51
|
Hyper-active non-homologous end joining selects for synthetic lethality resistant and pathological Fanconi anemia hematopoietic stem and progenitor cells. Sci Rep 2016; 6:22167. [PMID: 26916217 PMCID: PMC4768158 DOI: 10.1038/srep22167] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/09/2016] [Indexed: 12/20/2022] Open
Abstract
The prominent role of Fanconi anemia (FA) proteins involves homologous recombination (HR) repair. Poly[ADP-ribose] polymerase1 (PARP1) functions in multiple cellular processes including DNA repair and PARP inhibition is an emerging targeted therapy for cancer patients deficient in HR. Here we show that PARP1 activation in hematopoietic stem and progenitor cells (HSPCs) in response to genotoxic or oxidative stress attenuates HSPC exhaustion. Mechanistically, PARP1 controls the balance between HR and non-homologous end joining (NHEJ) in double strand break (DSB) repair by preventing excessive NHEJ. Disruption of the FA core complex skews PARP1 function in DSB repair and led to hyper-active NHEJ in Fanca−/− or Fancc−/− HSPCs. Re-expression of PARP1 rescues the hyper-active NHEJ phenotype in Brca1−/−Parp1−/− but less effective in Fanca−/−Parp1−/− cells. Inhibition of NHEJ prevents myeloid/erythroid pathologies associated with synthetic lethality. Our results suggest that hyper-active NHEJ may select for “synthetic lethality” resistant and pathological HSPCs.
Collapse
|
52
|
Larmonier CB, Shehab KW, Laubitz D, Jamwal DR, Ghishan FK, Kiela PR. Transcriptional Reprogramming and Resistance to Colonic Mucosal Injury in Poly(ADP-ribose) Polymerase 1 (PARP1)-deficient Mice. J Biol Chem 2016; 291:8918-30. [PMID: 26912654 DOI: 10.1074/jbc.m116.714386] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARPs) synthesize and bind branched polymers of ADP-ribose to acceptor proteins using NAD as a substrate and participate in the control of gene transcription and DNA repair. PARP1, the most abundant isoform, regulates the expression of proinflammatory mediator cytokines, chemokines, and adhesion molecules, and inhibition of PARP1 enzymatic activity reduced or ameliorated autoimmune diseases in several experimental models, including colitis. However, the mechanism(s) underlying the protective effects of PARP1 inhibition in colitis and the cell types in which Parp1 deletion has the most significant impact are unknown. The objective of the current study was to determine the impact of Parp1 deletion on the innate immune response to mucosal injury and on the gut microbiome composition. Parp1 deficiency was evaluated in DSS-induced colitis in WT, Parp1(-/-), Rag2(-/-), and Rag2(-/-)×Parp1(-/-) double knock-out mice. Genome-wide analysis of the colonic transcriptome and fecal 16S amplicon profiling was performed. Compared with WT, we demonstrated that Parp1(-/-) were protected from dextran-sulfate sodium-induced colitis and that this protection was associated with a dramatic transcriptional reprogramming in the colon. PARP1 deficiency was also associated with a modulation of the colonic microbiota (increases relative abundance of Clostridia clusters IV and XIVa) and a concomitant increase in the frequency of mucosal CD4(+)CD25(+) Foxp3(+) regulatory T cells. The protective effects conferred by Parp1 deletion were lost in Rag2(-/-) × Parp1(-/-) mice, highlighting the role of the adaptive immune system for full protection.
Collapse
Affiliation(s)
- Claire B Larmonier
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Kareem W Shehab
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Daniel Laubitz
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Deepa R Jamwal
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Fayez K Ghishan
- From the Department of Pediatrics, Steele Children's Research Center, and
| | - Pawel R Kiela
- From the Department of Pediatrics, Steele Children's Research Center, and Department of Immunobiology, University of Arizona Health Sciences Center, Tucson, Arizona 85724
| |
Collapse
|
53
|
Abstract
The inflammatory response is a critical component of the immune system that is activated by stimuli such as cytokines, foreign DNA, RNA, or other harmful substances. Krukenberg et al. (2015) identify poly(ADP-ribose) as a new signaling molecule that activates inflammation, thus providing yet another mechanism by which PARPs are involved in cellular stress responses.
Collapse
Affiliation(s)
- Florian J Bock
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Paul Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA.
| |
Collapse
|
54
|
Ávila-Arroyo S, Nuñez GS, García-Fernández LF, Galmarini CM. Synergistic Effect of Trabectedin and Olaparib Combination Regimen in Breast Cancer Cell Lines. J Breast Cancer 2015; 18:329-38. [PMID: 26770239 PMCID: PMC4705084 DOI: 10.4048/jbc.2015.18.4.329] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 10/06/2015] [Indexed: 01/01/2023] Open
Abstract
Purpose Trabectedin induces synthetic lethality in tumor cells carrying defects in homologous recombinant DNA repair. We evaluated the effect of concomitant inhibition of nucleotide-excision repair and poly (ADP-ribose) polymerase (PARP) activity with trabectedin and PARP inhibitors, respectively, and whether the synthetic lethality effect had the potential for a synergistic effect in breast cancer cell lines. Additionally, we investigated if this approach remained effective in BRCA1-positive breast tumor cells. Methods We have evaluated the in vitro synergistic effect of combinations of trabectedin and three different PARP inhibitors (veliparib, olaparib, and iniparib) in four breast cancer cell lines, each presenting a different BRCA1 genetic background. Antiproliferative activity, DNA damage, cell cycle perturbations and poly(ADP-ribosyl)ation were assessed by MTT assay, comet assay, flow cytometry and western blot, respectively. Results The combination of trabectedin and olaparib was synergistic in all the breast cancer cell lines tested. Our data indicated that the synergy persisted regardless of the BRCA1 status of the tumor cells. Combination treatment was associated with a strong accumulation of double-stranded DNA breaks, G2/M arrest, and apoptotic cell death. Synergistic effects were not observed when trabectedin was combined with veliparib or iniparib. Conclusion Collectively, our results indicate that the combination of trabectedin and olaparib induces an artificial synthetic lethality effect that can be used to kill breast cancer cells, independent of BRCA1 status.
Collapse
Affiliation(s)
- Sonia Ávila-Arroyo
- Cell Biology and Pharmacogenomics Department, PharmaMar S.A., Madrid, Spain
| | | | | | - Carlos M Galmarini
- Cell Biology and Pharmacogenomics Department, PharmaMar S.A., Madrid, Spain
| |
Collapse
|
55
|
Kubis AM, Piwowar A. The new insight on the regulatory role of the vitamin D3 in metabolic pathways characteristic for cancerogenesis and neurodegenerative diseases. Ageing Res Rev 2015; 24:126-37. [PMID: 26238411 DOI: 10.1016/j.arr.2015.07.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Apart from the classical function of regulating intestinal, bone and kidney calcium and phosphorus absorption as well as bone mineralization, there is growing evidence for the neuroprotective function of vitamin D3 through neuronal calcium regulation, the antioxidative pathway, immunomodulation and detoxification. Vitamin D3 and its derivates influence directly or indirectly almost all metabolic processes such as proliferation, differentiation, apoptosis, inflammatory processes and mutagenesis. Such multifactorial effects of vitamin D3 can be a profitable source of new therapeutic solutions for two radically divergent diseases, cancer and neurodegeneration. Interestingly, an unusual association seems to exist between the occurrence of these two pathological states, called "inverse comorbidity". Patients with cognitive dysfunctions or dementia have considerably lower risk of cancer, whereas survivors of cancer have lower prevalence of central nervous system (CNS) disorders. To our knowledge, there are few publications analyzing the role of vitamin D3 in biological pathways existing in carcinogenic and neuropathological disorders.
