51
|
Deponte M. Glutathione catalysis and the reaction mechanisms of glutathione-dependent enzymes. Biochim Biophys Acta Gen Subj 2013; 1830:3217-66. [DOI: 10.1016/j.bbagen.2012.09.018] [Citation(s) in RCA: 625] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Accepted: 09/25/2012] [Indexed: 12/12/2022]
|
52
|
Glutathione and thioredoxin dependent systems in neurodegenerative disease: What can be learned from reverse genetics in mice. Neurochem Int 2013; 62:738-49. [DOI: 10.1016/j.neuint.2013.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 12/20/2012] [Accepted: 01/08/2013] [Indexed: 12/21/2022]
|
53
|
Rodriguez-Rocha H, Garcia Garcia A, Zavala-Flores L, Li S, Madayiputhiya N, Franco R. Glutaredoxin 1 protects dopaminergic cells by increased protein glutathionylation in experimental Parkinson's disease. Antioxid Redox Signal 2012; 17:1676-93. [PMID: 22816731 PMCID: PMC3474191 DOI: 10.1089/ars.2011.4474] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
AIMS Chronic exposure to environmental toxicants, such as paraquat, has been suggested as a risk factor for Parkinson's disease (PD). Although dopaminergic cell death in PD is associated with oxidative damage, the molecular mechanisms involved remain elusive. Glutaredoxins (GRXs) utilize the reducing power of glutathione to modulate redox-dependent signaling pathways by protein glutathionylation. We aimed to determine the role of GRX1 and protein glutathionylation in dopaminergic cell death. RESULTS In dopaminergic cells, toxicity induced by paraquat or 6-hydroxydopamine (6-OHDA) was inhibited by GRX1 overexpression, while its knock-down sensitized cells to paraquat-induced cell death. Dopaminergic cell death was paralleled by protein deglutathionylation, and this was reversed by GRX1. Mass spectrometry analysis of immunoprecipitated glutathionylated proteins identified the actin binding flightless-1 homolog protein (FLI-I) and the RalBP1-associated Eps domain-containing protein 2 (REPS2/POB1) as targets of glutathionylation in dopaminergic cells. Paraquat induced the degradation of FLI-I and REPS2 proteins, which corresponded with the activation of caspase 3 and cell death progression. GRX1 overexpression reduced both the degradation and deglutathionylation of FLI-I and REPS2, while stable overexpression of REPS2 reduced paraquat toxicity. A decrease in glutathionylated proteins and REPS2 levels was also observed in the substantia nigra of mice treated with paraquat. INNOVATION We have identified novel protein targets of glutathionylation in dopaminergic cells and demonstrated the protective role of GRX1-mediated protein glutathionylation against paraquat-induced toxicity. CONCLUSIONS These results demonstrate a protective role for GRX1 and increased protein glutathionylation in dopaminergic cell death induced by paraquat, and identify a novel protective role for REPS2.
Collapse
|
54
|
Abstract
SIGNIFICANCE Glutathione (GSH) depletion is a central signaling event that regulates the activation of cell death pathways. GSH depletion is often taken as a marker of oxidative stress and thus, as a consequence of its antioxidant properties scavenging reactive species of both oxygen and nitrogen (ROS/RNS). RECENT ADVANCES There is increasing evidence demonstrating that GSH loss is an active phenomenon regulating the redox signaling events modulating cell death activation and progression. CRITICAL ISSUES In this work, we review the role of GSH depletion by its efflux, as an important event regulating alterations in the cellular redox balance during cell death independent from oxidative stress and ROS/RNS formation. We discuss the mechanisms involved in GSH efflux during cell death progression and the redox signaling events by which GSH depletion regulates the activation of the cell death machinery. FUTURE DIRECTIONS The evidence summarized here clearly places GSH transport as a central mechanism mediating redox signaling during cell death progression. Future studies should be directed toward identifying the molecular identity of GSH transporters mediating GSH extrusion during cell death, and addressing the lack of sensitive approaches to quantify GSH efflux.
Collapse
Affiliation(s)
- Rodrigo Franco
- Redox Biology Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | | |
Collapse
|
55
|
Kumar V, Calamaras TD, Haeussler D, Colucci WS, Cohen RA, McComb ME, Pimentel D, Bachschmid MM. Cardiovascular redox and ox stress proteomics. Antioxid Redox Signal 2012; 17:1528-59. [PMID: 22607061 PMCID: PMC3448941 DOI: 10.1089/ars.2012.4706] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
SIGNIFICANCE Oxidative post-translational modifications (OPTMs) have been demonstrated as contributing to cardiovascular physiology and pathophysiology. These modifications have been identified using antibodies as well as advanced proteomic methods, and the functional importance of each is beginning to be understood using transgenic and gene deletion animal models. Given that OPTMs are involved in cardiovascular pathology, the use of these modifications as biomarkers and predictors of disease has significant therapeutic potential. Adequate understanding of the chemistry of the OPTMs is necessary to determine what may occur in vivo and which modifications would best serve as biomarkers. RECENT ADVANCES By using mass spectrometry, advanced labeling techniques, and antibody identification, OPTMs have become accessible to a larger proportion of the scientific community. Advancements in instrumentation, database search algorithms, and processing speed have allowed MS to fully expand on the proteome of OPTMs. In addition, the role of enzymatically reversible OPTMs has been further clarified in preclinical models. CRITICAL ISSUES The identification of OPTMs suffers from limitations in analytic detection based on the methodology, instrumentation, sample complexity, and bioinformatics. Currently, each type of OPTM requires a specific strategy for identification, and generalized approaches result in an incomplete assessment. FUTURE DIRECTIONS Novel types of highly sensitive MS instrumentation that allow for improved separation and detection of modified proteins and peptides have been crucial in the discovery of OPTMs and biomarkers. To further advance the identification of relevant OPTMs in advanced search algorithms, standardized methods for sample processing and depository of MS data will be required.
Collapse
Affiliation(s)
- Vikas Kumar
- Vascular Biology Section, Whitaker Cardiovascular Institute, Boston University School of Medicine, Boston, MA 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
56
|
Sakai J, Li J, Subramanian KK, Mondal S, Bajrami B, Hattori H, Jia Y, Dickinson BC, Zhong J, Ye K, Chang CJ, Ho YS, Zhou J, Luo HR. Reactive oxygen species-induced actin glutathionylation controls actin dynamics in neutrophils. Immunity 2012; 37:1037-49. [PMID: 23159440 DOI: 10.1016/j.immuni.2012.08.017] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 08/21/2012] [Indexed: 12/29/2022]
Abstract
The regulation of actin dynamics is pivotal for cellular processes such as cell adhesion, migration, and phagocytosis and thus is crucial for neutrophils to fulfill their roles in innate immunity. Many factors have been implicated in signal-induced actin polymerization, but the essential nature of the potential negative modulators are still poorly understood. Here we report that NADPH oxidase-dependent physiologically generated reactive oxygen species (ROS) negatively regulate actin polymerization in stimulated neutrophils via driving reversible actin glutathionylation. Disruption of glutaredoxin 1 (Grx1), an enzyme that catalyzes actin deglutathionylation, increased actin glutathionylation, attenuated actin polymerization, and consequently impaired neutrophil polarization, chemotaxis, adhesion, and phagocytosis. Consistently, Grx1-deficient murine neutrophils showed impaired in vivo recruitment to sites of inflammation and reduced bactericidal capability. Together, these results present a physiological role for glutaredoxin and ROS- induced reversible actin glutathionylation in regulation of actin dynamics in neutrophils.
