51
|
Wang Z, He Z, Zhang D, Chen X, Li H. Effects of purslane extract on the quality indices of rabbit meat patties under chilled storage. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Zefu Wang
- College of Food Science Southwest University Chongqing China
| | - Zhifei He
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| | - Dong Zhang
- College of Food Science Southwest University Chongqing China
| | - Xiaosi Chen
- College of Food Science Southwest University Chongqing China
| | - Hongjun Li
- College of Food Science Southwest University Chongqing China
- Chongqing Engineering Research Center of Regional Food Chongqing China
| |
Collapse
|
52
|
Zhang X, Lan W, Xie J. Combined citric acid and rosemary extract to maintain the quality of chilled Pacific white shrimp (
Litopenaeus vannamei
). J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xi Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center Shanghai China
- National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University) Shanghai China
| |
Collapse
|
53
|
Bekhit AEDA, Giteru SG, Holman BWB, Hopkins DL. Total volatile basic nitrogen and trimethylamine in muscle foods: Potential formation pathways and effects on human health. Compr Rev Food Sci Food Saf 2021; 20:3620-3666. [PMID: 34056832 DOI: 10.1111/1541-4337.12764] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/30/2021] [Accepted: 04/02/2021] [Indexed: 12/18/2022]
Abstract
The use of total volatile basic nitrogen (TVB-N) as a quality parameter for fish is rapidly growing to include other types of meat. Investigations of meat quality have recently focused on TVB-N as an index of freshness, but little is known on the biochemical pathways involved in its generation. Furthermore, TVB-N and methylated amines have been reported to exert deterimental health effects, but the relationship between these compounds and human health has not been critically reviewed. Here, literature on the formative pathways of TVB-N has been reviewed in depth. The association of methylated amines and human health has been critically evaluated. Interventions to mitigate the effects of TVB-N on human health are discussed. TVB-N levels in meat can be influenced by the diet of an animal, which calls for careful consideration when using TVB-N thresholds for regulatory purposes. Bacterial contamination and temperature abuse contribute to significant levels of post-mortem TVB-N increases. Therefore, controlling spoilage factors through a good level of hygiene during processing and preservation techniques may contribute to a substantial reduction of TVB-N. Trimethylamine (TMA) constitutes a significant part of TVB-N. TMA and trimethylamine oxide (TMA-N-O) have been related to the pathogenesis of noncommunicable diseases, including atherosclerosis, cancers, and diabetes. Proposed methods for mitigation of TMA and TMA-N-O accumulation are discussed, which include a reduction in their daily dietary intake, control of internal production pathways by targeting gut microbiota, and inhibition of flavin monooxygenase 3 enzymes. The levels of TMA and TMA-N-O have significant health effects, and this should, therefore, be considered when evaluating meat quality and acceptability. Agreed international values for TVB-N and TMA in meat products are required. The role of feed, gut microbiota, and translocation of methylated amines to muscles in farmed animals requires further investigation.
Collapse
Affiliation(s)
| | - Stephen G Giteru
- Department of Food Science, University of Otago, Dunedin, New Zealand.,Food & Bio-based Products, AgResearch Limited, Tennent Drive, Palmerston North, 4410, New Zealand
| | - Benjamin W B Holman
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| | - David L Hopkins
- Centre for Red Meat and Sheep Development, NSW Department of Primary Industries, Cowra, New South Wales, Australia
| |
Collapse
|
54
|
Zhang Y, Wang B, Lu F, Wang L, Ding Y, Kang X. Plant-derived antioxidants incorporated into active packaging intended for vegetables and fatty animal products: a review. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2021; 38:1237-1248. [PMID: 33979271 DOI: 10.1080/19440049.2021.1885745] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Nowadays, the food industry is focused on improving the shelf life of products by controlling lipid oxidation using natural antioxidants. The study of natural antioxidants is a field that attracts great interest because of their greater safety compared to synthetic ones. Plant-derived antioxidants being eco-friendly and effective are increasingly playing an important role in food preservation. When incorporated into active packaging, plant-derived antioxidants have no direct contact with foods, and will not change the colour or taste of the foods. They will, however, inhibit the development of rancidity, retard formation of toxic oxidation products, maintain nutritional quality, and prolong the shelf life of products. This review summarises research on the development of plant-derived antioxidants in food packaging. Antioxidants are found in plants such as green tea, olive leaves, ginkgo leaves, rosemary, Indian gooseberry, cinnamon, savoury, bay leaves, mango leaves, sage and clove etc. Antioxidants can scavenge free radicals and inhibit the activity of polyphenol oxidase. Therefore, they can inhibit lipid oxidation and browning of fruit and vegetables. These active substances can be obtained through extracting the plants using solvents with different polarities. The oxidation resistance of active substances can be determined by DPPH radical scavenging capacity, oxygen radical absorbance capacity, PPO enzyme inhibition capacity and other methods. In recent years, research on the preparation of food packaging with plant-derived antioxidants has also made significant progress. One development is to encapsulate plant-derived antioxidants such as tea polyphenols with capsules containing inorganic components. Thus, they can be blended with polyethylene granules and processed into active packaging film by industrial production methods such as melting, extrusion and blowing film. This research promotes the commercial application of active packaging incorporated with plant-derived antioxidants.