Collapse
Affiliation(s)
- Adriana Maria Kubis
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland.
| | - Agnieszka Piwowar
- Department of Toxicology, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 Str., 50-552 Wrocław, Poland
| |
Collapse
|
56
|
Zuluaga-Ramirez V, Rom S, Persidsky Y. Craniula: A cranial window technique for prolonged imaging of brain surface vasculature with simultaneous adjacent intracerebral injection. Fluids Barriers CNS 2015; 12:24. [PMID: 26507826 PMCID: PMC4624665 DOI: 10.1186/s12987-015-0021-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 10/19/2015] [Indexed: 11/27/2022] Open
Abstract
Background Imaging of the brain surface vasculature following inflammatory insults is critical to study structural and functional changes in the living brain under normal and pathological conditions. Although there have been published reports relating to the changes that occur in the blood brain barrier (BBB) during the inflammatory process, the ability to visualize and track such changes in vivo and over time has proven to be problematic. Different techniques have been used to achieve visualization of pial vessels, but the approach has limits, which can jeopardize the well-being of the animals. Development of the cranial window technique provided a major advance in the acquisition of live images of the brain vasculature and its response to different insults and treatments. Methods We describe in detail a protocol for delivery of a localized inflammatory insult to the mouse brain via a craniula (cranial window and adjacent cannula) and subsequent imaging of the mouse brain vasculature by intravital microscopy and two-photon laser scanning microscopy. The surgical implantation of the craniula can be completed in 30-45 min and images can be acquired immediately and for several months thereafter. The technique is minimally invasive and permits serial injections directly to the brain, thereby allowing longitudinal imaging studies. The craniula technique permits the study of structural and functional changes of the BBB following inflammatory insult and as such has wide application to neuroscience research.
Collapse
Affiliation(s)
- Viviana Zuluaga-Ramirez
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 3500 N Broad St, MERB 880A, Philadelphia, PA, 19140, USA.
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 3500 N Broad St, MERB 807, Philadelphia, PA, 19140, USA.
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Temple University School of Medicine, 3500 N Broad St, MERB 841, Philadelphia, PA, 19140, USA.
| |
Collapse
|
57
|
PARP Inhibitor PJ34 Suppresses Osteogenic Differentiation in Mouse Mesenchymal Stem Cells by Modulating BMP-2 Signaling Pathway. Int J Mol Sci 2015; 16:24820-38. [PMID: 26492236 PMCID: PMC4632778 DOI: 10.3390/ijms161024820] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 10/06/2015] [Accepted: 10/12/2015] [Indexed: 12/15/2022] Open
Abstract
Poly(ADP-ribosyl)ation is known to be involved in a variety of cellular processes, such as DNA repair, cell death, telomere regulation, genomic stability and cell differentiation by poly(ADP-ribose) polymerase (PARP). While PARP inhibitors are presently under clinical investigation for cancer therapy, little is known about their side effects. However, PARP involvement in mesenchymal stem cell (MSC) differentiation potentiates MSC-related side effects arising from PARP inhibition. In this study, effects of PARP inhibitors on MSCs were examined. MSCs demonstrated suppressed osteogenic differentiation after 1 µM PJ34 treatment without cytotoxicity, while differentiation of MSCs into chondrocytes or adipocytes was unaffected. PJ34 suppressed mRNA induction of osteogenic markers, such as Runx2, Osterix, Bone Morphogenetic Protein-2, Osteocalcin, bone sialoprotein, and Osteopontin, and protein levels of Bone Morphogenetic Protein-2, Osterix and Osteocalcin. PJ34 treatment also inhibited transcription factor regulators such as Smad1, Smad4, Smad5 and Smad8. Extracellular mineralized matrix formation was also diminished. These results strongly suggest that PARP inhibitors are capable of suppressing osteogenic differentiation and poly(ADP-ribosyl)ation may play a physiological role in this process through regulation of BMP-2 signaling. Therefore, PARP inhibition may potentially attenuate osteogenic metabolism, implicating cautious use of PARP inhibitors for cancer treatments and monitoring of patient bone metabolism levels.
Collapse
|
58
|
Xiao M, Tang Y, Chen WW, Wang YL, Yang L, Li X, Song GL, Kuang J. Tubb3 regulation by the Erk and Akt signaling pathways: a mechanism involved in the effect of arginine ADP-ribosyltransferase 1 (Art1) on apoptosis of colon carcinoma CT26 cells. Tumour Biol 2015; 37:2353-63. [PMID: 26373733 DOI: 10.1007/s13277-015-4058-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 09/04/2015] [Indexed: 11/29/2022] Open
Abstract
The influence of the most important classical mono-ADP-ribosyltransferase, arginine ADP-ribosyltransferase 1 (Art1), on survival and apoptosis of colon carcinoma cells and the potential mechanisms have been partly discussed in our previous study but still need to be further studied. In this present study, Art1 of colon carcinoma CT26 cells was silenced with lentiviral vector-mediated short hairpin RNA (shRNA) or overexpressed with lentiviral vector-mediated complementary DNA (cDNA) and allograft transplant tumors are established in Balb/c mice. We verified Art1 knockdown increases apoptosis of CT26 cells transplant tumor; Art1 overexpression acts oppositely. Accordingly, growth of transplant tumors is inhibited in Art1 knockdown transplant tumors and increases in Art1 overexpression transplant tumors. Furthermore, activity of Akt and Erk cell signal pathways and expression of an apoptosis biomarker, βIII-tubulin (Tubb3), decrease when Art1 was silenced and increase when Art1 was overexpressed. Inhibiting Akt pathway or Erk pathway both downregulates expression of Tubb3 on protein and messenger RNA (mRNA) level, indicating that Tubb3 could be regulated by both Akt and Erk pathways, and plays a role in the influence of Art1 on apoptosis of Balb/c mice allograft transplant tumor. We also demonstrated that Bcl-2 family is not the responsible downstream factor of the Erk pathway in colon carcinoma cells which is undergoing apoptosis. These findings enrich the molecular mechanism for the function of Art1 in colon carcinoma and provide a complementary support for Art1 to be a potential therapeutic target of the treatment of this kind of malignant tumor.
Collapse
Affiliation(s)
- Ming Xiao
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Yi Tang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Wen-Wen Chen
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Ya-Lan Wang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China.
| | - Lian Yang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Xian Li
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Guang-Lin Song
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| | - Jing Kuang
- Department of Pathology, Molecular Medicine and Cancer Research Center, Chongqing Medical University, No. 1 Yixueyuan Rd, Chongqing, 400016, China
| |
Collapse
|
59
|
Complex role of nicotinamide adenine dinucleotide in the regulation of programmed cell death pathways. Biochem Pharmacol 2015; 101:13-26. [PMID: 26343585 DOI: 10.1016/j.bcp.2015.08.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/31/2015] [Indexed: 12/13/2022]
Abstract
Over the past few years, a growing body of experimental observations has led to the identification of novel and alternative programs of regulated cell death. Recently, autophagic cell death and controlled forms of necrosis have emerged as major alternatives to apoptosis, the best characterized form of regulated cell demise. These recently identified, caspase-independent, forms of cell death appear to play a role in the response to several forms of stress, and their importance in different pathological conditions such as ischemia, infection and inflammation has been recognized. The functional link between cell metabolism and survival has also been the matter of recent studies. Nicotinamide adenine dinucleotide (NAD(+)) has gained particular interest due to its role in cell energetics, and as a substrate for several families of enzymes, comprising poly ADP-ribose polymerases (PARPs) and sirtuins, involved in numerous biological functions including cell survival and death. The recently uncovered diversity of cell death programs has led us to reevaluate the role of this important metabolite as a universal pro-survival factor, and to discuss the potential benefits and limitations of pharmacological approaches targeting NAD(+) metabolism.
Collapse
|
60
|
Dal Piaz F, Ferro P, Vassallo A, Vasaturo M, Forte G, Chini MG, Bifulco G, Tosco A, De Tommasi N. Identification and mechanism of action analysis of the new PARP-1 inhibitor 2″-hydroxygenkwanol A. Biochim Biophys Acta Gen Subj 2015; 1850:1806-14. [PMID: 25999161 DOI: 10.1016/j.bbagen.2015.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/27/2015] [Accepted: 05/12/2015] [Indexed: 12/27/2022]
Abstract
BACKGROUND Poly(ADP-ribose) polymerase 1 (PARP-1) activity has been implicated in the pathogenesis of numerous diseases as cancer, inflammation, diabetes and neurodegenerative disorders, therefore the research for new PARP-1 inhibitors is still an active area. METHODS To identify new potential PARP-1 inhibitors, we performed a screening of a small-molecule library consisting of polyphenols isolated from plants used in the traditional medicine, by Surface Plasmon Resonance (SPR). Biochemical and cellular assays were performed to confirm SPR results and select the promising candidate(s). Finally, limited proteolysis and ligand docking analyses allowed defining the protein region involved in the interaction with the putative inhibitor(s). RESULTS The dimeric spiro-flavonoid 2″-hydroxygenkwanol A, member of a relatively recently discovered class of flavonoids containing a spirane C-atom, has been identified as possible PARP-1 inhibitor. This compound showed a high affinity for the polymerase (KD: 0.32±0.05μM); moreover PARP-1 activity in the presence of 2″-hydroxygenkwanol A was significantly affected both when using the recombinant protein and when measuring the cellular effects. Finally, our study suggests this compound to efficiently interact with the protein catalytic domain, into the nicotine binding pocket. CONCLUSION 2″-hydroxygenkwanol A efficiently binds and inhibits PARP-1 at submicromolar concentrations, thus representing a promising lead for the design of a new class of PARP-1 modulators, useful as therapeutic agents and/or biochemical tools. GENERAL SIGNIFICANCE Our study has identified an additional class of plant molecules, the spiro-biflavonoids, with known beneficial pharmacological properties but with an unknown mechanism of action, as a possible novel class of PARP-1 activity inhibitors.