Collapse
Affiliation(s)
- Jiro Sakai
- Department of Pathology, Harvard Medical School and Department of Lab Medicine, Children's Hospital Boston and Dana-Farber/Harvard Cancer Center, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Hu P, Wang X, Haitsma JJ, Furmli S, Masoom H, Liu M, Imai Y, Slutsky AS, Beyene J, Greenwood CMT, dos Santos C. Microarray meta-analysis identifies acute lung injury biomarkers in donor lungs that predict development of primary graft failure in recipients. PLoS One 2012; 7:e45506. [PMID: 23071521 PMCID: PMC3470558 DOI: 10.1371/journal.pone.0045506] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2011] [Accepted: 08/23/2012] [Indexed: 11/19/2022] Open
Abstract
Objectives To perform a meta-analysis of gene expression microarray data from animal studies of lung injury, and to identify an injury-specific gene expression signature capable of predicting the development of lung injury in humans. Methods We performed a microarray meta-analysis using 77 microarray chips across six platforms, two species and different animal lung injury models exposed to lung injury with or/and without mechanical ventilation. Individual gene chips were classified and grouped based on the strategy used to induce lung injury. Effect size (change in gene expression) was calculated between non-injurious and injurious conditions comparing two main strategies to pool chips: (1) one-hit and (2) two-hit lung injury models. A random effects model was used to integrate individual effect sizes calculated from each experiment. Classification models were built using the gene expression signatures generated by the meta-analysis to predict the development of lung injury in human lung transplant recipients. Results Two injury-specific lists of differentially expressed genes generated from our meta-analysis of lung injury models were validated using external data sets and prospective data from animal models of ventilator-induced lung injury (VILI). Pathway analysis of gene sets revealed that both new and previously implicated VILI-related pathways are enriched with differentially regulated genes. Classification model based on gene expression signatures identified in animal models of lung injury predicted development of primary graft failure (PGF) in lung transplant recipients with larger than 80% accuracy based upon injury profiles from transplant donors. We also found that better classifier performance can be achieved by using meta-analysis to identify differentially-expressed genes than using single study-based differential analysis. Conclusion Taken together, our data suggests that microarray analysis of gene expression data allows for the detection of “injury" gene predictors that can classify lung injury samples and identify patients at risk for clinically relevant lung injury complications.
Collapse
Affiliation(s)
- Pingzhao Hu
- The Centre for Applied Genomics, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Xinchen Wang
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Jack J. Haitsma
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Suleiman Furmli
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Hussain Masoom
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Mingyao Liu
- Thoracic Surgery Research Laboratory, Toronto General Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yumiko Imai
- Biological Informatics and Experimental Therapeutics Akita University Graduate School of Medicine, Akita City, Akita, Japan
| | - Arthur S. Slutsky
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Beyene
- Program in Population Genomics, Department of Clinical Epidemiology and Biostatistics, McMaster University, Hamilton, Ontario, Canada
| | - Celia M. T. Greenwood
- Centre for Clinical Epidemiology, Lady Davis Institute and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Claudia dos Santos
- Keenan Research Center at the Li Ka Shing Knowledge Institute of St. Michael's Hospital, Interdepartmental Division of Critical Care, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
58
|
Hoffman SM, Tully JE, Lahue KG, Anathy V, Nolin JD, Guala AS, van der Velden JLJ, Ho YS, Aliyeva M, Daphtary N, Lundblad LKA, Irvin CG, Janssen-Heininger YMW. Genetic ablation of glutaredoxin-1 causes enhanced resolution of airways hyperresponsiveness and mucus metaplasia in mice with allergic airways disease. Am J Physiol Lung Cell Mol Physiol 2012; 303:L528-38. [PMID: 22752969 DOI: 10.1152/ajplung.00167.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Protein-S-glutathionylation (PSSG) is an oxidative modification of reactive cysteines that has emerged as an important player in pathophysiological processes. Under physiological conditions, the thiol transferase, glutaredoxin-1 (Glrx1) catalyses deglutathionylation. Although we previously demonstrated that Glrx1 expression is increased in mice with allergic inflammation, the impact of Glrx1/PSSG in the development of allergic airways disease remains unknown. In the present study we examined the impact of genetic ablation of Glrx1 in the pathogenesis of allergic inflammation and airway hyperresponsiveness (AHR) in mice. Glrx1(-/-) or WT mice were subjected to the antigen, ovalbumin (OVA), and parameters of allergic airways disease were evaluated 48 h after three challenges, and 48 h or 7 days after six challenges with aerosolized antigen. Although no clear increases in PSSG were observed in WT mice in response to OVA, marked increases were detected in lung tissue of mice lacking Glrx1 48 h following six antigen challenges. Inflammation and expression of proinflammatory mediators were decreased in Glrx1(-/-) mice, dependent on the time of analysis. WT and Glrx1(-/-) mice demonstrated comparable increases in AHR 48 h after three or six challenges with OVA. However, 7 days postcessation of six challenges, parameters of AHR in Glrx1(-/-) mice were resolved to control levels, accompanied by marked decreases in mucus metaplasia and expression of Muc5AC and GOB5. These results demonstrate that the Glrx1/S-glutathionylation redox status in mice is a critical regulator of AHR, suggesting that avenues to increase S-glutathionylation of specific target proteins may be beneficial to attenuate AHR.
Collapse
Affiliation(s)
- Sidra M Hoffman
- Departments of Pathology, University of Vermont College of Medicine, Burlington, Vermont, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Adluri RS, Thirunavukkarasu M, Zhan L, Dunna NR, Akita Y, Selvaraju V, Otani H, Sanchez JA, Ho YS, Maulik N. Glutaredoxin-1 overexpression enhances neovascularization and diminishes ventricular remodeling in chronic myocardial infarction. PLoS One 2012; 7:e34790. [PMID: 22523530 PMCID: PMC3327713 DOI: 10.1371/journal.pone.0034790] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Accepted: 03/08/2012] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress plays a critical role in the pathophysiology of cardiac failure, including the modulation of neovascularization following myocardial infarction (MI). Redox molecules thioredoxin (Trx) and glutaredoxin (Grx) superfamilies actively maintain intracellular thiol-redox homeostasis by scavenging reactive oxygen species. Among these two superfamilies, the pro-angiogenic function of Trx-1 has been reported in chronic MI model whereas similar role of Grx-1 remains uncertain. The present study attempts to establish the role of Grx-1 in neovascularization and ventricular remodeling following MI. Wild-type (WT) and Grx-1 transgenic (Grx-1(Tg/+)) mice were randomized into wild-type sham (WTS), Grx-1(Tg/+) Sham (Grx-1(Tg/+)S), WTMI, Grx-1(Tg/+)MI. MI was induced by permanent occlusion of the LAD coronary artery. Sham groups underwent identical time-matched surgical procedures without LAD ligation. Significant increase in arteriolar density was observed 7 days (d) after surgical intervention in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Further, improvement in myocardial functional parameters 30 d after MI was observed including decreased LVIDs, LVIDd, increased ejection fraction and, fractional shortening was also observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Moreover, attenuation of oxidative stress and apoptotic cardiomyocytes was observed in the Grx-1(Tg/+)MI group as compared to the WTMI animals. Increased expression of p-Akt, VEGF, Ang-1, Bcl-2, survivin and DNA binding activity of NF-κB were observed in the Grx-1(Tg/+)MI group when compared to WTMI animals as revealed by Western blot analysis and Gel-shift analysis, respectively. These results are the first to demonstrate that Grx-1 induces angiogenesis and diminishes ventricular remodeling apparently through neovascularization mediated by Akt, VEGF, Ang-1 and NF-κB as well as Bcl-2 and survivin-mediated anti-apoptotic pathway in the infarcted myocardium.