Collapse
Affiliation(s)
- Yan Zhang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Baoying Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Fangfang Lu
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China
| | - Lin Wang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Yanhong Ding
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| | - Xinya Kang
- College of Packaging and Pringting Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou, China.,Zhengzhou Key Laboratory of Food Intelligent Green Packaging, Zhengzhou, China
| |
Collapse
|
55
|
Šimat V, Čagalj M, Skroza D, Gardini F, Tabanelli G, Montanari C, Hassoun A, Ozogul F. Sustainable sources for antioxidant and antimicrobial compounds used in meat and seafood products. ADVANCES IN FOOD AND NUTRITION RESEARCH 2021; 97:55-118. [PMID: 34311904 DOI: 10.1016/bs.afnr.2021.03.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The contribution of food in promotion of health has become of most importance. The challenges that lie before the global food supply chain, such as climate changes, food contamination, and antimicrobial resistance may compromise food safety at international scale. Compounds with strong antimicrobial and antioxidant activity can be extracted from different natural and sustainable sources and may contribute to extend the shelf life of meat and seafood products, enhance food safety and enrich foods with additional biologically active and functional ingredients. This chapter describes the use of bioprotective cultures, essential oils, plant extracts, seaweed extracts and grape pomace compounds in production of value-added meat and seafood products with improved shelf life and safety, following the requests from the market and consumers.
Collapse
Affiliation(s)
- Vida Šimat
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Martina Čagalj
- University Department of Marine Studies, University of Split, Split, Croatia
| | - Danijela Skroza
- Department of Food Technology and Biotechnology, Faculty of Chemistry and Technology, University of Split, Split, Croatia
| | - Fausto Gardini
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Giulia Tabanelli
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Chiara Montanari
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries and Aquaculture Research, Tromsø, Norway
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana, Turkey.
| |
Collapse
|
56
|
Development of microcapsule bioactive paper loaded with cinnamon essential oil to improve the quality of edible fungi. Food Packag Shelf Life 2021. [DOI: 10.1016/j.fpsl.2020.100617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
57
|
Nehme R, Andrés S, Pereira RB, Ben Jemaa M, Bouhallab S, Ceciliani F, López S, Rahali FZ, Ksouri R, Pereira DM, Abdennebi-Najar L. Essential Oils in Livestock: From Health to Food Quality. Antioxidants (Basel) 2021; 10:330. [PMID: 33672283 PMCID: PMC7926721 DOI: 10.3390/antiox10020330] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/22/2022] Open
Abstract
Using plant essential oils (EOs) contributes to the growing number of natural plants' applications in livestock. Scientific data supporting the efficacy of EOs as anti-inflammatory, antibacterial and antioxidant molecules accumulates over time; however, the cumulative evidence is not always sufficient. EOs antioxidant properties have been investigated mainly from human perspectives. Still, so far, our review is the first to combine the beneficial supporting properties of EOs in a One Health approach and as an animal product quality enhancer, opening new possibilities for their utilization in the livestock and nutrition sectors. We aim to compile the currently available data on the main anti-inflammatory effects of EOs, whether encapsulated or not, with a focus on mammary gland inflammation. We will also review the EOs' antioxidant activities when given in the diet or as a food preservative to counteract oxidative stress. We emphasize EOs' in vitro and in vivo ruminal microbiota and mechanisms of action to promote animal health and performance. Given the concept of DOHaD (Developmental Origin of Health and Diseases), supplementing animals with EOs in early life opens new perspectives in the nutrition sector. However, effective evaluation of the significant safety components is required before extending their use to livestock and veterinary medicine.
