51
|
Plant Extracts Obtained with Green Solvents as Natural Antioxidants in Fresh Meat Products. Antioxidants (Basel) 2021; 10:antiox10020181. [PMID: 33513904 PMCID: PMC7912489 DOI: 10.3390/antiox10020181] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/21/2021] [Accepted: 01/23/2021] [Indexed: 12/23/2022] Open
Abstract
Plants are rich in bioactive compounds (BACs), mainly polyphenols, which are valuable choices to replace synthetic antioxidants in meat products. These natural antioxidants from plants, in the form of extracts and essential oils (EOs), have been obtained from different sources such as fruits (dragon fruit, guarana, pomegranate), vegetables, (cabbage, onion), herbs, and spices (epazote, ginger, rosemary, sage, thyme, turmeric, winter savory) by several extraction processes. However, in the context of current directives there is a notable incentive for “green” solvents to replace organic ones and conventional techniques, in order to avoid harm to the environment, operator, and consumer health. In addition, the recycling of co-products from the processing of these plant materials allow us to obtain valuable BACs from under-exploited materials, contributing to the revalorization of these wastes. The resulting extracts allow us to maintain the quality of meat products, exhibiting similar or better antioxidant properties compared to those shown by synthetic ones. Their incorporation in fresh meat products would maintain the oxidative stability, stabilizing colour parameters, decreasing the formation of metmyoglobin, lipid, and protein oxidation and the generation of lipid-derived volatile compounds, without affecting sensory attributes. In addition, these novel ingredients contribute to improve both technological and functional characteristics, thus diversifying the offer of so-called “wellness foods”. In this review, the application of plant extracts as natural antioxidants in several fresh meat products is presented, showing their efficacy as scavenging radicals and imparting additional health benefits.
Collapse
|
52
|
Das AK, Nanda PK, Chowdhury NR, Dandapat P, Gagaoua M, Chauhan P, Pateiro M, Lorenzo JM. Application of Pomegranate by-Products in Muscle Foods: Oxidative Indices, Colour Stability, Shelf Life and Health Benefits. Molecules 2021; 26:467. [PMID: 33477314 PMCID: PMC7830841 DOI: 10.3390/molecules26020467] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/14/2021] [Accepted: 01/14/2021] [Indexed: 02/06/2023] Open
Abstract
In recent years, considerable importance is given to the use of agrifood wastes as they contain several groups of substances that are useful for development of functional foods. As muscle foods are prone to lipid and protein oxidation and perishable in nature, the industry is in constant search of synthetic free additives that help in retarding the oxidation process, leading to the development of healthier and shelf stable products. The by-products or residues of pomegranate fruit (seeds, pomace, and peel) are reported to contain bioactive compounds, including phenolic and polyphenolic compounds, dietary fibre, complex polysaccharides, minerals, vitamins, etc. Such compounds extracted from the by-products of pomegranate can be used as functional ingredients or food additives to harness the antioxidant, antimicrobial potential, or as substitutes for fat, and protein in various muscle food products. Besides, these natural additives are reported to improve the quality, safety, and extend the shelf life of different types of food products, including meat and fish. Although studies on application of pomegranate by-products on various foods are available, their effect on the physicochemical, oxidative changes, microbial, colour stabilizing, sensory acceptability, and shelf life of muscle foods are not comprehensively discussed previously. In this review, we vividly discuss these issues, and highlight the benefits of pomegranate by-products and their phenolic composition on human health.
Collapse
Affiliation(s)
- Arun K. Das
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Pramod Kumar Nanda
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Nilabja Roy Chowdhury
- Department of Veterinary Biochemistry, West Bengal University of Animal and Fishery Sciences, Kolkata 700037, India;
| | - Premanshu Dandapat
- Eastern Regional Station, ICAR-Indian Veterinary Research Institute, Kolkata 700037, India; (A.K.D.); (P.D.)
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Food Research Centre, Ashtown, Dublin 15 D15 DY05, Ireland;
| | - Pranav Chauhan
- Division of Livestock Products Technology, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243122, India;
| | - Mirian Pateiro
- Centro Tecnologico de la Carne de Galicia, Rua Galicia N° 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain;
| | - Jose M. Lorenzo
- Centro Tecnologico de la Carne de Galicia, Rua Galicia N° 4, Parque Tecnologico de Galicia, San Cibrao das Vinas, 32900 Ourense, Spain;
- Area de Tecnologia de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
53
|
Luciano CG, Rodrigues MM, Lourenço RV, Bittante AMQB, Fernandes AM, do Amaral Sobral PJ. Bi-layer Gelatin Film: Activating Film by Incorporation of “Pitanga” Leaf Hydroethanolic Extract and/or Nisin in the Second Layer. FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-020-02568-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
54
|
Bellucci ERB, Munekata PE, Pateiro M, Lorenzo JM, da Silva Barretto AC. Red pitaya extract as natural antioxidant in pork patties with total replacement of animal fat. Meat Sci 2021; 171:108284. [DOI: 10.1016/j.meatsci.2020.108284] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/17/2020] [Accepted: 08/18/2020] [Indexed: 12/29/2022]
|
55
|
Use of Turkey Meat Affected by White Striping Myopathy for the Development of Low-Fat Cooked Sausage Enriched with Chitosan. Foods 2020; 9:foods9121866. [PMID: 33333724 PMCID: PMC7765124 DOI: 10.3390/foods9121866] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 01/22/2023] Open
Abstract
The main objective of this research was the development of a healthy meat product from turkey meat with white striping myopathy. The effect of adding different proportions of chitosan on the qualitative characteristics, sensory acceptance, and stability of cooked sausages during storage was studied. Three treatments were elaborated (control, 1.5% chitosan, and 3% chitosan), stored for 56 days, and characterized in terms of chemical composition, texture profile analysis, drip and pressure loss analysis, and sensory analysis (after processing; day 0). In the different storage periods (0 and 56 days), the pH value, color, thiobarbituric acid reactive substances (TBARS), and volatile compounds were evaluated. The results showed that the moisture content, lipids, proteins, and weight loss decreased (p < 0.05) and the ash content increased (p < 0.05) with the addition of chitosan. Similarly, the values of texture parameters (hardness, cohesiveness, gumminess, and chewiness) were higher in the sausages reformulated with chitosan than in control samples. The addition of chitosan increased the pH and yellowness (b*) values and reduced (p < 0.05) redness (a*) and lightness (L*) values. The b* values (only in reformulated sausages) and pH increased during storage, while a* showed a significant reduction after 56 storage days. Lipid oxidation (TBARS) was kept below the limits of quantification in all samples and both after processing and 56 storage days. However, when quantifying the lipid-derived volatiles, a clear antioxidant activity of chitosan was observed, which limits the release of these compounds, mainly aldehydes (hexanal and nonanal). Finally, the sensory analysis indicated that, although chitosan treatments received the lowest scores for all attributes, the reformulated samples did not differ from control sausages. Therefore, sausage containing chitosan may represent an interesting alternative for adding value to turkey meats affected by white striping myopathy and, at the same time, develop into a healthy and functional meat product increasing the proportion of fibers in one’s diet.