Collapse
Affiliation(s)
- Ram Sudheer Adluri
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Mahesh Thirunavukkarasu
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Lijun Zhan
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Nageswara Rao Dunna
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Yuzo Akita
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Vaithinathan Selvaraju
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Hajime Otani
- Second Department of Internal Medicine, Kansai Medical University, Moriguchi, Japan
| | - Juan A. Sanchez
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
| | - Ye-Shih Ho
- Institute of Environmental Health Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, Health Center, University of Connecticut, Farmington, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
60
|
Zhang H, Forman HJ. Glutathione synthesis and its role in redox signaling. Semin Cell Dev Biol 2012; 23:722-8. [PMID: 22504020 DOI: 10.1016/j.semcdb.2012.03.017] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 02/07/2023]
Abstract
Glutathione (GSH) is the most abundant antioxidant and a major detoxification agent in cells. It is synthesized through two-enzyme reaction catalyzed by glutamate cysteine ligase and glutathione synthetase, and its level is well regulated in response to redox change. Accumulating evidence suggests that GSH may play important roles in cell signaling. This review will focus on the biosynthesis of GSH, the reaction of S-glutathionylation (the conjugation of GSH with thiol residue on proteins), GSNO, and their roles in redox signaling.
Collapse
Affiliation(s)
- Hongqiao Zhang
- University of Southern California, Los Angeles, CA 90089, United States
| | | |
Collapse
|
61
|
Pimentel D, Haeussler DJ, Matsui R, Burgoyne JR, Cohen RA, Bachschmid MM. Regulation of cell physiology and pathology by protein S-glutathionylation: lessons learned from the cardiovascular system. Antioxid Redox Signal 2012; 16:524-42. [PMID: 22010840 PMCID: PMC3270052 DOI: 10.1089/ars.2011.4336] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
SIGNIFICANCE Reactive oxygen and nitrogen species contributing to homeostatic regulation and the pathogenesis of various cardiovascular diseases, including atherosclerosis, hypertension, endothelial dysfunction, and cardiac hypertrophy, is well established. The ability of oxidant species to mediate such effects is in part dependent on their ability to induce specific modifications on particular amino acids, which alter protein function leading to changes in cell signaling and function. The thiol containing amino acids, methionine and cysteine, are the only oxidized amino acids that undergo reduction by cellular enzymes and are, therefore, prime candidates in regulating physiological signaling. Various reports illustrate the significance of reversible oxidative modifications on cysteine thiols and their importance in modulating cardiovascular function and physiology. RECENT ADVANCES The use of mass spectrometry, novel labeling techniques, and live cell imaging illustrate the emerging importance of reversible thiol modifications in cellular redox signaling and have advanced our analytical abilities. CRITICAL ISSUES Distinguishing redox signaling from oxidative stress remains unclear. S-nitrosylation as a precursor of S-glutathionylation is controversial and needs further clarification. Subcellular distribution of glutathione (GSH) may play an important role in local regulation, and targeted tools need to be developed. Furthermore, cellular redundancies of thiol metabolism complicate analysis and interpretation. FUTURE DIRECTIONS The development of novel pharmacological analogs that specifically target subcellular compartments of GSH to promote or prevent local protein S-glutathionylation as well as the establishment of conditional gene ablation and transgenic animal models are needed.
Collapse
Affiliation(s)
- David Pimentel
- Myocardial Biology Unit, Whitaker Cardiovascular Institute, Boston University School of Medicine, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
62
|
Hamilton RT, Walsh ME, Van Remmen H. Mouse Models of Oxidative Stress Indicate a Role for Modulating Healthy Aging. ACTA ACUST UNITED AC 2012; Suppl 4. [PMID: 25300955 DOI: 10.4172/2161-0681.s4-005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Aging is a complex process that affects every major system at the molecular, cellular and organ levels. Although the exact cause of aging is unknown, there is significant evidence that oxidative stress plays a major role in the aging process. The basis of the oxidative stress hypothesis is that aging occurs as a result of an imbalance between oxidants and antioxidants, which leads to the accrual of damaged proteins, lipids and DNA macromolecules with age. Age-dependent increases in protein oxidation and aggregates, lipofuscin, and DNA mutations contribute to age-related pathologies. Many transgenic/knockout mouse models over expressing or deficient in key antioxidant enzymes have been generated to examine the effect of oxidative stress on aging and age-related diseases. Based on currently reported lifespan studies using mice with altered antioxidant defense, there is little evidence that oxidative stress plays a role in determining lifespan. However, mice deficient in antioxidant enzymes are often more susceptible to age-related disease while mice overexpressing antioxidant enzymes often have an increase in the amount of time spent without disease, i.e., healthspan. Thus, by understanding the mechanisms that affect healthy aging, we may discover potential therapeutic targets to extend human healthspan.
Collapse
Affiliation(s)
- Ryan T Hamilton
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Michael E Walsh
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA
| | - Holly Van Remmen
- Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, 15355 Lambda Drive, San Antonio, TX 78245-3207, USA ; GRECC, South Texas Veterans Health Care System, San Antonio, TX, USA
| |
Collapse
|
63
|
Kippner LE, Finn NA, Shukla S, Kemp ML. Systemic remodeling of the redox regulatory network due to RNAi perturbations of glutaredoxin 1, thioredoxin 1, and glucose-6-phosphate dehydrogenase. BMC SYSTEMS BIOLOGY 2011; 5:164. [PMID: 21995976 PMCID: PMC3199260 DOI: 10.1186/1752-0509-5-164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Cellular clearance of reactive oxygen species is dependent on a network of tightly coupled redox enzymes; this network rapidly adapts to oxidative conditions such as aging, viral entry, or inflammation. Current widespread use of shRNA as a means to perturb specific redox couples may be misinterpreted if the targeted effects are not monitored in the context of potential global remodeling of the redox enzyme network. RESULTS Stable cell lines containing shRNA targets for glutaredoxin 1, thioredoxin 1, or glucose-6-phosphate dehydrogenase were generated in order to examine the changes in expression associated with altering cytosolic redox couples. A qRT PCR array revealed systemic off-target effects of altered antioxidant capacity and reactive oxygen species formation. Empty lentiviral particles generated numerous enzyme expression changes in comparison to uninfected cells, indicating an alteration in antioxidant capacity irrespective of a shRNA target. Of the three redox couples perturbed, glutaredoxin 1, attenuation produced the most numerous off-target effects with 10/28 genes assayed showing statistically significant changes. A multivariate analysis extracted strong co-variance between glutaredoxin 1 and peroxiredoxin 2 which was subsequently experimentally verified. Computational modeling of the peroxide clearance dynamics associated with the remodeling of the redox network indicated that the compromised antioxidant capacity compared across the knockdown cell lines was unequally affected by the changes in expression of off-target proteins. CONCLUSIONS Our results suggest that targeted reduction of redox enzyme expression leads to widespread changes in off-target protein expression, changes that are well-insulated between sub-cellular compartments, but compensatory in both the production of and protection against intracellular reactive oxygen species. Our observations suggest that the use of lentivirus can in itself have off-target effects on dynamic responses to oxidative stress due to the changes in species concentrations.