Collapse
Affiliation(s)
- Ralph Nehme
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- INRAE, Institut Agro, STLO, F-35042 Rennes, France;
| | - Sonia Andrés
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
| | - Renato B. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Meriem Ben Jemaa
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | | | - Fabrizio Ceciliani
- Department of Veterinary Medicine Università degli Studi di Milano, 20122 Milano, Italy;
| | - Secundino López
- Instituto de Ganadería de Montaña (CSIC-Universidad de León, Finca Marzanas s/n, 24346 Grulleros, Spain; (S.A.); (S.L.)
- Departamento de Producción Animal, Universidad de León, 24007 León, Spain
| | - Fatma Zohra Rahali
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - Riadh Ksouri
- Laboratory of Aromatic and Medicinal Plants, Biotechnology Center of Borj-Cédria, Hammam-Lif BP 901 2050, Tunisia; (M.B.J.); (F.Z.R.); (R.K.)
| | - David M. Pereira
- REQUIMTE/LAQV Laboratory of Pharmacognosy, Department of Chemistry Faculty of Pharmacy, University of Porto R Jorge Viterbo Ferreir 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Latifa Abdennebi-Najar
- Quality and Health Department, IDELE Institute, 149 rue de Bercy, 75595 Paris CEDEX 12, France;
- Centre de Recherche Saint-Antoine (CRSA), Sorbonne University, INSERM UMR_S_938, 75020 Paris, France
| |
Collapse
|
58
|
Sustained-release antibacterial pads based on nonwovens polyethylene terephthalate modified by β-cyclodextrin embedded with cinnamaldehyde for cold fresh pork preservation. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100554] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
59
|
Song XC, Canellas E, Wrona M, Becerril R, Nerin C. Comparison of two antioxidant packaging based on rosemary oleoresin and green tea extract coated on polyethylene terephthalate for extending the shelf life of minced pork meat. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100588] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
60
|
Song W, Du Y, Yang C, Li L, Wang S, Liu Y, Wang W. Development of PVA/EVA-based bilayer active film and its application to mutton. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.110109] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
61
|
Physicomechanical properties, release kinetics, and antimicrobial activity of activated low-density polyethylene and orientated polypropylene films by Thyme essential oil active component. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00690-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
62
|
Motelica L, Ficai D, Ficai A, Oprea OC, Kaya DA, Andronescu E. Biodegradable Antimicrobial Food Packaging: Trends and Perspectives. Foods 2020; 9:E1438. [PMID: 33050581 PMCID: PMC7601795 DOI: 10.3390/foods9101438] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 10/01/2020] [Accepted: 10/07/2020] [Indexed: 02/07/2023] Open
Abstract
This review presents a perspective on the research trends and solutions from recent years in the domain of antimicrobial packaging materials. The antibacterial, antifungal, and antioxidant activities can be induced by the main polymer used for packaging or by addition of various components from natural agents (bacteriocins, essential oils, natural extracts, etc.) to synthetic agents, both organic and inorganic (Ag, ZnO, TiO2 nanoparticles, synthetic antibiotics etc.). The general trend for the packaging evolution is from the inert and polluting plastic waste to the antimicrobial active, biodegradable or edible, biopolymer film packaging. Like in many domains this transition is an evolution rather than a revolution, and changes are coming in small steps. Changing the public perception and industry focus on the antimicrobial packaging solutions will enhance the shelf life and provide healthier food, thus diminishing the waste of agricultural resources, but will also reduce the plastic pollution generated by humankind as most new polymers used for packaging are from renewable sources and are biodegradable. Polysaccharides (like chitosan, cellulose and derivatives, starch etc.), lipids and proteins (from vegetal or animal origin), and some other specific biopolymers (like polylactic acid or polyvinyl alcohol) have been used as single component or in blends to obtain antimicrobial packaging materials. Where the package's antimicrobial and antioxidant activities need a larger spectrum or a boost, certain active substances are embedded, encapsulated, coated, grafted into or onto the polymeric film. This review tries to cover the latest updates on the antimicrobial packaging, edible or not, using as support traditional and new polymers, with emphasis on natural compounds.
