51
|
Chen P, Xiang B, Shi H, Yu P, Song Y, Li S. Recent advances on type A trichothecenes in food and feed: Analysis, prevalence, toxicity, and decontamination techniques. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
52
|
Hu WJ, Yan JX, You KH, Wei TL, Li YP, He QH. Streptococcal protein G based fluorescent universal probes and biosynthetic mimetics for Fumonisin B1 immunochromatographic assay. Food Control 2020. [DOI: 10.1016/j.foodcont.2020.107442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
53
|
|
54
|
Li Y, Wang R, Chen Z, Zhao X, Luo X, Wang L, Li Y, Teng F. Preparation of magnetic mesoporous silica from rice husk for aflatoxin B1 removal: Optimum process and adsorption mechanism. PLoS One 2020; 15:e0238837. [PMID: 32913353 PMCID: PMC7482997 DOI: 10.1371/journal.pone.0238837] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 08/25/2020] [Indexed: 11/19/2022] Open
Abstract
The liquid foodstuffs such as edible oil products remain a problem of excessive aflatoxin B1 (AFB1) content. This paper focused on the preparation of magnetic mesoporous silica (MMS) from rice husk ash for the removal of AFB1 in oil system. The MMS preparation process, adsorption conditions, structural characteristics, and adsorption mechanism were investigated. The optimum conditions for MMS preparation were pH 11.0 and 80°C for 24 h. The characterization results showed that magnetic particles were successfully embedded in the MMS and had high responsiveness to a magnetic field, which was advantageous for recyclability. The MMS had ordered uniform channels with a specific surface area of 730.98 m2/g and pore diameter of 2.43 nm. The optimum adsorption conditions were 2 h at 20°C. For AFB1 with an initial concentration of 0.2 μg/mL, the MMS adsorption capacity was 171.98 μg/g and the adsorption rate was 94.59%. The MMS adsorption isotherm fitted the Langmuir model well under the assumption of monolayer AFB1 adsorption with uniformly distributed adsorption sites on the MMS surface. The maximum amount of AFB1 adsorbed according to the Langmuir isotherm was 1118.69 μg/g. A quasi-second-order kinetic model gave a better fit to the process of AFB1 adsorption on MMS. The values of ΔH (-19.17 kJ/mol) and ΔG (-34.09, -34.61, and -35.15 kJ/mol at 283, 293, and 303 K, respectively) were negative, indicating that AFB1 adsorption on MMS was a spontaneous exothermic process. The results indicated that MMS was a promising material for AFB1 removal in oil system, and this study will serve as a guide for practical MMS applications.
Collapse
Affiliation(s)
- Yanan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Ren Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Zhengxing Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiuping Zhao
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaohu Luo
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Yongfu Li
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Fei Teng
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
55
|
Karami-Osboo R, Maham M, Nasrollahzadeh M. Synthesised magnetic nano-zeolite as a mycotoxins binder to reduce the toxicity of aflatoxins, zearalenone, ochratoxin A, and deoxynivalenol in barley. IET Nanobiotechnol 2020; 14:623-627. [PMID: 33010139 PMCID: PMC8676138 DOI: 10.1049/iet-nbt.2020.0107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 09/01/2023] Open
Abstract
Agricultural commodities, particularly cereals can be contaminated with mycotoxins during the pre- and post-harvest stage. The main goal of this study was to evaluate the efficacy of magnetic zeolite nanocomposite (MZNC) as an adsorbent for the reduction of mycotoxins in barley flour. The MZNC is synthesised using an eco-friendly and efficient procedure and characterised by zeta potential, field emission scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The adsorbent amount that affects the adsorption capacity was optimised. Low amounts of the nanocomposite removed >99% of aflatoxins, 50% of ochratoxin A, 22% of zearalenone, and 1.8% of the deoxynivalenol from the contaminated sample and adsorption by MZNC was better than the natural zeolite; this phenomenon is related to the wide surface of nanocomposites. Results provide new insights into possible future research that could overcome the challenges of using nanotechnology to eliminate mycotoxins from agricultural products. It can be hoped that the presence of cheap and eco-friendly mycotoxin binders such as the MZNC that is synthesised and utilised in this research will help to produce secure food and feed products.