Collapse
Affiliation(s)
- Fabrizio Dal Piaz
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Piera Ferro
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Antonio Vassallo
- Department of Sciences, University of Basilicata, Via Nazario Sauro 85, 85100 Potenza, SA, Italy
| | - Michele Vasaturo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Forte
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maria Giovanna Chini
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giuseppe Bifulco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy.
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| |
Collapse
|
61
|
Acyl-CoA-binding domain containing 3 modulates NAD+ metabolism through activating poly(ADP-ribose) polymerase 1. Biochem J 2015; 469:189-98. [PMID: 25940138 DOI: 10.1042/bj20141487] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/05/2015] [Indexed: 12/25/2022]
Abstract
NAD(+) plays essential roles in cellular energy homoeostasis and redox state, functioning as a cofactor along the glycolysis and citric acid cycle pathways. Recent discoveries indicated that, through the NAD(+)-consuming enzymes, this molecule may also be involved in many other cellular and biological outcomes such as chromatin remodelling, gene transcription, genomic integrity, cell division, calcium signalling, circadian clock and pluripotency. Poly(ADP-ribose) polymerase 1 (PARP1) is such an enzyme and dysfunctional PARP1 has been linked with the onset and development of various human diseases, including cancer, aging, traumatic brain injury, atherosclerosis, diabetes and inflammation. In the present study, we showed that overexpressed acyl-CoA-binding domain containing 3 (ACBD3), a Golgi-bound protein, significantly reduced cellular NAD(+) content via enhancing PARP1's polymerase activity and enhancing auto-modification of the enzyme in a DNA damage-independent manner. We identified that extracellular signal-regulated kinase (ERK)1/2 as well as de novo fatty acid biosynthesis pathways are involved in ACBD3-mediated activation of PARP1. Importantly, oxidative stress-induced PARP1 activation is greatly attenuated by knocking down the ACBD3 gene. Taken together, these findings suggest that ACBD3 has prominent impacts on cellular NAD(+) metabolism via regulating PARP1 activation-dependent auto-modification and thus cell metabolism and function.
Collapse
|
62
|
Motta C, D'Angeli F, Scalia M, Satriano C, Barbagallo D, Naletova I, Anfuso CD, Lupo G, Spina-Purrello V. PJ-34 inhibits PARP-1 expression and ERK phosphorylation in glioma-conditioned brain microvascular endothelial cells. Eur J Pharmacol 2015; 761:55-64. [PMID: 25934569 DOI: 10.1016/j.ejphar.2015.04.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 12/19/2022]
Abstract
Inhibitors of PARP-1(Poly(ADP-ribose) polymerase-1) act by competing with NAD(+), the enzyme physiological substrate, which play a protective role in many pathological conditions characterized by PARP-1 overactivation. It has been shown that PARP-1 also promotes tumor growth and progression through its DNA repair activity. Since angiogenesis is an essential requirement for these activities, we sought to determine whether PARP inhibition might affect rat brain microvascular endothelial cells (GP8.3) migration, stimulated by C6-glioma conditioned medium (CM). Through wound-healing experiments and MTT analysis, we demonstrated that PARP-1 inhibitor PJ-34 [N-(6-Oxo-5,6-dihydrophenanthridin-2-yl)-N,N-dimethylacetamide] abolishes the migratory response of GP8.3 cells and reduces their viability. PARP-1 also acts in a DNA independent way within the Extracellular-Regulated-Kinase (ERK) signaling cascade, which regulates cell proliferation and differentiation. By western analysis and confocal laser scanning microscopy (LSM), we analyzed the effects of PJ-34 on PARP-1 expression, phospho-ERK and phospho-Elk-1 activation. The effect of MEK (mitogen-activated-protein-kinase-kinase) inhibitor PD98059 (2-(2-Amino-3-methoxyphenyl)-4 H-1-benzopyran-4-one) on PARP-1 expression in unstimulated and in CM-stimulated GP8.3 cells was analyzed by RT-PCR. PARP-1 expression and phospho-ERK activation were significantly reduced by treatment of GP8.3 cells with PJ-34 or PD98059. By LSM, we further demonstrated that PARP-1 and phospho-ERK are coexpressed and share the same subcellular localization in GP8.3 cells, in the cytoplasm as well as in nucleoplasm. Based on these data, we propose that PARP-1 and phospho-ERK interact in the cytosol and then translocate to the nucleus, where they trigger a proliferative response. We also propose that PARP-1 inhibition blocks CM-induced endothelial migration by interfering with ERK signal-transduction pathway.
Collapse
Affiliation(s)
- Carla Motta
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Floriana D'Angeli
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Marina Scalia
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Cristina Satriano
- Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125 Catania, Italy
| | - Davide Barbagallo
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Irina Naletova
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Carmelina Daniela Anfuso
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Gabriella Lupo
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Vittoria Spina-Purrello
- Department of Biomedical Sciences and Biotecnology, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy.
| |
Collapse
|
63
|
Martire S, Mosca L, d'Erme M. PARP-1 involvement in neurodegeneration: A focus on Alzheimer's and Parkinson's diseases. Mech Ageing Dev 2015; 146-148:53-64. [PMID: 25881554 DOI: 10.1016/j.mad.2015.04.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/26/2015] [Accepted: 04/06/2015] [Indexed: 12/17/2022]
Abstract
DNA damage is the prime activator of the enzyme poly(ADP-ribose)polymerase1 (PARP-1) whose overactivation has been proven to be associated with the pathogenesis of numerous central nervous system disorders, such as ischemia, neuroinflammation, and neurodegenerative diseases. Under oxidative stress conditions PARP-1 activity increases, leading to an accumulation of ADP-ribose polymers and NAD(+) depletion, that induces energy crisis and finally cell death. This review aims to explain the contribution of PARP-1 in neurodegenerative diseases, focusing on Alzheimer's and Parkinson's disease, to stimulate further studies on this issue and thereby engage a new perspective regarding the design of possible therapeutic agents or the identification of biomarkers.
Collapse
Affiliation(s)
- Sara Martire
- Department of Biochemical Sciences, Sapienza University of Roma, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University of Roma, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University of Roma, Italy.
| |
Collapse
|
64
|
Muñoz-Gámez JA, López Viota J, Barrientos A, Carazo Á, Sanjuán-Nuñez L, Quiles-Perez R, Muñoz-de-Rueda P, Delgado Á, Ruiz-Extremera Á, Salmerón J. Synergistic cytotoxicity of the poly (ADP-ribose) polymerase inhibitor ABT-888 and temozolomide in dual-drug targeted magnetic nanoparticles. Liver Int 2015; 35:1430-41. [PMID: 24821649 DOI: 10.1111/liv.12586] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 05/03/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is associated with a poor prognosis because of a lack of effective treatment options. The objective of this study was to examine a new strategy for HCC treatment, namely the use of poly (ADP-ribose) polymerase 1 (PARP-1) inhibitor (ABT-888) together with Temozolomide (TMZ) incorporated onto magnetic nanoparticles. METHODS Magnetic Fe3 O4 /Fe cores were encapsulated within a silica shell to facilitate the simultaneous incorporation of ABT-888 and TMZ. In vitro tests were performed with HepG2, Hep3B and PLC-PRF-5 liver tumoural cell lines and with WRL-68 liver non-tumoural cells. RESULTS The magnetic nanocarriers were loaded simultaneously with ABT-888 and TMZ. High stability and extended release were achieved in culture medium. Confocal microscopy images showed that drug-loaded particles were uptaken and accumulated into the cytoplasm of liver tumoural cells, inducing the following effects: G2/M cell cycle arrest (P < 0.05), accumulation of DNA damage (P < 0.05), mitochondrial depolarization (P < 0.01), reduction in BCL-xL, FOS, JUND gene expression (P < 0.05), PARP-1 fragmentation, Caspase-3 activation and apoptotic cell death (P < 0.05). Interestingly, drugs loaded onto nanoparticles exhibited better efficiency than free drugs (cell death triggered by drug delivery nanosystem: 53.5% vs. 34.5% by free drugs, P = 0.01). CONCLUSIONS These magnetic nanocompounds are able to incorporate both drugs simultaneously, enter the tumour cells and release them. ABT-888/TMZ/NPs decrease the transcription of key genes involved in tumour survival and induce apoptotic cell death in a more effective manner than is achieved by free drugs.