Collapse
Affiliation(s)
- Ludmila Motelica
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Denisa Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Anton Ficai
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| | - Ovidiu Cristian Oprea
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
| | - Durmuş Alpaslan Kaya
- Department of Field Crops, Faculty of Agriculture, Hatay Mustafa Kemal University, 31030 Antakya Hatay, Turkey;
| | - Ecaterina Andronescu
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 060042 Bucharest, Romania; (L.M.); (D.F.); (A.F.); (E.A.)
- Section of Chemical Sciences, Academy of Romanian Scientists, 050045 Bucharest, Romania
| |
Collapse
|
63
|
Lan W, Zhao Y, Hu X, Zhang X, Xie J. Effects of carrageenan oligosaccharide on lipid, protein oxidative changes, and moisture migration of
Litopenaeus vannamei
during freeze–thaw cycles. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| | - Yanan Zhao
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xiaoyu Hu
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Xi Zhang
- College of Food Science and Technology Shanghai Ocean University Shanghai China
| | - Jing Xie
- College of Food Science and Technology Shanghai Ocean University Shanghai China
- Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center National Experimental Teaching Demonstration Center for Food Science and Engineering Shanghai Ocean University Shanghai China
| |
Collapse
|
64
|
Naeeji N, Shahbazi Y, Shavisi N. Effect of gamma irradiation on physico‐mechanical and structural properties of basil seed mucilage‐chitosan films containing
Ziziphora clinopodioides
essential oil and MgO nanoparticles for rainbow trout packaging. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14781] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Nikoo Naeeji
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Razi University Kermanshah Iran
| | - Yasser Shahbazi
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Razi University Kermanshah Iran
| | - Nassim Shavisi
- Department of Food Hygiene and Quality Control Faculty of Veterinary Medicine Razi University Kermanshah Iran
| |
Collapse
|
65
|
Lan W, Hu X, Sun X, Zhang X, Xie J. Effect of the number of freeze-thaw cycles number on the quality of Pacific white shrimp (Litopenaeus vannamei): An emphasis on moisture migration and microstructure by LF-NMR and SEM. AQUACULTURE AND FISHERIES 2020. [DOI: 10.1016/j.aaf.2019.05.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
66
|
Solano RJ, Sierra CA, Ávila Murillo M. Antifungal activity of LDPE/lauric acid films against Colletotrichum tamarilloi. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100495] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
67
|
Characterization of chitosan based polyelectrolyte films incorporated with OSA-modified gum arabic-stabilized cinnamon essential oil emulsions. Int J Biol Macromol 2020; 150:362-370. [DOI: 10.1016/j.ijbiomac.2020.02.108] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/29/2022]
|
68
|
Corn-Starch-Based Materials Incorporated with Cinnamon Oil Emulsion: Physico-Chemical Characterization and Biological Activity. Foods 2020; 9:foods9040475. [PMID: 32290138 PMCID: PMC7231285 DOI: 10.3390/foods9040475] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/02/2020] [Accepted: 04/04/2020] [Indexed: 01/28/2023] Open
Abstract
Active packaging represents a large and diverse group of materials, with its main role being to prolong the shelf-life of food products. In this work, active biomaterials based on thermoplastic starch-containing cinnamon oil emulsions were prepared by the compression molding technique. The thermal, mechanical, and antifungal properties of obtained materials were evaluated. The results showed that the encapsulation of cinnamon oil emulsions did not influence the thermal stability of materials. Mechanical resistance to break was reduced by 27.4%, while elongation at break was increased by 44.0% by the addition of cinnamon oil emulsion. Moreover, the novel material provided a decrease in the growth rate of Botrytis cinerea by 66%, suggesting potential application in food packaging as an active biomaterial layer to hinder further contamination of fruits during the storage and transport period.
