51
|
Xiao R, Chen S, Wang X, Chen K, Hu J, Wei K, Ning Y, Xiong T, Lu F. Microbial community starters affect the profiles of volatile compounds in traditional Chinese Xiaoqu rice wine: Assement via high-throughput sequencing and gas chromatography-ion mobility spectrometry. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.114000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
52
|
Zhu L, Li L, Yang Q, Chen L, Zhang L, Zhang G, Lin B, Tang J, Zhang Z, Chen S. Study on microbial community of "green-covering" Tuqu and the effect of fortified autochthonous Monascus purpureus on the flavor components of light-aroma-type Baijiu. Front Microbiol 2022; 13:973616. [PMID: 36060768 PMCID: PMC9434108 DOI: 10.3389/fmicb.2022.973616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
"Green-covering" Tuqu (TQ), as one of Xiaoqu, is a special fermentative starter (also known as Jiuqu in Chinese) that originated in southern China and is characterized by a layer of green mold covering (Aspergillus clavatus) the surface and (sometimes) with a red heart. It plays a vital role in producing light-aroma-type Baijiu (LATB). However, to date, the microbiota that causes red heart of TQ remain largely unexplored, and it is still unclear how these microbiota influence on the quality of LATB. In this study, two types of TQ, one with a red heart (RH) and another with a non-red heart (NRH), were investigated by high throughput sequencing (HTS) and directional screening of culture-dependent methods. The obtained results revealed the differences in the microbial communities of different TQ and led to the isolation of two species of Monascus. Interestingly, the results of high performance liquid chromatography (HPLC) detection showed that citrinin was not detected, indicating that Monascus isolated from TQ was no safety risk, and the contents of gamma-aminobutyric acid in the fermented grains of RH were higher than that of NRH during the fermentation. Selecting the superior autochthonous Monascus (M1) isolated from the TQ to reinoculate into the TQ-making process, established a stable method for producing the experimental "red heart" Tuqu (ERH), which confirmed that the cause of "red heart" was the growth of Monascus strains. After the lab-scale production test, ERH increased ethyl ester production and reduced higher alcohols production. In addition, Monascus had an inhibitory effect on the growth of Saccharomyces and Aspergillus. This study provides the safe, health-beneficial, and superior fermentation strains and strategies for improving the quality of TQ and LATB.
Collapse
Affiliation(s)
- Liping Zhu
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lanqi Li
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Qiang Yang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Liang Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Lei Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Gang Zhang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Bin Lin
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Jie Tang
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| | - Zongjie Zhang
- Hubei Key Laboratory of Edible Wild Plants Conservation and Utilization, College of Life Sciences, Hubei Normal University, Huangshi, China
| | - Shenxi Chen
- Hubei Key Laboratory of Quality and Safety of Traditional Chinese Medicine and Health Food, Jing Brand Co. Ltd, Daye, China
| |
Collapse
|
53
|
The effects of an innovative pulping technique of synchronously pulping and gelatinizing treatment on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of glutinous rice wine. Food Sci Biotechnol 2022; 31:1343-1353. [PMID: 35992314 PMCID: PMC9385904 DOI: 10.1007/s10068-022-01119-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/23/2022] [Accepted: 06/07/2022] [Indexed: 02/02/2023] Open
Abstract
Liquid-state fermentation has been increasingly applied in the industrial glutinous rice wine (GRW) production. However, products brewed by this emerging technique possess some deficiencies in flavor quality. Therefore, this study firstly developed and optimized an innovative pulping technique by the synchronously pulping and gelatinizing treatment (Process I) to improve GRW flavor quality, and then revealed the influences of Process I on raw materials properties, oenological parameters, fermentation process, and flavor characteristics of GRW. Results show that Process I significantly (p < 0.05) enriched the soluble solid and crude protein content of glutinous rice milk by improving gelatinization degree and pulping efficiency, which consequently enhanced the microbial growth, glycolysis, and protein decomposition during the GRW fermentation process. GC-MS analysis shows that Process I sequentially significantly (p < 0.05) enhanced the esterification and Ehrlich or Harrison pathway during the fermentation process. This contributed to a higher content of key ester and alcohol compounds. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-022-01119-7.
Collapse
|
54
|
Understanding of microbial diversity in three representative Qu in China and characterization of the volatile compounds in the corresponding Chinese rice wine. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
55
|
Qin F, Wu Z, Zhang W. Evaluation of six commercial koji on the formation of biogenic amines and higher alcohols in rice wine. JOURNAL OF THE INSTITUTE OF BREWING 2022. [DOI: 10.1002/jib.696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Fengyang Qin
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Zhengyun Wu
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| | - Wenxue Zhang
- Department of Food Engineering, College of Biomass Science and Engineering Sichuan University Chengdu 610065 China
| |
Collapse
|
56
|
Dynamics of microbial communities, flavor, and physicochemical properties of pickled chayote during an industrial-scale natural fermentation: Correlation between microorganisms and metabolites. Food Chem 2022; 377:132004. [PMID: 35030338 DOI: 10.1016/j.foodchem.2021.132004] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 10/13/2021] [Accepted: 11/28/2021] [Indexed: 01/20/2023]
Abstract
Pickled chayote is a Chinese fermented vegetable with unique flavors and is favored by local consumers. However, little is known about its quality changes and microbial community succession during fermentation and the relationship between microbes and quality. In the work, the physicochemical quality attributes (pH, acidity, nitrite, texture, and color) and flavor properties (sugars, organic acids, free amino acid [FAA], and volatiles) were investigated. The results revealed that organic acids, FAAs, and key volatiles (esters, terpenes, alcohols, and phenols) significantly increased during fermentation. Lactobacillus was the dominant bacterial genus with Lactobacillus alimentarius being the prevalent species; Kazachstania and Pichia were dominant fungal genera with Kazachstania humilis and Pichia membranifaciens being the prevalent species. The microbial metabolic network found that bacteria (L. alimentarius, L. futsaii, and L. paralimentarius) and fungi (K. humilis and P. membranifaciens) played significant roles in the physicochemical changes and flavor production of pickled chayote.
Collapse
|
57
|
Liang Z, Su H, Ren X, Lin X, He Z, Li X, Zheng Y. Analysis of Key Genes Responsible for Low Urea Production in Saccharomyces cerevisiae JH301. Front Microbiol 2022; 13:894661. [PMID: 35558109 PMCID: PMC9087593 DOI: 10.3389/fmicb.2022.894661] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 03/31/2022] [Indexed: 01/23/2023] Open
Abstract
There is a potential safety risk with ethyl carbamate (EC) in Hongqu Huangjiu production; 90% of the EC in rice wine is produced by the reaction of the urea with the alcohol of Saccharomyces cerevisiae. In our previous experiments, we screened and obtained a S. cerevisiae strain JH301 that offered low urea production. However, the key genes responsible for low urea production of strain JH301 remain unclear. Here, the whole genome sequencing of S. cerevisiae strain JH301 was accomplished via a next-generation high-throughput sequencing and long-read sequencing technology. There are six main pathways related to the urea metabolism of strain JH301 based on KEGG pathway mapping. Three species-specific genes are related to the urea metabolism pathways and were found in comparative genome analysis between strains JH301 and S288c during Hongqu Huangjiu production for the first time. Finally, the ARG80 gene was found to be likely a key gene responsible for low urea production of S. cerevisiae strain JH301, as determined by PCR and qRT-PCR check analyses from DNA and RNA levers. In conclusion, the results are useful for a scientific understanding of the mechanism of low urea production by Saccharomyces cerevisiae during Hongqu Huangjiu fermentation. It also is important to control the urea and EC contents in Hongqu Huangjiu production.