Collapse
|
56
|
Rocchetti G, Bernardo L, Pateiro M, Barba FJ, Munekata PES, Trevisan M, Lorenzo JM, Lucini L. Impact of a Pitanga Leaf Extract to Prevent Lipid Oxidation Processes during Shelf Life of Packaged Pork Burgers: An Untargeted Metabolomic Approach. Foods 2020; 9:E1668. [PMID: 33203110 PMCID: PMC7696221 DOI: 10.3390/foods9111668] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
In this work, the comprehensive metabolomic changes in pork burgers treated with different antioxidants, namely, (a) a control without antioxidants, (b) 200 mg/kg butylated hydroxytoluene (BHT), and (c) 250 mg/kg pitanga leaf extract (PLE, from Eugenia uniflora L.), each one packaged under modified atmosphere (80% O2 and 20% CO2) for 18 days storage at 2 ± 1 °C, were deeply studied. In particular, untargeted metabolomics was used to evaluate the impact of the antioxidant extracts on meat quality. The PLE phytochemical profile revealed a wide variety of antioxidant compounds, such as polyphenols, alkaloids, and terpenoids. Multivariate statistics (both unsupervised and supervised) allowed to observe marked differences in BHT and PLE burgers metabolomic profiles during storage. Most of the differences could be attributed to hexanoylcarnitine, 4-hydroxy-2-nonenal, 6-hydroxypentadecanedioic acid, 9S,11S,15S,20-tetrahydroxy-5Z,13E-prostadienoic acid (20-hydroxy-PGF2a), sativic acid, followed by glycerophospholipids. In addition, significant correlations (p < 0.01) were observed between thiobarbituric acid reactive substances and metabolites related to lipid oxidation processes. Therefore, the approach used showed a clear modulation of lipid oxidation, likely promoted by the plant leaf extract, thus confirming the ability of PLE to delay lipid oxidative phenomena during storage.
Collapse
Affiliation(s)
- Gabriele Rocchetti
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| | - Letizia Bernardo
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda, Vicent Andrés Estellés, 46100 Burjassot, València, Spain;
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Marco Trevisan
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (M.P.); (P.E.S.M.); (J.M.L.)
| | - Luigi Lucini
- Department for Sustainable Food Process (DiSTAS), Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy; (L.B.); (M.T.); (L.L.)
| |
Collapse
|
57
|
Hassoun A, Carpena M, Prieto MA, Simal-Gandara J, Özogul F, Özogul Y, Çoban ÖE, Guðjónsdóttir M, Barba FJ, Marti-Quijal FJ, Jambrak AR, Maltar-Strmečki N, Kljusurić JG, Regenstein JM. Use of Spectroscopic Techniques to Monitor Changes in Food Quality during Application of Natural Preservatives: A Review. Antioxidants (Basel) 2020; 9:E882. [PMID: 32957633 PMCID: PMC7555908 DOI: 10.3390/antiox9090882] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/06/2020] [Accepted: 09/15/2020] [Indexed: 01/12/2023] Open
Abstract
Consumer demand for food of high quality has driven research for alternative methods of food preservation on the one hand, and the development of new and rapid quality assessment techniques on the other hand. Recently, there has been a growing need and interest in healthier food products, which has led to an increased interest in natural preservatives, such as essential oils, plant extracts, and edible films and coatings. Several studies have shown the potential of using biopreservation, natural antimicrobials, and antioxidant agents in place of other processing and preservation techniques (e.g., thermal and non-thermal treatments, freezing, or synthetic chemicals). Changes in food quality induced by the application of natural preservatives have been commonly evaluated using a range of traditional methods, including microbiology, sensory, and physicochemical measurements. Several spectroscopic techniques have been proposed as promising alternatives to the traditional time-consuming and destructive methods. This review will provide an overview of recent studies and highlight the potential of spectroscopic techniques to evaluate quality changes in food products following the application of natural preservatives.
Collapse
Affiliation(s)
- Abdo Hassoun
- Nofima AS, Norwegian Institute of Food, Fisheries, and Aquaculture Research, 9291 Tromsø, Norway
| | - Maria Carpena
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Miguel A. Prieto
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Faculty of Food Science and Technology, University of Vigo, Ourense Campus, 32004 Ourense, Spain; (M.C.); (M.A.P.); (J.S.-G.)
| | - Fatih Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | - Yeşim Özogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, Adana 01330, Turkey; (F.Ö.); (Y.Ö.)
| | | | - María Guðjónsdóttir
- Faculty of Food Science and Nutrition, University of Iceland, 113 Reykjavík, Iceland;
- Matis, Food and Biotech R&D, 113 Reykjavík, Iceland
| | - Francisco J. Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Francisco J. Marti-Quijal
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain; (F.J.B.); (F.J.M.-Q.)
| | - Anet Režek Jambrak
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Nadica Maltar-Strmečki
- Ruđer Bošković Institute, Division of Physical Chemistry, Bijenička c. 54, 10 000 Zagreb, Croatia;
| | - Jasenka Gajdoš Kljusurić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10 000 Zagreb, Croatia; (A.R.J.); (J.G.K.)
| | - Joe M. Regenstein
- Department of Food Science, Cornell University, Ithaca, NY 14853-7201, USA;
| |
Collapse
|
58
|
Effects of replacing soy protein and bread crumb with quinoa and buckwheat flour in functional beef burger formulation. Meat Sci 2020; 172:108305. [PMID: 32947238 DOI: 10.1016/j.meatsci.2020.108305] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 08/07/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
This study investigated the physicochemical, nutritional and sensorial characteristics of beef burgers formulated with quinoa flour (QF) and buckwheat flour (BWF) as replacers of the mixture of soy protein powder (SP) and bread crumb (BC). Six treatments were formulated in two groups (15% and 30% of added flour as Groups A and B, respectively). The oil absorption and water holding capacity were higher (P < 0.05) in Soy protein burgers (SPB) than in other burgers. The mineral content of magnesium, phosphorus, iron and zinc was higher in the quinoa burgers (QB) than in the other formulations for both A and B groups. Also, the result of sensory evaluation revealed increases (P < 0.05) in overall acceptability and taste attributes of QB and BWB (Buckwheat Burger) in both groups. The shelf life results showed significant differences between SPB and treated samples (QB and BWB). Therefore, these new beef burger formulations might be a viable option in improvement of nutritional, durability and sensory properties.
Collapse
|
59
|
Munekata PES, Gullón B, Pateiro M, Tomasevic I, Domínguez R, Lorenzo JM. Natural Antioxidants from Seeds and Their Application in Meat Products. Antioxidants (Basel) 2020; 9:E815. [PMID: 32883005 PMCID: PMC7555033 DOI: 10.3390/antiox9090815] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 12/30/2022] Open
Abstract
The use of synthetic antioxidants in the food industry has raised important questions about the effects of prolonged consumption on human health. On top of that, the consumption of meat products has been changing due to the awareness generated by health-related organizations. In this sense, exploring strategies to develop and produce healthier meat products has become a paramount concern. Several studies explored the composition of several seeds to characterize and explore the compounds with antioxidant activity, which are mainly composed of polyphenols. The use of antioxidant extracts in meat products has shown important results to delay the oxidative reactions in meat products derived from the processing and storage of meat products. Moreover, these extracts can also replace synthetic antioxidants and preserve the quality of meat products. Therefore, the aims of this review are first, to present the sources and compounds with antioxidant activity in seeds, and second, to discuss their protective effect against oxidative reactions in meat products.