Collapse
Affiliation(s)
- Linda E Kippner
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | | | | | | |
Collapse
|
64
|
Yu Q, Wang T, Zhou X, Wu J, Chen X, Liu Y, Wu D, Zhai Q. Wld(S) reduces paraquat-induced cytotoxicity via SIRT1 in non-neuronal cells by attenuating the depletion of NAD. PLoS One 2011; 6:e21770. [PMID: 21750730 PMCID: PMC3130051 DOI: 10.1371/journal.pone.0021770] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 06/07/2011] [Indexed: 11/30/2022] Open
Abstract
WldS is a fusion protein with NAD synthesis activity, and has been reported to protect axonal and synaptic compartments of neurons from various mechanical, genetic and chemical insults. However, whether WldS can protect non-neuronal cells against toxic chemicals is largely unknown. Here we found that WldS significantly reduced the cytotoxicity of bipyridylium herbicides paraquat and diquat in mouse embryonic fibroblasts, but had no effect on the cytotoxicity induced by chromium (VI), hydrogen peroxide, etoposide, tunicamycin or brefeldin A. WldS also slowed down the death of mice induced by intraperitoneal injection of paraquat. Further studies demonstrated that WldS markedly attenuated mitochondrial injury including disruption of mitochondrial membrane potential, structural damage and decline of ATP induced by paraquat. Disruption of the NAD synthesis activity of WldS by an H112A or F116S point mutation resulted in loss of its protective function against paraquat-induced cell death. Furthermore, WldS delayed the decrease of intracellular NAD levels induced by paraquat. Similarly, treatment with NAD or its precursor nicotinamide mononucleotide attenuated paraquat-induced cytotoxicity and decline of ATP and NAD levels. In addition, we showed that SIRT1 was required for both exogenous NAD and WldS-mediated cellular protection against paraquat. These findings suggest that NAD and SIRT1 mediate the protective function of WldS against the cytotoxicity induced by paraquat, which provides new clues for the mechanisms underlying the protective function of WldS in both neuronal and non-neuronal cells, and implies that attenuation of NAD depletion may be effective to alleviate paraquat poisoning.
Collapse
MESH Headings
- Adenosine Triphosphate/metabolism
- Animals
- Blotting, Western
- Cell Survival/drug effects
- Cells, Cultured
- Embryo, Mammalian/cytology
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Herbicides/administration & dosage
- Herbicides/toxicity
- Hydrogen Peroxide/toxicity
- Injections, Intraperitoneal
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microscopy, Electron
- Mitochondria, Liver/drug effects
- Mitochondria, Liver/physiology
- Mitochondria, Liver/ultrastructure
- Mutation
- NAD/metabolism
- NAD/pharmacology
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Nicotinamide Mononucleotide/pharmacology
- Oxidants/toxicity
- Paraquat/administration & dosage
- Paraquat/toxicity
- Reactive Oxygen Species/metabolism
- Sirtuin 1/genetics
- Sirtuin 1/metabolism
Collapse
Affiliation(s)
- Qiujing Yu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ting Wang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuexia Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jingxia Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xingmiao Chen
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yang Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dongmei Wu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
65
|
Bachschmid MM, Xu S, Maitland-Toolan KA, Ho YS, Cohen RA, Matsui R. Attenuated cardiovascular hypertrophy and oxidant generation in response to angiotensin II infusion in glutaredoxin-1 knockout mice. Free Radic Biol Med 2010; 49:1221-9. [PMID: 20638471 PMCID: PMC2930025 DOI: 10.1016/j.freeradbiomed.2010.07.005] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 07/01/2010] [Accepted: 07/09/2010] [Indexed: 12/29/2022]
Abstract
Glutaredoxin-1 (Glrx) is a thioltransferase that regulates protein S-glutathiolation. To elucidate the role of endogenous Glrx in cardiovascular disease, Glrx knockout (KO) mice were infused with angiotensin II (Ang II) for 6days. After Ang II infusion, body weight and blood pressure were similar between WT and Glrx KO mice. However, compared to WT mice, Glrx KO mice demonstrated (1) less cardiac and aortic medial hypertrophy, (2) less oxidant generation in aorta as assessed by dihydroethidium staining and nitrotyrosine, (3) decreased phosphorylation of Akt in the heart, and (4) less expression of inducible NOS in aorta and heart. In cultured embryonic fibroblasts from Glrx KO mice, S-glutathiolation of actin was enhanced and actin depolymerization was impaired after hydrogen peroxide stimulation compared with WT cells. Furthermore, oxidant generation in phorbol ester-stimulated fibroblasts and RAW 264.7 macrophage-like cells was lower with Glrx siRNA knockdown. These data indicate that Ang II-induced oxidant production and hypertrophic responses were attenuated in Glrx KO mice, which may result from impaired NADPH oxidase activation.
Collapse
Affiliation(s)
- Markus M Bachschmid
- Vascular Biology Unit, Department of Medicine, Boston University, Boston, MA 02118, USA
| | | | | | | | | | | |
Collapse
|
66
|
Janssen-Heininger YMW, Aesif SW, van der Velden J, Guala AS, Reiss JN, Roberson EC, Budd RC, Reynaert NL, Anathy V. Regulation of apoptosis through cysteine oxidation: implications for fibrotic lung disease. Ann N Y Acad Sci 2010; 1203:23-8. [PMID: 20716279 DOI: 10.1111/j.1749-6632.2010.05553.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tissue fibrosis is believed to be a manifestation of dysregulated repair following injury, in association with impaired reepithelialization, and aberrant myofibroblast activation and proliferation. Numerous pathways have been linked to the pathogenesis of fibrotic lung disease, including the death receptor Fas, which contributes to apoptosis of lung epithelial cells. A redox imbalance also has been implicated in disease pathogenesis, although mechanistic details whereby oxidative changes intersect with profibrotic signaling pathways remain elusive. Oxidation of cysteines in proteins, such as S-glutathionylation (PSSG), is known to act as a regulatory event that affects protein function. This manuscript will discuss evidence that S-glutathionylation regulates death receptor induced apoptosis, and the potential implications for cysteine oxidations in the pathogenesis of in fibrotic lung disease.
Collapse
|
67
|
Ufer C, Wang CC, Borchert A, Heydeck D, Kuhn H. Redox control in mammalian embryo development. Antioxid Redox Signal 2010; 13:833-75. [PMID: 20367257 DOI: 10.1089/ars.2009.3044] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The development of an embryo constitutes a complex choreography of regulatory events that underlies precise temporal and spatial control. Throughout this process the embryo encounters ever changing environments, which challenge its metabolism. Oxygen is required for embryogenesis but it also poses a potential hazard via formation of reactive oxygen and reactive nitrogen species (ROS/RNS). These metabolites are capable of modifying macromolecules (lipids, proteins, nucleic acids) and altering their biological functions. On one hand, such modifications may have deleterious consequences and must be counteracted by antioxidant defense systems. On the other hand, ROS/RNS function as essential signal transducers regulating the cellular phenotype. In this context the combined maternal/embryonic redox homeostasis is of major importance and dysregulations in the equilibrium of pro- and antioxidative processes retard embryo development, leading to organ malformation and embryo lethality. Silencing the in vivo expression of pro- and antioxidative enzymes provided deeper insights into the role of the embryonic redox equilibrium. Moreover, novel mechanisms linking the cellular redox homeostasis to gene expression regulation have recently been discovered (oxygen sensing DNA demethylases and protein phosphatases, redox-sensitive microRNAs and transcription factors, moonlighting enzymes of the cellular redox homeostasis) and their contribution to embryo development is critically reviewed.