Collapse
|
69
|
Eco-friendly active packaging consisting of nanostructured biopolymer matrix reinforced with TiO 2 and essential oil: Application for preservation of refrigerated meat. Food Chem 2020; 322:126782. [PMID: 32305879 DOI: 10.1016/j.foodchem.2020.126782] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/23/2022]
Abstract
Biodegradable active packaging is required to replace petroleum-based plastics. In this study, a biopolymer-based packaging material was prepared using a casting method, which consisted of a cellulose nanofiber/whey protein matrix containing titanium dioxide particles (1% TiO2) and essential oil droplets (2% rosemary oil) as functional components. The ability of this packaging to protect lamb meat from chemical and microbial spoilage during 15 days of refrigerated storage (4 °C) was analysed. The meat samples were periodically analysed for microbial count, chemical stability (pH, lipid oxidation, lipolysis), and optical properties. The active packaging significantly reduced microbial growth, lipid oxidation, and lipolysis of the lamb meat during storage, which led to an increase in shelf life from around 6 to 15 days. These biopolymer-based active packaging materials may therefore be suitable for application in meat products.
Collapse
|
70
|
Xu Y, Yin Y, Zhao H, Li Q, Yi S, Li X, Li J. Effects of cinnamaldehyde combined with ultrahigh pressure treatment on the flavor of refrigerated Paralichthys olivaceus fillets. RSC Adv 2020; 10:12573-12581. [PMID: 35497606 PMCID: PMC9051048 DOI: 10.1039/d0ra01020k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/15/2020] [Indexed: 12/02/2022] Open
Abstract
The combined effects of cinnamaldehyde (CA) and ultrahigh pressure (UP) treatment on the flavor of olive flounder (Paralichthys olivaceus) fillets during storage at 4 °C for 20 days were investigated. Changes in total viable count, trimethylamine, ATP-related compounds, free amino acids, TCA-soluble peptides, electronic nose (E-nose) analysis and sensory quality were measured. The results indicated that CA and UP treatment, especially CA combined with UP, significantly reduced undesirable flavor compounds including inosine, hypoxanthine, TMA, and bitter amino acids, and accumulated pleasant flavor compounds such as inosine monophosphate and umami-related amino acids. In addition, the combination of CA and UP was shown to be more effective for retarding protein degradation and microbial growth than CA or UP treatment alone. In accordance with the results of E-nose analysis and sensory evaluation, CA combined with UP treatment had great potential for improving the flavor quality of refrigerated flounder fillets and extending their storage life. The combined effects of cinnamaldehyde (CA) and ultrahigh pressure (UP) treatment on the flavor of olive flounder (Paralichthys olivaceus) fillets during storage at 4 °C for 20 days were investigated.![]()
Collapse
Affiliation(s)
- Yongxia Xu
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Yiming Yin
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Honglei Zhao
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Qiuying Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Shumin Yi
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Xuepeng Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| | - Jianrong Li
- College of Food Science and Engineering, Bohai University, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products No. 19, Keji Road Jinzhou 121013 China +86 416 3719190 +86 416 3719190
| |
Collapse
|
71
|
Xu Y, Yin Y, Li T, Zhao H, Li X, Li J, Sun T. Effects of lysozyme combined with cinnamaldehyde on storage quality of olive flounder (Paralichthys olivaceus) fillets. J Food Sci 2020; 85:1037-1044. [PMID: 32175601 DOI: 10.1111/1750-3841.14980] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/10/2019] [Accepted: 10/28/2019] [Indexed: 01/26/2023]
Abstract
Effects of lysozyme (LYS) combined with cinnamaldehyde (CA) on quality enhancement of olive flounder (Paralichthys olivaceus) fillets during refrigerated storage at 4 °C for 20 days were assessed. Changes of total viable count (TVC), K-value, total volatile basic nitrogen (TVB-N), thiobarbituric acid (TBA), texture profile analysis (TPA), and trichloroacetic acid-soluble peptide (TCA-soluble peptide) in samples were determined periodically. Results demonstrated that the combination of LYS and CA treatment enhanced the antibacterial activity against S. putrefaciens and P. fluorescens, and lowered TVC values. Meanwhile, LYS combined with CA significantly retarded the increases of TBA value, TVB-N, K-value, and TCA-soluble peptide content compared to the control. Furthermore, the combined treatment also effectively maintained the texture properties of flounder fillets during the storage period. The efficiency was better than that of LYS or CA treatment alone. Thus, LYS combined with CA is promising in olive flounder shelf life extension.