Collapse
Affiliation(s)
- Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Beatriz Gullón
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.G.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, Nemanjina 6, University of Belgrade, 11080 Belgrade, Serbia;
| | - Ruben Domínguez
- Department of Chemical Engineering, Faculty of Science, University of Vigo (Campus Ourense), As Lagoas, 32004 Ourense, Spain; (B.G.); (R.D.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| |
Collapse
|
60
|
Ozaki MM, Munekata PES, Jacinto-Valderrama RA, Efraim P, Pateiro M, Lorenzo JM, Pollonio MAR. Beetroot and radish powders as natural nitrite source for fermented dry sausages. Meat Sci 2020; 171:108275. [PMID: 32853888 DOI: 10.1016/j.meatsci.2020.108275] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/27/2020] [Accepted: 08/07/2020] [Indexed: 02/08/2023]
Abstract
The aim of this study was to investigate the use of radish and beetroot powders as potential substitutes of nitrite in fermented dry sausages due to their high nitrate content (around 16,000 and 14,000 mg/kg, respectively). Six treatments were prepared and evaluated during the ripening process and storage time: C1 (control with 150 mg/kg sodium nitrite and 150 mg/kg sodium nitrate), C2 (control without sodium nitrite/nitrate), R05 (0.5% radish powder), R1 (1% radish powder), B05 (0.5% beetroot powder) and B1 (1% beetroot powder). The addition of vegetable powders influenced moisture content, weight loss and water activity of sausages. Nitrite was formed from radish and beetroot powders during the ripening process, especially in R1 and B1 treatments. Beetroot powder affected colour, pigments and lactic acid bacteria counts. The results of pH, colour, lipid oxidation, nitrite and nitrate analysis suggest R1 treatment as a potential nitrite replacer obtained from a simple and feasible drying process.
Collapse
Affiliation(s)
- Maristela Midori Ozaki
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | | | - Priscilla Efraim
- Department of Food Technology, School of Food Engineering, State University of Campinas (Unicamp), 13083-862 Campinas, SP, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
| | | |
Collapse
|
61
|
Jin F, Ding R, Ding K, Han T, Chen X. Preparation of allyl isothiocyanate microencapsulation and its application in pork preservation. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14709] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Fang‐zhou Jin
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Rui‐xia Ding
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Ke Ding
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Tao Han
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| | - Xiang‐ning Chen
- Department of Food Science and Engineering Beijing University of Agriculture Beijing China
- Beijing Laboratory of Food Quality and Safety Beijing University of Agriculture Beijing China
- Beijing Key Laboratory of Agricultural Product Detection and Control of Spoilage Organisms and Pesticide Residue Beijing University of Agriculture Beijing China
| |
Collapse
|
62
|
Bojorges H, Ríos‐Corripio MA, Hernández‐Cázares AS, Hidalgo‐Contreras JV, Contreras‐Oliva A. Effect of the application of an edible film with turmeric (C urcuma longa L.) on the oxidative stability of meat. Food Sci Nutr 2020; 8:4308-4319. [PMID: 32884711 PMCID: PMC7455931 DOI: 10.1002/fsn3.1728] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022] Open
Abstract
The aim of this study was to develop an edible alginate-based film produced with turmeric (EFT), as an active compound, and evaluate its antioxidant capacity for application in fresh pork loin, beef loin, and chicken breast. The EFT was characterized by barrier parameters, color, and mechanical, structural, and antioxidant properties. Meat samples with and without EFT were stored at 4°C and analyzed at 2-day intervals. The meat samples with EFT showed significant differences (p < .05) in color (CIE L*a*b*) and exhibited lower TBARS values compared with those without EFT. The addition of turmeric in the film, besides affecting its physicochemical and structural properties, contributed an important antioxidant effect for the meat.
Collapse
Affiliation(s)
- Hylenne Bojorges
- Colegio de Postgraduados ‐ Campus Córdoba. Km. 348 Carretera Federal Córdoba‐VeracruzAmatlán de los ReyesVeracruzMéxico
| | - M. A. Ríos‐Corripio
- CONACYT–Colegio de Postgraduados ‐ Campus Córdoba. Km. 348 Carretera Federal Córdoba–VeracruzAmatlán de los ReyesVeracruzMéxico
| | - Aleida S. Hernández‐Cázares
- Colegio de Postgraduados ‐ Campus Córdoba. Km. 348 Carretera Federal Córdoba‐VeracruzAmatlán de los ReyesVeracruzMéxico
| | | | - Adriana Contreras‐Oliva
- Colegio de Postgraduados ‐ Campus Córdoba. Km. 348 Carretera Federal Córdoba‐VeracruzAmatlán de los ReyesVeracruzMéxico
| |
Collapse
|
63
|
Zwolan A, Pietrzak D, Adamczak L, Chmiel M, Kalisz S, Wirkowska-Wojdyła M, Florowski T, Oszmiański J. Effects of Nigella sativa L. seed extracts on lipid oxidation and color of chicken meatballs during refrigerated storage. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109718] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
64
|
Zhang H, Liang Y, Li X, Kang H. Antioxidant extract from cauliflower leaves effectively improve the stability of pork patties during refrigerated storage. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14510] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Huiyun Zhang
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| | - Ying Liang
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| | - Xinling Li
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| | - Huaibin Kang
- Food and Bioengineering College Henan University of Science and Technology Luoyang China
| |
Collapse
|
65
|
de Carvalho FAL, Munekata PES, Lopes de Oliveira A, Pateiro M, Domínguez R, Trindade MA, Lorenzo JM. Turmeric (Curcuma longa L.) extract on oxidative stability, physicochemical and sensory properties of fresh lamb sausage with fat replacement by tiger nut (Cyperus esculentus L.) oil. Food Res Int 2020; 136:109487. [PMID: 32846569 DOI: 10.1016/j.foodres.2020.109487] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/19/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
This study aimed to evaluate the effect of turmeric extract as natural antioxidant on modified atmosphere-packaged fresh lamb sausages with fat replacement during storage (2 °C). Five treatments were prepared: control without antioxidant (CONT); with 500 mg/kg sodium erythorbate (E500); and three batches with 250, 500 or 750 mg/kg turmeric extract (T250, T500 and T750), respectively. The proximate composition, pH, color, texture, oxidative stability, sensorial analysis, free fatty acids and volatile compounds of sausages were analyzed. Turmeric extract improved the antioxidant capacity of lamb sausages and also slowed lipid oxidation and the generation of related volatile compounds. Moreover, physic-chemical parameters of lamb sausages were not greatly influenced by turmeric addition and concentration, except for yellow color. All samples were considered acceptable by consumers. These findings showed that turmeric extract is effective against lipid oxidation and could be a good strategy to enhance the shelf life of lamb sausage.