Collapse
Affiliation(s)
- Rouhollah Karami-Osboo
- Mycotoxins Research Laboratory, Agricultural Research Education and Extension Organization (AREEO), Iranian Research Institute of Plant Protection, Tehran, Iran.
| | - Mehdi Maham
- Department of Chemistry, Aliabad Katoul Branch, Islamic Azad University, Aliabad Katoul, Iran
| | | |
Collapse
|
56
|
Zhu L, Yi X, Ma C, Luo C, Kong L, Lin X, Gao X, Yuan Z, Wen L, Li R, Wu J, Yi J. Betulinic Acid Attenuates Oxidative Stress in the Thymus Induced by Acute Exposure to T-2 Toxin via Regulation of the MAPK/Nrf2 Signaling Pathway. Toxins (Basel) 2020; 12:toxins12090540. [PMID: 32842569 PMCID: PMC7551141 DOI: 10.3390/toxins12090540] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/19/2020] [Indexed: 12/17/2022] Open
Abstract
T-2 toxin, the most toxic of the trichothecenes, is widely found in grains and feeds, and its intake poses serious risks to the health of humans and animals. An important cytotoxicity mechanism of T-2 toxin is the production of excess free radicals, which in turn leads to oxidative stress. Betulinic acid (BA) has many biological activities, including antioxidant activity, which is a plant-derived pentacyclic triterpenoid. The protective effects and mechanisms of BA in blocking oxidative stress caused by acute exposure to T-2 toxin in the thymus of mice was studied. BA pretreatment reduced ROS production, decreased the MDA content, and increased the content of IgG in serum and the levels of SOD and GSH in the thymus. BA pretreatment also reduced the degree of congestion observed in histopathological tissue sections of the thymus induced by T-2 toxin. Besides, BA downregulated the phosphorylation of the p38, JNK, and ERK proteins, while it upregulated the expression of the Nrf2 and HO-1 proteins in thymus tissues. The results indicated that BA could protect the thymus against the oxidative damage challenged by T-2 toxin by activating Nrf2 and suppressing the MAPK signaling pathway.
Collapse
Affiliation(s)
- Lijuan Zhu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xianglian Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chaoyang Ma
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Chenxi Luo
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Li Kong
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xing Lin
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Xinyu Gao
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
| | - Zhihang Yuan
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
| | - Lixin Wen
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Rongfang Li
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
| | - Jing Wu
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| | - Jine Yi
- Colleges of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China; (L.Z.); (X.Y.); (C.M.); (C.L.); (L.K.); (X.L.); (X.G.); (Z.Y.); (L.W.); (R.L.)
- Hunan Engineering Research Center of Livestock and Poultry Health Care, Changsha 410128, China
- Hunan Co-Innovation Center of Animal Production Safety, Changsha 410128, China
- Correspondence: (J.W.); (J.Y.)
| |
Collapse
|
57
|
Afsah-Hejri L, Hajeb P, Ehsani RJ. Application of ozone for degradation of mycotoxins in food: A review. Compr Rev Food Sci Food Saf 2020; 19:1777-1808. [PMID: 33337096 DOI: 10.1111/1541-4337.12594] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 05/07/2020] [Accepted: 05/28/2020] [Indexed: 12/01/2022]
Abstract
Mycotoxins such as aflatoxins (AFs), ochratoxin A (OTA) fumonisins (FMN), deoxynivalenol (DON), zearalenone (ZEN), and patulin are stable at regular food process practices. Ozone (O3 ) is a strong oxidizer and generally considered as a safe antimicrobial agent in food industries. Ozone disrupts fungal cells through oxidizing sulfhydryl and amino acid groups of enzymes or attacks the polyunsaturated fatty acids of the cell wall. Fusarium is the most sensitive mycotoxigenic fungi to ozonation followed by Aspergillus and Penicillium. Studies have shown complete inactivation of Fusarium and Aspergillus by O3 gas. Spore germination and toxin production have also been reduced after ozone fumigation. Both naturally and artificially, mycotoxin-contaminated samples have shown significant mycotoxin reduction after ozonation. Although the mechanism of detoxification is not very clear for some mycotoxins, it is believed that ozone reacts with the functional groups in the mycotoxin molecules, changes their molecular structures, and forms products with lower molecular weight, less double bonds, and less toxicity. Although some minor physicochemical changes were observed in some ozone-treated foods, these changes may or may not affect the use of the ozonated product depending on the further application of it. The effectiveness of the ozonation process depends on the exposure time, ozone concentration, temperature, moisture content of the product, and relative humidity. Due to its strong oxidizing property and corrosiveness, there are strict limits for O3 gas exposure. O3 gas has limited penetration and decomposes quickly. However, ozone treatment can be used as a safe and green technology for food preservation and control of contaminants.