Collapse
Affiliation(s)
- Zhangcheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Hao Su
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyun Ren
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiaozi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Zhigang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| | - Xiangyou Li
- Fujian Pinghuhong Biological Technology Co., Ltd., Fuzhou, China
| | - Yan Zheng
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China.,Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, China
| |
Collapse
|
58
|
Lin LJ, Zeng J, Tian QM, Ding XQ, Zhang XY, Gao XY. Effect of the bacterial community on the volatile flavour profile of a Chinese fermented condiment – Red sour soup – During fermentation. Food Res Int 2022; 155:111059. [DOI: 10.1016/j.foodres.2022.111059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 12/16/2022]
|
59
|
Zhao W, Qian M, Dong H, Liu X, Bai W, Liu G, Lv XC. Effect of Hong Qu on the flavor and quality of Hakka yellow rice wine (Huangjiu) produced in Southern China. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
60
|
Dynamic analysis of physicochemical characteristics and microbial communities of Aspergillus-type douchi during fermentation. Food Res Int 2022; 153:110932. [DOI: 10.1016/j.foodres.2021.110932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 12/19/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022]
|
61
|
Li R, Yang S, Lin M, Guo S, Han X, Ren M, Du L, Song Y, You Y, Zhan J, Huang W. The Biogeography of Fungal Communities Across Different Chinese Wine-Producing Regions Associated With Environmental Factors and Spontaneous Fermentation Performance. Front Microbiol 2022; 12:636639. [PMID: 35281311 PMCID: PMC8914289 DOI: 10.3389/fmicb.2021.636639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 12/20/2021] [Indexed: 11/30/2022] Open
Abstract
Chinese Marselan grapes are believed to possess the potential to become a characteristic regional variety, whose quality is internationally recognized. The fermentation-related mycobiota from six climatically diverse Marselan-producing regions in China were analyzed via high-throughput sequencing (HTS), while the influence of environmental factors was evaluated as well. The results implied that the phyla Ascomycota and genus Aureobasidium dominated the fungal communities in 166 Marselan must and fermented samples. Significant differences were detected in the fungal microbiota from the regions, as well as the wineries, while these discrepancies decreased as the fermentation progressed. Moreover, the discrepancy in fungal communities between the wineries exceeded the variation involving the regions. Geoclimatic elements (Gc) and physicochemical indexes (Pi) exerted a significant effect on the fungal must consortium, explaining 58.17% of the taxonomic information. Furthermore, a correlation was proposed between the spontaneous fermentation performance and their association with fungal taxonomic composition. In addition to depicting a fundamental landscape of fungal biogeography patterns across Chinese main wine-producing regions, we firstly proposed the correlation between the must polyphenol content and fungal microbiota, which may provide a new strategy for harnessing autochthonous “microbial terroir.”
Collapse
Affiliation(s)
- Ruilong Li
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Siyu Yang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengyuan Lin
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sijiang Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mengmeng Ren
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Le Du
- Wuhan Donghu Big Data Trading Center Co., Ltd., Wuhan, China
| | - Yinghui Song
- Penglai Grape and Wine Industry Development Service Center, Yantai, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- *Correspondence: Jicheng Zhan,
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Weidong Huang,
| |
Collapse
|
62
|
Gopalakrishnappa C, Gowda K, Prabhakara KH, Kuehn S. An ensemble approach to the structure-function problem in microbial communities. iScience 2022; 25:103761. [PMID: 35141504 PMCID: PMC8810406 DOI: 10.1016/j.isci.2022.103761] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The metabolic activity of microbial communities plays a primary role in the flow of essential nutrients throughout the biosphere. Molecular genetics has revealed the metabolic pathways that model organisms utilize to generate energy and biomass, but we understand little about how the metabolism of diverse, natural communities emerges from the collective action of its constituents. We propose that quantifying and mapping metabolic fluxes to sequencing measurements of genomic, taxonomic, or transcriptional variation across an ensemble of diverse communities, either in the laboratory or in the wild, can reveal low-dimensional descriptions of community structure that can explain or predict their emergent metabolic activity. We survey the types of communities for which this approach might be best suited, review the analytical techniques available for quantifying metabolite fluxes in communities, and discuss what types of data analysis approaches might be lucrative for learning the structure-function mapping in communities from these data.
Collapse
Affiliation(s)
| | - Karna Gowda
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | - Kaumudi H. Prabhakara
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | - Seppe Kuehn
- Department of Ecology and Evolution, University of Chicago, Chicago, IL 60637, USA
- Center for the Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
63
|
Kumar V, Bahuguna A, Ramalingam S, Lee JS, Han SS, Chun HS, Kim M. Aflatoxin Reduction and Retardation of Aflatoxin Production by Microorganisms in Doenjang during a One-Year Fermentation. J Fungi (Basel) 2022; 8:jof8020190. [PMID: 35205943 PMCID: PMC8879751 DOI: 10.3390/jof8020190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 02/03/2022] [Accepted: 02/11/2022] [Indexed: 11/16/2022] Open
Abstract
Meju, a raw material for doenjang preparation, is highly vulnerable to aflatoxin-producing fungi. The aim of this study was to evaluate the effect of a one-year fermentation on aflatoxins and aflatoxin-producing fungi in doenjang spiked with aflatoxins B1, G1, B2, and G2 and inoculated with toxigenic Aspergillus flavus. A significant reduction in aflatoxins was observed after a year of fermentation, measuring 92.58%, 100%, 98.69%, and 100% of B1, G1, B2, and G2, respectively. After a year of fermentation, 6.95 ± 3.64 µg/kg of total aflatoxin was detected, which represents a 97.88% reduction in the total aflatoxin compared with the initial value (328.83 ± 36.60 µg/kg). Several aflatoxin-degrading fungi (Aspergillus versicolor, Cladosporium subcinereum, Aspergillus ochraceus) and bacteria (Bacillus albus, Bacillus velezensis) isolated from doenjang were identified as the major contributors to the reduction of aflatoxin. Furthermore, it was observed that most of the aflatoxin contamination in doenjang occurred during the meju stage, and this stage was found to be most susceptible to A. flavus contamination and growth. These findings reveal that native microorganisms mediate aflatoxin clean-up in doenjang during fermentation and support the use of such microorganisms as a starter culture for the preparation of aflatoxin-free doenjang.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (V.K.); (A.B.); (S.R.)
| | - Ashutosh Bahuguna
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (V.K.); (A.B.); (S.R.)
| | - Srinivasan Ramalingam
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (V.K.); (A.B.); (S.R.)
| | - Jong Suk Lee
- Division of Food & Nutrition and Cook, Taegu Science University, Daegu 41453, Gyeongsangbuk-do, Korea;
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea;
- Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea
| | - Hyang Sook Chun
- School of Food Science and Technology, Chung-Ang University, Anseong 17546, Gyeonggi-do, Korea;
| | - Myunghee Kim
- Department of Food Science and Technology, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea; (V.K.); (A.B.); (S.R.)
- Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Gyeongsangbuk-do, Korea
- Correspondence: ; Tel.: +82-53-810-2958
| |
Collapse
|
64
|
Characterization of key aroma compounds and core functional microorganisms in different aroma types of Liupao tea. Food Res Int 2022; 152:110925. [DOI: 10.1016/j.foodres.2021.110925] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/15/2021] [Accepted: 12/20/2021] [Indexed: 01/13/2023]
|
65
|
Tian S, Zeng W, Fang F, Zhou J, Du G. The microbiome of Chinese rice wine (Huangjiu). Curr Res Food Sci 2022; 5:325-335. [PMID: 35198991 PMCID: PMC8844729 DOI: 10.1016/j.crfs.2022.01.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/30/2021] [Accepted: 01/09/2022] [Indexed: 12/30/2022] Open
|
66
|
Liu A, Wang R, Li J, Li Q, He L, Chen S, Ao X, Yang Y, Zou L, Chen R, Liu S. Multiple rounds of Aspergillus niger biofortification confer relatively stable quality with minor changes of microbial community during industrial-scale Baoning vinegar production. Food Res Int 2021; 150:110768. [PMID: 34865783 DOI: 10.1016/j.foodres.2021.110768] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 09/22/2021] [Accepted: 10/17/2021] [Indexed: 10/20/2022]
Abstract
Vinegar is consumed worldwide as a food condiment, especially in the Chinese diet. The present study optimized the addition of A. niger biofortified-bran Qu (0.3%, 0.45%, and 0.6%) as additional starter to improve total acid content and starch utilization rate in industrial-scale Baoning vinegar production. In addition, this novel study determined the quality and microbial community changes of Baoning vinegar during three-round biofortification in industrial scale. Our results indicated that A. niger biofortified-bran Qu added at 0.6% resulted in higher total acid content and starch utilization rate of vinegar Pei. Biofortification imposed minor changes in the microbial community during three-round biofortification, and more variation was observed in fungal community than that in bacterial community. Most importantly, the quality of Baoning vinegar remained relatively stable. This information further confirmed the feasibility of multiple rounds of A. niger biofortification, and can be used to provide theoretical basis for industrial-scale production.
