (PCA). Results showed that the pressure used during HHP treatment had a greater influence on soy sauce aroma than the duration of HHP. Compared to the control, soy sauce that was treated with HHP at 400 MPa for 30 min (HHP400-30) obtained the highest sensory score (33% higher) by increasing its sour (7%), malty (9%), floral (27%) and caramel-like (47%) aromas, while decreasing its alcoholic (6%), fruity (6%) and smoky (12%) aromas; moreover, the aroma of HHP400-30 soy sauce was comparable with that of soy sauce fermented for 180 d. Further investigation demonstrated that HHP (400 MPa/30 min) enhanced the OAVs of compounds with sour (19%), malty (37%), floral (37%), caramel-like (49%) and other aromas (118%), and lowered the OAVs of compounds with alcoholic (5%), fruity (12%) and smoky (17%) aromas. These results were consistent with the results of the QDA. HHP treatment positively regulated the Maillard, oxidation and hydrolysis reactions in raw soy sauce, which resulted in the improvement and accelerated formation of raw soy sauce aroma. HHP was capable of simultaneously improving raw soy sauce aroma while accelerating its aroma formation, and this could treatment become a new alternative process involved in the production of high-quality soy sauce.
Collapse
Affiliation(s)
- Yaqiong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Zhi-Hong Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Ronghai He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Riyi Xu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510316, China;
| | - Lei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| | - Xianli Gao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (Y.Z.); (Z.-H.Z.); (R.H.); (L.Z.)
| |
Collapse
|
56
|
Song Q, Li R, Song X, Clausen MP, Orlien V, Giacalone D. The effect of high-pressure processing on sensory quality and consumer acceptability of fruit juices and smoothies: A review. Food Res Int 2022; 157:111250. [DOI: 10.1016/j.foodres.2022.111250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/06/2022] [Accepted: 04/09/2022] [Indexed: 12/01/2022]
|
57
|
Effect of high-pressure processing on the bioaccessibility of phenolic compounds from cloudy hawthorn berry (Crataegus pinnatifida) juice. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.104540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
58
|
Liu G, Nie R, Liu Y, Mehmood A. Combined antimicrobial effect of bacteriocins with other hurdles of physicochemic and microbiome to prolong shelf life of food: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154058. [PMID: 35217045 DOI: 10.1016/j.scitotenv.2022.154058] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/24/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
Bacteriocins are ribosomally synthesized peptides to inhibit food spoilage bacteria, which are widely used as a kind of food biopreservation. The role of bacteriocins in therapeutics and food industries has received increasing attention across a number of disciplines in recent years. Despite their advantages as alternative therapeutics over existing strategies, the application of bacteriocins suffers from shortcomings such as the high isolation and purification cost, narrow spectrum of activity, low stability and solubility and easy enzymatic degradation. Previous studies have studied the synergistic or additive effects of bacteriocins when used in combination with other hurdles including physics, chemicals, and microbes. These combined treatments reduce the adverse effects of chemical additives, extending the shelf life of food products while guaranteeing food quality. This review highlights the advantages and disadvantages of bacteriocins in food preservation. It then reviews the combined effect and mechanism of different hurdles and bacteriocins in enhancing food preservation in detail. The combination of bacterioncins and other hurdles provide potential approaches for maintaining food quality and food safety.
Collapse
Affiliation(s)
- Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Rong Nie
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Yangshuo Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| | - Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Laboratory of Food Quality and Safety, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China
| |
Collapse
|
59
|
The Effect of UV-C Irradiation on the Mechanical and Physiological Properties of Potato Tuber and Different Products. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12125907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Amongst the surface treatment technologies to emerge in the last few decades, UV-C radiation surface treatment is widely used in food process industries for the purpose of shelf life elongation, bacterial inactivation, and stimulation. However, the short wave application is highly dose-dependent and induces different properties of the product during exposure. Mechanical properties of the agricultural products and their derivatives represent the key indicator of acceptability by the end-user. This paper surveys the recent findings of the influence of UV-C on the stress response and physiological change concerning the mechanical and textural properties of miscellaneous agricultural products with a specific focus on a potato tuber. This paper also reviewed the hormetic effect of UV-C triggered at a different classification of doses studied so far on the amount of phenolic content, antioxidants, and other chemicals responsible for the stimulation process. The combined technologies with UV-C for product quality improvement are also highlighted. The review work draws the current challenges as well as future perspectives. Moreover, a way forward in the key areas of improvement of UV-C treatment technologies is suggested that can induce a favorable stress, enabling the product to achieve self-defense mechanisms against wound, impact, and mechanical damage.
Collapse
|
60
|
Extraction of Pectin from Satsuma Mandarin Peel: A Comparison of High Hydrostatic Pressure and Conventional Extractions in Different Acids. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123747. [PMID: 35744870 PMCID: PMC9227400 DOI: 10.3390/molecules27123747] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/07/2022] [Accepted: 06/07/2022] [Indexed: 11/23/2022]
Abstract
Satsuma mandarin peel pectin was extracted by high hydrostatic pressure-assisted citric acid (HHPCP) or hydrochloric acid (HHPHP), and the physiochemical, structural, rheological and emulsifying characteristics were compared to those from conventional citric acid (CCP) and hydrochloric acid (CHP). Results showed that HHP and citric acid could both increase the pectin yield, and HHPCP had the highest yield (18.99%). Structural characterization, including NMR and FTIR, demonstrated that HHPHP showed higher Mw than the other pectins. The viscosity of the pectin treated with HHP was higher than that obtained with the conventional method, with HHPHP exhibiting significantly higher viscosity. Interestingly, all the pectin emulsions showed small particle mean diameters (D4,3 being 0.2–1.3 μm) and extremely good emulsifying stability with centrifugation and 30-day storage assays, all being 100%. Satsuma mandarin peel could become a highly promising pectin source with good emulsifying properties, and HHP-assisted acid could be a more efficient method for pectin extraction.
Collapse
|
61
|
The effects of high pressure treatment on the structural and digestive properties of myoglobin. Food Res Int 2022; 156:111193. [DOI: 10.1016/j.foodres.2022.111193] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 11/22/2022]
|
62
|
Jiang J, Zhang L, Yao J, Cheng Y, Chen Z, Zhao G. Effect of Static Magnetic Field Assisted Thawing on Physicochemical Quality and Microstructure of Frozen Beef Tenderloin. Front Nutr 2022; 9:914373. [PMID: 35685869 PMCID: PMC9171394 DOI: 10.3389/fnut.2022.914373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/02/2022] [Indexed: 11/25/2022] Open
Abstract
Although freezing is the most common and widespread way to preserve food for a long time, the accumulation of microstructural damage caused by ice crystal formation during freezing and recrystallization phenomena during thawing tends to degrade the quality of the product. Thus, the side effects of the above processes should be avoided as much as possible. To evaluate the effect of different magnetic field strength assisted thawing (MAT) on beef quality, the indicators associated with quality of MAT-treated (10-50 Gs) samples and samples thawed without an external magnetic field were compared. Results indicated that the thawing time was reduced by 21.5-40% after applying MAT. Meat quality results demonstrated that at appropriate magnetic field strengths thawing loss, TBARS values, cooking loss, and shear force were significantly decreased. Moreover, by protecting the microstructure of the muscle, MAT significantly increased the a∗ value and protein content. MAT treatment significantly improved the thawing efficiency and quality of frozen beef, indicating its promising application in frozen meat thawing.