Collapse
Affiliation(s)
- Christoph Ufer
- Institute of Biochemistry, University Medicine Berlin-Charité, Berlin, FR Germany
| | | | | | | | | |
Collapse
|
68
|
Caito S, Rajendrasozhan S, Cook S, Chung S, Yao H, Friedman AE, Brookes PS, Rahman I. SIRT1 is a redox-sensitive deacetylase that is post-translationally modified by oxidants and carbonyl stress. FASEB J 2010; 24:3145-59. [PMID: 20385619 PMCID: PMC2923349 DOI: 10.1096/fj.09-151308] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Accepted: 03/18/2010] [Indexed: 01/02/2023]
Abstract
Sirtuin1 (SIRT1) deacetylase levels are decreased in chronic inflammatory conditions and aging where oxidative stress occurs. We determined the mechanism of SIRT1 redox post-translational modifications leading to its degradation. Human lung epithelial cells exposed to hydrogen peroxide (150-250 microM), aldehyde-acrolein (10-30 microM), and cigarette smoke extract (CSE; 0.1-1.5%) in the presence of intracellular glutathione-modulating agents at 1-24 h, and oxidative post-translational modifications were assayed in cells, as well as in lungs of mice lacking and overexpressing glutaredoxin-1 (Glrx1), and wild-type (WT) mice in response to cigarette smoke (CS). CSE and aldehydes dose and time dependently decreased SIRT1 protein levels, with EC(50) of 1% for CSE and 30 microM for acrolein at 6 h, and >80% inhibition at 24 h with CSE, which was regulated by modulation of intracellular thiol status of the cells. CS decreased the lung levels of SIRT1 in WT mice, which was enhanced by deficiency of Glrx1 and prevented by overexpression of Glrx1. Oxidants, aldehydes, and CS induced carbonyl modifications on SIRT1 on cysteine residues concomitant with decreased SIRT1 activity. Proteomics studies revealed alkylation of cysteine residue on SIRT1. Our data suggest that oxidants/aldehydes covalently modify SIRT1, decreasing enzymatic activity and marking the protein for proteasomal degradation, which has implications in inflammatory conditions.
Collapse
Affiliation(s)
- Samuel Caito
- Department of Environmental Medicine, University of Rochester Medical Center, 601 Elmwood Ave., Box 850, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | |
Collapse
|
69
|
Aesif SW, Anathy V, Kuipers I, Guala AS, Reiss JN, Ho YS, Janssen-Heininger YMW. Ablation of glutaredoxin-1 attenuates lipopolysaccharide-induced lung inflammation and alveolar macrophage activation. Am J Respir Cell Mol Biol 2010; 44:491-9. [PMID: 20539014 DOI: 10.1165/rcmb.2009-0136oc] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Protein S-glutathionylation (PSSG), a reversible posttranslational modification of reactive cysteines, recently emerged as a regulatory mechanism that affects diverse cell-signaling cascades. The extent of cellular PSSG is controlled by the oxidoreductase glutaredoxin-1 (Grx1), a cytosolic enzyme that specifically de-glutathionylates proteins. Here, we sought to evaluate the impact of the genetic ablation of Grx1 on PSSG and on LPS-induced lung inflammation. In response to LPS, Grx1 activity increased in lung tissue and bronchoalveolar lavage (BAL) fluid in WT (WT) mice compared with PBS control mice. Glrx1(-/-) mice consistently showed slight but statistically insignificant decreases in total numbers of inflammatory cells recovered by BAL. However, LPS-induced concentrations of IL-1β, TNF-α, IL-6, and Granulocyte/Monocyte Colony-Stimulating Factor (GM-CSF) in BAL were significantly decreased in Glrx1(-/-) mice compared with WT mice. An in situ assessment of PSSG reactivity and a biochemical evaluation of PSSG content demonstrated increases in the lung tissue of Glrx1(-/-) animals in response to LPS, compared with WT mice or PBS control mice. We also demonstrated that PSSG reactivity was prominent in alveolar macrophages (AMs). Comparative BAL analyses from WT and Glrx1(-/-) mice revealed fewer and smaller AMs in Glrx1(-/-) mice, which showed a significantly decreased expression of NF-κB family members, impaired nuclear translocation of RelA, and lower levels of NF-κB-dependent cytokines after exposure to LPS, compared with WT cells. Taken together, these results indicate that Grx1 regulates the production of inflammatory mediators through control of S-glutathionylation-sensitive signaling pathways such as NF-κB, and that Grx1 expression is critical to the activation of AMs.
Collapse
Affiliation(s)
- Scott W Aesif
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Godoy JR, Funke M, Ackermann W, Haunhorst P, Oesteritz S, Capani F, Elsässer HP, Lillig CH. Redox atlas of the mouse. Immunohistochemical detection of glutaredoxin-, peroxiredoxin-, and thioredoxin-family proteins in various tissues of the laboratory mouse. Biochim Biophys Acta Gen Subj 2010; 1810:2-92. [PMID: 20682242 DOI: 10.1016/j.bbagen.2010.05.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 05/12/2010] [Accepted: 05/14/2010] [Indexed: 12/21/2022]
Abstract
BACKGROUND Oxidoreductases of the thioredoxin family of proteins have been thoroughly studied in numerous cellular and animal models mimicking human diseases. Despite of their well documented role in various disease conditions, no systematic information on the presence of these proteins is available. METHODS Here, we have systematically analyzed the presence of some of the major constituents of the glutaredoxin (Grx)-, peroxiredoxin (Prx)-, and thioredoxin (Trx)-systems, i.e. Grx1, Grx2, Grx3 (TXNL-2/PICOT), Grx5, nucleoredoxin (Nrx), Prx1, Prx2, Prx3, Prx4, Prx5, Prx6, Trx1, thioredoxin reductase 1 (TrxR1), Trx2, TrxR2, and γ-glutamyl cysteine synthetase (γ-GCS) in various tissues of the mouse using immunohistochemistry. RESULTS The identification of the Trx family proteins in the central nervous system, sensory organs, digestive system, lymphatic system, reproductive system, urinary system, respiratory system, endocrine system, skin, heart, and muscle revealed a number of significant differences between these proteins with respect to their distribution in these tissues. CONCLUSION Our results imply more specific functions and interactions between the proteins of this family than previously assumed. GENERAL SIGNIFICANCE Crucial functions of Trx family proteins have been demonstrated in various disease conditions. A detailed overview on their distribution in various tissues will be helpful to fully comprehend their potential role and the interactions of these proteins in the most thoroughly studied model for human diseases-the laboratory mouse. This article is part of a Special Issue entitled Human and Murine Redox Protein Atlases.