Collapse
Affiliation(s)
- Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Rui Wang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Qin Li
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Li He
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Shujuan Chen
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Xiaolin Ao
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Yong Yang
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan 611130, People's Republic of China
| | - Rong Chen
- Sichuan Baoning Vinegar Co., Ltd, Langzhong, Sichuan 637400, People's Republic of China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China; Institute of Food Processing and Safety, Sichuan Agricultural University, Ya'an, Sichuan 625014, People's Republic of China.
| |
Collapse
|
67
|
Li R, Lin M, Guo S, Yang S, Han X, Ren M, Song Y, Du L, You Y, Zhan J, Huang W. A fundamental landscape of fungal biogeographical patterns across the main Chinese wine-producing regions and the dominating shaping factors. Food Res Int 2021; 150:110736. [PMID: 34865755 DOI: 10.1016/j.foodres.2021.110736] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 09/02/2021] [Accepted: 09/30/2021] [Indexed: 01/20/2023]
Abstract
The microbial terroir plays an indispensable role in the formation of regional wine characteristics. A fundamental landscape of the fungal biogeographical patterns across Chinese wine-producing regions was obtained by characterizing the fungal communities in spontaneous fermentation. After confirming the established national microbial terroir, the fungal heterogeneity was evaluated at different geographical levels. The result showed that the variation between the wineries was more evident than at a regional level. Moreover, the microbial comparability from various regions with similar climates or wineries within the same regions was revealed. Further discriminant analysis determined the specific fungal biomarkers in different regions, while the associated reverse identification model displayed reliable accuracy (>70%). Correlation analysis illustrated the primary role of the geoclimatic factors (>41%) in shaping the fungal geographical patterns, and the relationship between the microbiome and spontaneous fermentation performance. In addition to expanding the knowledge regarding wine microbes, these findings provided a new benchmark for harnessing the microbial terroir to enhance regional wine expression.
Collapse
Affiliation(s)
- Ruilong Li
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengyuan Lin
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Sijiang Guo
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Siyu Yang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyu Han
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Mengmeng Ren
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yinghui Song
- Penglai Grape and Wine Industry Development Service Center, Yantai 265600, China
| | - Le Du
- Wuhan Donghu Big Data Trading Center Co. Ltd., Wuhan 430200, China
| | - Yilin You
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jicheng Zhan
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Weidong Huang
- Beijing Key Laboratory of Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
68
|
Chen GM, Huang ZR, Wu L, Wu Q, Guo WL, Zhao WH, Liu B, Zhang W, Rao PF, Lv XC, Ni L, Sun JY, Sun BG. Microbial diversity and flavor of Chinese rice wine (Huangjiu): an overview of current research and future prospects. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.02.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
69
|
Chen L, Wang S, Li D, Feng S. Correlations between microbes and metabolites of hulless barley wines fermented with varieties of hulless barley and different starters. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
70
|
Chen L, Wang S, Ren L, Li D, Ma X, Rong Y. Flavour characteristics of rice wine fermented with mixed starter by moulds and yeast strains. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - SanXia Wang
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Lixia Ren
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Dongna Li
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Xia Ma
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| | - Yuzhi Rong
- School of Perfume and Aroma Technology Shanghai Institute of Technology Shanghai 201418 China
| |
Collapse
|
71
|
Chen C, Liu Z, Zhou W, Tian H, Huang J, Yuan H, Yu H. Comparison of the Fermentation Activities and Volatile Flavor Profiles of Chinese Rice Wine Fermented Using an Artificial Starter, a Traditional JIUYAO and a Commercial Starter. Front Microbiol 2021; 12:716281. [PMID: 34616382 PMCID: PMC8488391 DOI: 10.3389/fmicb.2021.716281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
In this study, an artificial starter culture was prepared using the core microbial species of JIUYAO to produce Chinese rice wine (CRW). The fermentation activity and flavor profiles of CRW samples fermented with traditional JIUYAO, a commercial starter culture, and our artificial starter culture were compared. The optimal protectant combination for lyophilization of the artificial starter was established as 15.09% skim milk, 4.45% polyethylene glycol, 1.96% sodium glutamate, and 11.81% maltodextrin. A comparative analysis revealed that the ethanol content of the three CRW samples was similar. The total acid content of the CRW sample fermented with the artificial starter (7.10 g/L) was close to that of the sample fermented with JIUYAO (7.35 g/L), but higher than that of the sample fermented with the commercial starter (5.40 g/L). An electronic nose analysis revealed that the olfactory fingerprints of the CRW samples fermented with JIUYAO and the artificial starter resembled each other. For both above mentioned samples, the flavor profiles determined by gas chromatography–mass spectrometry indicated some differences in the variety and content of the aroma compounds, but the key odorants (odor activity values ≥1), such as isoamyl acetate, ethyl acetate, phenyl alcohol, and isoamyl alcohol, were similar.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Zheng Liu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Wenya Zhou
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Juan Huang
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haibin Yuan
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
72
|
Pu ZJ, Zhang S, Tang YP, Shi XQ, Tao HJ, Yan H, Chen JQ, Yue SJ, Chen YY, Zhu ZH, Zhou GS, Su SL, Duan JA. Study on changes in pigment composition during the blooming period of safflower based on plant metabolomics and semi-quantitative analysis. J Sep Sci 2021; 44:4082-4091. [PMID: 34514725 DOI: 10.1002/jssc.202100439] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/23/2021] [Accepted: 09/07/2021] [Indexed: 11/11/2022]
Abstract
Red and yellow pigments are the major ingredients of safflower, often used to color food and cosmetics. Carthamin was the main component of red pigment and hydroxysafflor yellow A and anhydrosafflower yellow B were representative components of yellow pigment. Plant metabolomics and semi-quantitative analysis were used to analyze the changes of pigment composition during the blooming period, especially these characteristic components. Carthamin, hydroxysafflor yellow A, anhydrosafflower yellow B, and other components were screened out as differential metabolites based on plant metabolomics. Then semi-quantitative analysis was used to quantify these three representative components of pigments. Experimental results showed that the content of pigments has dynamic changes along with flowering, in the early blooming period, yellow pigment accumulated much and red pigment was low in content. In the middle period, the accumulation rate of the yellow pigment slowed down and content was stabilized. In the next step, the content of yellow pigments gradually decreased, and the content of red pigments gradually increased. Later, the level of yellow pigment decreased significantly, and the accumulation rate of red pigment increased significantly. Last, the appearance color of safflower was red, with yellow parts barely visible, and accumulation of red pigment was the highest and of the yellow pigment was the lowest in content.