Collapse
Affiliation(s)
- Junbo Jiang
- Research and Engineering Center of Biomedical Materials, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Liyuan Zhang
- School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Jianbo Yao
- College of Life Sciences, Anhui Medical University, Hefei, China
| | - Yue Cheng
- Research and Engineering Center of Biomedical Materials, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Zhongrong Chen
- Research and Engineering Center of Biomedical Materials, School of Biomedical Engineering, Anhui Medical University, Hefei, China
| | - Gang Zhao
- Research and Engineering Center of Biomedical Materials, School of Biomedical Engineering, Anhui Medical University, Hefei, China
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, China
| |
Collapse
|
63
|
Biomolecules under Pressure: Phase Diagrams, Volume Changes, and High Pressure Spectroscopic Techniques. Int J Mol Sci 2022; 23:ijms23105761. [PMID: 35628571 PMCID: PMC9144967 DOI: 10.3390/ijms23105761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Pressure is an equally important thermodynamical parameter as temperature. However, its importance is often overlooked in the biophysical and biochemical investigations of biomolecules and biological systems. This review focuses on the application of high pressure (>100 MPa = 1 kbar) in biology. Studies of high pressure can give insight into the volumetric aspects of various biological systems; this information cannot be obtained otherwise. High-pressure treatment is a potentially useful alternative method to heat-treatment in food science. Elevated pressure (up to 120 MPa) is present in the deep sea, which is a considerable part of the biosphere. From a basic scientific point of view, the application of the gamut of modern spectroscopic techniques provides information about the conformational changes of biomolecules, fluctuations, and flexibility. This paper reviews first the thermodynamic aspects of pressure science, the important parameters affecting the volume of a molecule. The technical aspects of high pressure production are briefly mentioned, and the most common high-pressure-compatible spectroscopic techniques are also discussed. The last part of this paper deals with the main biomolecules, lipids, proteins, and nucleic acids: how they are affected by pressure and what information can be gained about them using pressure. I I also briefly mention a few supramolecular structures such as viruses and bacteria. Finally, a subjective view of the most promising directions of high pressure bioscience is outlined.
Collapse
|
64
|
Recent advancements in baking technologies to mitigate formation of toxic compounds: A comprehensive review. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Chatur P, Johnson S, Coorey R, Bhattarai RR, Bennett SJ. The Effect of High Pressure Processing on Textural, Bioactive and Digestibility Properties of Cooked Kimberley Large Kabuli Chickpeas. Front Nutr 2022; 9:847877. [PMID: 35464029 PMCID: PMC9023011 DOI: 10.3389/fnut.2022.847877] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
High pressure processing is a non-thermal method for preservation of various foods while retaining nutritional value and can be utilized for the development of ready-to-eat products. This original research investigated the effects of high pressure processing for development of a ready-to eat chickpea product using Australian kabuli chickpeas. Three pressure levels (200, 400, and 600 MPA) and two treatment times (1 and 5 min) were selected to provide six distinct samples. When compared to the conventionally cooked chickpeas, high pressure processed chickpeas had a more desirable texture due to decrease in firmness, chewiness, and gumminess. The general nutrient composition and individual mineral content were not affected by high pressure processing, however, a significant increase in the slowly digestible starch from 50.53 to 60.92 g/100 g starch and a concomitant decrease in rapidly digestible starch (11.10-8.73 g/100 g starch) as well as resistant starch (50.53-30.35 g/100 g starch) content was observed. Increased starch digestibility due to high pressure processing was recorded, whereas in vitro protein digestibility was unaffected. Significant effects of high pressure processing on the polyphenol content and antioxidant activities (DPPH, ABTS and ORAC) were observed, with the sample treated at the highest pressure for the longest duration (600 MPa, 5 min) showing the lowest values. These findings suggest that high pressure processing could be utilized to produce a functional, ready to eat kabuli chickpea product with increased levels of beneficial slowly digestible starch.
Collapse
Affiliation(s)
- Prakhar Chatur
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Stuart Johnson
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
- Ingredients by Design Pty Ltd., Perth, WA, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | | | - Sarita Jane Bennett
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| |
Collapse
|
66
|
Effect of Pretreatment and High Hydrostatic Pressure on Soluble Dietary Fiber in Lotus Root Residues. J FOOD QUALITY 2022. [DOI: 10.1155/2022/5565538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
High hydrostatic pressure (HHP) can enhance the physicochemical properties of soluble dietary fiber (SDF) from fruit and vegetable residues including hydration properties, emulsibility, and rheological properties, while the pretreatment methods such as solid-water suspension status are ignored all along. Here, three groups of lotus root residue (LRR) for HHP treatment (400 MPa, 15 min) were prepared: the fresh lotus root residue (FLRR), FLRR mixed with water (FLRR + W), and dried FLRR suspended in water at the same solid/water level with FLRR + W (DLRR + W). As a control, non-HHP-treated FLRR was tested. Results showed that FLRR + W obtained the highest SDF yield and presented a honeycomb structure which was not observed in other LRR samples. In addition, properties of SDF extract from FLRR + W changed most significantly, including not only the enhancement of SDF yield, the improvement of hydration properties, and the reduction of molecular weight but also the increase of thermal and rheological stability. Principal component analysis (PCA) profile illustrated that the difference of LRR-water system contributed 27.6% to the SDF physicochemical changes, and SDF from DLRR + W distinguished it from the other samples with mannose, ribose, and glucuronic acid, indicating that the drying procedure also played a role in the HHP treatment focusing on the sugar constitution. Therefore, the solid-water suspension status is a noteworthy issue before HHP treatment aiming at SDF modification.
Collapse
|
67
|
Lou X, Jin Y, Tian H, Yu H, Chen C, Hanna M, Lin Y, Yuan L, Wang J, Xu H. High-pressure and thermal processing of cloudy hawthorn berry (Crataegus pinnatifida) juice: Impact on microbial shelf-life, enzyme activity and quality-related attributes. Food Chem 2022; 372:131313. [PMID: 34655827 DOI: 10.1016/j.foodchem.2021.131313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/04/2022]
Abstract
The study aimed to evaluate the effect of high-pressure (HPP, 300/600 MPa for 2 and 6 min) and thermal processing (TP, 65 °C/30 min) on microbial shelf-life, enzyme-activity and quality-attributes of cloudy hawthorn berry juice (CHBJ) after processing and during storage (4 °C). The CHBJ shelf-life was at least 150 days when processed by HPP. No significant difference was observed in pH and titratable acidity (p > 0.05), while HPP significantly increased soluble sugar (p < 0.05) and simulated some fruity aroma compounds which improved the taste and flavor of CHBJ. However, HPP inhabited ineffectively enzyme-activity in comparison to TP, causing significant color changes (ΔE = 4.98 ± 0.03-5.10 ± 0.07) during 30-day storage (p < 0.05). Although particle size increased after HPP treatment, significant increases (68.76%-926.95%) were observed in viscosity (p < 0.05), due to enhanced extractability or modification of pectin induced by HPP, resulting in higher consistency of CHBJ. HPP is promising to extend shelf-life and improve quality-attributes of CHBJ.