Collapse
Affiliation(s)
- Francisco Allan L de Carvalho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil; Universidade Federal do Vale do São Francisco, Petrolina, Pernambuco, 56328-000, Brazil
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Alessandra Lopes de Oliveira
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Marco Antonio Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
66
|
Domínguez R, Zhang L, Rocchetti G, Lucini L, Pateiro M, Munekata PES, Lorenzo JM. Elderberry (Sambucus nigra L.) as potential source of antioxidants. Characterization, optimization of extraction parameters and bioactive properties. Food Chem 2020; 330:127266. [PMID: 32540528 DOI: 10.1016/j.foodchem.2020.127266] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/10/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
The present study aimed to characterize the nutritional value and potential use of elderberries as a source of antioxidant compounds. The chemical composition, fatty acids and phenolic compounds were determined for elderberries. The optimization of extraction parameters was designed with a Box-Behnken design coupled with response surface methodology (RSM) and desirability function analysis. The process parameters tested included extraction temperature, % of ethanol and pH, while response variables were global extraction yield, total phenolic and anthocyanins content (TAC), carotenoids and antioxidant activity. Analyses revealed that elderberry was a rich source of total soluble solids, proteins and polyunsaturated fatty acids (omega-3: 38.12 g/100 g and omega-6: 39.54 g/100 g fatty acids). Regarding phenolic compounds, elderberries were found abundant in flavonoids (rutin and quercetin), and phenolic acids (i.e. gallic acid and gentisic acid). Finally, numerical optimization indicated that the best extraction parameters were the following: temperature 60 °C, 50% of ethanol and pH 2.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Leilei Zhang
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain.
| |
Collapse
|
67
|
López-Fernández O, Domínguez R, Pateiro M, Munekata PE, Rocchetti G, Lorenzo JM. Determination of Polyphenols Using Liquid Chromatography-Tandem Mass Spectrometry Technique (LC-MS/MS): A Review. Antioxidants (Basel) 2020; 9:antiox9060479. [PMID: 32498428 PMCID: PMC7346120 DOI: 10.3390/antiox9060479] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/25/2020] [Accepted: 05/31/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, the consumption of polyphenols has been increasing, largely due to its beneficial effects on health. They are present in a wide variety of foods, but their extraction and characterization are complicated since they are mostly in complex matrices. For this reason, the use of selective, sensitive, and versatile analytical techniques such as liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) is necessary. In this review, the most relevant studies of the last years regarding the analysis of polyphenols in different matrices by comprehensive LC–MS/MS are discussed. Relevant steps such as extraction, sample purification, and chromatographic analysis methods are emphasized. In particular, the following methodological aspects are discussed: (a) the proper selection of the extraction technique, (b) the extraction and elution solvents, (c) the purification step, (d) the selection of both stationary and mobile phases for the chromatographic separation of compounds, and (e) the different conditions for mass spectrometry. Overall, this review presents the data from the most recent studies, in a comprehensive way, thus providing and simplifying the information of the great variety of works that exist in the literature on this wide topic.
Collapse
Affiliation(s)
- Olalla López-Fernández
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Paulo E.S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
| | - Gabriele Rocchetti
- Department for sustainable food process, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy;
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia No 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (O.L.-F.); (R.D.); (M.P.); (P.E.S.M.)
- Área de Tecnología de los Alimentos, Facultad de Ciencias de Ourense, Universidad de Vigo, 32004 Ourense, Spain
- Correspondence: ; Tel.: +34-988-548-277; Fax: +34-988-548-276
| |
Collapse
|
68
|
Influence of pitanga (Eugenia uniflora L.) leaf extract and/or natamycin on properties of cassava starch/chitosan active films. Food Packag Shelf Life 2020. [DOI: 10.1016/j.fpsl.2020.100498] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
69
|
Effects of double emulsion (W1/O/W2) containing encapsulated Murraya koenigii berries extract on quality characteristics of reduced-fat meat batter with high oxidative stability. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109365] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
70
|
Villalobos-Delgado LH, González-Mondragón EG, Ramírez-Andrade J, Salazar-Govea AY, Santiago-Castro JT. Oxidative stability in raw, cooked, and frozen ground beef using Epazote (Chenopodium ambrosioides L.). Meat Sci 2020; 168:108187. [PMID: 32442827 DOI: 10.1016/j.meatsci.2020.108187] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 04/01/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022]
Abstract
This study investigated the potential of aqueous epazote (AE) and ethanolic extract of epazote (ETHE) as inhibitors of lipid oxidation in raw and cooked ground beef stored at 4 °C for 9 days as well as frozen beef patties stored at -18 °C for 90 days. Organic acids were identified in AE and ETHE using ultra-high-performance liquid chromatography-quadrupole time-of-flight (UHPLC-qTOF). Chemical composition, TBARS, pH, colour, sensory acceptability and intensity of oxidised flavour were analysed in the three different meat products. ETHE showed higher values in organic acid content than AE. In raw ground beef, ETHE inhibited lipid oxidation and received the highest score in the three sensorial attributes evaluated at the end of the storage period, whereas in cooked ground beef it showed the highest intensity of oxidised flavour. Regarding CTL, AE reduced lipid oxidation in the cooked ground beef as well as the frozen patties, with improved colour. Therefore, epazote may be a promising natural antioxidant source for use in meat.
Collapse
Affiliation(s)
- L H Villalobos-Delgado
- Institute of Agroindustry, Technological University of the Mixteca, 69000 Huajuapan de León, Oaxaca, Mexico.
| | - E G González-Mondragón
- Institute of Agroindustry, Technological University of the Mixteca, 69000 Huajuapan de León, Oaxaca, Mexico
| | - J Ramírez-Andrade
- Institute of Agroindustry, Technological University of the Mixteca, 69000 Huajuapan de León, Oaxaca, Mexico
| | - A Y Salazar-Govea
- Institute of Agroindustry, Technological University of the Mixteca, 69000 Huajuapan de León, Oaxaca, Mexico
| | - J T Santiago-Castro
- Institute of Agroindustry, Technological University of the Mixteca, 69000 Huajuapan de León, Oaxaca, Mexico
| |
Collapse
|
71
|
Vargas-Ramella M, Munekata PES, Pateiro M, Franco D, Campagnol PCB, Tomasevic I, Domínguez R, Lorenzo JM. Physicochemical Composition and Nutritional Properties of Deer Burger Enhanced with Healthier Oils. Foods 2020; 9:E571. [PMID: 32375313 PMCID: PMC7278821 DOI: 10.3390/foods9050571] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/28/2020] [Accepted: 04/28/2020] [Indexed: 11/17/2022] Open
Abstract
Deer meat is characterized by low fat and cholesterol contents and high amounts of protein and polyunsaturated fatty acids. In this regard, the aim of this work was to assess the influence of pork backfat substitution by healthier oils on chemical composition, fatty acid profile, texture profile and sensory analysis of deer burger. In addition, pH, color parameters and lipid oxidation were evaluated at 0, 6, 12 and 18 days of storage. For this study, four different treatments of deer burgers-100% pork backfat, 100% tiger nut oil, 100% chia oil, and 100% linseed oil-were elaborated. The fat replacement reduced fat and protein contents and increased moisture amounts, whereas ashes and texture parameters of deer burgers were not affected. Fatty acid profile was significantly improved with the animal fat replacement. In this regard, a significant decrease in saturated fatty acids was found in all reformulated batches, whereas in chia and linseed burger samples a dramatic increase in polyunsaturated fatty acids, omega-3 content and a reduction of n-3/n-6 ratio was observed. In the deer burger prepared with tiger nut oil a significant increase in monounsaturated fatty acids was found. Another important aspect is that the replacement of animal fat by tiger nut or linseed oil emulsion did not affect the global acceptance of deer burgers. Regarding color parameters, redness was the most affected during the whole display presenting a reduction around 50% after 18 days of storage. On the other hand, thiobarbituric acid reactive substances (TBARS) values were also affected by fat replacement and storage time, observing the highest values (2.43 mg MDA/kg) in deer burgers prepared with chia at the end of refrigerated period. Finally, from a commercial point of view, the possibility of making claims such as "low fat burgers", "reduced saturated fat" or "high content of omega-3" makes the reformulated burgers more attractive to the consumer.