Collapse
Affiliation(s)
- Yongxia Xu
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Yiming Yin
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Tao Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Honglei Zhao
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Xuepeng Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Jianrong Li
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| | - Tong Sun
- Authors are with Natl. & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, College of Food Science and Engineering, Bohai Univ., Jinzhou, 121013, China
| |
Collapse
|
72
|
Napoli E, Siracusa L, Ruberto G. New Tricks for Old Guys: Recent Developments in the Chemistry, Biochemistry, Applications and Exploitation of Selected Species from the Lamiaceae Family. Chem Biodivers 2020; 17:e1900677. [PMID: 31967708 DOI: 10.1002/cbdv.201900677] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022]
Abstract
Lamiaceae is one of the largest families of flowering plants comprising about 250 genera and over 7,000 species. Most of the plants of this family are aromatic and therefore important source of essential oils. Lamiaceae are widely used as culinary herbs and reported as medicinal plants in several folk traditions. In the Mediterranean area oregano, sage, rosemary, thyme and lavender stand out for geographical diffusion and variety of uses. The aim of this review is to provide recent data dealing with the phytochemical and pharmacological studies, and the more recent applications of the essential oils and the non-volatile phytocomplexes. This literature survey suggests how the deeper understanding of biomolecular processes in the health and food sectors as per as pest control bioremediation of cultural heritage, or interaction with human microbiome, fields, leads to the rediscovery and new potential applications of well-known plants.
Collapse
Affiliation(s)
- Edoardo Napoli
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Laura Siracusa
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| | - Giuseppe Ruberto
- Istituto del CNR di Chimica Biomolecolare, Via Paolo Gaifami, 18, IT-95126, Catania, Italy
| |
Collapse
|
73
|
Partovi R, Talebi F, Babaei A, Sharifzadeh A. Antimicrobial Activity of Polylactic Acid Film Incorporated With Marjoram and Clove Essential Oils on Microbial and Chemical Properties of Minced Beef During Refrigerated Storage. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2020. [DOI: 10.34172/ijep.2020.06] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Active packaging is one of the new packaging technologies which causes interaction between packaging material and food with the aim of food shelf life extension while maintaining food safety and quality. Biodegradable films like polylactic acid (PLA) can be good alternatives to non-biodegradable plastics because of environmental pollution and concerns about the limitations of petroleum resources. Objective: This study was conducted to evaluate the efficacy of PLA film incorporated with marjoram and clove essential oils (EOs) (0.5 and 1% v/v) in maintaining the microbial and chemical quality of minced beef during refrigerated storage. Materials and Methods: Minced beef was packaged with PLA film incorporated with marjoram and clove EOs (0.5 and 1% v/v) alone and in combination and stored at refrigerator temperature for 10 days. Then, microbiological and chemical analyses were done at 0, 2, 4, 7 and 10 days of examination. Results: A reduction of 1 log CFU/g in total count was observed between groups with simultaneous use of EOs and control group (P<0.05) at day 7; however, there was not any significant difference between the mentioned groups at day 10. Active packaging with marjoram and clove EOs decreased the number of psychrotrophs in comparison to the control group and it was more evident at days 7 and 10. The number of Enterobacteriaceae in control and 1% clove EO/1% marjoram EO groups showed a difference of 3 log units at day 10. TVB-N of 1% clove EO/1% marjoram EO and 0.5% clove EO/1% marjoram EO showed significant differences from control at day 10 (P<0.05). Conclusion: The results of the current study have shown that the active PLA films can be a promising approach in order to maintain microbial and chemical quality of minced beef at refrigerator temperature for 10 days.
Collapse
Affiliation(s)
- Razieh Partovi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Amol University of Special Modern Technologies, Amol, Iran
| | - Fazele Talebi
- Department of Food Hygiene, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amir Babaei
- Department of Polymer Engineering, Faculty of Engineering, Golestan University, Gorgan, Iran
| | - Aghil Sharifzadeh
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
- Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
74
|
Sharifi-Rad J, Ezzat SM, El Bishbishy MH, Mnayer D, Sharopov F, Kılıç CS, Neagu M, Constantin C, Sharifi-Rad M, Atanassova M, Nicola S, Pignata G, Salehi B, Fokou PVT, Martins N. Rosmarinus plants: Key farm concepts towards food applications. Phytother Res 2020; 34:1474-1518. [PMID: 32058653 DOI: 10.1002/ptr.6622] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/18/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Rosmarinus species are aromatic plants that mainly grow in the Mediterranean region. They are widely used in folk medicine, food, and flavor industries and represent a valuable source of biologically active compounds (e.g., terpenoids, flavonoids, and phenolic acids). The extraction of rosemary essential oil is being done using three main methods: carbon dioxide supercritical extraction, steam distillation, and hydrodistillation. Furthermore, interesting antioxidant, antibacterial, antifungal, antileishmanial, anthelmintic, anticancer, anti-inflammatory, antidepressant, and antiamnesic effects have also been broadly recognized for rosemary plant extracts. Thus the present review summarized data on economically important Rosmarinus officinalis species, including isolation, extraction techniques, chemical composition, pharmaceutical, and food applications.