Collapse
Affiliation(s)
- Xinman Lou
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China; Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yu Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huaixiang Tian
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Haiyan Yu
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chen Chen
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Milford Hanna
- Department of Food Science and Technology, University of Nebraska-Lincoln, 1901 North 21st Street, Lincoln, NE 68588-6205, USA
| | - Yawen Lin
- College of Food Science and Engineering, Bohai University, National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, Liaoning 121013, China
| | - Long Yuan
- Big Green (USA) Inc. and Bgreen Food Company, P.O. Box 8112, Rowland Heights, CA 91748, USA
| | - Jun Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Huaide Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
68
|
Pan J, Zhang Z, Mintah BK, Xu H, Dabbour M, Cheng Y, Dai C, He R, Ma H. Effects of nonthermal physical processing technologies on functional, structural properties and digestibility of food protein: A review. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Jiayin Pan
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Zhaoli Zhang
- College of Food Science and Engineering Yangzhou University Yangzhou Jiangsu China
| | | | - Haining Xu
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Mokhtar Dabbour
- Department of Agricultural and Biosystems Engineering Faculty of Agriculture, Benha University Moshtohor Qaluobia Egypt
| | - Yu Cheng
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Chunhua Dai
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Ronghai He
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| | - Haile Ma
- School of Food and Biological Engineering Jiangsu University Zhenjiang Jiangsu China
- Institute of Food Physical Processing Jiangsu University Zhenjiang Jiangsu China
| |
Collapse
|
69
|
Lai YY, Chen JH, Liu YC, Hsiao YT, Wang CY. Evaluation of microbiological safety, physicochemical and aromatic qualities of shiikuwasha ( Citrus depressa Hayata) juice after high pressure processing. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:990-1000. [PMID: 35153324 PMCID: PMC8814125 DOI: 10.1007/s13197-021-05103-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/05/2021] [Accepted: 04/09/2021] [Indexed: 11/29/2022]
Abstract
This study evaluated high pressure processing (HPP) for achieving greater than 5-log reduction of Escherichia coli O157:H7 in shiikuwasha (Citrus depressa Hayata) juices and compare quality parameters, including microbiological safety, total phenolic content (TPC), total flavanones (TFC), and polymethoxylated flavones, browning, volatile aromatic, and physicochemical properties of HPP-treated juice with those of high-temperature short-time pasteurized juice. A HPP of 600 MPa for 150 s was identified capable of achieving greater than 5.15-log reductions of E. coli O157:H7 in shiikuwasha juice. The microbiological shelf life of the juices were at least 28 days when processed at HPP for 600 MPa/150 s or HTST for 90 °C/60 s. The color, aromatic, and antioxidant contents (TPC, TFC, Tangeletin, Nobiletin) were well preserved after HPP, however, HTST resulted in a significant (p < 0.05) loss of antioxidant content (TPC (8.8%), Tangeletin (6.8%)), and negatively impacted the juice color. By the end of storage, the amount of these aroma relevant volatiles appears to still be higher in HPP pasteurized juices compared to their conventional counterparts. This study demonstrated that under optimal conditions of HPP can attain the same level of microbiological safety as thermal pasteurization and preserved the acceptable quality of shiikuwasha juice.
Collapse
Affiliation(s)
- Yen-Ying Lai
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Jian-Hua Chen
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Yao-Chia Liu
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Yun-Ting Hsiao
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Huwei Township, No. 64, Wenhua Rd, Yunlin, 632 Taiwan
| |
Collapse
|
70
|
Functionalization of legume proteins using high pressure processing: Effect on technofunctional properties and digestibility of legume proteins. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
71
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
72
|
Advances, Applications, and Comparison of Thermal (Pasteurization, Sterilization, and Aseptic Packaging) against Non-Thermal (Ultrasounds, UV Radiation, Ozonation, High Hydrostatic Pressure) Technologies in Food Processing. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12042202] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Nowadays, food treatment technologies are constantly evolving due to an increasing demand for healthier and tastier food with longer shelf lives. In this review, our aim is to highlight the advantages and disadvantages of some of the most exploited industrial techniques for food processing and microorganism deactivation, dividing them into those that exploit high temperatures (pasteurization, sterilization, aseptic packaging) and those that operate thanks to their inherent chemical–physical principles (ultrasound, ultraviolet radiation, ozonation, high hydrostatic pressure). The traditional thermal methods can reduce the number of pathogenic microorganisms to safe levels, but non-thermal technologies can also reduce or remove the adverse effects that occur using high temperatures. In the case of ultrasound, which inactivates pathogens, recent advances in food treatment are reported. Throughout the text, novel discoveries of the last decade are presented, and non-thermal methods have been demonstrated to be more attractive for processing a huge variety of foods. Preserving the quality and nutritional values of the product itself and at the same time reducing bacteria and extending shelf life are the primary targets of conscious producers, and with non-thermal technologies, they are increasingly possible.
Collapse
|
73
|
Wu YH, Lin YH, Wang CY. High hydrostatic pressure treatment induced microstructure changes and isothiocyanates biosynthesis in kale. Food Chem 2022; 383:132423. [PMID: 35180603 DOI: 10.1016/j.foodchem.2022.132423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 11/04/2022]
Abstract
Effects of high-pressure processing (HPP) on the myrosinase activity, glucosinolate (GLS) content, isothiocyanate (ITC) conversion rate, color, and bacterial count of kale leaves were investigated. Thermal process at 100 °C were used as negative control groups. The sample processed at 600 MPa exhibited the highest myrosinase activity and ITC conversion rate of 70.4%, while the GLS content was significantly lower than those in the raw and the thermally processed samples. However, processing of the samples at elevated temperatures results in gradual loss of myrosinase activity. SEM images showed that HPP induces irregular crushing damage to the veins, edges, and surfaces of the leaves, thereby promoting the conversion process in the myrosinase-GLS-ITC system. Additionally, HPP caused less significant color change of the kale leaves than thermal treatment. HPP achieved the same level of pasteurization as thermal treatment in terms of bacterial count.
Collapse
Affiliation(s)
- Yu-Hsiang Wu
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan
| | - Yan-Han Lin
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan
| | - Chung-Yi Wang
- Department of Biotechnology, National Formosa University, Yunlin 632, Taiwan.
| |
Collapse
|
74
|
Chakraborty I, N P, Mal SS, Paul UC, Rahman MH, Mazumder N. An Insight into the Gelatinization Properties Influencing the Modified Starches Used in Food Industry: A review. FOOD BIOPROCESS TECH 2022. [DOI: 10.1007/s11947-022-02761-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractNative starch is subjected to various forms of modification to improve its structural, mechanical, and thermal properties for wider applications in the food industry. Physical, chemical, and dual modifications have a substantial effect on the gelatinization properties of starch. Consequently, this review explores and compares the different methods of starch modification applicable in the food industry and their effect on the gelatinization properties such as onset temperature (To), peak gelatinization temperature (Tp), end set temperature (Tc), and gelatinization enthalpy (ΔH), studied using differential scanning calorimetry (DSC). Chemical modifications including acetylation and acid hydrolysis decrease the gelatinization temperature of starch whereas cross-linking and oxidation result in increased gelatinization temperatures. Common physical modifications such as heat moisture treatment and annealing also increase the gelatinization temperature. The gelatinization properties of modified starch can be applied for the improvement of food products such as ready-to-eat, easily heated or frozen food, or food products with longer shelf life.