Collapse
Affiliation(s)
- Marcio Vargas-Ramella
- Centro de Educação Superior da Região Sul—CERES da Universidade do Estado de Santa Catarina, Chapecó, Santa Catarina 89.800-000, Brazil;
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (D.F.); (R.D.)
| | - Paulo E. S. Munekata
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (D.F.); (R.D.)
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (D.F.); (R.D.)
| | - Daniel Franco
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (D.F.); (R.D.)
| | - Paulo C. B. Campagnol
- Department of Food Science and Technology (DTCA), Universidade Federal de Santa Maria, Santa Maria CEP 97105-900, Rio Grande do Sul, Brazil;
| | - Igor Tomasevic
- Department of Animal Source Food Technology, Faculty of Agriculture, University of Belgrade, Nemanjina 6, Belgrade 11080, Serbia;
| | - Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (D.F.); (R.D.)
| | - José M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; (P.E.S.M.); (M.P.); (D.F.); (R.D.)
| |
Collapse
|
72
|
Physicochemical Characterization, Antioxidant Activity, and Phenolic Compounds of Hawthorn ( Crataegus spp.) Fruits Species for Potential Use in Food Applications. Foods 2020; 9:foods9040436. [PMID: 32260449 PMCID: PMC7230283 DOI: 10.3390/foods9040436] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 03/27/2020] [Accepted: 04/01/2020] [Indexed: 12/05/2022] Open
Abstract
Hawthorn belongs to the Crataegus genus of the Rosaceae family and is an important medicinal plant. Due to its beneficial effects on the cardiovascular system and its antioxidant and antimicrobial activity hawthorn has recently become quite a popular herbal medicine in phytotherapy and food applications. In this study, physicochemical characterization (color parameters, pH, titratable acidity, total soluble solids, soluble carbohydrate, total carotenoid, total phenols, and flavonoid contents), antioxidant activity (by ferric-reducing antioxidant power, FRAP assay), and quantification of some individual phenolic compounds of fruits of 15 samples of different hawthorn species (Crataegus spp.) collected from different regions of Iran were investigated. According to findings, the total phenols, total flavonoid content, and antioxidant activity were in the range of 21.19–69.12 mg gallic acid equivalent (GAE)/g dry weight (dw), 2.44–6.08 mg quercetin equivalent (QUE)/g dw and 0.32–1.84 mmol Fe++/g dw, respectively. Hyperoside (0.87–2.94 mg/g dw), chlorogenic acid (0.06–1.16 mg/g dw), and isoquercetin (0.24–1.59 mg/g dw) were found to be the most abundant phenolic compounds in the extracts of hawthorn fruits. The considerable variations in the antioxidant activity and phenolic compounds of hawthorn species were demonstrated by our results. Hence, the evaluation of hawthorn genetic resources could supply precious data for screening genotypes with high bioactive contents for producing natural antioxidants and other phytochemical compounds valuable for food and pharma industries.
Collapse
|
73
|
Zhu Z, Huang M, Cheng Y, Khan IA, Huang J. A comprehensive review of Nε-carboxymethyllysine and Nε-carboxyethyllysine in thermal processed meat products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
74
|
Umaraw P, Munekata PE, Verma AK, Barba FJ, Singh V, Kumar P, Lorenzo JM. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.01.032] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
75
|
Munekata PES, Rocchetti G, Pateiro M, Lucini L, Domínguez R, Lorenzo JM. Addition of plant extracts to meat and meat products to extend shelf-life and health-promoting attributes: an overview. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.03.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
76
|
Modification of lipid oxidation and antioxidant capacity in canned refrigerated pork with a nitrite content reduced by half and addition of sweet pepper extract. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108738] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
77
|
Ramírez-Rojo MI, Vargas-Sánchez RD, Torres-Martínez BDM, Torrescano-Urrutia GR, Lorenzo JM, Sánchez-Escalante A. Inclusion of Ethanol Extract of Mesquite Leaves to Enhance the Oxidative Stability of Pork Patties. Foods 2019; 8:foods8120631. [PMID: 31810247 PMCID: PMC6963196 DOI: 10.3390/foods8120631] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/14/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022] Open
Abstract
The lipid oxidation (LOX) of pork meat has been associated with loss of quality and shorter shelf life. Consequently, synthetic antioxidants have been used to reduce this process, but their use has shown potential health risks. Thus, the use of natural ingredients has been suggested as a strategy to prevent LOX. This study aimed to assess the oxidative stability of pork patties treated with ethanol extract of mesquite leaf (EEML) during storage. Furthermore, the polyphenol composition (TPC, total phenolic, TFC, total flavonoid) and antioxidant activity (antiradical and reducing power activity) of EEML were also evaluated. For this study, five treatments (CN (control), without antioxidant; Asc, ascorbic acid 0.02%; BHT, butylated hydroxytoluene 0.02%; EEML1, 0.05%; and EEML2, 0.1%) of pork patties were applied. Patty samples were stored at 4 °C, and physicochemical parameters, lipid oxidation, total antioxidant capacity of the meat, and sensory analysis were evaluated at 0, 3, 7, and 10 days of storage. EEML presented high values of TPC (278.5 mg gallic acid equivalent (GAE)/g) and TFC (226.8 mg rutin equivalents (RE)/g) levels. The addition of EEML did not modify the chemical composition of the pork patties. On the other hand, colour parameters were affected by the inclusion of EEML in pork patties, presenting the lowest a* in the CN group compared to the other groups after 10 days storage. Lipid oxidation increased during the whole period, showing the lowest (P < 0.05) conjugated dienes and thiobarbituric acid reactive substances (TBARS) values (40% and 90% of inhibition, respectively) compared to the CN group. Regarding sensory analysis, there were no significant differences in colour, appearance, odour, flavour, juiciness, fat sensation, and firmness of the cooked pork patties among treatments. These results suggest that EEML has great potential as a natural antioxidant for meat products.
Collapse
Affiliation(s)
- Margarita Irene Ramírez-Rojo
- Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico; (M.I.R.-R.); (R.D.V.-S.); (B.d.M.T.-M.); (G.R.T.-U.)
| | - Rey David Vargas-Sánchez
- Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico; (M.I.R.-R.); (R.D.V.-S.); (B.d.M.T.-M.); (G.R.T.-U.)
| | - Brisa del Mar Torres-Martínez
- Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico; (M.I.R.-R.); (R.D.V.-S.); (B.d.M.T.-M.); (G.R.T.-U.)
| | - Gastón Ramón Torrescano-Urrutia
- Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico; (M.I.R.-R.); (R.D.V.-S.); (B.d.M.T.-M.); (G.R.T.-U.)
| | - José Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia N° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
- Correspondence: (J.M.L.); (A.S.-E.); Tel.: +34-988-548-277 (J.M.L.); +52-662-289-2400 (A.S.-E.)
| | - Armida Sánchez-Escalante
- Coordinación de Tecnología de Alimentos de Origen Animal (CTAOA), Centro de Investigación en Alimentación y Desarrollo, A.C. (CIAD), Carretera Gustavo Enrique Astiazarán Rosas, 46, Hermosillo, Sonora 83304, Mexico; (M.I.R.-R.); (R.D.V.-S.); (B.d.M.T.-M.); (G.R.T.-U.)