Collapse
Affiliation(s)
- José A Muñoz-Gámez
- Clinical Management Unit of Digestive Disease and UNAI, San Cecilio University Hospital, Granada, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Di Girolamo M. Regulation of nucleocytoplasmic transport by ADP-ribosylation: the emerging role of karyopherin-β1 mono-ADP-ribosylation by ARTD15. Curr Top Microbiol Immunol 2015; 384:189-209. [PMID: 25037261 DOI: 10.1007/82_2014_421] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Post-translational modifications of a cellular protein by mono- and poly-ADP-ribosylation involve the cleavage of NAD (+) , with the release of its nicotinamide moiety. This is accompanied by the transfer of a single (mono-) or several (poly-) ADP-ribose molecules from NAD (+) to a specific amino-acid residue of the protein. Recent reports have shed new light on the correlation between NAD (+) -dependent ADP-ribosylation reactions and the endoplasmic reticulum, in addition to the well-documented roles of these reactions in the nucleus and mitochondria. We have demonstrated that ARTD15/PARP16 is a novel mono-ADP-ribosyltransferase with a new intracellular location, as it is associated with the endoplasmic reticulum. The endoplasmic reticulum, which is a membranous network of interconnected tubules and cisternae, is responsible for specialised cellular functions, including protein folding and protein transport. Maintenance of specialised cellular functions requires the correct flow of information between separate organelles that is made possible through the nucleocytoplasmic trafficking of proteins. ARTD15 appears to have a role in nucleocytoplasmic shuttling, through karyopherin-β1 mono-ADP-ribosylation. This is in line with the emerging role of ADP-ribosylation in the regulation of intracellular trafficking of cellular proteins. Indeed, other, ADP-ribosyltransferases like ARTD1/PARP1, have been reported to regulate nucleocytoplasmic trafficking of crucial proteins, including p53 and NF-κB, and as a consequence, to modulate the subcellular localisation of these proteins under both physiological and pathological conditions.
Collapse
Affiliation(s)
- Maria Di Girolamo
- G-Protein-Mediated Signalling Laboratory, Fondazione Mario Negri Sud, Via Nazionale 8/A, 66030, S. Maria Imbaro (CH), Italy,
| |
Collapse
|
66
|
Rodríguez MI, Majuelos-Melguizo J, Martí Martín-Consuegra JM, Ruiz de Almodóvar M, López-Rivas A, Javier Oliver F. Deciphering the insights of poly(ADP-ribosylation) in tumor progression. Med Res Rev 2015; 35:678-97. [PMID: 25604534 DOI: 10.1002/med.21339] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are particularly efficient against tumors with defects in the homologous recombination repair pathway. Nonetheless poly(ADP-ribosylation) (PARylation) modulates prometastasic activities and adaptation of tumor to a hostile microenvironment. Modulation of metastasis-promoting traits is possible through the alteration of key transcription factors involved in the regulation of the hypoxic response, the recruitment of new vessels (or angiogenesis), and the stimulation of epithelial to mesenchymal transition (EMT). In this review, we summarized some of the findings that focalize on PARP-1's action on tumor aggressiveness, suggesting new therapeutic opportunities against an assembly of tumors not necessarily bearing DNA repair defects. Metastasis accounts for the vast majority of mortality derived from solid cancer. PARP-1 is an active player in tumor adaptation to metastasis and PARP inhibitors, recognized as promising therapeutic agents against homologous recombination deficient tumors, has novel properties responsible for the antimetastatic actions in different tumor settings.
Collapse
Affiliation(s)
- María Isabel Rodríguez
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | - Jara Majuelos-Melguizo
- Instituto de Parasitología y Biomedicina López Neyra (IPBLN), CSIC, Granada, Spain, 18016
| | | | | | - Abelardo López-Rivas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Consejo Superior de Investigaciones Científicas, Sevilla, Spain, 41092
| | | |
Collapse
|
67
|
Yang X, Ndawula C, Zhou H, Gong X, Jin J. JF-305, a pancreatic cancer cell line is highly sensitive to the PARP inhibitor olaparib. Oncol Lett 2014; 9:757-761. [PMID: 25621047 PMCID: PMC4301471 DOI: 10.3892/ol.2014.2762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/26/2014] [Indexed: 12/31/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a DNA nick sensor involved in the base excision repair (BER) pathway. Olaparib, a PARP inhibitor, has demonstrated antitumor activity in homologous recombination (HR)-deficient cancers. To extend this specific therapy to other types of carcinomas, a panel of 11 different cancer cells were screened in the present study. JF-305, a pancreatic cancer cell line of Chinese origin, demonstrated sensitivity to the PARP inhibitor 6(5H)-phenanthridinone. In the present study, 3 μM olaparib conferred a cell survival rate of 25% following four days of treatment. The colony formation efficiency was 83% at 10 nM, and dropped to 12% at 1 μM following seven days of treatment. Furthermore, olaparib induced cell cycle arrest in the S and G2/M phases prior to the initiation of apoptosis. Although the incidence of double-strand breaks (DSBs) was increased in the olaparib-treated JF-305 cells, the RAD51 foci were well formed at the sites of γ-H2AX recruitment, indicating an activated HR mechanism. Furthermore, tumor growth was reduced by 49.8% following 22 days of consecutive administration of 10 mg/kg olaparib in the JF-305 xenograft mouse model. In summary, the JF-305 cell line was sensitive to olaparib and provided a prospective model for the preclinical assessment of PARP inhibitors in the therapy of pancreatic cancer.
Collapse
Affiliation(s)
- Xueli Yang
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Charles Ndawula
- National Livestock Resources Research Institute, Tororo, Uganda
| | - Haiyan Zhou
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Xiaohai Gong
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| | - Jian Jin
- School of Pharmaceutical Sciences, Jiangnan University, Wuxi, Jiangsu 214122, P.R. China
| |
Collapse
|
68
|
PARP inhibitor, olaparib ameliorates acute lung and kidney injury upon intratracheal administration of LPS in mice. Mol Cell Biochem 2014; 400:153-62. [PMID: 25404465 DOI: 10.1007/s11010-014-2271-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/29/2014] [Indexed: 12/22/2022]
Abstract
We have previously shown that PARP-1 inhibition provides protection against lung inflammation in the context of asthma and acute lung injury. Olaparib is a potent new generation PARP inhibitor that has been approved for human testing. The present work was designed to evaluate its beneficial potential against LPS-induced acute lung injury and acute kidney injury upon intratracheal administration of the endotoxin in mice. Administration of olaparib at different doses, 30 min after LPS treatment showed that single intraperitoneal injection of the drug at 5 mg/kg b.wt. reduced the total number of inflammatory cells particularly neutrophils in the lungs. This was associated with reduced pulmonary edema as the total protein content in the bronchoalveolar fluid was found to be decreased substantially. Olaparib provided strong protection against LPS-mediated secondary kidney injury as reflected by restoration of serum levels of urea, creatinine, and uric acid toward normal. The drug restored the LPS-mediated redox imbalance toward normal in lung and kidney tissues as assessed by measuring malondialdehyde and GSH levels. Finally, RT-PCR data revealed that olaparib downregulates the LPS-induced expression of NF-κB-dependent genes namely TNF-α, IL-1β, and VCAM-1 in the lungs without altering the expression of total p65NF-κB. Overall, the data suggest that olaparib has a strong potential to protect against LPS-induced lung injury and associated dysfunctioning of kidney in mice. Given the fact that olaparib is approved by FDA for human testing, our findings can pave the way for testing of the drug on humans inflicted with acute lung injury.