Collapse
|
75
|
Jamaluddin F, Noranizan MA, Mohamad Azman E, Mohamad A, Yusof NL, Sulaiman A. A Review of Clean‐Label Approaches to Chilli Paste Processing. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15293] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Faathirah Jamaluddin
- Faculty of Economics and Muamalat (FEM) Universiti Sains Islam Malaysia (USIM) Nilai Negeri Sembilan 71800 Malaysia
| | - Mohd Adzahan Noranizan
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Ezzat Mohamad Azman
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Azizah Mohamad
- Food Biotechnology Research Centre Agro‐Biotechnology Institute (ABI) National Institutes of Biotechnology Malaysia (NIBM) CO MARDI Headquarters Serdang Selangor 43400 Malaysia
| | - Noor Liyana Yusof
- Department of Food Technology Faculty of Food Science and Technology Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| | - Alifdalino Sulaiman
- Department of Process and Food Engineering Faculty of Engineering Universiti Putra Malaysia Serdang Selangor 43400 Malaysia
| |
Collapse
|
76
|
Al-Ghamdi S, Sonar CR, Albahr Z, Alqahtani O, Collins BA, Sablani SS. Pressure-assisted thermal sterilization of avocado puree in high barrier polymeric packaging. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
77
|
Rahman H, Zhang M, Sun HN, Mu TH. Comparative study of thermo-mechanical, rheological, and structural properties of gluten-free model doughs from high hydrostatic pressure treated maize, potato, and sweet potato starches. Int J Biol Macromol 2022; 204:725-733. [PMID: 35114274 DOI: 10.1016/j.ijbiomac.2022.01.164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 01/11/2022] [Accepted: 01/27/2022] [Indexed: 01/19/2023]
Abstract
Effects of high hydrostatic pressure (HHP, 100, 300 and 500 MPa for 30 min at 25 °C) treated maize (MS), potato (PS), and sweet potato (SS) starches on thermo-mechanical, rheological, microstructural properties and water distribution of gluten-free model doughs were investigated. Significant differences were found among starch model doughs in terms of water absorption, dough development time, and dough stability at 500 MPa. Total gas production of MS, PS and SS doughs was significantly increased from 541 to 605 mL (300 MPa), 527 to 568 mL (500 MPa) and 551 to 620 mL (500 MPa) respectively as HHP increased. HHP increased storage (G') and loss (G″) modulus in terms of rheological properties suggesting, the higher viscoelastic behavior of starch model doughs. The dough after 500 MPa treatment showed lower degree of dependence of G' on frequency sweep suggesting, the formation of a stable network structure. In addition, continuous abundant water distribution and uniform microstructure were found in MS (300 MPa), PS (500 MPa) and SS (500 MPa) doughs for 60 min fermentation. Thus, the starches after HHP show great application potential in gluten-free doughs with improved characteristics.
Collapse
Affiliation(s)
- Hafizur Rahman
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China
| | - Miao Zhang
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Hong-Nan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| | - Tai-Hua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Key Laboratory of Agro-Product Processing, Ministry of Agriculture and Rural Affairs, No. 2 Yuan Ming Yuan West Road, Haidian District, Beijing 100193, PR China.
| |
Collapse
|
78
|
|
79
|
Masotti F, Cattaneo S, Stuknytė M, De Noni I. Current insights into non-thermal preservation technologies alternative to conventional high-temperature short-time pasteurization of drinking milk. Crit Rev Food Sci Nutr 2021; 63:5643-5660. [PMID: 34969340 DOI: 10.1080/10408398.2021.2022596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Milk is an important nutritional food source characterized by a perishable nature and conventionally thermally treated to guarantee its safety. In recent years, an increasing focus on competing non-thermal food processing technologies has been driven mainly by consumers' expectations for minimally processed products. Due to the heat sensitivity of milk, much research interest has been addressed to mild non-thermal pasteurization processing to keep safety, 'fresh-like' taste and to maintain the organoleptic qualities of raw milk. This review provides an overview of the current literature on non-thermal treatments as standalone alternative technologies to high-temperature short-time (HTST) pasteurization of drinking milk. Results of lab-scale experimentations suggest the feasibility of most emerging non-thermal processing technologies, including high hydrostatic pressure, pulsed electric field, cold plasma, cavitation and light-based technologies, as alternative to thermal treatment of drinking milk with premium in shelf life duration. Nevertheless, a series of regulatory, technological and economical hurdles hinder the industrial scaling-up for most of these substitutes. To date, only high hydrostatic pressure treatments are applied as alone alternative to HTSH pasteurization for processing of "cold pasteurized" drinking milk. Milk submitted to HTST treatment combined to ultraviolet light is currently accepted in EU countries as novel food.
Collapse
Affiliation(s)
- Fabio Masotti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Stefano Cattaneo
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| | - Milda Stuknytė
- Unitech COSPECT - University Technological Platforms Office, Università degli Studi di Milano, Milan, Italy
| | - Ivano De Noni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
80
|
Chen L, Jiao D, Yu X, Zhu C, Sun Y, Liu M, Liu H. Effect of high pressure processing on the physicochemical and sensorial properties of scallop (
Mizuhopecten yessoensis
) during iced storage. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15505] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lihang Chen
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Dexin Jiao
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Xiaona Yu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
- College of Life Sciences Jilin Agricultural University Changchun, Jilin 130118 China
| | - Chen Zhu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Ying Sun
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Meihong Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| | - Huimin Liu
- College of Food Science and Engineering Jilin Agricultural University Changchun, Jilin 130118 China
- National Engineering Laboratory for Wheat and Corn Deep Processing Changchun, Jilin 130118 China
| |
Collapse
|
81
|
Wei Chen H, Po Fang W. A novel method for the microencapsulation of curcumin by high-pressure processing for enhancing the stability and preservation. Int J Pharm 2021; 613:121403. [PMID: 34933079 DOI: 10.1016/j.ijpharm.2021.121403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 12/04/2021] [Accepted: 12/15/2021] [Indexed: 11/25/2022]
Abstract
Curcumin is used for the development of new pharmaceutical and food products, but its application is generally hindered by the poor solubility of curcumin and thermal instability during storage and processing. In this study, the liposomes of curcumin (cur-liposomes) were prepared by a novel combination of ethanol injection and high-pressure processing (HPP) to enhance the stability and preservation of curcumin. The pasteurization, mean particle size, size distribution, and encapsulation efficiency of cur-liposomes and the kinetics of their thermal degradation were also investigated in this research. From the results, the kinetic rate constants of curcumin in samples of free curcumin and cur-liposome at 25 °C were found to be 1.6 × 10-3 and 0.8 × 10-3 min-1, respectively. The phospholipid bilayer structure could protect curcumin. The results propose that the HPP method for liposome preparation is superior to the probe-sonication method in terms of stability, encapsulation efficiency, and homogeneity. Furthermore, the preparation of cur-liposomes by HPP with a hydrostatic pressure of 200 MPa could maintain the optimal particle size (206.4 nm) and polydispersity index (0.19). Conclusively, the combination of ethanol injection and HPP can not only successfully inactivate the microorganisms during liposome preparation for microencapsulation of bioactive compounds but also effectively preventthe thermal degradation of heat-sensitive substances in non-thermal processing for practical applications.