Collapse
Affiliation(s)
- Zong-Jin Pu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shuo Zhang
- School of Clinical Medicine, Beijing University of Chinese Medicine, Beijing, P. R. China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Xu-Qin Shi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui-Juan Tao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Hui Yan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jia-Qian Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an, P. R. China
| | - Zhen-Hua Zhu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Gui-Sheng Zhou
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Shu-Lan Su
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, P. R. China
| |
Collapse
|
73
|
Li TT, Huang ZR, Jia RB, Lv XC, Zhao C, Liu B. Spirulina platensis polysaccharides attenuate lipid and carbohydrate metabolism disorder in high-sucrose and high-fat diet-fed rats in association with intestinal microbiota. Food Res Int 2021; 147:110530. [PMID: 34399508 DOI: 10.1016/j.foodres.2021.110530] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 02/08/2023]
Abstract
This study aimed to evaluate the possibility that Spirulina platensis crude polysaccharides may ameliorate the lipid and carbohydrate metabolism disorder, including obesity, hyperlipidemia, hyperglycemia, hepatic steatosis, and gut dysbiosis. The results showed Spirulina platensis crude polysaccharides could improve body weight, serum/liver lipid and carbohydrate indexes, and liver antioxidant parameters in high-sucrose and high-fat diet (HFD)-fed rats, which were accompanied by regulated liver mRNA expressions involved in lipid and carbohydrate metabolism disorder. In addition, SPLP intervention significantly decreased cecal level of propionic acid in HFD-fed rats. Notably, the SPLP could alter the relative abundance of Firmicutes, Bacteroides, Proteobacteria, and Actinobacteria at phylum levels. Based on Spearman's rank correlation coefficient, serum/liver lipid and carbohydrate profiles were found significantly positively correlated with genera Romboutsia, Allobaculum, Blautia, Phascolarctobacterium, Bifidobacterium, Coprococcus, Turicibacter, Erysipelotrichaceae_unclassified, Olsenella, Escherichia/Shigella, Coprobacillus, Lachnospiracea incertae, and Lactobacillus, but strongly negatively correlated with genera Atopostipes, Flavonifractor, Porphyromonadaceae_unclassified, Barnesiella, Oscillibacter, Paraprevotella, Jeotgalicoccus, Corynebacterium, Alloprevotella and Bacteroides. It was concluded that oral administration of SPLP could remarkably ameliorate the lipid and carbohydrate metabolism disorder and significantly modulate the intestinal microbiota in HFD-fed rats.
Collapse
Affiliation(s)
- Tian-Tian Li
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zi-Rui Huang
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Rui-Bo Jia
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xu-Cong Lv
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Institute of Food Science and Technology, College of Biological Science and Technology, Fuzhou University, Fuzhou, Fujian 350108, China.
| | - Chao Zhao
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Bin Liu
- Engineering Research Centre of Fujian Taiwan Special Marine Food Processing and Nutrition, Ministry of Education, Fuzhou 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
74
|
Wu L, Zhou K, Chen F, Chen G, Yu Y, Lv X, Zhang W, Rao P, Ni L. Comparative Study on the Antioxidant Activity of Monascus Yellow Pigments From Two Different Types of Hongqu-Functional Qu and Coloring Qu. Front Microbiol 2021; 12:715295. [PMID: 34408740 PMCID: PMC8365423 DOI: 10.3389/fmicb.2021.715295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
This study is the first to investigate the difference in the composition of Monascus azaphilone pigments (MonAzPs) between functional Qu (FQ) and coloring Qu (CQ) and analyze their relationships with antioxidant activity. The composition of key active components and antioxidant activity of the ethanol extracts of FQ and CQ were analyzed by Uv-vis, HPLC, and chemical antioxidant tests. The composition of MonAzPs of the ethanol extracts was further analyzed by HPLC-MS. Seven Monascus yellow pigments (MYPs) with high abundance were successfully purified for the antioxidation evaluation in vitro and in the cell. Correlation analysis between the metabolites and the antioxidant activity of Hongqu indicated that MonAzPs might play an essential role in the antioxidant activity (r > 0.80). By contrast, the monacolin K (MK), polysaccharide, ergosterol, and γ-aminobutyric acid (GABA) were not significantly correlated with the antioxidant activity. Orthogonal partial least squares discriminant analysis (OPLS-DA) based on the composition of MonAzPs revealed that the abundance of MYPs is significantly different between FQ and CQ (P < 0.05 and VIP > 1.0). Seven MYPs (monasfluore A, monaphilone B, monascuspilion, monascin, monaphilone A, ankaflavin, and new yellow pigment) with high abundance were successfully purified for the antioxidation evaluation. Chemical antioxidant tests revealed that the antioxidant activities of monaphilone A, ankaflavin, and new yellow pigment only from CQ were significantly more potent than monasfluore A and monascuspilion only separated from FQ. The cellular antioxidant assay (CAA) showed that the new yellow pigment had the best antioxidant activity (quercetin equivalent 7.23 μM), followed by monasfluore A and monaphilone B, all of which were significantly better than monascin and ankaflavin, the two most frequently reported MYPs. Research on the structure-activity relationship demonstrated that alterations of the hydroxyl that occurred on C-3' or C-11 obviously affected the antioxidant activities of MYPs. Our findings provide evidence that MYPs may be the key active components for CQ to have a more potent antioxidant capacity than FQ. The alterations of the hydroxyl that occurred on C-3' or C-11 obviously affected the antioxidant activities of MYPs.
Collapse
Affiliation(s)
- Li Wu
- College of Chemistry, Fuzhou University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
- Research Institute of Agri-Engineering and Technology, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangxi Zhou
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Feng Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Guimei Chen
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Ying Yu
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- College of Chemistry, Fuzhou University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Wen Zhang
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Pingfan Rao
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| | - Li Ni
- College of Chemistry, Fuzhou University, Fuzhou, China
- Institute of Food Science and Technology, College of Biological Science and Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
75
|
Xiao C, Wang L, Zhang YG, Tu TY, Wang ST, Shen CH, Yuan HW, Zhong XZ. A comparison of microbial communities and volatile compounds in wheat Qu from different geographic locations. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
76
|
Fu J, Zhang LL, Li W, Zhang Y, Zhang Y, Liu F, Zou L. Application of metabolomics for revealing the interventional effects of functional foods on metabolic diseases. Food Chem 2021; 367:130697. [PMID: 34365248 DOI: 10.1016/j.foodchem.2021.130697] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/23/2021] [Accepted: 07/24/2021] [Indexed: 12/12/2022]
Abstract
Metabolomics is an important branch of systems biology, which can detect changes in the body's metabolism before and after the intervention of functional foods, identify effective metabolites, and predict the interventional effects and the mechanism. This review summarizes the latest research outcomes regarding interventional effects of functional foods on metabolic diseases via metabolomics analysis. Since metabolomics approaches are powerful strategies for revealing the changes in bioactive compounds of functional foods during processing and storage, we also discussed the effects of these parameters on functional food metabolites using metabolomics approaches. To date, a number of endogenous metabolites related to the metabolic diseases after functional foods intervention have been discovered. Unfortunately, the mechanisms of metabolic disease-related molecules are still unclear and require further studies. The combination of metabolomics with other omics technologies could further promote its ability to fully understand the precise biological processes of functional food intervention on metabolic diseases.
Collapse
Affiliation(s)
- Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Le-Le Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Wei Li
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yan Zhang
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, China
| | - Yamei Zhang
- Clinical Genetics Laboratory, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu 610081, China
| | - Fang Liu
- Shanghai Research Center for Modernization of Traditional Chinese Medicine, Shanghai Institute of Materia Medica, Chinese Academy of Science, Shanghai 201203, China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
77
|
Yan H, Pu ZJ, Zhang ZY, Zhou GS, Zou DQ, Guo S, Li C, Zhan ZL, Duan JA. Research on Biomarkers of Different Growth Periods and Different Drying Processes of Citrus wilsonii Tanaka Based on Plant Metabolomics. FRONTIERS IN PLANT SCIENCE 2021; 12:700367. [PMID: 34335665 PMCID: PMC8317225 DOI: 10.3389/fpls.2021.700367] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
Fruit of Citrus wilsonii Tanaka called as "Xiang yuan" in Chinese, which means fragrant and round. It was widely used in the pharmaceutical and food industries. This fruit has well-known health benefits such as antioxidant, radical scavenging, and anti-inflammatory. Naringin, deacetylnomilin, citric acid, limonin, and nomilin were the characteristic components of Citrus wilsonii Tanaka. Although the fruit of Citrus wilsonii Tanaka possessed many applications, there was a lack of research on the growth period and drying process. In this study, plant metabolomics was used to analyze the biomarkers of the growth period, and appearance indicators and metabolites abundance were combined for the analysis of change regularities of the growth period. The representative differential metabolites of naringin, citric acid, and limonin were screened out, and the abundance of these components was relatively highest in the middle of the growth period. Therefore, the fruit of Citrus wilsonii Tanaka should be harvested before it turned yellow completely, which could effectively ensure the content of potential active ingredients. In the comparison of different drying methods, citric acid and naringin were considered to be representative differential components, but limonoids were relatively stable and not easily affected by drying methods. Naringin was an index component that could not only be reflected the maturity but also related to different drying methods. Considering its physical and chemical properties and its position, naringin had the potential to be a biomarker of Citrus wilsonii Tanaka.