Collapse
|
69
|
A reduction in reactive oxygen species contributes to dihydromyricetin-induced apoptosis in human hepatocellular carcinoma cells. Sci Rep 2014; 4:7041. [PMID: 25391369 PMCID: PMC4229672 DOI: 10.1038/srep07041] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 10/27/2014] [Indexed: 12/15/2022] Open
Abstract
Reactive oxygen species (ROS) and cellular oxidant stress are considered inducers of carcinogenesis. However, the association of ROS with cancer is both complex and, at times, paradoxical. We assessed the effects of dihydromyricetin (DHM) on the induction of ROS accumulation and on the activation of the mitochondrial signaling pathway in human hepatoma HepG2 cells. The results indicated that DHM could reduce ROS accumulation in a concentration-dependent manner. Additionally, with increasing concentrations of DHM, the expression of proteins that participate in the cell apoptosis program increased in a concentration-dependent manner. Furthermore, we found that a low dose of H2O2 (10 nM) could reverse DHM-induced cell apoptosis. We observed the following critical issues: first, the cellular redox balance is vital in DHM-induced apoptosis of human hepatocellular carcinoma (HCC) cells, and second, ROS could function as a redox-active signaling messenger to determine DHM-induced cell apoptosis. In this study, we demonstrated that low levels of ROS are also critical for the function of HCC cells.
Collapse
|
70
|
Association of three SNPs in the PARP-1 gene with Hashimoto's thyroiditis. Hum Genome Var 2014; 1:14016. [PMID: 27081507 PMCID: PMC4785522 DOI: 10.1038/hgv.2014.16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Revised: 08/12/2014] [Accepted: 08/23/2014] [Indexed: 12/20/2022] Open
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) has a vital role in the progression of the inflammatory response, and its inhibition confers protection in various models of inflammatory disorders. Therefore, we investigated the effect of promoter and exon variations of the PARP-1 gene on the risk for the inflammatory disease Hashimoto's thyroiditis (HT). This case-control association study was comprised of 141 HT patients and 150 controls from a group of women in a Turkish population. Two polymorphisms in the promoter region of the PARP-1 gene, rs2793378 and rs7527192, were analyzed using the PCR-RFLP method. In addition, single nucleotide polymorphism (SNP) rs1136410, which is located at codon 762, was analyzed using bidirectional sequencing. The combined genotype and haplotype analyses of these polymorphisms were performed using SPSS 18 and Haploview 4.2. The results were statistically analyzed by calculating the odds ratios and 95% confidence interval using Pearson's χ (2)-test and Fisher's exact test (two-sided). Although we had a number of significant results, the associations became nonsignificant following a Bonferroni correction for multiple comparisons. Nonetheless, a protective factor against HT was still observed for the heterozygous genotype (TC) of SNP rs1136410 (P=0.001), even following Bonferroni correction, and according to the rs2793378-rs7527192 combined analysis, the occurrence of the TT/GA combined genotype was significantly higher in the controls (P=0.007). These results prove that the heterozygosity of SNP rs1136410 provides a protective effect against HT disease in a group of women in a Turkish population.
Collapse
|
71
|
Polymorphism of the DNA base excision repair genes in keratoconus. Int J Mol Sci 2014; 15:19682-99. [PMID: 25356504 PMCID: PMC4264133 DOI: 10.3390/ijms151119682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 10/08/2014] [Accepted: 10/16/2014] [Indexed: 01/12/2023] Open
Abstract
Keratoconus (KC) is a degenerative corneal disorder for which the exact pathogenesis is not yet known. Oxidative stress is reported to be associated with this disease. The stress may damage corneal biomolecules, including DNA, and such damage is primarily removed by base excision repair (BER). Variation in genes encoding BER components may influence the effectiveness of corneal cells to cope with oxidative stress. In the present work we genotyped 5 polymorphisms of 4 BER genes in 284 patients and 353 controls. The A/A genotype of the c.–1370T>A polymorphism of the DNA polymerase γ (POLG) gene was associated with increased occurrence of KC, while the A/T genotype was associated with decreased occurrence of KC. The A/G genotype and the A allele of the c.1196A>G polymorphism of the X-ray repair cross-complementing group 1 (XRCC1) were associated with increased, and the G/G genotype and the G allele, with decreased KC occurrence. Also, the C/T and T as well as C/C genotypes and alleles of the c.580C>T polymorphism of the same gene displayed relationship with KC occurrence. Neither the g.46438521G>C polymorphism of the Nei endonuclease VIII-like 1 (NEIL1) nor the c.2285T>C polymorphism of the poly(ADP-ribose) polymerase-1 (PARP-1) was associated with KC. In conclusion, the variability of the XRCC1 and POLG genes may play a role in KC pathogenesis and determine the risk of this disease.
Collapse
|
72
|
Hua YH, Wu CY, Sargsyan K, Lim C. Sequence-motif detection of NAD(P)-binding proteins: discovery of a unique antibacterial drug target. Sci Rep 2014; 4:6471. [PMID: 25253464 PMCID: PMC4174568 DOI: 10.1038/srep06471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 08/18/2014] [Indexed: 01/31/2023] Open
Abstract
Many enzymes use nicotinamide adenine dinucleotide or nicotinamide adenine dinucleotide phosphate (NAD(P)) as essential coenzymes. These enzymes often do not share significant sequence identity and cannot be easily detected by sequence homology. Previously, we determined all distinct locally conserved pyrophosphate-binding structures (3d motifs) from NAD(P)-bound protein structures, from which 1d sequence motifs were derived. Here, we aim to establish the precision of these 3d and 1d motifs to annotate NAD(P)-binding proteins. We show that the pyrophosphate-binding 3d motifs are characteristic of NAD(P)-binding proteins, as they are rarely found in nonNAD(P)-binding proteins. Furthermore, several 1d motifs could distinguish between proteins that bind only NAD and those that bind only NADP. They could also distinguish between NAD(P)-binding proteins from nonNAD(P)-binding ones. Interestingly, one of the pyrophosphate-binding 3d and corresponding 1d motifs was found only in enoyl-acyl carrier protein reductases, which are enzymes essential for bacterial fatty acid biosynthesis. This unique 3d motif serves as an attractive novel drug target, as it is conserved across many bacterial species and is not found in human proteins.
Collapse
Affiliation(s)
- Yun Hao Hua
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chih Yuan Wu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Karen Sargsyan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Carmay Lim
- 1] Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan [2] Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
73
|
Turunc Bayrakdar E, Armagan G, Uyanikgil Y, Kanit L, Koylu E, Yalcin A. Ex vivoprotective effects of nicotinamide and 3-aminobenzamide on rat synaptosomes treated with Aβ(1-42). Cell Biochem Funct 2014; 32:557-64. [DOI: 10.1002/cbf.3049] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 06/24/2014] [Accepted: 07/17/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Ezgi Turunc Bayrakdar
- Department of Biochemistry, Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Guliz Armagan
- Department of Biochemistry, Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
| | - Yigit Uyanikgil
- Department of Histology and Embryology, Faculty of Medicine; Ege University; Bornova Izmir Turkey
| | - Lutfiye Kanit
- Center for Brain Research, Faculty of Medicine; Ege University; Bornova Izmir Turkey
- Department of Neurosciences, Institute of Health Sciences; Ege University; Bornova Izmir Turkey
- Department of Physiology, Faculty of Medicine; Ege University; Bornova Izmir Turkey
| | - Ersin Koylu
- Center for Brain Research, Faculty of Medicine; Ege University; Bornova Izmir Turkey
- Department of Neurosciences, Institute of Health Sciences; Ege University; Bornova Izmir Turkey
- Department of Physiology, Faculty of Medicine; Ege University; Bornova Izmir Turkey
| | - Ayfer Yalcin
- Department of Biochemistry, Faculty of Pharmacy; Ege University; Bornova Izmir Turkey
- Center for Brain Research, Faculty of Medicine; Ege University; Bornova Izmir Turkey
- Department of Neurosciences, Institute of Health Sciences; Ege University; Bornova Izmir Turkey
- Department of Biochemistry; Faculty of Pharmacy, Biruni University; Topkapi Istanbul Turkey
| |
Collapse
|
74
|
Passaro C, Volpe M, Botta G, Scamardella E, Perruolo G, Gillespie D, Libertini S, Portella G. PARP inhibitor olaparib increases the oncolytic activity of dl922-947 in in vitro and in vivo model of anaplastic thyroid carcinoma. Mol Oncol 2014; 9:78-92. [PMID: 25139258 DOI: 10.1016/j.molonc.2014.07.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 07/25/2014] [Accepted: 07/27/2014] [Indexed: 02/06/2023] Open
Abstract
PARP inhibitors are mostly effective as anticancer drugs in association with DNA damaging agents. We have previously shown that the oncolytic adenovirus dl922-947 induces extensive DNA damage, therefore we hypothesized a synergistic antitumoral effect of the PARP inhibitor olaparib in association with dl922-947. Anaplastic thyroid carcinoma was chosen as model since it is a particularly aggressive tumor and, because of its localized growth, it is suitable for intratumoral treatment with oncolytic viruses. Here, we show that dl922-947 infection induces PARP activation, and we confirm in vitro and in vivo that PARP inhibition increases dl922-947 replication and oncolytic activity. In vitro, the combination with olaparib exacerbates the appearance of cell death markers, such as Annexin V positivity, caspase 3 cleavage, cytochrome C release and propidium iodide permeability. In vivo, we also observed a better viral distribution upon PARP inhibition. Changes in CD31 levels suggest a direct effect of olaparib on tumor vascularization and on the viral distribution within the tumor mass. The observation that PARP inhibition enhances the effects of dl922-947 is highly promising not only for the treatment of anaplastic thyroid carcinoma but, in general, for the treatment of other tumors that could benefit from the use of oncolytic viruses.