Collapse
Affiliation(s)
- Hua Wei Chen
- Department of Chemical and Materials Engineering, National Ilan University, 1, Sec. 1, Shen-Lung Road, Yilan 260, Taiwan, Republic of China.
| | - Wu Po Fang
- Department of Chemical and Materials Engineering, National Ilan University, 1, Sec. 1, Shen-Lung Road, Yilan 260, Taiwan, Republic of China
| |
Collapse
|
82
|
Abstract
Sustainable food supply has gained considerable consumer concern due to the high percentage of spoilage microorganisms. Food industries need to expand advanced technologies that can maintain the nutritive content of foods, enhance the bio-availability of bioactive compounds, provide environmental and economic sustainability, and fulfill consumers’ requirements of sensory characteristics. Heat treatment negatively affects food samples’ nutritional and sensory properties as bioactives are sensitive to high-temperature processing. The need arises for non-thermal processes to reduce food losses, and sustainable developments in preservation, nutritional security, and food safety are crucial parameters for the upcoming era. Non-thermal processes have been successfully approved because they increase food quality, reduce water utilization, decrease emissions, improve energy efficiency, assure clean labeling, and utilize by-products from waste food. These processes include pulsed electric field (PEF), sonication, high-pressure processing (HPP), cold plasma, and pulsed light. This review describes the use of HPP in various processes for sustainable food processing. The influence of this technique on microbial, physicochemical, and nutritional properties of foods for sustainable food supply is discussed. This approach also emphasizes the limitations of this emerging technique. HPP has been successfully analyzed to meet the global requirements. A limited global food source must have a balanced approach to the raw content, water, energy, and nutrient content. HPP showed positive results in reducing microbial spoilage and, at the same time, retains the nutritional value. HPP technology meets the essential requirements for sustainable and clean labeled food production. It requires limited resources to produce nutritionally suitable foods for consumers’ health.
Collapse
|
83
|
LI L. Effects of high pressure versus conventional thawing on the quality changes and myofibrillar protein denaturation of slow/fast freezing beef rump muscle. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.91421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Li LI
- Harbin University of Commerce, China
| |
Collapse
|
84
|
Rodrigues MJ, Castañeda-Loaiza V, Monteiro I, Pinela J, Barros L, Abreu RMV, Oliveira MC, Reis C, Soares F, Pousão-Ferreira P, Pereira CG, Custódio L. Metabolomic Profile and Biological Properties of Sea Lavender ( Limonium algarvense Erben) Plants Cultivated with Aquaculture Wastewaters: Implications for Its Use in Herbal Formulations and Food Additives. Foods 2021; 10:3104. [PMID: 34945654 PMCID: PMC8700961 DOI: 10.3390/foods10123104] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/08/2021] [Accepted: 12/12/2021] [Indexed: 01/14/2023] Open
Abstract
Water extracts from sea lavender (Limonium algarvense Erben) plants cultivated in greenhouse conditions and irrigated with freshwater and saline aquaculture effluents were evaluated for metabolomics by liquid chromatography-tandem high-resolution mass spectrometry (LC-HRMS/MS), and functional properties by in vitro and ex vivo methods. In vitro antioxidant methods included radical scavenging of 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS), ferric-reducing antioxidant power (FRAP), and copper and iron chelating assets. Flowers' extracts had the highest compounds' diversity (flavonoids and its derivatives) and strongest in vitro antioxidant activity. These extracts were further tested for ex vivo antioxidant properties by oxidative haemolysis inhibition (OxHLIA), lipid peroxidation inhibition by thiobarbituric acid reactive substances (TBARS) formation, and anti-melanogenic, anti-tyrosinase, anti-inflammation, and cytotoxicity. Extract from plants irrigated with 300 mM NaCl was the most active towards TBARS (IC50 = 81 µg/mL) and tyrosinase (IC50 = 873 µg/mL). In OxHLIA, the activity was similar for fresh- and saltwater-irrigated plants (300 mM NaCl; IC50 = 136 and 140 µg/mL, respectively). Samples had no anti-inflammatory and anti-melanogenic abilities and were not toxic. Our results suggest that sea lavender cultivated under saline conditions could provide a flavonoid-rich water extract with antioxidant and anti-tyrosinase properties with potential use as a food preservative or as a functional ingredient in herbal supplements.
Collapse
Affiliation(s)
- Maria João Rodrigues
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Ed. 7, 8005-139 Faro, Portugal; (V.C.-L.); (C.G.P.); (L.C.)
| | - Viana Castañeda-Loaiza
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Ed. 7, 8005-139 Faro, Portugal; (V.C.-L.); (C.G.P.); (L.C.)
| | - Ivo Monteiro
- IPMA, Aquaculture Research Station, Av. do Parque Natural da Ria Formosa s/n, 8700-194 Olhao, Portugal; (I.M.); (F.S.); (P.P.-F.)
| | - José Pinela
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Braganca, Portugal; (J.P.); (L.B.); (R.M.V.A.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Braganca, Portugal; (J.P.); (L.B.); (R.M.V.A.)
| | - Rui M. V. Abreu
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Braganca, Portugal; (J.P.); (L.B.); (R.M.V.A.)
| | - Maria Conceição Oliveira
- Centro de Química Estrutural, Complexo Interdisciplinar, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Catarina Reis
- iMed.Ulisboa, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal;
| | - Florbela Soares
- IPMA, Aquaculture Research Station, Av. do Parque Natural da Ria Formosa s/n, 8700-194 Olhao, Portugal; (I.M.); (F.S.); (P.P.-F.)
| | - Pedro Pousão-Ferreira
- IPMA, Aquaculture Research Station, Av. do Parque Natural da Ria Formosa s/n, 8700-194 Olhao, Portugal; (I.M.); (F.S.); (P.P.-F.)
| | - Catarina G. Pereira
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Ed. 7, 8005-139 Faro, Portugal; (V.C.-L.); (C.G.P.); (L.C.)
| | - Luísa Custódio
- Centre of Marine Sciences, Faculty of Sciences and Technology, Campus of Gambelas, University of Algarve, Ed. 7, 8005-139 Faro, Portugal; (V.C.-L.); (C.G.P.); (L.C.)
| |
Collapse
|
85
|
Willer DF, Nicholls RJ, Aldridge DC. Opportunities and challenges for upscaled global bivalve seafood production. NATURE FOOD 2021; 2:935-943. [PMID: 37118255 DOI: 10.1038/s43016-021-00423-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/04/2021] [Indexed: 04/30/2023]
Abstract
Slow growth in the bivalve mariculture sector results from production inefficiencies, food safety concerns, limited availability of convenience products and low consumer demand. Here we assess whether bivalves could meet mass-market seafood demand across the bivalve value chain. We explore how bivalve production could become more efficient, strategies for increasing edible meat yield and how food safety could be improved through food processing technologies and new depuration innovations. Finally, we examine barriers to consumer uptake, such as food allergen prevalence and bivalve preparation challenges, highlighting that appealing and convenient bivalve food products could provide consumers with nutritious and sustainable seafood options-and contribute positively to global food systems.