Collapse
Affiliation(s)
- Hui Yan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zong-Jin Pu
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhen-Yu Zhang
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gui-Sheng Zhou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dong-Qian Zou
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Sheng Guo
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Li
- Jumpcan Pharmaceutical Group Co., Ltd., Taizhou, China
| | - Zhi-Lai Zhan
- State Key Laboratory of Dao-di Herbs Breeding Base, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jin-Ao Duan
- Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
78
|
Ryu JA, Kim E, Yang SM, Lee S, Yoon SR, Jang KS, Kim HY. High-throughput sequencing of the microbial community associated with the physicochemical properties of meju (dried fermented soybean) and doenjang (traditional Korean fermented soybean paste). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111473] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
79
|
Zhou K, Wu L, Chen G, Liu Z, Zhao X, Zhang C, Lv X, Zhang W, Rao P, Ni L. Development of a Novel Restrictive Medium for Monascus Enrichment From Hongqu Based on the Synergistic Stress of Lactic Acid and Ethanol. Front Microbiol 2021; 12:702951. [PMID: 34234769 PMCID: PMC8256164 DOI: 10.3389/fmicb.2021.702951] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/25/2021] [Indexed: 12/05/2022] Open
Abstract
Hongqu is a famous fermented food produced by Monascus and has been used as food coloring, wine starters and food additives for thousands of years in China. Excellent Monascus strain is an important prerequisite for producing high-quality Hongqu. However, the isolation of Monascus pure culture from Hongqu samples is time-consuming and laborious because it is easily interfered by other microorganisms (especially filamentous fungi). Therefore, the development of restrictive medium for Monascus enrichment from Hongqu is of great significance for the preparation and screening of excellent Monascus strains. Results of this study showed that Monascus has good tolerance to lactic acid and ethanol. Under the conditions of tolerance limits [7.5% lactic acid (v/v) and 12.0% ethanol (v/v)], Monascus could not grow but it still retained the vitality of spore germination, and the spore activity gradually decreased with the increasing concentrations of lactic acid and ethanol. More interestingly, the addition of lactic acid and ethanol significantly changed the microbial community structure in rice milk inoculated with Hongqu. After response surface optimization, Monascus could be successfully enriched without the interference of other microorganisms when 3.98% (v/v) lactic acid and 6.24% (v/v) ethanol were added to rice milk simultaneously. The optimal enrichment duration of Monascus by the restrictive medium based on the synergistic stress of lactic acid and ethanol is 8∼24 h. The synergistic stress of lactic acid and ethanol had no obvious effects on the accumulation of major metabolites in the progeny of Monascus, and was suitable for the enrichment of Monascus from different types of Hongqu. Finally, the possible mechanisms on the tolerance of Monascus to the synergistic stress of lactic acid and ethanol were preliminarily studied. Under the synergistic stress of lactic acid and ethanol, the cell membrane of Monascus defends against lactic acid and ethanol into cells to some extent, and the superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GSH-Px) activities of Monascus were higher than those of other fungi, which significantly reduced the degree of lipid peroxidation of cell membrane, while secreting more amylase to make reducing sugars to provide the cells with enough energy to resist environmental stress. This work has great application value for the construction of Monascus strain library and the better development of its germplasm resources.
Collapse
Affiliation(s)
- Kangxi Zhou
- College of Chemical Engineering, Fuzhou University, Fuzhou, China.,Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Li Wu
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Guimei Chen
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Zhibin Liu
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Xinze Zhao
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Chen Zhang
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Xucong Lv
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Wen Zhang
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Pingfan Rao
- Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| | - Li Ni
- College of Chemical Engineering, Fuzhou University, Fuzhou, China.,Fujian Center of Excellence for Food Biotechnology, Institute of Food Science and Technology, Fuzhou University, Fuzhou, China
| |
Collapse
|
80
|
Yang Y, Xia Y, Song X, Mu Z, Qiu H, Tao L, Ai L. The Potential of Flos sophorae immaturus as a Pigment-Stabilizer to Improve the Monascus Pigments Preservation, Flavor Profiles, and Sensory Characteristic of Hong Qu Huangjiu. Front Microbiol 2021; 12:678903. [PMID: 34093500 PMCID: PMC8174305 DOI: 10.3389/fmicb.2021.678903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/12/2021] [Indexed: 11/24/2022] Open
Abstract
Hong Qu Huangjiu (HQW) is distinguished by its inclusion of Monascus pigments, meaning that photosensitivity strongly affects the sensory quality of the wine. In this study, the effects of Flos sophorae immaturus (FSI) on the stability of Monascus pigments, the flavor profiles, and the sensory characteristics of HQW were investigated. After sterilization, the addition of FSI increased the preservation rate of Monascus pigments in HQW by up to 93.20%, which could be accounted for by the synergy of rutin and quercetin in FSI. The total content of the volatile flavor compounds in HQW increased significantly as the added amounts of FSI were increased, especially 3-methyl-1-butanol, 2-methyl-1-propanol, and short-chain fatty acid ethyl esters (SCFAEE). Sensory evaluation and partial least-squares regression revealed that the concentration of FSI significantly affected the aroma characteristics of HQW but had little effect on the mouthfeel. The addition of 0.9 mg/mL FSI yielded a satisfactory HQW with high scores in terms of mouthfeel and aroma. The strong correlation between fruit-aroma, full-body, and SCFAEE suggests that FSI might alter the aroma of HQW by enhancing the synthesis of SCFAEE. Summarily, treatment with FSI represents a new strategy for improving the stability of photosensitive pigments and thus adjusting the aroma of HQW or similar beverages.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Huazhen Qiu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
81
|
Zhang J, Zhang C, Xin X, Liu D, Zhang W. Comparative Analysis of Traditional and Modern Fermentation for Xuecai and Correlations Between Volatile Flavor Compounds and Bacterial Community. Front Microbiol 2021; 12:631054. [PMID: 33995294 PMCID: PMC8118120 DOI: 10.3389/fmicb.2021.631054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/07/2021] [Indexed: 01/28/2023] Open
Abstract
Differences in flavor compounds and bacterial communities of Xuecai by traditional and modern fermentation are poorly understood. Allyl isothiocyanate (E9), ethyl acetate (E1), 3-butenenitrile (N1), phenol (P1), ethanol (A1), and 3-(2,6,6-trimethyl-1-cyclohexen-1-yl) acrylaldehyde (L11) were the main flavor compounds that differed between Xuecai produced by traditional and modern fermentation. Among these compounds, the contents of N1 and E9 were higher in modern fermentation Xuecai. Traditional fermentation Xuecai possessed higher contents of A1, P1, E1, and L11. High-throughput sequencing showed that Lactobacillus-related genera was the most abundant genus (50%) in modern fermentation Xuecai. However, in traditional fermentation Xuecai, Halanaerobium (29.06%) and Halomonas (12.96%) were the dominant genera. Halophilic bacteria (HB) positively contribute to the flavor of Xuecai. Carbohydrate metabolism and amino acid metabolism were the most abundant pathways associated with the bacterial communities of the Xuecai. This indicated that Xuecai flavor formation is mainly dependent on protein and carbohydrate degradation. This study provides a novel insight that HB may be important for flavor formation of Xuecai.