Collapse
Affiliation(s)
- Leili Afsah-Hejri
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| | - Parvaneh Hajeb
- Department of Environmental Science, Aarhus University, Roskilde, Denmark
| | - Reza J Ehsani
- Mechanical Engineering Department, School of Engineering, University of California Merced, Merced, California
| |
Collapse
|
58
|
Yin J, Fan W, Du J, Feng W, Dong Z, Liu Y, Zhou T. The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 248:865-873. [PMID: 32000020 DOI: 10.1016/j.envpol.2019.02.091] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 02/14/2019] [Accepted: 02/25/2019] [Indexed: 05/07/2023]
Abstract
Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.
Collapse
Affiliation(s)
- Jingyu Yin
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing 100191, PR China.
| | - Juan Du
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Weiying Feng
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Zhaomin Dong
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Yingying Liu
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| | - Tingting Zhou
- School of Space and Environment, Beihang University, No. 37, XueYuan Road, HaiDian District, Beijing 100191, PR China
| |
Collapse
|
59
|
Development and evaluation of a rapid immunomagnetic extraction for effective detection of zearalenone in agricultural products. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.106973] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
60
|
Zhang L, Xu W, Yue P, Wang Q, Li Y, Pei X, Zeng P. High occurrence of aflatoxin B1 in Pixian Doubanjiang, a typical condiment in Chinese cuisine. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
61
|
Dong Y, Fan L, Liang J, Wang L, Yuan X, Wang Y, Zhao S. Risk assessment of mycotoxins in stored maize: case study of Shandong, China. WORLD MYCOTOXIN J 2020. [DOI: 10.3920/wmj2019.2449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Risk characterisation of dietary exposure of aflatoxins (AFs), fumonisins (FBs), deoxynivalenol (DON), zearalenone (ZEA) in maize from Shandong Province was conducted in this study. A total of 520 maize samples were collected after harvesting in 2014 and 2015 from 26 selected villages in Shandong Province, China. A deterministic approach was used in the current study. The dietary intake data of maize was obtained from ‘Shandong Statistical Yearbook 2018’. The risk characterisation of FBs, DON, and ZEA was evaluated in 4 population groups (2 to 6-year-old children, standard adults, city adults and village adults) based on probable intake. 2 to 6-year-old children and adults were exposed to FBs (0.42 and 0.20 μg/kg body weight (bw)/day), DON (0.04 and 0.019 μg/kg bw/day), and ZEA (0.0024 and 0.0011 μg/kg bw/day) through mean maize consumption in diets, which was lower than the provisional maximum tolerable daily intake of each mycotoxin established by JECFA. Risk assessments showed a low risk for liver cancer due to consumption of aflatoxin B1 (0.027-0.21 cases per 100,000 persons per year) contaminated maize compared with China’s current liver cancer incidence of 24.6 cases per 100,000 persons per year.