Collapse
Affiliation(s)
- Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahira M Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, 11562, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Mahitab H El Bishbishy
- Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, 11787, Egypt
| | - Dima Mnayer
- Faculty of Sciences, Lebanese University, Beirut, Lebanon
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, Dushanbe, Tajikistan
| | - Ceyda S Kılıç
- Department of Pharmaceutical Botany, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Monica Neagu
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania.,Doctoral School, Faculty of Biology, University of Bucharest, Bucharest, Romania
| | - Carolina Constantin
- Immunology Department, "Victor Babes" National Institute of Pathology, Bucharest, Romania.,Pathology Department, "Colentina" Clinical Hospital, Bucharest, Romania
| | - Mehdi Sharifi-Rad
- Department of Medical Parasitology, Kerman University of Medical Sciences, Kerman, Iran
| | - Maria Atanassova
- Scientific Consulting, Chemical Engineering, UCTM, Sofia, Bulgaria
| | - Silvana Nicola
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Giuseppe Pignata
- Department of Agricultural, Forest and Food Sciences, University of Turin, Turin, Italy
| | - Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Patrick V T Fokou
- Antimicrobial and Biocontrol Agents Unit, Department of Biochemistry, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon
| | - Natália Martins
- Faculty of Medicine, University of Porto, Porto, Portugal.,Institute for Research and Innovation in Health (i3S), University of Porto, Porto, Portugal
| |
Collapse
|
75
|
Postmortem biochemical and textural changes in the sea cucumber Stichopus japonicus body wall (SJBW) during iced storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108705] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
76
|
Fungicides Films of Low-Density Polyethylene (LDPE)/Inclusion Complexes (Carvacrol and Cinnamaldehyde) Against Botrytis Cinerea. COATINGS 2019. [DOI: 10.3390/coatings9120795] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Low density polyethylene (LDPE) films were prepared with the incorporation of natural agents (carvacrol and trans-cinnamaldehyde) by the melting process. The co-precipitation method was used successfully to complex the carvacrol or trans-cinnamaldehyde with β-cyclodextrin (β-CD). The active compounds encapsulated in β-CD achieved ca. 90% encapsulation efficiency (E.E.). The inclusion complex studied by scanning electron microscopy (SEM) found particles of different sizes, ca. 4 μm. The active compounds were added directly (1 and 5 wt %) into the polymer matrix, yielding LDPE + carvacrol and LDPE + cinnamaldehyde films. The active compounds encapsulated in β-cyclodextrin (β-CD) were added to LDPE, yielding LDPE + β-CD-carvacrol and LDPE + β-CD-cinnamaldehyde films. The incorporation of carvacrol and trans-cinnamaldehyde, and their corresponding inclusion complexes with β-cyclodextrin, did not affect the thermal properties of LDPE. The microcapsules distributed in all polymer matrices had sizes of 5–20 μm as shown by scanning electron microscopy (SEM). In terms of mechanical properties, the polymers showed a slight decrease of Young’s modulus (12%) and yield stress compared (14%) to neat LDPE. This could be due to the essential oil acting as a plasticizer in the polymer matrix. The LDPE + carvacrol and LDPE + cinnamaldehyde films had the capacity to inhibit fungi by 99% compared to neat LDPE. The effectiveness against fungi of LDPE+β-CD + active agent was slower than by the direct incorporation of the essential oil in the LDPE in the same amount of active agent. The biocidal properties were related to the gradual release of active compound from the polymer. The results confirm the applicability of carvacrol, trans-cinnamaldehyde, and their corresponding inclusion complexes in active packaging, as well as their use in the food delivery industry.