Collapse
Affiliation(s)
- David F Willer
- Department of Zoology, University of Cambridge, Cambridge, UK.
| | | | | |
Collapse
|
86
|
High-Pressure-Induced Sublethal Injuries of Food Pathogens-Microscopic Assessment. Foods 2021; 10:foods10122940. [PMID: 34945491 PMCID: PMC8700888 DOI: 10.3390/foods10122940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
High Hydrostatic Pressure (HHP) technology is considered an alternative method of food preservation. Nevertheless, the current dogma is that HHP might be insufficient to preserve food lastingly against some pathogens. Incompletely damaged cells can resuscitate under favorable conditions, and they may proliferate in food during storage. This study was undertaken to characterize the extent of sublethal injuries induced by HHP (300-500 MPa) on Escherichia coli and Listeria inncua strains. The morphological changes were evaluated using microscopy methods such as Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), and Epifluorescence Microscopy (EFM). The overall assessment of the physiological state of tested bacteria through TEM and SEM showed that the action of pressure on the structure of the bacterial membrane was almost minor or unnoticeable, beyond the L. innocua wild-type strain. However, alterations were observed in subcellular structures such as the cytoplasm and nucleoid for both L. innocua and E. coli strains. More significant changes after the HHP of internal structures were reported in the case of wild-type strains isolated from raw juice. Extreme condensation of the cytoplasm was observed, while the outline of cells was intact. The percentage ratio between alive and injured cells in the population was assessed by fluorescent microscopy. The results of HHP-treated samples showed a heterogeneous population, and red cell aggregates were observed. The percentage ratio of live and dead cells (L/D) in the L. innocua collection strain population was higher than in the case of the wild-type strain (69%/31% and 55%/45%, respectively). In turn, E. coli populations were characterized with a similar L/D ratio. Half of the cells in the populations were distinguished as visibly fluorescing red. The results obtained in this study confirmed sublethal HHP reaction on pathogens cells.
Collapse
|
87
|
Ding Y, Ban Q, Wu Y, Sun Y, Zhou Z, Wang Q, Cheng J, Xiao H. Effect of high hydrostatic pressure on the edible quality, health and safety attributes of plant-based foods represented by cereals and legumes: a review. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34839776 DOI: 10.1080/10408398.2021.2005531] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Consumers today are increasingly willing to reduce their meat consumption and adopt plant-based alternatives in their diet. As a main source of plant-based foods, cereals and legumes (CLs) together could make up for all the essential nutrients that humans consume daily. However, the consumption of CLs and their derivatives is facing many challenges, such as the poor palatability of coarse grains and vegetarian meat, the presence of anti-nutritional factors, and allergenic proteins in CLs, and the vulnerability of plant-based foods to microbial contamination. Recently, high hydrostatic pressure (HHP) technology has been used to tailor the techno-functionality of plant proteins and induce cold gelatinization of starch in CLs to improve the edible quality of plant-based products. The nutritional value (e.g., the bioavailability of vitamins and minerals, reduction of anti-nutritional factors of legume proteins) and bio-functional properties (e.g., production of bioactive peptides, increasing the content of γ-aminobutyric acid) of CLs were significantly improved as affected by HHP. Moreover, the food safety of plant-based products could be significantly improved as well. HHP lowered the risk of microbial contamination through the inactivation of numerous microorganisms, spores, and enzymes in CLs and alleviated the allergy symptoms from consumption of plant-based foods.
Collapse
Affiliation(s)
- Yangyue Ding
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Qingfeng Ban
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China.,Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Yue Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Yuxue Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Zhihao Zhou
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Jianjun Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang, China
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
88
|
Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. PHOTONICS 2021. [DOI: 10.3390/photonics8110498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renewed technology has created a demand for foods which are natural in taste, minimally processed, and safe for consumption. Although thermal processing, such as pasteurization and sterilization, effectively limits pathogenic bacteria, it alters the aroma, flavor, and structural properties of milk and milk products. Nonthermal technologies have been used as an alternative to traditional thermal processing technology and have the ability to provide safe and healthy dairy products without affecting their nutritional composition and organoleptic properties. Other than nonthermal technologies, infrared spectroscopy is a nondestructive technique and may also be used for predicting the shelf life and microbial loads in milk. This review explains the role of pascalization or nonthermal techniques such as high-pressure processing (HPP), pulsed electric field (PEF), ultrasound (US), ultraviolet (UV), cold plasma treatment, membrane filtration, micro fluidization, and infrared spectroscopy in milk processing and preservation.
Collapse
|
89
|
Li Y, Padilla-Zakour OI. High Pressure Processing vs. Thermal Pasteurization of Whole Concord Grape Puree: Effect on Nutritional Value, Quality Parameters and Refrigerated Shelf Life. Foods 2021; 10:foods10112608. [PMID: 34828888 PMCID: PMC8620349 DOI: 10.3390/foods10112608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/20/2022] Open
Abstract
High-pressure processing (HPP) is utilized for food preservation as it can ensure product safety at low temperatures, meeting consumers’ demand for fresh-like and minimally processed products. The purpose of this study was to determine the effects of HPP (600 MPa, 3 min, 5 °C) and pasteurization by heat treatment (HT, 63 °C, 3 min) on the production of a novel whole Concord grape puree product (with skin and seeds, no waste), and the shelf-life of the puree under refrigerated storage (4 °C). Microbial load, physicochemical properties, phenolic content and antioxidant activity, composition and sensorial attributes of puree samples were evaluated. HPP- and HT-treated purees were microbiologically stable for at least 4 months under refrigeration, with less microbial growth and longer shelf life for HPP samples. HPP and HT samples had similar levels of phenolic contents and antioxidant activities throughout the 4-month refrigerated storage period, even though HPP retained >75% PPO and POD enzyme activities while those of HT were less than 25%. Inclusion of seeds in the puree product significantly increased the fiber, protein, total fatty acid, and linoleic acid contents. Sensory results showed that HPP-treated puree retained more fresh-like grape attributes, had better consistency, and showed significantly higher ratings in consumer overall liking, product ranking, and purchase intent than the HT puree (p < 0.05).
Collapse
|
90
|
Keșa AL, Pop CR, Mudura E, Salanță LC, Pasqualone A, Dărab C, Burja-Udrea C, Zhao H, Coldea TE. Strategies to Improve the Potential Functionality of Fruit-Based Fermented Beverages. PLANTS (BASEL, SWITZERLAND) 2021; 10:2263. [PMID: 34834623 PMCID: PMC8623731 DOI: 10.3390/plants10112263] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/13/2021] [Accepted: 10/17/2021] [Indexed: 06/01/2023]
Abstract
It is only recently that fermentation has been facing a dynamic revival in the food industry. Fermented fruit-based beverages are among the most ancient products consumed worldwide, while in recent years special research attention has been granted to assess their functionality. This review highlights the functional potential of alcoholic and non-alcoholic fermented fruit beverages in terms of chemical and nutritional profiles that impact on human health, considering the natural occurrence and enrichment of fermented fruit-based beverages in phenolic compounds, vitamins and minerals, and pro/prebiotics. The health benefits of fruit-based beverages that resulted from lactic, acetic, alcoholic, or symbiotic fermentation and specific daily recommended doses of each claimed bioactive compound were also highlighted. The latest trends on pre-fermentative methods used to optimize the extraction of bioactive compounds (maceration, decoction, and extraction assisted by supercritical fluids, microwave, ultrasound, pulsed electric fields, high pressure homogenization, or enzymes) are critically assessed. As such, optimized fermentation processes and post-fermentative operations, reviewed in an industrial scale-up, can prolong the shelf life and the quality of fermented fruit beverages.