Collapse
Affiliation(s)
- Y. Dong
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| | - L. Fan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| | - J. Liang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| | - L. Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| | - X. Yuan
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| | - Y. Wang
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| | - S. Zhao
- Laboratory of Quality and Safety Risk Assessment for Agro-Products of the Ministry of Agriculture (Jinan), Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, No. 202 Gongyebei Road, Jinan 250100, China P.R
- Academy of Agricultural Sciences/Shandong Provincial Key Laboratory of Test Technology on Food Quality and Safety, Jinan 250100, China P.R
| |
Collapse
|
62
|
Haque MA, Wang Y, Shen Z, Li X, Saleemi MK, He C. Mycotoxin contamination and control strategy in human, domestic animal and poultry: A review. Microb Pathog 2020; 142:104095. [PMID: 32097745 DOI: 10.1016/j.micpath.2020.104095] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 12/12/2022]
Abstract
Mycotoxins are secondary metabolites produced mainly by fungi belonging to the genera Aspergillus, Fusarium, Penicillium, Claviceps, and Alternaria that contaminate basic food products throughout the world, where developing countries are becoming predominantly affected. Currently, more than 500 mycotoxins are reported in which the most important concern to public health and agriculture include AFB1, OTA, TCTs (especially DON, T-2, HT-2), FB1, ZEN, PAT, CT, and EAs. The presence of mycotoxin in significant quantities poses health risks varying from allergic reactions to death on both humans and animals. This review brings attention to the present status of mycotoxin contamination of food products and recommended control strategies for mycotoxin mitigation. Humans are exposed to mycotoxins directly through the consumption of contaminated foods while, indirectly through carryover of toxins and their metabolites into animal tissues, milk, meat and eggs after ingestion of contaminated feeds. Pre-harvest (field) control of mycotoxin production and post-harvest (storage) mitigation of contamination represent the most effective approach to limit mycotoxins in food and feed. Compared with chemical and physical approaches, biological detoxification methods regarding biotransformation of mycotoxins into less toxic metabolites, are generally more unique, productive and eco-friendly. Along with the biological detoxification method, genetic improvement and application of nanotechnology show tremendous potential in reducing mycotoxin production thereby improving food safety and food quality for extended shelf life. This review will primarily describe the latest developments in the formation and detoxification of the most important mycotoxins by biological degradation and other alternative approaches, thereby reducing the potential adverse effects of mycotoxins.
Collapse
Affiliation(s)
- Md Atiqul Haque
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China; Department of Microbiology, Faculty of Veterinary & Animal Science, Hajee Mohammad Danesh Science and Technology University, Dinajpur, 5200, Bangladesh
| | - Yihui Wang
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Zhiqiang Shen
- Binzhou Animal Science and Veterinary Medicine Academy of Shandong Province, Binzhou, 256600, China
| | - Xiaohui Li
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Muhammad Kashif Saleemi
- Department of Pathology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Cheng He
- Key Lab of Animal Epidemiology and Zoonoses of Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
63
|
Yu S, Jia B, Yang Y, Liu N, Wu A. Involvement of PERK-CHOP pathway in fumonisin B1- induced cytotoxicity in human gastric epithelial cells. Food Chem Toxicol 2020; 136:111080. [DOI: 10.1016/j.fct.2019.111080] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 11/25/2022]
|
64
|
Agriopoulou S, Stamatelopoulou E, Varzakas T. Advances in Occurrence, Importance, and Mycotoxin Control Strategies: Prevention and Detoxification in Foods. Foods 2020; 9:E137. [PMID: 32012820 PMCID: PMC7074356 DOI: 10.3390/foods9020137] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023] Open
Abstract
Mycotoxins are toxic substances that can infect many foods with carcinogenic, genotoxic, teratogenic, nephrotoxic, and hepatotoxic effects. Mycotoxin contamination of foodstuffs causes diseases worldwide. The major classes of mycotoxins that are of the greatest agroeconomic importance are aflatoxins, ochratoxins, fumonisins, trichothecenes, emerging Fusarium mycotoxins, enniatins, ergot alkaloids, Alternaria toxins, and patulin. Thus, in order to mitigate mycotoxin contamination of foods, many control approaches are used. Prevention, detoxification, and decontamination of mycotoxins can contribute in this purpose in the pre-harvest and post-harvest stages. Therefore, the purpose of the review is to elaborate on the recent advances regarding the occurrence of main mycotoxins in many types of important agricultural products, as well as the methods of inactivation and detoxification of foods from mycotoxins in order to reduce or fully eliminate them.