Collapse
Affiliation(s)
- José Rodrigo Godoy
- Institut für Klinische Zytobiologie und Zytopathologie, Fachbereich Medizin, Philipps Universität, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Chung S, Sundar IK, Yao H, Ho YS, Rahman I. Glutaredoxin 1 regulates cigarette smoke-mediated lung inflammation through differential modulation of I{kappa}B kinases in mice: impact on histone acetylation. Am J Physiol Lung Cell Mol Physiol 2010; 299:L192-203. [PMID: 20472709 DOI: 10.1152/ajplung.00426.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Glutaredoxin 1 (Glrx1) is a small dithiol protein that regulates the cellular redox state and redox-dependent signaling pathways via modulation of protein glutathionylation. IkappaB kinase (IKK), an essential enzyme for NF-kappaB activation, can be subjected to S-glutathionylation leading to alteration of its activity. However, the role of Glrx1 in cigarette smoke (CS)-induced lung inflammation and chromatin modifications are not known. We hypothesized that Glrx1 regulates the CS-induced lung inflammation and chromatin modifications via differential regulation of IKKs by S-glutathionylation in mouse lung. Glrx1 knockout (KO) and wild-type (WT) mice were exposed to CS for 3 days and determined the role of Glrx1 in regulation of proinflammatory response in the lung. Neutrophil influx in bronchoalveolar lavage fluid and proinflammatory cytokine release in lung were increased in Glrx1 KO mice compared with WT mice exposed to CS, which was associated with augmented nuclear translocation of RelA/p65 and its phospho-acetylation. Interestingly, phosphorylated and total levels of IKKalpha, but not total and phosphorylated IKKbeta levels, were increased in lungs of Glrx1 KO mice compared with WT mice exposed to CS. Ablation of Glrx1 leads to increased CS-induced IKKbeta glutathionylation rendering it inactive, whereas IKKalpha was activated resulting in increased phospho-acetylation of histone H3 in mouse lung. Thus, targeted disruption of Glrx1 regulates the lung proinflammatory response via histone acetylation specifically by activation of IKKalpha in response to CS exposure. Overall, our study suggests that S-glutathionylation and phosphorylation of IKKalpha plays an important role in histone acetylation on proinflammatory gene promoters and NF-kappaB-mediated abnormal and sustained lung inflammation in pathogenesis of chronic inflammatory lung diseases.
Collapse
Affiliation(s)
- Sangwoon Chung
- Dept. of Environmental Medicine, Univ. of Rochester Medical Center, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
72
|
Wallace DC, Fan W, Procaccio V. Mitochondrial energetics and therapeutics. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:297-348. [PMID: 20078222 DOI: 10.1146/annurev.pathol.4.110807.092314] [Citation(s) in RCA: 520] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mitochondrial dysfunction has been linked to a wide range of degenerative and metabolic diseases, cancer, and aging. All these clinical manifestations arise from the central role of bioenergetics in cell biology. Although genetic therapies are maturing as the rules of bioenergetic genetics are clarified, metabolic therapies have been ineffectual. This failure results from our limited appreciation of the role of bioenergetics as the interface between the environment and the cell. A systems approach, which, ironically, was first successfully applied over 80 years ago with the introduction of the ketogenic diet, is required. Analysis of the many ways that a shift from carbohydrate glycolytic metabolism to fatty acid and ketone oxidative metabolism may modulate metabolism, signal transduction pathways, and the epigenome gives us an appreciation of the ketogenic diet and the potential for bioenergetic therapeutics.
Collapse
Affiliation(s)
- Douglas C Wallace
- Center for Molecular and Mitochondrial Medicine and Genetics and Departments of Biological Chemistry, Ecology and Evolutionary Biology, and Pediatrics, University of California at Irvine, Irvine, California 92697-3940, USA.
| | | | | |
Collapse
|
73
|
Greetham D, Vickerstaff J, Shenton D, Perrone GG, Dawes IW, Grant CM. Thioredoxins function as deglutathionylase enzymes in the yeast Saccharomyces cerevisiae. BMC BIOCHEMISTRY 2010; 11:3. [PMID: 20074363 PMCID: PMC2836980 DOI: 10.1186/1471-2091-11-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/14/2010] [Indexed: 12/31/2022]
Abstract
Background Protein-SH groups are amongst the most easily oxidized residues in proteins, but irreversible oxidation can be prevented by protein glutathionylation, in which protein-SH groups form mixed disulphides with glutathione. Glutaredoxins and thioredoxins are key oxidoreductases which have been implicated in regulating glutathionylation/deglutathionylation in diverse organisms. Glutaredoxins have been proposed to be the predominant deglutathionylase enzymes in many plant and mammalian species, whereas, thioredoxins have generally been thought to be relatively inefficient in deglutathionylation. Results We show here that the levels of glutathionylated proteins in yeast are regulated in parallel with the growth cycle, and are maximal during stationary phase growth. This increase in glutathionylation is not a response to increased reactive oxygen species generated from the shift to respiratory metabolism, but appears to be a general response to starvation conditions. Our data indicate that glutathionylation levels are constitutively high in all growth phases in thioredoxin mutants and are unaffected in glutaredoxin mutants. We have confirmed that thioredoxins, but not glutaredoxins, catalyse deglutathionylation of model glutathionylated substrates using purified thioredoxin and glutaredoxin proteins. Furthermore, we show that the deglutathionylase activity of thioredoxins is required to reduce the high levels of glutathionylation in stationary phase cells, which occurs as cells exit stationary phase and resume vegetative growth. Conclusions There is increasing evidence that the thioredoxin and glutathione redox systems have overlapping functions and these present data indicate that the thioredoxin system plays a key role in regulating the modification of proteins by the glutathione system.
Collapse
Affiliation(s)
- Darren Greetham
- The University of Manchester, Faculty of Life Sciences, Manchester M13 9PT, UK
| | | | | | | | | | | |
Collapse
|
74
|
Meyer Y, Buchanan BB, Vignols F, Reichheld JP. Thioredoxins and glutaredoxins: unifying elements in redox biology. Annu Rev Genet 2009; 43:335-67. [PMID: 19691428 DOI: 10.1146/annurev-genet-102108-134201] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Since their discovery as a substrate for ribonucleotide reductase (RNR), the role of thioredoxin (Trx) and glutaredoxin (Grx) has been largely extended through their regulatory function. Both proteins act by changing the structure and activity of a broad spectrum of target proteins, typically by modifying redox status. Trx and Grx are members of families with multiple and partially redundant genes. The number of genes clearly increased with the appearance of multicellular organisms, in part because of new types of Trx and Grx with orthologs throughout the animal and plant kingdoms. The function of Trx and Grx also broadened as cells achieved increased complexity, especially in the regulation arena. In view of these progressive changes, the ubiquitous distribution of Trx and the wide occurrence of Grx enable these proteins to serve as indicators of the evolutionary history of redox regulation. In so doing, they add a unifying element that links the diverse forms of life to one another in an uninterrupted continuum. It is anticipated that future research will embellish this continuum and further elucidate the properties of these proteins and their impact on biology. The new information will be important not only to our understanding of the role of Trx and Grx in fundamental cell processes but also to future societal benefits as the proteins find new applications in a range of fields.