Collapse
Affiliation(s)
- Ancuța-Liliana Keșa
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Carmen Rodica Pop
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Elena Mudura
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| | - Liana Claudia Salanță
- Department of Food Science, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (C.R.P.); (L.C.S.)
| | - Antonella Pasqualone
- Department of Soil, Plant and Food Sciences, University of Bari ‘Aldo Moro’, Via Amendola, 165/A, 70126 Bari, Italy;
| | - Cosmin Dărab
- Department of Electric Power Systems, Faculty of Electrical Engineering, Technical University of Cluj-Napoca, 400027 Cluj-Napoca, Romania;
| | - Cristina Burja-Udrea
- Industrial Engineering and Management Department, Faculty of Engineering, Lucian Blaga University of Sibiu, 10 Victoriei Blv., 550024 Sibiu, Romania;
| | - Haifeng Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China;
- Research Institute for Food Nutrition and Human Health, Guangzhou 510640, China
| | - Teodora Emilia Coldea
- Department of Food Engineering, Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 400372 Cluj-Napoca, Romania; (A.-L.K.); (E.M.)
| |
Collapse
|
91
|
Liao Q, Tao H, Li Y, Xu Y, Wang HL. Evaluation of Structural Changes and Molecular Mechanism Induced by High Hydrostatic Pressure in Enterobacter sakazakii. Front Nutr 2021; 8:739863. [PMID: 34631769 PMCID: PMC8495323 DOI: 10.3389/fnut.2021.739863] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/23/2021] [Indexed: 11/23/2022] Open
Abstract
The contamination of infant milk and powder with Enterobacter sakazakii poses a risk to human health and frequently caused recalls of affected products. This study aims to explore the inactivation mechanism of E. sakazakii induced by high hydrostatic pressure (HHP), which, unlike conventional heat treatment, is a nonthermal technique for pasteurization and sterilization of dairy food without deleterious effects. The mortality of E. sakazakii under minimum reaction conditions (50 MPa) was 1.42%, which was increased to 33.12% under significant reaction conditions (400 MPa). Scanning electron microscopy (SEM) and fluorescent staining results showed that 400 MPa led to a loss of physical integrity of cell membranes as manifested by more intracellular leakage of nucleic acid, intracellular protein and K+. Real-time quantitative PCR (RT-qPCR) analysis presents a downregulation of three functional genes (glpK, pbpC, and ompR), which were involved in cell membrane formation, indicating a lower level of glycerol utilization, outer membrane protein assembly, and environmental tolerance. In addition, the exposure of E. sakazakii to HHP modified oxidative stress, as reflected by the high activity of catalase and super oxide dismutase. The HHP treatment lowered down the gene expression of flagellar proteins (fliC, flgI, fliH, and flgK) and inhibited biofilm formation. These results determined the association of genotype to phenotype in E. sakazakii induced by HHP, which was used for the control of food-borne pathogens.
Collapse
Affiliation(s)
- Qiaoming Liao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Han Tao
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| | - Yali Li
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Yi Xu
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China
| | - Hui-Li Wang
- Engineering Research Center of Bio-process, Ministry of Education, Hefei University of Technology, Hefei, China.,School of Food Science and Engineering, Hefei University of Technology, Hefei, China
| |
Collapse
|
92
|
Nonthermal Processing Technologies for Stabilization and Enhancement of Bioactive Compounds in Foods. FOOD ENGINEERING REVIEWS 2021. [DOI: 10.1007/s12393-021-09295-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
93
|
Munekata PES, Pateiro M, Bellucci ERB, Domínguez R, da Silva Barretto AC, Lorenzo JM. Strategies to increase the shelf life of meat and meat products with phenolic compounds. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 98:171-205. [PMID: 34507642 DOI: 10.1016/bs.afnr.2021.02.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Oxidative reactions and microbial growth are the main processes involved in the loss of quality in meat products. Although the use of additives to improve the shelf life is a common practice in the meat industry, the current trends among consumers are pushing the researchers and professionals of the meat industry to reformulate meat products. Polyphenols are compounds with antioxidant and antimicrobial activity naturally found in several plants, fruits, and vegetables that can be used in the production of extracts and components in active packaging to improve the shelf life of meat products. This chapter aims to discuss the advances in terms of (1) encapsulation techniques to protect phenolic compounds; (2) production of active and edible packages rich on phenolic compounds; (3) use of phenolic-rich additives (free or encapsulated form) with non-thermal technologies to improve the shelf life of meat products; and (4) use of active packaging rich on phenolic compounds on meat products. Innovative strategies to encapsulated polyphenols and produce films are mainly centered in the use of innovative and emerging technologies (such as ultrasound and supercritical fluids). Moreover, the combined use of polyphenols and non-thermal technologies is a relevant approach to improve the shelf life of meat products, especially using high pressure processing. In terms of application of innovative films, nanomaterials have been largely explored and indicated as relevant strategy to preserve meat and meat products.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, Ourense, Spain; Facultad de Ciencias de Ourense, Área de Tecnología de los Alimentos, Universidad de Vigo, Ourense, Spain.
| |
Collapse
|
94
|
Roobab U, Shabbir MA, Khan AW, Arshad RN, Bekhit AED, Zeng XA, Inam-Ur-Raheem M, Aadil RM. High-pressure treatments for better quality clean-label juices and beverages: Overview and advances. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111828] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
95
|
Pérez-Lamela C, Franco I, Falqué E. Impact of High-Pressure Processing on Antioxidant Activity during Storage of Fruits and Fruit Products: A Review. Molecules 2021; 26:5265. [PMID: 34500700 PMCID: PMC8434123 DOI: 10.3390/molecules26175265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/16/2022] Open
Abstract
Fruits and fruit products are an essential part of the human diet. Their health benefits are directly related to their content of valuable bioactive compounds, such as polyphenols, anthocyanins, or vitamins. Heat treatments allow the production of stable and safe products; however, their sensory quality and chemical composition are subject to significant negative changes. The use of emerging non-thermal technologies, such as HPP (High Pressure Processing), has the potential to inactivate the microbial load while exerting minimal effects on the nutritional and organoleptic properties of food products. HPP is an adequate alternative to heat treatments and simultaneously achieves the purposes of preservation and maintenance of freshness characteristics and health benefits of the final products. However, compounds responsible for antioxidant activity can be significantly affected during treatment and storage of HPP-processed products. Therefore, this article reviews the effect of HPP treatment and subsequent storage on the antioxidant activity (oxygen radical absorbance capacity (ORAC) assay), 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity assay, ferric reducing antioxidant power (FRAP) assay, 2,2'-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging capacity assay or Trolox equivalent antioxidant capacity (TEAC) assay), and on the total phenolic, flavonoid, carotenoid, anthocyanin and vitamin contents of fruits and different processed fruit-based products.