Collapse
Affiliation(s)
- Jianming Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Chengcheng Zhang
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoting Xin
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Daqun Liu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Wenwu Zhang
- Hangzhou Trendbiotech Co., Ltd, Hangzhou, China
| |
Collapse
|
82
|
Soaking induced discrepancies in oenological properties, flavor profiles, microbial community and sensory characteristic of Huangjiu (Chinese rice wine). Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110575] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
83
|
Zhao C, Su W, Mu Y, Mu Y, Jiang L. Integrative Metagenomics-Metabolomics for Analyzing the Relationship Between Microorganisms and Non-volatile Profiles of Traditional Xiaoqu. Front Microbiol 2021; 11:617030. [PMID: 33597930 PMCID: PMC7882485 DOI: 10.3389/fmicb.2020.617030] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/18/2020] [Indexed: 12/20/2022] Open
Abstract
Xiaoqu, one of three traditional jiuqu in China, is a saccharifying and fermenting agent used in Xiaoqu jiu brewing, with different ingredient compositions and preparation techniques used in various regions. The yield and quality of Xiaoqu jiu are significantly affected by the metabolites and microbiota of Xiaoqu; however, the associated relationship remains poorly understood. This study aimed to analyze this relationship in three typical traditional Xiaoqu from the Guizhou province in China. The non-volatile metabolites of Xiaoqu were detected using gas chromatography time-of-flight mass spectrometry, whereas the classification and metabolic potential of the microbiota were investigated using metagenomic sequencing. Results show that Firmicutes, Proteobacteria, and Actinobacteria represent the dominant bacterial phyla, with Lactobacillus, Bacillus, Acinetobacter, Leuconostoc, and Weissella found to be the dominant bacterial genera. Meanwhile, Ascomycota, Mucoromycota, and Basidiomycota are the dominant fungal phyla with Aspergillus, Saccharomyces, Pichia, Rhizopus, and Phycomyces being the predominant fungal genera. Functional annotation of the microbiota revealed a major association with metabolism of carbohydrates, cofactors, and vitamins, as well as amino acids. A total of 39 significantly different metabolites (SDMs) were identified that are involved in 47 metabolic pathways, primarily that of starch and sucrose; glycine, serine, and threonine; glyoxylate and dicarboxylate; pyruvate; as well as biosynthesis of pantothenate and CoA. Further, based on Spearman's correlation analysis, Aspergillus, Saccharomyces, Lactobacillus, Acetobacter, Weissella, Pantoea, Desmospora, and Bacillus are closely correlated with production of physicochemical indexes and SDMs. Moreover, the metabolic network generated for the breakdown of substrates and formation of SDMs in Xiaoqu was found to primarily center on the metabolism of carbohydrates and the tricarboxylic acid cycle. These results provide insights into the functional microorganisms and metabolic patterns present in traditional Guizhou Xiaoqu and might guide researchers in the production of stable and efficient Xiaoqu in the future.
Collapse
Affiliation(s)
- Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China.,Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang, China
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| |
Collapse
|
84
|
Chen L, Ren L, Li D, Ma X. Analysis of microbiomes in three traditional starters and volatile components of the Chinese rice wines. Food Sci Biotechnol 2021; 30:87-96. [PMID: 33552620 DOI: 10.1007/s10068-020-00839-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 01/15/2023] Open
Abstract
To understand the effect of microbial community on the flavor of fermented rice wine, microbiomes in three traditional starters (CMQ, NBQ, and YCQ) from different origins for making Chinese rice wines were evaluated and the volatile components of their rice wines were compared. The results showed that the dominant genera in CMQ were Pantoea, Bacillus, Rhizopus, and Candida, the dominant microorganisms in NBQ were Pediococcus, Lactobacillus, Acetobacter, Weissella, Bacillus, Rhizopus, Candida, and Aspergillus, the dominant microorganisms in YCQ were Pediococcus, Lactobacillus, Leuconostoc, Weissella, Lactococcus, Ochrobactrum, Rhizopus, and Mucor. There were significant differences in sensory properties of the wines brewed by three starters. Although the major aroma components were benzyl alcohol, 2-octanone, benzoic acid, and phenethyl acetate, each rice wine had its own main aroma components include 1-octanol, 1-pentanol, ethyl acetate, etc. The results showed that the different microbial communities in starter results in the significant difference of the aroma components in its fermented rice wine.
Collapse
Affiliation(s)
- Lihua Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| | - Lixia Ren
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| | - Dongna Li
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| | - Xia Ma
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Fengxian District, 201418 Shanghai China
| |
Collapse
|
85
|
Correlation of the bacterial communities with umami components, and chemical characteristics in Zhejiang xuecai and fermented brine. Food Res Int 2021; 140:109986. [DOI: 10.1016/j.foodres.2020.109986] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 12/03/2020] [Accepted: 12/08/2020] [Indexed: 01/23/2023]
|
86
|
Liu X, Qian M, Shen Y, Qin X, Huang H, Yang H, He Y, Bai W. An high-throughput sequencing approach to the preliminary analysis of bacterial communities associated with changes in amino acid nitrogen, organic acid and reducing sugar contents during soy sauce fermentation. Food Chem 2021; 349:129131. [PMID: 33581434 DOI: 10.1016/j.foodchem.2021.129131] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/25/2022]
Abstract
Soy sauce is a traditional fermented soy food for enhancing the umami taste in Asian cuisines. In this study, 16S rRNA gene throughput sequencing analysis showed the bacterial communities and the changes in soy sauce during fermentation. Weissella, Bacillus and Lactococcus were the most abundant at genus level. The uncultured bacterium Weissella and Lactococcus had relatively high abundance at species level. Alpha diversity analysis indicated the bacterial community diversity increased at fermentation initiation, while decreased as fermentation progressed. Based on beta-diversity analysis, four clusters including cluster I (time point A-F), cluster II (G,H), cluster III (I,J) and cluster IV(K) were distinctly separated, indicating the fermentation time significantly affected bacterial community diversity. Also, close associations were found between the bacterial communities in soy sauce and its amino acid nitrogen, organic acid and reducing sugar contents during fermentation. Therefore, it will provide important information for optimization of the soy sauce production process.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China
| | - Yixiao Shen
- College of Food Science Shenyang Agricultural University, Shenyang, China
| | - Xuan Qin
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hancong Huang
- Guangzhou Rufeng Fruit Seasoning Food Co., Ltd., Guangzhou, China
| | - Hong Yang
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Yilong He
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China; Key Laboratory of Cantonese Traditional Food Processing and Safety Control of Guangzhou, Guangzhou, China.
| |
Collapse
|
87
|
Huang YY, Liang ZC, Lin XZ, He ZG, Ren XY, Li WX, Molnár I. Fungal community diversity and fermentation characteristics in regional varieties of traditional fermentation starters for Hong Qu glutinous rice wine. Food Res Int 2021; 141:110146. [PMID: 33642012 DOI: 10.1016/j.foodres.2021.110146] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/16/2023]
Abstract
Hong Qu glutinous rice wine (HQ wine) is a traditional alcoholic beverage produced in China by fermenting cooked rice using a fermentation starter prepared with the fungus Monascus purpureus. This starter (Hong Qu, HQ) is made empirically by open spontaneous fermentation that is hard to control and standardize, resulting in inconsistent wine quality. This study investigates representative HQ samples from a large geographic region. It explores fungal microbiome compositions, identifies characteristic differences important for the production of various HQ wine styles, and reveals the key fungi responsible for HQ wine fermentation characteristics. The source of the HQ inoculum was found to be the main factor influencing fungal community composition and diversity, followed by processing technology and geographical distribution. Linear discriminant analysis effect size (LEfSe) uncovered 14 genera as potential biomarkers to distinguish regional varieties of HQ. Significant differences were also found in fermentation characteristics such as liquefying power (LP), saccharifying power (SP), fermenting power (FP), total acid content (TA) and liquor-producing power (LPP). The key fungi responsible for LP (5 genera), SP (3 genera), FP (1 genera), LPP (4 genera), and TA (4 genera) were determined using redundancy correlation analysis. Finally, Spearman's correlation analysis indicated that LPP shows a strong positive correlation with FP and LP, while TA displays a strong negative correlation with FP. The results of this study may be utilized to prepare consistently high quality, next-generation HQ by better controlling fungal community structures, and to design fermentation processes for HQ wines with desirable oenological characteristics.