Collapse
Affiliation(s)
- Carmela Passaro
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Massimiliano Volpe
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Ginevra Botta
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Eloise Scamardella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - Giuseppe Perruolo
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy
| | - David Gillespie
- The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Silvana Libertini
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy; The Beatson Institute for Cancer Research, Switchback Road, Bearsden, Glasgow G61 1BD, UK.
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli "Federico II", Napoli, Italy.
| |
Collapse
|
75
|
Liu B, Zhou Z, Zhou W, Liu J, Zhang Q, Xia J, Liu J, Chen N, Li M, Zhu R. Resveratrol inhibits proliferation in human colorectal carcinoma cells by inducing G1/S‑phase cell cycle arrest and apoptosis through caspase/cyclin‑CDK pathways. Mol Med Rep 2014; 10:1697-702. [PMID: 25050564 PMCID: PMC4148380 DOI: 10.3892/mmr.2014.2406] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/06/2014] [Indexed: 02/07/2023] Open
Abstract
The present study compared the effect of resveratrol on HCT116 and Caco-2 human colon cancer cells. Annexin V/propidium iodide staining, MTT assay and western blot analysis revealed that resveratrol induced cycle arrest in the two cell lines, which was evidenced by cell cycle analysis and changes in the expression of the cell cycle proteins cyclin-dependent kinase (CDK) 2, CDK4, cyclin D1, proliferating cell nuclear antigen and P21. Furthermore, resveratrol was found to have a strong apoptosis-inducing effect, which was evidenced through the high percentage of annexin V positive cells and high protein expression of cleaved-caspase-7, cleaved-caspase-9 and cleaved-poly(ADP-ribose) polymerase in the resveratrol-treated cancer cells. In conclusion, these results demonstrated that resveratrol had greater growth inhibitory and cell cycle arrest effects on Caco-2 cells than HCT116 cells, through caspase-dependent and cyclin-CDK pathways.
Collapse
Affiliation(s)
- Bin Liu
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Zhongyou Zhou
- Department of Radiology, Affiliated Hospital of Guangdong Medical College, Zhanjiang, Guangdong 524001, P.R. China
| | - Wei Zhou
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Jie Liu
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Qingyu Zhang
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Juan Xia
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Juntao Liu
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Nianping Chen
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Mingyi Li
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| | - Runzhi Zhu
- Laboratory of Hepatobiliary Surgery, Guangdong Medical College, Zhanjiang Key Laboratory of Hepatobiliary Diseases, Zhanjiang, Guangdong 524001, P.R. China
| |
Collapse
|
76
|
Profiling of biomarkers for the exposure of polycyclic aromatic hydrocarbons: lamin-A/C isoform 3, poly[ADP-ribose] polymerase 1, and mitochondria copy number are identified as universal biomarkers. BIOMED RESEARCH INTERNATIONAL 2014; 2014:605135. [PMID: 25114913 PMCID: PMC4121044 DOI: 10.1155/2014/605135] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/02/2014] [Accepted: 06/04/2014] [Indexed: 11/24/2022]
Abstract
This study investigated the profiling of polycyclic aromatic hydrocarbon- (PAH-) induced genotoxicity in cell lines and zebrafish. Each type of cells displayed different proportionality of apoptosis. Mitochondrial DNA (mtDNA) copy number was dramatically elevated after 5-day treatment of fluoranthene and pyrene. The notable deregulated proteins for PAHs exposure were displayed as follows: lamin-A/C isoform 3 and annexin A1 for benzopyrene; lamin-A/C isoform 3 and DNA topoisomerase 2-alpha for pentacene; poly[ADP-ribose] polymerase 1 (PARP-1) for fluoranthene; and talin-1 and DNA topoisomerase 2-alpha for pyrene. Among them, lamin-A/C isoform 3 and PARP-1 were further confirmed using mRNA and protein expression study. Obvious morphological abnormalities including curved backbone and cardiomegaly in zebrafish were observed in the 54 hpf with more than 400 nM of benzopyrene. In conclusion, the change of mitochondrial genome (increased mtDNA copy number) was closely associated with PAH exposure in cell lines and mesenchymal stem cells. Lamin-A/C isoform 3, talin-1, and annexin A1 were identified as universal biomarkers for PAHs exposure. Zebrafish, specifically at embryo stage, showed suitable in vivo model for monitoring PAHs exposure to hematopoietic tissue and other organs.
Collapse
|
77
|
Abstract
Poly (ADP-ribose) polymerases (PARP) are a family of enzymes that play a very important role in preserving the integrity of the genome. Recently, PARP inhibitors have been shown to enhance the therapeutic ratio in cancer patients due to their specific targeting of homologous recombination repair-defective tumors, through a synthetic lethal interaction. Researchers are also presently investigating novel strategies for the treatment of sporadic cancers by combining PARP inhibitors with other DNA-damaging agents. This review will focus on recently patented PARP inhibitors and literature that supports the reported claims presented in these patents. The patents reviewed were categorized into two groups: PARP inhibitors as a single-agent or in combination with other agents for the treatment of various types of cancer. These compounds are currently in clinical trials and, if successful, can greatly impact therapeutic index in cancer therapy.
Collapse
|
78
|
Liu M, Li Z, Chen GW, Li ZM, Wang LP, Ye JT, Luo HB, Liu PQ. AG-690/11026014, a novel PARP-1 inhibitor, protects cardiomyocytes from AngII-induced hypertrophy. Mol Cell Endocrinol 2014; 392:14-22. [PMID: 24859603 DOI: 10.1016/j.mce.2014.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 05/04/2014] [Accepted: 05/13/2014] [Indexed: 11/28/2022]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) enzyme, as a sensor of DNA damage, could convert nicotinamide adenine dinucleotide (NAD) into long poly(ADP-ribose) chains and regulate many cellular processes, including DNA repair, gene transcription, cell survival and chromatin remodeling. However, excessive activation of PARP-1 depletes its substrate NAD and leads to cell death. Mounting evidences have shown that PARP-1 overactivation plays a pivotal role in the pathogenesis of cardiac hypertrophy and heart failure. In present study, a novel PARP-1 inhibitor AG-690/11026014 (6014) was identified based on virtual screening and validated by bioassay. Our results further showed that 6014 prevented the cardiomyocytes from AngII-induced hypertrophy, accompanying attenuation of the mRNA and protein expressions of atrial natriuretic factor (ANF) and brain natriuretic peptide (BNP), and reduce in the cell surface area. Additionally, 6014 reversed the depletion ofcellular NAD and SIRT6 deacetylase activity induced by AngII in cardiomyocytes. These observations suggest that anti-hypertrophic effect of 6014 might be partially attributed to the rescue of NAD depletion and subsequent restoring of SIRT6 activity by inhibition of PARP-1. Moreover, 6014 attenuated the generation of oxidative stress via suppression of NADPH oxidase 2 and 4, which might probably contribute to the inhibition of PARP-1.