Collapse
Affiliation(s)
- Sofia Agriopoulou
- Department of Food Science and Technology, University of the Peloponnese, Antikalamos, 24100 Kalamata, Greece; (E.S.); (T.V.)
| | | | | |
Collapse
|
65
|
Zhao G, Wang YF, Chen J, Yao Y. Predominant Mycotoxins, Pathogenesis, Control Measures, and Detection Methods in Fermented Pastes. Toxins (Basel) 2020; 12:E78. [PMID: 31979410 PMCID: PMC7076863 DOI: 10.3390/toxins12020078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/12/2020] [Accepted: 01/21/2020] [Indexed: 12/19/2022] Open
Abstract
Fermented pastes are some of the most popular traditional products in China. Many studies reported a strong possibility that fermented pastes promote exposure to mycotoxins, including aflatoxins, ochratoxins, and cereulide, which were proven to be carcinogenic and neurotoxic to humans. The primary mechanism of pathogenicity is by inhibiting protein synthesis and inducing oxidative stress using cytochrome P450 (CYP) enzymes. The level of mycotoxin production is dependent on the pre-harvest or post-harvest stage. It is possible to implement methods to control mycotoxins by using appropriate antagonistic microorganisms, such as Aspergillus niger, Lactobacillus plantarum, and Saccharomyces cerevisiae isolated from ordinary foods. Also, drying products as soon as possible to avoid condensation or moisture absorption in order to reduce the water activity to lower than 0.82 during storage is also effective. Furthermore, organic acid treatment during the soaking process reduces toxins by more than 90%. Some novel detection technologies based on magnetic adsorption, aptamer probes, and molecular-based methods were applied to rapidly and accurately detect mycotoxins in fermented pastes.
Collapse
Affiliation(s)
- Guozhong Zhao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| | - Yi-Fei Wang
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| | - Junling Chen
- College of Food and Bioengineering, Henan University of Science and Technology, 471023 Luoyang, China;
| | - Yunping Yao
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science & Technology, 300457 Tianjin, China; (G.Z.); (Y.-F.W.)
| |
Collapse
|
66
|
Wang Y, Wang G, Dai Y, Wang Y, Lee YW, Shi J, Xu J. Biodegradation of Deoxynivalenol by a Novel Microbial Consortium. Front Microbiol 2020; 10:2964. [PMID: 31969870 PMCID: PMC6960266 DOI: 10.3389/fmicb.2019.02964] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Accepted: 12/09/2019] [Indexed: 12/27/2022] Open
Abstract
Deoxynivalenol (DON), a common mycotoxin of type B trichothecene, is produced mainly by several Fusarium species. DON causes great losses in farming and poses severe safety risks to human and animal health. Thus, DON contamination in cereals and DON toxicity are of worldwide concern. In this study, we screened the bacterial consortium C20, which efficiently degraded almost 70 μg ml−1 DON within 5 days. The bacterial consortium also had the ability to degrade 15-acetyl-DON, 3-acetyl-DON, and T-2 toxin. The bacterial consortium C20 was able to degrade DON under a wide range of pH and temperature conditions. The optimal temperature and pH for DON degradation were 30°C and pH 8.0, respectively. The bacterial consortium C20 comprised of different bacterial genera, and several strains were found to significantly increase when cultured in Mineral Medium with 100 μg ml−1 DON based on the analysis of the sequences of the hypervariable V3-V4 region of the 16S rRNA gene. 3-keto-DON was confirmed as a degradation product of DON by liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS) and nuclear magnetic resonance (NMR) analyses. The results indicated that the bacterial consortium C20 is a potential candidate for the biodegradation of DON in a safe and environmentally friendly manner.