- Correspondence: (J.M.L.); (A.S.-E.); Tel.: +34-988-548-277 (J.M.L.); +52-662-289-2400 (A.S.-E.)
| |
Collapse
|
78
|
Zhu Z, Cheng Y, Huang S, Yao M, Lei Y, Khan IA, Huang M, Zhou X. Formation of Nϵ-Carboxymethyllysine and Nϵ-Carboxyethyllysine in Prepared Chicken Breast by Pan Frying. J Food Prot 2019; 82:2154-2160. [PMID: 31742439 DOI: 10.4315/0362-028x.jfp-19-319] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The objective of this work was to investigate the effects of pan frying on the formation of two typical advanced glycation end products (AGEs) named Nϵ-carboxymethyllysine (CML) and Nϵ-carboxyethyllysine (CEL) in prepared chicken breast. The marinated chicken breast was pan fried for 1 to 6 min, and then protein, fat, moisture, carbonyl, sulfhydryl, thiobarbituric acid reactive substances, chroma (a*, b*, L*), absorbance at 294 and 420 nm, and AGE (CEL) levels were measured once a minute. Pearson's correlation was determined and indicated that moisture was significantly negatively correlated with Maillard reaction and AGEs (P < 0.05), fat and protein contents were significantly positively correlated with AGEs (P < 0.05), and a* values were positively correlated with Maillard reaction and CEL (P < 0.05). Protein and lipid oxidation played an important role on the correlation of AGEs. In conclusion, Maillard reaction and oxidation reaction are two important factors affecting AGE formation.
Collapse
Affiliation(s)
- Zongshuai Zhu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yiqun Cheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Suhong Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Mingjun Yao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Yang Lei
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Iftikhar Ali Khan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Ming Huang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, People's Republic of China
| | - Xinghu Zhou
- Nanjing Huang Jiaoshou Food Science and Technology Co., Ltd., National R&D Center for Poultry Processing Technology, Nanjing 210095, People's Republic of China
| |
Collapse
|
79
|
Propolis Extract as Antioxidant to Improve Oxidative Stability of Fresh Patties during Refrigerated Storage. Foods 2019; 8:foods8120614. [PMID: 31771302 PMCID: PMC6963608 DOI: 10.3390/foods8120614] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/30/2022] Open
Abstract
The effect of propolis ethanol extract (PEE), butylated hydroxytoluene (BHT), and ascorbic acid (Asc) against lipid (Lox) and protein oxidation (Pox), color deterioration, and the antioxidant stabilizer of raw beef and pork patties during chilled storage (9 days at 2 °C/under darkness) was investigated. Total phenolic content (TPC), reducing power ability (RPA), DPPH● radical scavenging activity (FRSA) of the PEE was evaluated. Meat samples were evaluated for pH, Lox (TBARS), Pox (Carbonyls), color (L*, a*, b*, C*, and h*), metmyoglobin formation (MMb), TPC, RPA, and FRSA. Results indicated that PEE is rich in phenolic content and antioxidant activity, and their incorporation in beef and pork patties reduced (p < 0.05) Lox and Pox (TBARS-88.7 and 80% inhibition; Pox-47.3 and 30.6% inhibition, respectively), as well as loss of color and increased the oxidative stability throughout storage.
Collapse
|
80
|
Munekata PES, Alcántara C, Collado MC, Garcia-Perez JV, Saraiva JA, Lopes RP, Barba FJ, do Prado Silva L, Sant'Ana AS, Fierro EM, Lorenzo JM. Ethnopharmacology, phytochemistry and biological activity of Erodium species: A review. Food Res Int 2019; 126:108659. [PMID: 31732027 DOI: 10.1016/j.foodres.2019.108659] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 09/05/2019] [Accepted: 09/09/2019] [Indexed: 10/26/2022]
Abstract
Erodium spp. is a genus that can be found in all continents that has been traditionally used in folk medicine to treat many diseases such as hemorrhage, dermatological disorders, indigestion, and inflammatory diseases. Moreover, Erodium leaves have been used for the preparation of salads, omelets, sandwiches, sauces and soups, among other food products. The objective of this review was to show the recent and relevant studies about extraction of bioactive compounds, the phytochemical characterization, the potential biological activities and toxicological evidence reported in both in vitro and in vivo studies from Erodium spp. In addition, the use of Erodium spp. as natural compounds against the development of diseases were also showed. This review highlights the traditional use of Erodium species in several countries as a therapeutic agent to treat several diseases (such as constipation, dermatological disorders, diabetes, indigestion, urinary inflammations, and as carminative agent), the factors influencing the extraction of bioactive compounds (mainly species and solvent composition on phenolic compounds) and phytochemical profile (presence of essential oils and alkaloids), the scientific evidence about its anti-inflammatory, antimicrobial (against both spoilage and pathogenic microorganisms), antiviral and other health-related activities (anti-protozoal and anti-viral activity) as well as the toxicological evidence. Erodium spp. is a relevant source of compounds with antioxidant, antimicrobial, and biological activity, which support its potential exploration in pharmacological and food area. Major efforts are necessary to advance the knowledge about Erodium genus regarding the relation between traditional use and scientific evidence, optimization of extraction conditions, the influence on biological mechanisms at animal and clinical levels, and bioaccessibility and bioavailability of bioactive compounds.
Collapse
Affiliation(s)
- Paulo E S Munekata
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain
| | - Cristina Alcántara
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - María Carmen Collado
- Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Department of Biotechnology, Av. Agustin Escardino 7, Valencia, Spain
| | - Jose V Garcia-Perez
- Grupo de Análisis y Simulación de Procesos Agroalimentarios (ASPA), Departamento de Tecnología de Alimentos, Universitat Politècnica de València, Valencia 46022, Spain
| | - Jorge A Saraiva
- QOPNA & LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Rita P Lopes
- QOPNA & LAQV-REQUIMTE, Chemistry Department, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Francisco J Barba
- Universitat de València, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Nutrition and Food Science Area, Avda. Vicent Andrés Estellés, s/n, 46100 Burjassot, València, Spain
| | - Leonardo do Prado Silva
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, São Paulo, Brazil
| | | | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas 32900, Ourense, Spain.
| |
Collapse
|
81
|
Martillanes S, Ramírez R, Amaro‐Blanco G, Ayuso‐Yuste MC, Gil MV, Delgado‐Adámez J. Effect of rice bran extract on the preservation of pork burger treated with high pressure processing. J FOOD PROCESS PRES 2019. [DOI: 10.1111/jfpp.14313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Sara Martillanes
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
- Agricultural Engineering School University of Extremadura Badajoz Spain
| | - Rosario Ramírez
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
| | - Gonzalo Amaro‐Blanco
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
| | - María Concepción Ayuso‐Yuste
- Agricultural Engineering School University of Extremadura Badajoz Spain
- University Research Institute of Agricultural Resource Badajoz Spain
| | - María Victoria Gil
- IACYS‐Unidad de Química Verde y Desarrollo Sostenible Department of Organic and Inorganic Chemistry Faculty of Sciences University of Extremadura Badajoz Spain
| | - Jonathan Delgado‐Adámez
- Technological Agri‐Food Institute (INTAEX) Centro de Investigaciones Científicas y Tecnológicas de Extremadura (CICYTEX) Badajoz Spain
| |
Collapse
|
82
|
Rodrigues AS, Kubota EH, da Silva CG, Dos Santos Alves J, Hautrive TP, Rodrigues GS, Campagnol PCB. Banana inflorescences: A cheap raw material with great potential to be used as a natural antioxidant in meat products. Meat Sci 2019; 161:107991. [PMID: 31710885 DOI: 10.1016/j.meatsci.2019.107991] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/23/2019] [Indexed: 11/29/2022]
Abstract
The bioactive compounds and the antioxidant activity of extracts made with various parts of banana inflorescences (bracts, male flowers, rachis, and whole inflorescence) were evaluated in the first part of this study. The extract made with male flowers (EMF) had a higher content of phenolics and flavonoids, lower IC50 value, and higher FRAP value. Thus, EMF was selected to be used in sausage formulations at the concentrations of 0, 0.5, 1, 1.5, and 2%. The effect of this reformulation on the physicochemical, oxidative, and sensory characteristics of the sausages was evaluated during the refrigerated storage (28 days). EMF presented an effective antioxidant activity, with no major changes on pH, aw, and color parameters. In addition, the sensory quality of the product was not affected by the addition of up to 2% EMF. Therefore, EMF has great potential to be used as a natural antioxidant in meat products.