Collapse
Affiliation(s)
- Ying-Ying Huang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China; Fujian Key Laboratory of Agricultural Products (Food) Processing, 350003 Fuzhou, Fujian Province, PR China; Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA
| | - Zhang-Cheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China; Fujian Key Laboratory of Agricultural Products (Food) Processing, 350003 Fuzhou, Fujian Province, PR China
| | - Xiao-Zi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China; Fujian Key Laboratory of Agricultural Products (Food) Processing, 350003 Fuzhou, Fujian Province, PR China.
| | - Zhi-Gang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China; Fujian Key Laboratory of Agricultural Products (Food) Processing, 350003 Fuzhou, Fujian Province, PR China.
| | - Xiang-Yun Ren
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China; Fujian Key Laboratory of Agricultural Products (Food) Processing, 350003 Fuzhou, Fujian Province, PR China
| | - Wei-Xin Li
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian Province 350003, PR China; Fujian Key Laboratory of Agricultural Products (Food) Processing, 350003 Fuzhou, Fujian Province, PR China
| | - István Molnár
- Southwest Center for Natural Products Research, University of Arizona, 250 E. Valencia Rd., Tucson, AZ 85706, USA.
| |
Collapse
|
88
|
Potential correlation between volatiles and microbiome of Xiang xi sausages from four different regions. Food Res Int 2021; 139:109943. [DOI: 10.1016/j.foodres.2020.109943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 11/08/2020] [Accepted: 11/27/2020] [Indexed: 12/30/2022]
|
89
|
Sakandar HA, Hussain R, Farid Khan Q, Zhang H. Functional microbiota in Chinese traditional Baijiu and Mijiu Qu (starters): A review. Food Res Int 2020; 138:109830. [DOI: 10.1016/j.foodres.2020.109830] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/01/2020] [Accepted: 10/16/2020] [Indexed: 10/23/2022]
|
90
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
91
|
Wang C, Zhang Q, He L, Li C. Determination of the microbial communities of Guizhou Suantang, a traditional Chinese fermented sour soup, and correlation between the identified microorganisms and volatile compounds. Food Res Int 2020; 138:109820. [PMID: 33288192 DOI: 10.1016/j.foodres.2020.109820] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 01/19/2023]
Abstract
Guizhou Suantang (GZST), a type of sour soup, is a traditional fermented food that can be classified into Hong Suantang (HST) and Bai Suantang (BST). GZST possesses unique flavors arising from various microbiota in fermentation ecosystems. However, the association between these microbiota and flavors remains poorly understood. Accordingly, this study analyzed the volatile components and microbial communities of GZST via headspace solid-phase microextraction coupled with gas chromatography-mass spectrometry and high-throughput 16S rRNA and internal transcribed spacer sequencing techniques. Results showed that 133 compounds, including alcohols, esters, phenols, hydrocarbons, ketones, aldehydes, nitriles, acids, and sulfides, were identified from GZST. Moreover, principal component analysis found significant variances in the composition of volatile compounds among different samples. The bacterial genus level indicated that all GZST samples were dominated by Lactobacillus. At the fungal genus level, BST was dominated by Pichia, Debaryomyces, Mortierella, unclassified, Meyerozyma, and Dipodascus. Meanwhile, HST was dominated by Pichia, Candida, Kazachstania, Debaryomyces, Archaeorhizomyces, and Verticillium. The potential correlations between microbiota and volatile components were also explored through bidirectional orthogonal partial least squares-based correlation analysis. Nine bacterial genera and eight fungal taxa were identified as functional core microbiota for flavor production on the basis of their dominance and functionality in the microbial community. In addition, excessive Lactobacillus inhibited the formation of certain flavor substances. These findings provided basic data for the isolation, screening, and fermentation regulation of functional microorganisms in GZST. The information provided in this study is valuable for the development of effective strategies for selecting beneficial bacterial and fungal strains to improve the quality of GZST.
Collapse
Affiliation(s)
- Chan Wang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, PR China
| | - Qing Zhang
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, PR China
| | - Laping He
- College of Liquor and Food Engineering, Guizhou University, Guiyang 550025, PR China; Key Laboratory of Agricultural and Animal Products Store and Processing of Guizhou Province, Guiyang 550025, PR China.
| | - Cuiqin Li
- School of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
92
|
Zhao C, Su W, Mu Y, Jiang L, Mu Y. Correlations between microbiota with physicochemical properties and volatile flavor components in black glutinous rice wine fermentation. Food Res Int 2020; 138:109800. [PMID: 33288182 DOI: 10.1016/j.foodres.2020.109800] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/02/2020] [Accepted: 10/08/2020] [Indexed: 12/11/2022]
Abstract
Black glutinous rice wine (BGRW) is a popular traditional Chinese rice wine; however, the flavors profiles associated with microbiota changes during its fermentation have not yet been evaluated. In this study, we explored the correlations between microbial communities with physicochemical properties and flavor components during BGRW fermentation. High-throughput sequencing was used to identify the microbial community composition of BGRW at different fermentation stages, and physicochemical properties and volatile flavor compounds (VFCs) were identified via fermentation features testing and headspace solid phase microextraction gas chromatography mass spectrometry. First, we revealed Pantoea and Kosakonia predominated bacterial genera the early stage of BGRW fermentation, Leuconostoc, Pediococcus, Bacillus, and Lactobacillus predominated bacterial genera the later stage, while Rhizopus and Saccharomyces were the predominant fungal genera throughout fermentation. Second, total sugars, titratable acids, pH, ethanol, amino acid nitrogen, and 43 VFCs were detected during fermentation. Twenty-three VFCs were differentially produced according to the linear discriminant analysis effect size method. With the increase of the fermentation time, the kinds and contents of esters and alcohols were also increased, while acids decreased. Moreover, 12 microbial genera, Lactococcus, Pediococcus, Leuconostoc, Lactobacillus, Cronobacter, Pantoea, Weissella, Enterococcus, Rhizopus, Myceliophthora, Cystofilobasidium, and Aspergillus were found to be highly correlated (|ρ| > 0.7 and P < 0.05) with physicochemical properties and VFCs, by redundancy analysis (RDA) and two-way orthogonal partial least squares (O2PLS) analysis. Ultimately, based on the results, a metabolic map of dominant genera in BGRW was established. Our findings provided detailed information on the dynamic changes of physicochemical properties and VFCs and selection of beneficial strains to improve the quality of BGRW.
Collapse
Affiliation(s)
- Chi Zhao
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| | - Wei Su
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China.
| | - Yingchun Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Li Jiang
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yu Mu
- School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China; Guizhou Key Laboratory for Storage and Processing of Agricultural and Animal Products, Guizhou University, Guiyang 550025, China
| |
Collapse
|
93
|
Monascus purpureus-fermented common buckwheat protects against dyslipidemia and non-alcoholic fatty liver disease through the regulation of liver metabolome and intestinal microbiome. Food Res Int 2020; 136:109511. [DOI: 10.1016/j.foodres.2020.109511] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/05/2020] [Accepted: 06/29/2020] [Indexed: 02/07/2023]
|
94
|
Liang Z, Lin X, He Z, Su H, Li W, Ren X. Amino acid and microbial community dynamics during the fermentation of Hong Qu glutinous rice wine. Food Microbiol 2020; 90:103467. [DOI: 10.1016/j.fm.2020.103467] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/13/2020] [Accepted: 01/19/2020] [Indexed: 01/19/2023]
|
95
|
Yang X, Hu W, Xiu Z, Jiang A, Yang X, Saren G, Ji Y, Guan Y, Feng K. Microbial Community Dynamics and Metabolome Changes During Spontaneous Fermentation of Northeast Sauerkraut From Different Households. Front Microbiol 2020; 11:1878. [PMID: 32849461 PMCID: PMC7419431 DOI: 10.3389/fmicb.2020.01878] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/16/2020] [Indexed: 12/22/2022] Open
Abstract
Sauerkraut, one of the most popular traditional fermented vegetable foods in northern China, has been widely consumed for thousands of years. In this study, the physicochemical characteristics, microbial composition and succession, and metabolome profile were elucidated during the fermentation of traditional northeast sauerkraut sampled from different households. The microbial community structure as determined by high-throughput sequencing (HTS) technology demonstrated that Firmicutes and Proteobacteria were the predominant phyla and Weissella was the most abundant genus in all samples. Except for Weissella, higher relative abundance of Clostridium was observed in #1 sauerkraut, Clostridium and Enterobacter in #2 sauerkraut, and Lactobacillus in #3 sauerkraut, respectively. Meanwhile, Principal component analysis (PCA) revealed significant variances in the volatilome profile among different homemade sauerkraut. Acids and lactones were dominant in the #1 sauerkraut. The #2 sauerkraut had significantly higher contents of alcohols, aldehydes, esters, sulfides, and free amino acids (FAAs). In comparison, higher contents of terpenes and nitriles were found in the #3 sauerkraut. Furthermore, the potential correlations between the microbiota and volatilome profile were explored based on Spearman’s correlation analysis. Positive correlations were found between Clostridium, Enterobacter, Lactobacillus, Leuconostoc, Weissella and most volatile compounds. Pseudomonas, Chloroplast, Rhizobium, Aureimonas, and Sphingomonas were negatively correlated with volatile compounds in sauerkraut. This study provided a comprehensive picture of the dynamics of microbiota and metabolites profile during the fermentation of different homemade northeast sauerkraut. The elucidation of correlation between microbiota and volatile compounds is helpful for guiding future improvement of the fermentation process and manufacturing high-quality sauerkraut.