Collapse
Affiliation(s)
- Yanxia Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Gang Wang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yijun Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China
| | - Yu Wang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Science, Nanjing Normal University, Nanjing, China.,Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yin-Won Lee
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Jianrong Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jianhong Xu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Key Laboratory for Agro-Product Safety Risk Evaluation (Nanjing), Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Modern Grain Circulation and Safety, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China.,School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| |
Collapse
|
67
|
Jiménez Medina ML, Lafarga T, Garrido Frenich A, Romero-González R. Natural Occurrence, Legislation, and Determination of Aflatoxins Using Chromatographic Methods in Food: A Review (from 2010 to 2019). FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1701009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- María Luisa Jiménez Medina
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Almería, Spain
| | - Tomas Lafarga
- Processed Fruits & Vegetables, Institute of Agrifood Research and Technology (IRTA), XaRTA-Postharvest, Lleida, Spain
| | - Antonia Garrido Frenich
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Almería, Spain
| | - Roberto Romero-González
- Research Group “Analytical Chemistry of Contaminants”, Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAIMBITAL), University of Almería, Almería, Spain
| |
Collapse
|
68
|
Wu J, Yang C, Liu J, Chen J, Huang C, Wang J, Liang Z, Wen L, Yi JE, Yuan Z. Betulinic Acid Attenuates T-2-Toxin-Induced Testis Oxidative Damage Through Regulation of the JAK2/STAT3 Signaling Pathway in Mice. Biomolecules 2019; 9:787. [PMID: 31779213 PMCID: PMC6995557 DOI: 10.3390/biom9120787] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 02/06/2023] Open
Abstract
T-2 toxin is one of the most toxic type A trichothecene mycotoxins in nature, and it exhibits reproductive toxicity. Betulinic acid (BA) is a natural pentacyclic triterpene compound found in species of Betula, and it has been reported to have antioxidant activity. The aim of the present study was to investigate the protective effect of BA on T-2-toxin-induced testicular injury in mice and explore its molecular mechanism. Sixty adult male mice were randomly divided into groups. The mice were pretreated orally with BA (0.25, 0.5, and 1.0 mg/kg) daily for 14 days, and the T-2 toxin (4 mg/kg body weight) was administered via intraperitoneal injection to induce oxidative stress after the last administration of BA. BA pretreatment significantly increased the secreted levels of testosterone and sperm motility. Moreover, BA pretreatment significantly increased the total antioxidant capacity (T-AOC), the activity of SOD and CAT, and the content of GSH, and it reduced the content of MDA. Furthermore, BA relieved testicular injury and reduced the number of apoptotic cells, and it significantly decreased the protein expression of Janus kinase 2 (JAK2), signal transducers and activators of transcription 3 (STAT3), caspsae-3, and Bcl-2-associated X protein (Bax). BA also increased the expression of B-cell lymphoma-2 (Bcl-2). We suggest that BA reduced the oxidative damage induced by T-2 toxin, and that these protective effects may be partially mediated by the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Jing Wu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Chenglin Yang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Juan Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Jiaxin Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Chao Huang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Ji Wang
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Zengenni Liang
- Department of Hunan Agricultural Product Processing Institute, Changsha 410128, China;
| | - Lixin Wen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Jin-e Yi
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| | - Zhihang Yuan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China (C.Y.); (J.L.); (J.C.); (C.H.); (L.W.)