Collapse
|
77
|
Castro FVR, Andrade MA, Sanches Silva A, Vaz MF, Vilarinho F. The Contribution of a Whey Protein Film Incorporated with Green Tea Extract to Minimize the Lipid Oxidation of Salmon ( Salmo salar L.). Foods 2019; 8:E327. [PMID: 31398827 PMCID: PMC6723522 DOI: 10.3390/foods8080327] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 07/29/2019] [Accepted: 08/01/2019] [Indexed: 11/16/2022] Open
Abstract
Active packaging is becoming progressively more significant as a response to the dynamic changes in current consumer demand and market tendencies. Active packaging is projected to interact directly with the packaged food or with the headspace within the package with the aim of maintaining or extending product quality and shelf-life. Aiming for sustainability, the potential application as biodegradable films of whey protein concentrate (WPC) was evaluated. Aromatic plant's extracts present high antioxidant properties, representing an alternative for synthetic food additives. The main objective of this study was to verify the effectiveness of an edible WPC film incorporated with a plant-based extract on retarding the lipid oxidation of fresh salmon. Green tea extract (GTE) was chosen to be incorporated into the active film. Fresh salmon was packaged with the control film (WPC) and with active film (WPC-GTE). The oxidation level of non-packaged samples and packaged samples were tested for different storage times. Four methods were applied to evaluate lipid oxidation state of fresh salmon: peroxide value, p-anisidine value, thiobarbituric acid reactive substances (TBARS) assay, and monitoring of hexanal. The results obtained in this study indicate that the whey protein active film was successfully produced, and it was effective in delaying lipid oxidation of fresh salmon samples until the 14th day of storage.
Collapse
Affiliation(s)
- Frederico V R Castro
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Faculty of Sciences, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Mariana A Andrade
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal
- Faculty of Pharmacy, University of Coimbra, Pólo III - Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal
| | - Ana Sanches Silva
- National Institute for Agricultural and Veterinary Research (INIAV), I.P., Rua dos Lagidos, Lugar da Madalena, 4485-655 Vairão, Vila do Conde, Portugal.
- Center for Study in Animal Science (CECA), ICETA, University of Porto, 4050-313 Porto, Portugal.
| | - Maria Fátima Vaz
- IDMEC, Instituto Superior Técnico, Departamento de Engenharia Mecânica, University of Lisbon, 1049-001 Lisbon, Portugal
| | - Fernanda Vilarinho
- Department of Food and Nutrition, National Institute of Health Doutor Ricardo Jorge, I.P., Av. Padre Cruz, 1649-016 Lisbon, Portugal
- IDMEC, Instituto Superior Técnico, Departamento de Engenharia Mecânica, University of Lisbon, 1049-001 Lisbon, Portugal
| |
Collapse
|
78
|
Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohydr Polym 2019; 217:116-125. [DOI: 10.1016/j.carbpol.2019.03.084] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/20/2019] [Accepted: 03/25/2019] [Indexed: 11/21/2022]
|
79
|
Xiong X, He B, Jiang D, Dong X, Koosis A, Yu C, Qi H. Postmortem biochemical and textural changes in the Patinopecten yessoensis adductor muscle (PYAM) during iced storage. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1625367] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Xin Xiong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Baoyu He
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Di Jiang
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Xiufang Dong
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| | - Aeneas Koosis
- Department of Animal and Food Sciences, University of Kentucky, Lexington, KY, USA
| | - Chenxu Yu
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, USA
| | - Hang Qi
- School of Food Science and Technology, Dalian Polytechnic University, National Engineering Research Center of Seafood, Dalian, P. R. China
| |
Collapse
|
80
|
Yu D, Wu L, Regenstein JM, Jiang Q, Yang F, Xu Y, Xia W. Recent advances in quality retention of non-frozen fish and fishery products: A review. Crit Rev Food Sci Nutr 2019; 60:1747-1759. [DOI: 10.1080/10408398.2019.1596067] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Dawei Yu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liying Wu
- Yangtze Delta Region of Institute of Tsinghua University, Zhejiang, Jiaxing, Zhejiang, China
| | | | - Qixing Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Fang Yang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yanshun Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenshui Xia
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|