Collapse
Affiliation(s)
- Xiaozhe Yang
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Wenzhong Hu
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Zhilong Xiu
- School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Aili Jiang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Xiangyan Yang
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Gaowa Saren
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yaru Ji
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Yuge Guan
- School of Bioengineering, Dalian University of Technology, Dalian, China.,College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| | - Ke Feng
- College of Life Science, Dalian Minzu University, Dalian, China.,Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian, China
| |
Collapse
|
96
|
Liang Z, Su H, Lin X, He Z, Li W, Deng D. Microbial communities and amino acids during the fermentation of Wuyi Hong Qu Huangjiu. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
97
|
Liang ZC, Lin XZ, He ZG, Su H, Li WX, Guo QQ. Comparison of microbial communities and amino acid metabolites in different traditional fermentation starters used during the fermentation of Hong Qu glutinous rice wine. Food Res Int 2020; 136:109329. [PMID: 32846528 DOI: 10.1016/j.foodres.2020.109329] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/14/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
Hong Qu glutinous rice wine (HQGRW) is produced from glutinous rice with the addition of the traditional fermentation starter Hong Qu (mainly Gutian Hong Qu and Wuyi Hong Qu) has been added. It is unpalatable and rejected by consumers because the bitter and umami tastes are too high. The objective of this study was to compare the dynamics of the microbial communities and amino acids especially those in the different traditional fermentation starters used during HQGRW fermentation, and elucidate the key microbes responsible for amino acids. Three widely-used types of Hong Qu starters were used which can make different bitterness and umami in our previous studies, namely, black Wuyi Hong Qu (WB), red Wuyi Hong Qu (WR), and Gutian Hong Qu (GT). The living dynamics of fungal and bacterial communities during the fermentation were determined by high-throughput sequencing and rRNA gene sequencing technology for the first time. The content of amino acids in the HQGRW were determined by reverse-phase high-performance liquid chromatography analysis. The results showed that there were differences between fungal communities during the fermentation process in Wuyi Hong Qu and Gutian Hong Qu starters and between bacterial communities during the fermentation process in the three types of starters. The amino acid content of the samples showed an increasing trend in each group. The total amino acids, as well as the bitter, sweet, umami, astringent amino acids, in the GT Hong Qu group increased more slowly during fermentation, as comparerd to those in WB and WR groups. Furthermore, Meyerozyma, Saccharomyces, Bacillus, Rhizopus, Pediococcus, Monascus, and Halomonas were strongly positively correlated with the content of bitter and umami amino acids (|r| > 0.6 with FDR adjusted P < 0.05) by Spearman's correlation analysis. To conclude, these findings may contribute to a better understanding of the bitter and umami amino acid production mechanism during traditional fermentation and helpful in improving the taste of HQGRW.
Collapse
Affiliation(s)
- Zhang-Cheng Liang
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Xiao-Zi Lin
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China.
| | - Zhi-Gang He
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China.
| | - Hao Su
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Wei-Xin Li
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| | - Qi-Qi Guo
- Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences, Fuzhou, Fujian, China; Fujian Key Laboratory of Agricultural Products (Food) Processing, Fuzhou, Fujian, China
| |
Collapse
|
98
|
Correlation between autochthonous microbial communities and key odorants during the fermentation of red pepper (Capsicum annuum L.). Food Microbiol 2020; 91:103510. [PMID: 32539980 DOI: 10.1016/j.fm.2020.103510] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
High-throughput sequencing and gas chromatography-mass spectrometry (GC-MS) were used to investigate changes in bacterial and fungal communities and volatile flavor compounds during a 32-day fermentation process of red pepper (Capsicum annuum L.). Key odorants were identified by olfactometry combined with GC-MS. Sixteen volatile compounds differed significantly after fermentation, including seven odorants. After fermentation, 1-butanol, 3-methyl-, acetate, phenol, 4-ethyl-2-methoxy-, octanoic acid, ethyl ester, styrene and 2-methoxy-4-vinylphenol were the key odorants, producing a flavor described as peppery, fruity, sour, and spicy. The correlation between microorganisms and odorants in the fermentation was studied and 18 odorants significantly correlated with the core microbial communities in the fermented samples. For further analysis, strains of seven genera were isolated and correlation analysis by O2PLS indicated that Aspergillus, Bacillus, Brachybacterium, Microbacterium and Staphylococcus were highly correlated with the flavor formation. These findings would help to understand the fermentation mechanism of fermented red pepper flavor formation.
Collapse
|
99
|
Liu X, Qian M, Dong H, Bai W, Zhao W, Li X, Liu G. Effect of ageing process on carcinogen ethyl carbamate (EC), its main precursors and aroma compound variation in Hakka Huangjiu produced in southern China. Int J Food Sci Technol 2020. [DOI: 10.1111/ijfs.14464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Xiaoyan Liu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Min Qian
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Hao Dong
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Weidong Bai
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Wenhong Zhao
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Xiangluan Li
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| | - Gongliang Liu
- College of Light Industry and Food Sciences Zhongkai University of Agriculture and Engineering Guangzhou 510225 China
| |
Collapse
|
100
|
Metagenomic analysis reveals the impact of JIUYAO microbial diversity on fermentation and the volatile profile of Shaoxing-jiu. Food Microbiol 2020; 86:103326. [PMID: 31703871 DOI: 10.1016/j.fm.2019.103326] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/24/2019] [Accepted: 09/04/2019] [Indexed: 01/23/2023]
Abstract
This study focused on the microbial communities found in JIUYAO, the fermentation starter traditionally used in Shaoxing-jiu, and elucidated their relationship with the fermentation activities and volatile compounds involved in winemaking. The microbial communities found in all JIUYAO samples tested were dominated by Pediococcus and Weissella bacteria and Saccharomycopsis and Rhizopus fungi. Saccharifying power showed significant positive correlations with the presence of Pedioccoccus, Saccharomycopsis, and Rhizopus, whereas acid production capacity was strongly associated with Pedioccoccus, Weissella, and Rhizopus. Alcohol production capacity positively correlated with the presence of Pedioccoccus and Rhizopus. Fifteen important volatile compounds (odor-activity values ≥ 1) including esters, alcohols, acids, and aldehydes were identified in Huangjiu samples fermented with JIUYAO. Positive correlations were found between Saccharomycopsis and phenylethanol/ethyl butyrate, Rhizopus and ethyl propionate/ethyl laurate/ethyl butyrate, Pedioccoccus and ethyl laurate/acetic acid, and Weissella and decanoic acid/isopentanol. These results imply that these microorganisms significantly contribute to the fermentation activities and flavor of Shaoxing-jiu. Finally, the results showed that a combination of five core microbes with Saccharomyces cerevisiae could be used as a starter in winemaking. To conclude, this study provides a comprehensive overview of the core microbes found in JIUYAO and strategies for the selection of beneficial microorganisms to improve the quality and flavor of Shaoxing-jiu.
Collapse
|