Collapse
Affiliation(s)
- Yves Meyer
- Université de Perpignan, Génome et dévelopement des plantes, CNRS-UP-IRD UMR 5096, F 66860 Perpignan Cedex, France.
| | | | | | | |
Collapse
|
75
|
Meyer LM, Löfgren S, Ho YS, Lou M, Wegener A, Holz F, Söderberg P. Absence of glutaredoxin1 increases lens susceptibility to oxidative stress induced by UVR-B. Exp Eye Res 2009; 89:833-9. [PMID: 19664619 DOI: 10.1016/j.exer.2009.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 07/09/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
We investigated if the absence of glutaredoxin1, a critical protein thiol repair enzyme, increases lens susceptibility to oxidative stress caused by in vivo exposure to ultraviolet radiation type B (UVR-B). Glrx(-/-) mice and Glrx(+/+) mice were unilaterally exposed in vivo to UVR-B for 15 min. Groups of 12 animals each received 4.3, 8.7, and 14.5 kJ/m(2) respectively. 48 h post UVR-B exposure, the induced cataract was quantified as forward lens light scattering. Cataract morphology was documented with darkfield illumination photography. Glutathione (GSH/GSSG) content was analyzed in Glrx(-/-) and Glrx(+/+) lenses. UVR-B exposure induced anterior sub-capsular cataract (ASC) in Glrx(-/-) and Glrx(+/+) mice. In Glrx(-/-) lenses the opacities extended further towards the lens equator than in wild type animals (Glrx(+/+)). Lens light scattering in Glrx(-/-) mice was increased in all dose groups compared to lenses with normal glutaredoxin1 function. The difference was more pronounced with increasing exposure dose. Lens sensitivity for UVR-B induced damage was significantly higher in Glrx(-/-) lenses compared to Glrx(+/+) lenses. The Glrx gene provides a 44% increase of protection against close to threshold UVR-B induced oxidative stress compared to the absence of the Glrx gene. In conclusion, the absence of glutaredoxin1 increases lens susceptibility to UVR-B induced oxidative stress in the mouse.
Collapse
Affiliation(s)
- Linda M Meyer
- Herzog Carl Theodor Eye Clinic, Nymphenburgerstrasse 43, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
76
|
Aesif SW, Anathy V, Havermans M, Guala AS, Ckless K, Taatjes DJ, Janssen-Heininger YMW. In situ analysis of protein S-glutathionylation in lung tissue using glutaredoxin-1-catalyzed cysteine derivatization. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 175:36-45. [PMID: 19556513 DOI: 10.2353/ajpath.2009.080736] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Protein S-glutathionylation (PSSG) is a posttranslational modification that involves the conjugation of the small antioxidant molecule glutathione to cysteine residues and is emerging as a critical mechanism of redox-based signaling. PSSG levels increase under conditions of oxidative stress and are controlled by glutaredoxins (Grx) that, under physiological conditions, preferentially deglutathionylate cysteines and restore sulfhydryls. Both the occurrence and distribution of PSSG in tissues is unknown because of the labile nature of this oxidative event and the lack of specific reagents. The goal of this study was to establish and validate a protocol that enables detection of PSSG in situ, using the property of Grx to deglutathionylate cysteines. Using Grx1-catalyzed cysteine derivatization, we evaluated PSSG content in mice subjected to various models of lung injury and fibrosis. In control mice, PSSG was detectable primarily in the airway epithelium and alveolar macrophages. Exposure of mice to NO(2) resulted in enhanced PSSG levels in parenchymal regions, while exposure to O(2) resulted in minor detectable changes. Finally, bleomycin exposure resulted in marked increases in PSSG reactivity both in the bronchial epithelium as well as in parenchymal regions. Taken together, these findings demonstrate that Grx1-based cysteine derivatization is a powerful technique to specifically detect patterns of PSSG expression in lungs, and will enable investigations into regional changes in PSSG content in a variety of diseases.
Collapse
Affiliation(s)
- Scott W Aesif
- Department of Pathology, University of Vermont College of Medicine, Burlington, VT 05405, USA
| | | | | | | | | | | | | |
Collapse
|
77
|
Gallogly MM, Starke DW, Mieyal JJ. Mechanistic and kinetic details of catalysis of thiol-disulfide exchange by glutaredoxins and potential mechanisms of regulation. Antioxid Redox Signal 2009; 11:1059-81. [PMID: 19119916 PMCID: PMC2842129 DOI: 10.1089/ars.2008.2291] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Glutaredoxins are small, heat-stable proteins that exhibit a characteristic thioredoxin fold and a CXXC/S active-site motif. A variety of glutathione (GSH)-dependent catalytic activities have been attributed to the glutaredoxins, including reduction of ribonucleotide reductase, arsenate, and dehydroascorbate; assembly of iron sulfur cluster complexes; and protein glutathionylation and deglutathionylation. Catalysis of reversible protein glutathionylation by glutaredoxins has been implicated in regulation of redox signal transduction and sulfhydryl homeostasis in numerous contexts in health and disease. This forum review is presented in two parts. Part I is focused primarily on the mechanism of the deglutathionylation reaction catalyzed by prototypical dithiol glutaredoxins, especially human Grx1 and Grx2. Grx-catalyzed protein deglutathionylation proceeds by a nucleophilic, double-displacement mechanism in which rate enhancement is attributed to special reactivity of the low pK(a) cysteine at its active site, and to increased nucleophilicity of the second substrate, GSH. Glutaredoxins (and Grx domains) have been identified in most organisms, and many exhibit deglutathionylation or other activities or both. Further characterization according to glutathionyl selectivity, physiological substrates, and intracellular roles may lead to subclassification of this family of enzymes. Part II presents potential mechanisms for in vivo regulation of Grx activity, providing avenues for future studies.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA
| | | | | |
Collapse
|
78
|
Xie Y, Kole S, Precht P, Pazin MJ, Bernier M. S-glutathionylation impairs signal transducer and activator of transcription 3 activation and signaling. Endocrinology 2009; 150:1122-31. [PMID: 18988672 PMCID: PMC2654735 DOI: 10.1210/en.2008-1241] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
S-glutathionylation is a physiological, reversible protein modification of cysteine residues with glutathione in response to mild oxidative stress. Because the key cell growth regulator signal transducer and activator of transcription (STAT) 3 is particularly susceptible to redox regulation, we hypothesized that oxidative modification of cysteine residues of STAT3 by S-glutathionylation may occur. Herein, we show that the cysteine residues of STAT3 are modified by a thiol-alkylating agent and are the targets of S-glutathionylation. STAT3 protein thiol reactivity was reversibly attenuated with concomitant increase in the S-glutathionylation of STAT3 upon treatment of human HepG2 hepatoma cells with pyrrolidine dithiocarbamate, glutathione disulfide, or diamide. Under these conditions there was a marked reduction in IL-6-dependent STAT3 signaling, including decreased STAT3 tyrosine phosphorylation, loss in nuclear accumulation of STAT3, and impaired expression of target genes, such as fibrinogen-gamma. In a cell-free system, diamide induced glutathionylation of STAT3, which was decreased upon addition of glutaredoxin (GRX)-1, a deglutathionylation enzyme, or the reducing agent, dithiothreitol. Glutathionylated STAT3 was a poor Janus protein tyrosine kinase 2 substrate in vitro, and it exhibited low DNA-binding activity. Cellular GRX-1 activity was inhibited by diamide and pyrrolidine dithiocarbamate treatment; however, ectopic expression of GRX-1 was accompanied by a modest increase in phosphorylation, nuclear translocation, and DNA-binding ability of STAT3 in response to IL-6. These results are the first to show S-glutathionylation of STAT3, a modification that may exert regulatory function in STAT3 signaling.