| |
Collapse
|
69
|
Huang Z, He J, Li Y, Wu C, You L, Wei H, Li K, Zhang S. Preparation of dummy molecularly imprinted polymers for extraction of Zearalenone in grain samples. J Chromatogr A 2019; 1602:11-18. [DOI: 10.1016/j.chroma.2019.05.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 05/09/2019] [Accepted: 05/12/2019] [Indexed: 01/06/2023]
|
70
|
Review: Biotechnology of mycotoxins detoxification using microorganisms and enzymes. Toxicon 2019; 160:12-22. [DOI: 10.1016/j.toxicon.2019.02.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 12/23/2018] [Accepted: 02/03/2019] [Indexed: 01/22/2023]
|
71
|
Morphological and molecular response of small intestine to lactulose and hydrogen-rich water in female piglets fed Fusarium mycotoxins contaminated diet. J Anim Sci Biotechnol 2019; 10:9. [PMID: 30805184 PMCID: PMC6373143 DOI: 10.1186/s40104-019-0320-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/09/2019] [Indexed: 01/14/2023] Open
Abstract
Background Following the intake of Fusarium mycotoxin-contaminated feed, small intestines may be exposed to high levels of toxic substances that can potentially damage intestinal functions in livestock. It is well known that Fusarium mycotoxins will lead a breakdown of the normally impeccable epithelial barrier, resulting in the development of a “leaky” gut. H2 administration with different methods has been proved definitely potentials to prevent serious intestinal diseases. The goal of this study is to investigate the roles of lactulose (LAC) and hydrogen-rich water (HRW) in preventing intestinal dysfunction in piglets fed Fusarium mycotoxin-contaminated feed. Methods A total of 24 female piglets were evenly assigned to 4 groups: negative control (NC) group, mycotoxin-contaminated (MC) feed group, MC feed with LAC treatment (MC + LAC), and MC feed with HRW treatment (MC + HRW), respectively. Piglets in the NC group were fed uncontaminated control diet, while remaining piglets were fed Fusarium mycotoxin-contaminated diet. For the NC and MC groups, 10 mL/kg body weight (BW) of hydrogen-free water (HFW) was orally administrated to piglets twice daily; while in the MC + LAC and MC + HRW groups, piglets were treated with the same dose of LAC solution (500 mg/kg BW) and HRW twice daily, respectively. On d 25, serum was collected and used for biochemical analysis. Intestinal tissues were sampled for morphological examination as well as relative genes and protein expression analysis. Results Our data showed that Fusarium mycotoxins induced higher serum diamine oxidase (DAO) activities (P < 0.05), D-lactic acid levels (P < 0.01), and endotoxin status (P < 0.01), lower villus height (P < 0.01) and ratio of villus height to crypt depth (P < 0.05) in small intestine, greater apoptosis index and higher mRNA expression related to tight junctions (P < 0.05). In addition, the distribution and down-regulation of claudin-3 (CLDN3) protein in the small intestinal was also observed. As expected, oral administrations of HRW and LAC were found to remarkably provide beneficial effects against Fusarium mycotoxin-induced apoptosis and intestinal leaking. Moreover, either HRW or LAC treatments were also revealed to prevent abnormal intestinal morphological changes, disintegrate tight junctions, and restore the expression and distribution of CLDN3 protein in the small intestinal mucosal layer in female piglets that were fed Fusarium mycotoxins contaminated diet. Conclusions Our data suggest that orally administrations of HRW and LAC result in less Fusarium mycotoxin-induced apoptosis and leak in the small intestine. Either HRW or LAC treatments could prevent the abnormal changes of intestinal morphology and molecular response of tight junctions as well as restore the distribution and expression of CLDN3 protein of small intestinal mucosa layer in female piglets that were fed Fusarium mycotoxins contaminated diet. Electronic supplementary material The online version of this article (10.1186/s40104-019-0320-2) contains supplementary material, which is available to authorized users.
Collapse
|
72
|
Rong X, Sun-Waterhouse D, Wang D, Jiang Y, Li F, Chen Y, Zhao S, Li D. The Significance of Regulatory MicroRNAs: Their Roles in Toxicodynamics of Mycotoxins and in the Protection Offered by Dietary Therapeutics Against Mycotoxin-Induced Toxicity. Compr Rev Food Sci Food Saf 2018; 18:48-66. [DOI: 10.1111/1541-4337.12412] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 09/11/2018] [Accepted: 11/02/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Xue Rong
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Dongxiao Sun-Waterhouse
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- School of Chemical Sciences; The Univ. of Auckland; Private Bag Auckland 92019 New Zealand
| | - Dan Wang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
- Shandong Inst. of Pomology; Taian Shandong 271000 P. R. China
| | - Yang Jiang
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Feng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Yilun Chen
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| | - Shancang Zhao
- Central Laboratory of Shandong Academy of Agricultural Sciences; Key Laboratory of Test Technology on Food Quality and Safety of Shandong Province; Jinan Shandong 250100 P. R. China
| | - Dapeng Li
- Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes; the College of Food Science and Engineering, Shandong Agricultural Univ.; Taian Shandong 271018 P. R. China
| |
Collapse
|