Collapse
Affiliation(s)
- Angela Souza Rodrigues
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | - Ernesto Hashime Kubota
- Universidade Federal de Santa Maria, CEP 97105-900 Santa Maria, Rio Grande do Sul, Brazil
| | | | | | | | | | | |
Collapse
|
83
|
Rashidimehr A, Fazlara A, Zarei M, Pourmehdi M, Noshad M. Use of essential oils and vacuum packaging as a way to extend shelf life of burgers from surimi. FOODS AND RAW MATERIALS 2019. [DOI: 10.21603/2308-4057-2019-2-301-310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Essential oils are known to be a natural preservative due to their antimicrobial and antioxidant properties. The aim of this study was to evaluate an effect of thyme and cumin essential oils (EOs) in combination with air packaging and vacuum packaging on the shelf life of burgers from surimi and chicken meat. The study was conducted at 2°C for 27 days. We tested four groups of samples: (a) burgers in air package, (b) burgers with cumin and thyme EOs in air packaging, (c) burgers in vacuum packaging, and (d) burgers with cumin and thyme EOs in vacuum packaging. The greatest effect (P < 0.001) on the chemical and microbiological characteristics of the novel burgers displayed burgers with EOs of thyme and cumin packaged under vacuum. It can be explained by synergistic effect, which made it possible to extend the shelf life of the burgers. These results allowed us to suggest that surimi could be used as a basic ingredient in burgers production.
Collapse
Affiliation(s)
| | | | | | | | - Mohammad Noshad
- Agricultural Sciences and Natural Resources University of Khuzestan
| |
Collapse
|
84
|
Domínguez R, Pateiro M, Gagaoua M, Barba FJ, Zhang W, Lorenzo JM. A Comprehensive Review on Lipid Oxidation in Meat and Meat Products. Antioxidants (Basel) 2019; 8:E429. [PMID: 31557858 PMCID: PMC6827023 DOI: 10.3390/antiox8100429] [Citation(s) in RCA: 788] [Impact Index Per Article: 131.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/20/2019] [Accepted: 09/23/2019] [Indexed: 11/17/2022] Open
Abstract
Meat and meat products are a fundamental part of the human diet. The protein and vitamin content, as well as essential fatty acids, gives them an appropriate composition to complete the nutritional requirements. However, meat constituents are susceptible to degradation processes. Among them, the most important, after microbial deterioration, are oxidative processes, which affect lipids, pigments, proteins and vitamins. During these reactions a sensory degradation of the product occurs, causing consumer rejection. In addition, there is a nutritional loss that leads to the formation of toxic substances, so the control of oxidative processes is of vital importance for the meat industry. Nonetheless, despite lipid oxidation being widely investigated for decades, the complex reactions involved in the process, as well as the different pathways and factors that influenced them, make that lipid oxidation mechanisms have not yet been completely understood. Thus, this article reviews the fundamental mechanisms of lipid oxidation, the most important oxidative reactions, the main factors that influence lipid oxidation, and the routine methods to measure compounds derived from lipid oxidation in meat.
Collapse
Affiliation(s)
- Rubén Domínguez
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| | - Mohammed Gagaoua
- Food Quality and Sensory Science Department, Teagasc Ashtown Food Research Centre, Ashtown, Dublin 15, Ireland.
| | - Francisco J Barba
- Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, 46100 València, Spain.
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, Ministry of Education China, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| | - José M Lorenzo
- Centro Tecnológico de la Carne de Galicia, Rúa Galicia Nº 4, Parque Tecnológico de Galicia, 32900 San Cibrao das Viñas, Spain.
| |
Collapse
|
85
|
Zhu Z, Huang S, Khan IA, Cheng Y, Yu Y, Zhang C, Huang J, Huang M, Zhou X. The effect of oxidation and Maillard reaction on formation of Nε -carboxymethyllysine and Nε-carboxyethyllysine in prepared chicken breast. CYTA - JOURNAL OF FOOD 2019. [DOI: 10.1080/19476337.2019.1636139] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zongshuai Zhu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Suhong Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Iftikhar Ali Khan
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yiqun Cheng
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yajie Yu
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chuangchuang Zhang
- College of Food Science and Engineering, Northwest A & F University, Yangling, China
| | - Jichao Huang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Ming Huang
- Nanjing Innovation Center of Meat Products Processing, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, and College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Xinghu Zhou
- National R & D Center For Poultry Processing Technology, Nanjing Huang jiaoshou Food Science and Technology Co., Ltd., Nanjing, China
| |
Collapse
|
86
|
Drumstick ( Moringa oleifera) Flower as an Antioxidant Dietary Fibre in Chicken Meat Nuggets. Foods 2019; 8:foods8080307. [PMID: 31374943 PMCID: PMC6722610 DOI: 10.3390/foods8080307] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/26/2019] [Accepted: 07/30/2019] [Indexed: 11/25/2022] Open
Abstract
The present work investigated the efficacy of Moringa flower (MF) extract to develop a functional chicken product. Three groups of cooked chicken nuggets—control (C), T1 (with 1% MF) and T2 (2% MF)—were elaborated and their physicochemical, nutritional, storage stability and sensory attributes were assessed during refrigerated storage at 4 °C up to 20 days. In addition, MF extracts were characterised in terms of chemical composition, total phenolic content and its components using high-performance liquid chromatography with a diode-array detector (HPLC-DAD), dietary fibre and antioxidant capacity. MF contained high protein (17.87 ± 0.28 dry matter), dietary fibre (36.14 ± 0.77 dry matter) and total phenolics (18.34 ± 1.16 to 19.49 ± 1.35 mg gallic acid equivalent (GAE)/g dry matter) content. The treated nuggets (T1 and T2) had significantly enhanced cooking yield, emulsion stability, ash, protein, total phenolics and dietary fibre compared to control. Incorporation of MF extract at 2% not only significantly reduced the redness/increased the lightness, but also decreased the hardness, gumminess and chewiness of the product compared to control. Moreover, the addition of MF extract significantly improved the oxidative stability and odour scores by reducing lipid oxidation during storage time. Sensory attributes of nuggets were not affected by the addition of MF extract and the products remained stable and acceptable even on 15th day of storage. These results showed that MF extract could be considered as an effective natural functional ingredient for quality improvement and reducing lipid oxidation in cooked chicken nuggets.