Collapse
Affiliation(s)
- Yi Xie
- Laboratories of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
79
|
Anathy V, Aesif SW, Guala AS, Havermans M, Reynaert NL, Ho YS, Budd RC, Janssen-Heininger YMW. Redox amplification of apoptosis by caspase-dependent cleavage of glutaredoxin 1 and S-glutathionylation of Fas. ACTA ACUST UNITED AC 2009; 184:241-52. [PMID: 19171757 PMCID: PMC2654302 DOI: 10.1083/jcb.200807019] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reactive oxygen species (ROS) increase ligation of Fas (CD95), a receptor important for regulation of programmed cell death. Glutathionylation of reactive cysteines represents an oxidative modification that can be reversed by glutaredoxins (Grxs). The goal of this study was to determine whether Fas is redox regulated under physiological conditions. In this study, we demonstrate that stimulation with Fas ligand (FasL) induces S-glutathionylation of Fas at cysteine 294 independently of nicotinamide adenine dinucleotide phosphate reduced oxidase-induced ROS. Instead, Fas is S-glutathionylated after caspase-dependent degradation of Grx1, increasing subsequent caspase activation and apoptosis. Conversely, overexpression of Grx1 attenuates S-glutathionylation of Fas and partially protects against FasL-induced apoptosis. Redox-mediated Fas modification promotes its aggregation and recruitment into lipid rafts and enhances binding of FasL. As a result, death-inducing signaling complex formation is also increased, and subsequent activation of caspase-8 and -3 is augmented. These results define a novel redox-based mechanism to propagate Fas-dependent apoptosis.
Collapse
Affiliation(s)
- Vikas Anathy
- Department of Pathology, University of Vermont, Burlington, VT 05405, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Hudemann C, Lönn ME, Godoy JR, Zahedi Avval F, Capani F, Holmgren A, Lillig CH. Identification, expression pattern, and characterization of mouse glutaredoxin 2 isoforms. Antioxid Redox Signal 2009; 11:1-14. [PMID: 18707224 DOI: 10.1089/ars.2008.2068] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Glutaredoxin 2 (Grx2) is a glutathione-dependent oxidoreductase involved in the maintenance of mitochondrial redox homeostasis. Grx2 was first characterized as mitochondrial protein, but alternative mRNA variants lacking the transit peptide-encoding first exon were demonstrated for human and proposed for mouse. We systematically screened for alternative transcript variants of mouse Grx2. We identified a total of six exons, three constitutive (II, III, and IV), two alternative first exons (exons Ia and Ic), and one single-cassette exon (exon IIIb) located between exons III and IV. Exons Ic and IIIb are not present in the human genome; mice lack human exon Ib. The six exons give rise to five transcript variants that encode three protein isoforms: mitochondrial Grx2a, a cytosolic isoform that is homologous to the cytosolic/nuclear human Grx2c and present in specific cells of many tissues and the testis-specific isoform Grx2d that is unique to mice. Mouse Grx2c can form an iron/sulfur cluster-bridged dimer, is enzymatically active as a monomer, and can donate electrons to ribonucleotide reductase. Testicular cells lack mitochondrial Grx2a but contain cytosolic Grx2. Prominent immunostaining was detected in spermatogonia and spermatids. These results provide evidence for additional functions of Grx2 in the cytosol, in cell proliferation, and in cellular differentiation.
Collapse
Affiliation(s)
- Christoph Hudemann
- Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | |
Collapse
|
81
|
Mieyal JJ, Gallogly MM, Qanungo S, Sabens EA, Shelton MD. Molecular mechanisms and clinical implications of reversible protein S-glutathionylation. Antioxid Redox Signal 2008; 10:1941-88. [PMID: 18774901 PMCID: PMC2774718 DOI: 10.1089/ars.2008.2089] [Citation(s) in RCA: 428] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sulfhydryl chemistry plays a vital role in normal biology and in defense of cells against oxidants, free radicals, and electrophiles. Modification of critical cysteine residues is an important mechanism of signal transduction, and perturbation of thiol-disulfide homeostasis is an important consequence of many diseases. A prevalent form of cysteine modification is reversible formation of protein mixed disulfides (protein-SSG) with glutathione (GSH). The abundance of GSH in cells and the ready conversion of sulfenic acids and S-nitroso derivatives to S-glutathione mixed disulfides suggests that reversible S-glutathionylation may be a common feature of redox signal transduction and regulation of the activities of redox sensitive thiol-proteins. The glutaredoxin enzyme has served as a focal point and important tool for evolution of this regulatory mechanism, because it is a specific and efficient catalyst of protein-SSG deglutathionylation. However, mechanisms of control of intracellular Grx activity in response to various stimuli are not well understood, and delineation of specific mechanisms and enzyme(s) involved in formation of protein-SSG intermediates requires further attention. A large number of proteins have been identified as potentially regulated by reversible S-glutathionylation, but only a few studies have documented glutathionylation-dependent changes in activity of specific proteins in a physiological context. Oxidative stress is a hallmark of many diseases which may interrupt or divert normal redox signaling and perturb protein-thiol homeostasis. Examples involving changes in S-glutathionylation of specific proteins are discussed in the context of diabetes, cardiovascular and lung diseases, cancer, and neurodegenerative diseases.
Collapse
Affiliation(s)
- John J Mieyal
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106-4965, USA.
| | | | | | | | | |
Collapse
|
82
|
Lillig CH, Berndt C, Holmgren A. Glutaredoxin systems. Biochim Biophys Acta Gen Subj 2008; 1780:1304-17. [DOI: 10.1016/j.bbagen.2008.06.003] [Citation(s) in RCA: 416] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 06/11/2008] [Accepted: 06/11/2008] [Indexed: 12/15/2022]
|
83
|
Gallogly MM, Starke DW, Leonberg AK, Ospina SME, Mieyal JJ. Kinetic and mechanistic characterization and versatile catalytic properties of mammalian glutaredoxin 2: implications for intracellular roles. Biochemistry 2008; 47:11144-57. [PMID: 18816065 DOI: 10.1021/bi800966v] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutaredoxin (Grx)-catalyzed deglutathionylation of protein-glutathione mixed disulfides (protein-SSG) serves important roles in redox homeostasis and signal transduction, regulating diverse physiological and pathophysiological events. Mammalian cells have two Grx isoforms: Grx1, localized to the cytosol and mitochondrial intermembrane space, and Grx2, localized primarily to the mitochondrial matrix [Pai, H. V., et al. (2007) Antioxid. Redox Signaling 9, 2027-2033]. The catalytic behavior of Grx1 has been characterized extensively, whereas Grx2 catalysis is less well understood. We observed that human Grx1 and Grx2 exhibit key catalytic similarities, including selectivity for protein-SSG substrates and a nucleophilic, double-displacement, monothiol mechanism exhibiting a strong commitment to catalysis. A key distinction between Grx1- and Grx2-mediated deglutathionylation is decreased catalytic efficiency ( k cat/ K M) of Grx2 for protein deglutathionylation (due primarily to a decreased k cat), reflecting a higher p K a of its catalytic cysteine, as well as a decreased enhancement of nucleophilicity of the second substrate, GSH. As documented previously for hGrx1 [Starke, D. W., et al. (2003) J. Biol. Chem. 278, 14607-14613], hGrx2 catalyzes glutathione-thiyl radical (GS (*)) scavenging, and it also mediates GS transfer (protein S-glutathionylation) reactions, where GS (*) serves as a superior glutathionyl donor substrate for formation of GAPDH-SSG, compared to GSNO and GSSG. In contrast to its lower k cat for deglutathionylation reactions, Grx2 promotes GS-transfer to the model protein substrate GAPDH at rates equivalent to those of Grx1. Estimation of Grx1 and Grx2 concentrations within mitochondria predicts comparable deglutathionylation activities within the mitochondrial subcompartments, suggesting localized regulatory functions for both isozymes.
Collapse
Affiliation(s)
- Molly M Gallogly
- Department of Pharmacology, Case Western Reserve University, School of Medicine, 2109 Adelbert Road, Cleveland, Ohio 44106-4965, USA
| | | | | | | | | |
Collapse
|