Collapse
Affiliation(s)
- Min Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zhe Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Guo-Wen Chen
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Zhuo-Ming Li
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Lu-Ping Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China
| | - Jian-Tao Ye
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Hai-Bin Luo
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| | - Pei-Qing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou 510006, PR China.
| |
Collapse
|
79
|
Filipponi P, Ostacolo C, Novellino E, Pellicciari R, Gioiello A. Continuous Flow Synthesis of Thieno[2,3-c]isoquinolin-5(4H)-one Scaffold: A Valuable Source of PARP-1 Inhibitors. Org Process Res Dev 2014. [DOI: 10.1021/op500074h] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Paolo Filipponi
- Dipartimento
di Scienze Farmaceutiche, Università di Perugia, Via del Liceo
1, I-06123 Perugia, Italy
| | - Carmine Ostacolo
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | - Ettore Novellino
- Dipartimento
di Farmacia, Università degli Studi di Napoli Federico II, Via D. Montesano 49, I-80131 Napoli, Italy
| | - Roberto Pellicciari
- Dipartimento
di Scienze Farmaceutiche, Università di Perugia, Via del Liceo
1, I-06123 Perugia, Italy
- TES Pharma S.r.l.,
Via Palmiro Togliatti 22bis, I-06073
Loc. Terrioli, Corciano (Perugia), Italy
| | - Antimo Gioiello
- Dipartimento
di Scienze Farmaceutiche, Università di Perugia, Via del Liceo
1, I-06123 Perugia, Italy
| |
Collapse
|
80
|
Huang H, Nace GW, McDonald KA, Tai S, Klune JR, Rosborough BR, Ding Q, Loughran P, Zhu X, Beer-Stolz D, Chang EB, Billiar T, Tsung A. Hepatocyte-specific high-mobility group box 1 deletion worsens the injury in liver ischemia/reperfusion: a role for intracellular high-mobility group box 1 in cellular protection. Hepatology 2014; 59:1984-1997. [PMID: 24375466 PMCID: PMC3999251 DOI: 10.1002/hep.26976] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 11/11/2013] [Accepted: 12/17/2013] [Indexed: 12/07/2022]
Abstract
UNLABELLED High-mobility group box 1 (HMGB1) is an abundant chromatin-associated nuclear protein and released into the extracellular milieu during liver ischemia-reperfusion (I/R), signaling activation of proinflammatory cascades. Because the intracellular function of HMGB1 during sterile inflammation of I/R is currently unknown, we sought to determine the role of intracellular HMGB1 in hepatocytes after liver I/R. When hepatocyte-specific HMGB1 knockout (HMGB1-HC-KO) and control mice were subjected to a nonlethal warm liver I/R, it was found that HMGB1-HC-KO mice had significantly greater hepatocellular injury after I/R, compared to control mice. Additionally, there was significantly greater DNA damage and decreased chromatin accessibility to repair with lack of HMGB1. Furthermore, lack of hepatocyte HMGB1 led to excessive poly(ADP-ribose)polymerase 1 activation, exhausting nicotinamide adenine dinucleotide and adenosine triphosphate stores, exacerbating mitochondrial instability and damage, and, consequently, leading to increased cell death. We found that this was also associated with significantly more oxidative stress (OS) in HMGB1-HC-KO mice, compared to control. Increased nuclear instability led to a resultant increase in the release of histones with subsequently more inflammatory cytokine production and organ damage through activation of Toll-like receptor 9. CONCLUSION The lack of HMGB1 within hepatocytes leads to increased susceptibility to cellular death after OS conditions.
Collapse
Affiliation(s)
- Hai Huang
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Gary W. Nace
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Kerry-Ann McDonald
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Sheng Tai
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - John R. Klune
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Brian R. Rosborough
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Qing Ding
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Patricia Loughran
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA.
,Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Xiaorong Zhu
- Department of Medicine, University of Chicago, Chicago, IL
| | - Donna Beer-Stolz
- Center for Biologic Imaging, Department of Cell Biology, University of Pittsburgh Medical Center, Pittsburgh, PA
| | | | - Timothy Billiar
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Allan Tsung
- Department Of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
81
|
Fatokun AA, Dawson VL, Dawson TM. Parthanatos: mitochondrial-linked mechanisms and therapeutic opportunities. Br J Pharmacol 2014; 171:2000-16. [PMID: 24684389 PMCID: PMC3976618 DOI: 10.1111/bph.12416] [Citation(s) in RCA: 410] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 08/27/2013] [Accepted: 09/02/2013] [Indexed: 12/12/2022] Open
Abstract
Cells die by a variety of mechanisms. Terminally differentiated cells such as neurones die in a variety of disorders, in part, via parthanatos, a process dependent on the activity of poly (ADP-ribose)-polymerase (PARP). Parthanatos does not require the mediation of caspases for its execution, but is clearly mechanistically dependent on the nuclear translocation of the mitochondrial-associated apoptosis-inducing factor (AIF). The nuclear translocation of this otherwise beneficial mitochondrial protein, occasioned by poly (ADP-ribose) (PAR) produced through PARP overactivation, causes large-scale DNA fragmentation and chromatin condensation, leading to cell death. This review describes the multistep course of parthanatos and its dependence on PAR signalling and nuclear AIF translocation. The review also discusses potential targets in the parthanatos cascade as promising avenues for the development of novel, disease-modifying, therapeutic agents.
Collapse
Affiliation(s)
- Amos A Fatokun
- Institute of Cell Signalling, School of Biomedical Sciences, University of NottinghamNottingham, UK
| | - Valina L Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Physiology, Johns Hopkins University School of MedicineBaltimore, MD, USA
| | - Ted M Dawson
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of MedicineBaltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of MedicineBaltimore, MD, USA
| |
Collapse
|
82
|
Mansoorabadi SO, Wu M, Tao Z, Gao P, Pingali SV, Guo L, Liu HW. Conformational activation of poly(ADP-ribose) polymerase-1 upon DNA binding revealed by small-angle X-ray scattering. Biochemistry 2014; 53:1779-88. [PMID: 24588584 PMCID: PMC3971956 DOI: 10.1021/bi401439n] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Poly(ADP-ribose) polymerase-1 (PARP-1) is a nuclear protein that plays key roles in several fundamental cellular processes. PARP-1 catalyzes the polymerization of nicotinamide adenine dinucleotide on itself and other acceptor proteins, forming long branched poly(ADP-ribose) polymers. The catalytic activity of PARP-1 is stimulated upon binding to damaged DNA, but how this signal is transmitted from the N-terminal DNA binding domain to the C-terminal catalytic domain in the context of the full-length enzyme is unknown. In this paper, small-angle X-ray scattering experiments and molecular dynamics simulations were used to gain insight into the conformational changes that occur during the catalytic activation of PARP-1 by an 8-mer DNA ligand. The data are consistent with a model in which binding of the DNA ligand establishes interdomain interactions between the DNA binding and catalytic domains, which induces an allosteric change in the active site that promotes catalysis. Moreover, the PARP-1-8-mer complex is seen to adopt a conformation that is poised to recruit DNA repair factors to the site of DNA damage. This study provides the first structural information about the DNA-induced conformational activation of full-length PARP-1.
Collapse
Affiliation(s)
- Steven O Mansoorabadi
- Division of Medicinal Chemistry, College of Pharmacy, Department of Chemistry, and Institute of Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | | | | | | | | | | | | |
Collapse
|
83
|
Poly-ADP-ribose-polymerase inhibition ameliorates hind limb ischemia reperfusion injury in a murine model of type 2 diabetes. Ann Surg 2014; 258:1087-95. [PMID: 23549425 DOI: 10.1097/sla.0b013e31828cced3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Diabetes is known to increase poly-ADP-ribose-polymerase (PARP) activity and posttranslational poly-ADP-ribosylation of several regulatory proteins involved in inflammation and energy metabolism. These experiments test the hypothesis that PARP inhibition will modulate hind limb ischemia reperfusion (IR) in a mouse model of type-II diabetes and ameliorate the ribosylation and the activity/transnuclear localization of the key glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH). METHODS db/db mice underwent 1.5 hours of hind limb ischemia followed by 1, 7, or 24 hours of reperfusion. The treatment group received the PARP inhibitor PJ34 (PJ34) over a 24-hour period; the untreated group received Lactated Ringer (LR) at the same time points. IR muscles were analyzed for indices of PARP activity, fiber injury, metabolic activity, inflammation, GAPDH activity/intracellular localization, and poly-ADP-ribosylation of GAPDH. RESULTS PARP activity was significantly lower in the PJ34-treated groups than in the Lactated Ringer group at 7 and 24 hours of reperfusion. There was significantly less muscle fiber injury in the PJ34-treated group than in the Lactated Ringer-treated mice at 24 hours of reperfusion. PJ34 lowered levels of select proinflammatory molecules at 7 hours and 24 hours of IR. There were significant increases in metabolic activity only at 24 hours of IR in the PJ34 group, which temporally correlated with increase in GAPDH activity, decreased GAPDH poly-ADP-ribosylation, and nuclear translocation of GAPDH. CONCLUSIONS PJ34 reduced PARP activity, GAPDH ribosylation, and GAPDH translocation; ameliorated muscle fiber injury; and increased metabolic activity after hind limb IR injury in a murine model of type-II diabetes. PARP inhibition might be a therapeutic strategy after IR in diabetic humans.