Collapse
|
87
|
de Carvalho FAL, Lorenzo JM, Pateiro M, Bermúdez R, Purriños L, Trindade MA. Effect of guarana (Paullinia cupana) seed and pitanga (Eugenia uniflora L.) leaf extracts on lamb burgers with fat replacement by chia oil emulsion during shelf life storage at 2 °C. Food Res Int 2019; 125:108554. [PMID: 31554074 DOI: 10.1016/j.foodres.2019.108554] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/20/2019] [Accepted: 07/11/2019] [Indexed: 12/29/2022]
Abstract
The effects of guarana seed and pitanga leaf extracts on the physical-chemical and sensory characteristics, and oxidative stability of modified atmosphere-packaged lamb patties with fat replacement during storage (2 °C) were investigated. Four treatments were prepared: control (without antioxidant); with BHT (10 mg/kg); with 250 mg/kg guarana extract (G250); with 250 mg/kg pitanga extract (P250). Analysis included the proximate composition (moisture, protein, fat, and ash) and sensory acceptance (day 0); pH, color (L*, a*, b*), TBARs, carbonyl content, DPPH, and visual sensory assessment (0, 6, 12, and 18 days); fatty acid profile and volatile compounds (0 and 18 days). G250 and P250 did not alter the centesimal composition and the acceptance of the lamb burgers on day 0. The extracts also delayed discoloration of the burgers, endowed the reddest intensity, and retarded lipid and protein oxidation throughout storage time, particularly P250, which presented the lowest TBARs levels (6.92 mg MDA/kg) and carbonyl values (5.59 nmol carbonyl/mg), and the highest antioxidant activity (249.48 μg Trolox/g), at day 18. The MUFA, SFA, and PUFA levels, AI, TI, and h/H ratio were comparable between treatments; only the n-6/n-3 ratio was higher in P250 treatment but within the recommended levels. More volatile compounds were derived from lipid oxidation in the control and BHT treatments than G250 and P250 treatments. As a result, both G250 and P250 groups are effective against color deterioration, and lipid and protein oxidation, without impairing the sensorial characteristics, representing a promising alternative to replace synthetic antioxidants by natural products in lamb burger.
Collapse
Affiliation(s)
- Francisco Allan L de Carvalho
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| | - Jose M Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain.
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Roberto Bermúdez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Laura Purriños
- Centro Tecnológico de la Carne de Galicia, rúa Galicia n° 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Marco Antonio Trindade
- Departamento de Engenharia de Alimentos, Faculdade de Zootecnia e Engenharia de Alimentos, Universidade de São Paulo, Pirassununga, São Paulo, SP 13635-900, Brazil
| |
Collapse
|
88
|
Bolívar-Monsalve J, Ramírez-Toro C, Bolívar G, Ceballos-González C. Mechanisms of action of novel ingredients used in edible films to preserve microbial quality and oxidative stability in sausages - A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
89
|
Pan XY, Wang YM, Li L, Chi CF, Wang B. Four Antioxidant Peptides from Protein Hydrolysate of Red Stingray ( Dasyatis akajei) Cartilages: Isolation, Identification, and In Vitro Activity Evaluation. Mar Drugs 2019; 17:E263. [PMID: 31058809 PMCID: PMC6562685 DOI: 10.3390/md17050263] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 04/22/2019] [Accepted: 04/30/2019] [Indexed: 12/26/2022] Open
Abstract
In the work, water-soluble proteins of red stingray (Dasyatis akajei) cartilages were extracted by guanidine hydrochloride and hydrolyzed using trypsin. Subsequently, four antioxidant peptides (RSHP-A, RSHP-B, RSHP-C, and RSHP-D) were isolated from the water-soluble protein hydrolysate while using ultrafiltration and chromatographic techniques, and the amino acid sequences of RSHP-A, RSHP-B, RSHP-C, and RSHP-D were identified as Val-Pro-Arg (VPR), Ile-Glu-Pro-His (IEPH), Leu-Glu-Glu--Glu-Glu (LEEEE), and Ile-Glu-Glu-Glu-Gln (IEEEQ), with molecular weights of 370.46 Da, 494.55 Da, 647.64 Da, and 646.66 Da, respectively. VPR, IEPH, LEEEE, and IEEEQ exhibited good scavenging activities on the DPPH radical (EC50 values of 4.61, 1.90, 3.69, and 4.01 mg/mL, respectively), hydroxyl radical (EC50 values of 0.77, 0.46, 0.70, and 1.30 mg/mL, respectively), superoxide anion radical (EC50 values of 0.08, 0.17, 0.15, and 0.16 mg/mL, respectively), and ABTS cation radical (EC50 values of 0.15, 0.11, 0.19, and 0.18 mg/mL, respectively). Among the four isolated antioxidant peptides, IEPH showed the strongest reducing power and lipid peroxidation inhibition activity, but LEEEE showed the highest Fe2+-chelating ability. The present results suggested that VPR, IEPH, LEEEE, and IEEEQ might have the possibility of being an antioxidant additive that is used in functional food and pharmaceuticals.
Collapse
Affiliation(s)
- Xiao-Yang Pan
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Yu-Mei Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Li Li
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Chang-Feng Chi
- National and Provincial Joint Laboratory of Exploration and Utilization of Marine Aquatic Genetic Resources, National Engineering Research Center of Marine Facilities Aquaculture, School of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Bin Wang
- Zhejiang Provincial Engineering Technology Research Center of Marine Biomedical Products, School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
90
|
Vargas FC, Gómez B, Mousavi Khaneghah A, Strozzi I, Gavahian M, Barba FJ, Sobral PJDA, Lorenzo JM. Assessment of the Suitability of Pitanga Leaf Extract as a Natural Antioxidant for Enhancing Canola Oil Stability: Monitoring Lipid Oxidation Parameters. EUR J LIPID SCI TECH 2019. [DOI: 10.1002/ejlt.201800447] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Flávia C. Vargas
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Belen Gómez
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de GaliciaSan Cibrao das Viñas32900 OurenseSpain
| | - Amin Mousavi Khaneghah
- Faculty of Food Engineering, Department of Food Science, University of Campinas (UNICAMP)Rua Monteiro Lobato, 80, Caixa Postal: 6121, CEP: 13083‐862 CampinasSão PauloBrazil
| | - Isabella Strozzi
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Mohsen Gavahian
- Product and Process Research Center, Food Industry Research and Development InstituteNo. 331 Shih‐Pin Rd., Hsinchu30062 TaiwanRepublic of China
| | - Francisco J. Barba
- Universitat de València, Faculty of Pharmacy, Preventive Medicine and Public Health, Food Science, Toxicology and Forensic Medicine DepartmentNutrition and Food Science Area, Avda.Vicent Andrés Estellés, s/n, 46100 BurjassotValènciaSpain
| | - Paulo José do Amaral Sobral
- Faculty of Animal Science and Food Engineering, Department of Food Engineering, University of São Paulo225 Duque de Caxias Norte Ave, Jardim Elite, Postal Code 13.635‐900, PirassunungaSão PauloBrazil
| | - Jose M. Lorenzo
- Centro Tecnológico de la Carne de Galicia, rúa Galicia no. 4, Parque Tecnológico de GaliciaSan Cibrao das Viñas32900 OurenseSpain
| |
Collapse
|