Collapse
Affiliation(s)
- Concepción Pérez-Lamela
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain
| | - Inmaculada Franco
- Food Technology Area, Faculty of Sciences, University of Vigo—Ourense Campus, E32004 Ourense, Spain;
| | - Elena Falqué
- Analytical Chemistry Group, Department of Analytical and Food Chemistry, Faculty of Sciences, University of Vigo–Ourense Campus, E32004 Ourense, Spain;
| |
Collapse
|
96
|
Kilic B, Cubero Dudinskaya E, Proi M, Naspetti S, Zanoli R. Are They Careful Enough? Testing Consumers' Perception of Alternative Processing Technologies on the Quality of Organic Food. Nutrients 2021; 13:2922. [PMID: 34578799 PMCID: PMC8464805 DOI: 10.3390/nu13092922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 08/18/2021] [Accepted: 08/22/2021] [Indexed: 11/17/2022] Open
Abstract
Given the increasing public interest in how ingredients are processed and the growing demand for organic food products, it is critical to understand consumers' expectations about the process-related quality of organic products. Consumers perceive organic food to be nutritious, healthy and either natural or less processed, as they are afraid of the loss of nutritional, organoleptic and sensory properties of the food products. However, alternative food processing technologies might generate healthy and safe food options with nutritional quality properties. Simplified communication schemes might help to overcome this barrier for the consumer. The main objective of this study is to propose a working definition of "careful processing" for organic products and test its consistency through an experiment, while being used to rate different processing methods by consumers. Results show that the proposed definition allows the consumer to consistently rate alternative processing technologies. Consumers tend to score alternative processing technologies such as pulsed electric fields and microwaves as less careful, supporting the idea that organic consumers want as little man-made interference in their food products as possible. Results show that a simple but effective definition of careful processing may help consumers to distinguish more organic food products from conventional ones, no matter which communication scheme is used.
Collapse
Affiliation(s)
- Busra Kilic
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (B.K.); (M.P.)
| | - Emilia Cubero Dudinskaya
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (B.K.); (M.P.)
| | - Migena Proi
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (B.K.); (M.P.)
| | - Simona Naspetti
- Department of Materials, Environmental Sciences and Urban Planning (SIMAU), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Raffaele Zanoli
- Department of Agricultural, Food and Environmental Sciences (D3A), Università Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona, Italy; (B.K.); (M.P.)
| |
Collapse
|
97
|
Asaithambi N, Singh SK, Singha P. Current status of non-thermal processing of probiotic foods: A review. J FOOD ENG 2021. [DOI: 10.1016/j.jfoodeng.2021.110567] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
98
|
Avelar Z, Vicente AA, Saraiva JA, Rodrigues RM. The role of emergent processing technologies in tailoring plant protein functionality: New insights. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.05.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
99
|
Zhang B, Pérez‐Won M, Tabilo‐Munizaga G, Aubourg SP. Inhibition of lipid damage in refrigerated salmon (
Oncorhynchus kisutch
) by a combined treatment of CO
2
packaging and high‐pressure processing. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Bin Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province College of Food Science and Pharmacy Zhejiang Ocean University Zhoushan China
| | - Mario Pérez‐Won
- Department of Food Engineering University of Bío‐Bío Chillán Chile
| | | | - Santiago P. Aubourg
- Department of Food Technology Marine Research Institute (CSIC) c/ E. Cabello, 6 Vigo 36208 Spain
| |
Collapse
|
100
|
Chacha JS, Zhang L, Ofoedu CE, Suleiman RA, Dotto JM, Roobab U, Agunbiade AO, Duguma HT, Mkojera BT, Hossaini SM, Rasaq WA, Shorstkii I, Okpala COR, Korzeniowska M, Guiné RPF. Revisiting Non-Thermal Food Processing and Preservation Methods-Action Mechanisms, Pros and Cons: A Technological Update (2016-2021). Foods 2021; 10:1430. [PMID: 34203089 PMCID: PMC8234293 DOI: 10.3390/foods10061430] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/16/2021] [Accepted: 06/17/2021] [Indexed: 12/05/2022] Open
Abstract
The push for non-thermal food processing methods has emerged due to the challenges associated with thermal food processing methods, for instance, high operational costs and alteration of food nutrient components. Non-thermal food processing involves methods where the food materials receive microbiological inactivation without or with little direct application of heat. Besides being well established in scientific literature, research into non-thermal food processing technologies are constantly on the rise as applied to a wide range of food products. Due to such remarkable progress by scientists and researchers, there is need for continuous synthesis of relevant scientific literature for the benefit of all actors in the agro-food value chain, most importantly the food processors, and to supplement existing information. This review, therefore, aimed to provide a technological update on some selected non-thermal food processing methods specifically focused on their operational mechanisms, their effectiveness in preserving various kinds of foods, as revealed by their pros (merits) and cons (demerits). Specifically, pulsed electric field, pulsed light, ultraviolet radiation, high-pressure processing, non-thermal (cold) plasma, ozone treatment, ionizing radiation, and ultrasound were considered. What defines these techniques, their ability to exhibit limited changes in the sensory attributes of food, retain the food nutrient contents, ensure food safety, extend shelf-life, and being eco-friendly were highlighted. Rationalizing the process mechanisms about these specific non-thermal technologies alongside consumer education can help raise awareness prior to any design considerations, improvement of cost-effectiveness, and scaling-up their capacity for industrial-level applications.
Collapse
Affiliation(s)
- James S. Chacha
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Liyan Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Chigozie E. Ofoedu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Science and Technology, School of Engineering and Engineering Technology, Federal University of Technology, Owerri 460114, Nigeria
| | - Rashid A. Suleiman
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Joachim M. Dotto
- School of Life Sciences and Bioengineering, Nelson Mandela African Institution of Science and Technology, P.O. Box 447 Arusha, Tanzania;
| | - Ume Roobab
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
| | - Adedoyin O. Agunbiade
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Food Technology, University of Ibadan, Ibadan 200284, Nigeria
| | - Haile Tesfaye Duguma
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; (L.Z.); (U.R.); (A.O.A.); (H.T.D.)
- Department of Post-Harvest Management, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 378 Jimma, Ethiopia
| | - Beatha T. Mkojera
- Department of Food Technology, Nutrition, and Consumer Sciences, Sokoine University of Agriculture, P.O. Box 3006 Chuo Kikuu, Tanzania; (R.A.S.); (B.T.M.)
| | - Sayed Mahdi Hossaini
- DIL German Institute of Food Technologies, Prof.-von-Klitzing-Str. 7, D-49610 Quakenbrück, Germany;
| | - Waheed A. Rasaq
- Department of Applied Bioeconomy, Wrocław University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Ivan Shorstkii
- Department of Technological Equipment and Life-Support Systems, Kuban State Technological University, 350072 Krasnodar, Russia;
| | - Charles Odilichukwu R. Okpala
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Malgorzata Korzeniowska
- Faculty of Biotechnology and Food Sciences, Wroclaw University of Environmental and Life Sciences, 51-630 Wrocław, Poland;
| | - Raquel P. F. Guiné
- CERNAS Research Centre, Polytechnic Institute of Viseu, 3504-510 Viseu, Portugal
| |
Collapse
|