Collapse
|
84
|
Maeda J, Roybal EJ, Brents CA, Uesaka M, Aizawa Y, Kato TA. Natural and glucosyl flavonoids inhibit poly(ADP-ribose) polymerase activity and induce synthetic lethality in BRCA mutant cells. Oncol Rep 2013; 31:551-6. [PMID: 24317580 PMCID: PMC3896521 DOI: 10.3892/or.2013.2902] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022] Open
Abstract
Poly(ADP-ribose) polymerase (PARP) inhibitors have been proven to represent superior clinical agents targeting DNA repair mechanisms in cancer therapy. We investigated PARP inhibitory effects of the natural and synthetic flavonoids (quercetin, rutin, monoglucosyl rutin and maltooligosyl rutin) and tested the synthetic lethality in BRCA2 mutated cells. In vitro ELISA assay suggested that the flavonoids have inhibitory effects on PARP activity, but glucosyl modifications reduced the inhibitory effect. Cytotoxicity tests of Chinese hamster cells defective in BRCA2 gene (V-C8) and its parental V79 cells showed BRCA2-dependent synthetic lethality when treated with the flavonoids. BRCA2 mutated cells were three times more sensitive to the flavonoids than the wild-type and gene complemented cells. Reduced toxicity was observed in a glucosyl modification-dependent manner. The present study provides support for the clinical use of new treatment drugs, and is the beginning of the potential application of flavonoids in cancer prevention and the periodic consumption of appropriate flavonoids to reduce cancer risk in individuals carrying a mutant allele of the BRCA2 gene.
Collapse
Affiliation(s)
- Junko Maeda
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Erica J Roybal
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Colleen A Brents
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Mitsuru Uesaka
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Yasushi Aizawa
- Research and Development Group, Toyo Sugar Refining Co., Ltd., Tokyo 103-0046, Japan
| | - Takamitsu A Kato
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
85
|
Curtin N, Szabo C. Therapeutic applications of PARP inhibitors: anticancer therapy and beyond. Mol Aspects Med 2013; 34:1217-56. [PMID: 23370117 PMCID: PMC3657315 DOI: 10.1016/j.mam.2013.01.006] [Citation(s) in RCA: 287] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/12/2013] [Accepted: 01/18/2013] [Indexed: 12/21/2022]
Abstract
The aim of this article is to describe the current and potential clinical translation of pharmacological inhibitors of poly(ADP-ribose) polymerase (PARP) for the therapy of various diseases. The first section of the present review summarizes the available preclinical and clinical data with PARP inhibitors in various forms of cancer. In this context, the role of PARP in single-strand DNA break repair is relevant, leading to replication-associated lesions that cannot be repaired if homologous recombination repair (HRR) is defective, and the synthetic lethality of PARP inhibitors in HRR-defective cancer. HRR defects are classically associated with BRCA1 and 2 mutations associated with familial breast and ovarian cancer, but there may be many other causes of HRR defects. Thus, PARP inhibitors may be the drugs of choice for BRCA mutant breast and ovarian cancers, and extend beyond these tumors if appropriate biomarkers can be developed to identify HRR defects. Multiple lines of preclinical data demonstrate that PARP inhibition increases cytotoxicity and tumor growth delay in combination with temozolomide, topoisomerase inhibitors and ionizing radiation. Both single agent and combination clinical trials are underway. The final part of the first section of the present review summarizes the current status of the various PARP inhibitors that are in various stages of clinical development. The second section of the present review summarizes the role of PARP in selected non-oncologic indications. In a number of severe, acute diseases (such as stroke, neurotrauma, circulatory shock and acute myocardial infarction) the clinical translatability of PARP inhibition is supported by multiple lines of preclinical data, as well as observational data demonstrating PARP activation in human tissue samples. In these disease indications, PARP overactivation due to oxidative and nitrative stress drives cell necrosis and pro-inflammatory gene expression, which contributes to disease pathology. Accordingly, multiple lines of preclinical data indicate the efficacy of PARP inhibitors to preserve viable tissue and to down-regulate inflammatory responses. As the clinical trials with PARP inhibitors in various forms of cancer progress, it is hoped that a second line of clinical investigations, aimed at testing of PARP inhibitors for various non-oncologic indications, will be initiated, as well.
Collapse
Affiliation(s)
- Nicola Curtin
- Department of Experimental Cancer Therapy, Northern Institute for Cancer Research, Newcastle University, University of Newcastle Upon Tyne, UK
| | - Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
86
|
Inhibition of PARP1 by small interfering RNA enhances docetaxel activity against human prostate cancer PC3 cells. Biochem Biophys Res Commun 2013; 442:127-32. [PMID: 24239883 DOI: 10.1016/j.bbrc.2013.11.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 11/06/2013] [Indexed: 12/17/2022]
Abstract
Though poly(ADP-ribose) polymerase 1 (PARP1) inhibitors have benefits in combination with radiotherapy in prostate cancers, few is known about the exactly role and underlying mechanism of PARP1 in combination with chemotherapy agents. Here our data revealed that inhibition of PARP1 by small interfering RNA (siRNA) could enhance docetaxel's activity against PC3 cells, which is associated with an accelerate repression of EGF/Akt/FOXO1 signaling pathway. Our results provide a novel role of PARP1 in transcription regulation of EGFR/Akt/FOXO1 signaling pathway and indicate that PARP1 siRNA combined with docetaxel can be an innovative treatment strategy to potentially improve outcomes in CRPC patients.
Collapse
|
87
|
Wang Z, Li Y, Lv S, Tian Y. Inhibition of proliferation and invasiveness of ovarian cancer C13* cells by a poly(ADP-ribose) polymerase inhibitor and the role of nuclear factor-κB. J Int Med Res 2013; 41:1577-85. [PMID: 24097829 DOI: 10.1177/0300060513480913] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Objective To investigate the effect of the poly(ADP-ribose) polymerase-1 (PARP-1) inhibitor PJ34 on the proliferation and invasiveness of ovarian cancer C13* cells and the role of nuclear factor-κB (NF-κB). Methods Proliferation of C13* cells was measured using a 3 -(4,5-dimethylthazol-2-yl)-2,5-diphenyl tetrazolium bromide assay after incubation with PJ34 at different concentrations and for different treatment durations. In addition, expression of PARP-1 and the NF-κB p65 subunit after treatment with PJ34 was measured using Western blot and immunocytochemistry. The effect of PJ34 on cell invasiveness was examined using a transwell invasion assay. Results PJ34 inhibited proliferation of C13* cells in a time- and dose-dependent manner. PJ34 treatment was also associated with a dose-dependent decrease in PARP-1 and NF-κB p65 expression and attenuated invasiveness of C13* cells. PARP-1 expression was positively correlated with NF-κB p65 expression. Conclusion The PARP-1 inhibitor PJ34 can markedly inhibit the proliferation and invasiveness of C13* cells, possibly due to PARP-1-mediated attenuation of NF-κB activity.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Obstetrics and Gynaecology, Shandong University Affiliated Provincial Hospital, Jinan, China
| | - Yan Li
- Department of Obstetrics and Gynaecology, Shandong University Affiliated Provincial Hospital, Jinan, China
| | - Shuqing Lv
- Department of Obstetrics and Gynaecology, Shandong University Affiliated Provincial Hospital, Jinan, China
| | - Yongjie Tian
- Department of Obstetrics and Gynaecology, Shandong University Affiliated Provincial Hospital, Jinan, China
| |
Collapse
|
88
|
Martire S, Fuso A, Rotili D, Tempera I, Giordano C, De Zottis I, Muzi A, Vernole P, Graziani G, Lococo E, Faraldi M, Maras B, Scarpa S, Mosca L, d'Erme M. PARP-1 modulates amyloid beta peptide-induced neuronal damage. PLoS One 2013; 8:e72169. [PMID: 24086258 PMCID: PMC3782458 DOI: 10.1371/journal.pone.0072169] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/08/2013] [Indexed: 01/31/2023] Open
Abstract
Amyloid beta peptide (Aβ) causes neurodegeneration by several mechanisms including oxidative stress, which is known to induce DNA damage with the consequent activation of poly (ADP-ribose) polymerase (PARP-1). To elucidate the role of PARP-1 in the neurodegenerative process, SH-SY5Y neuroblastoma cells were treated with Aβ25–35 fragment in the presence or absence of MC2050, a new PARP-1 inhibitor. Aβ25–35 induces an enhancement of PARP activity which is prevented by cell pre-treatment with MC2050. These data were confirmed by measuring PARP-1 activity in CHO cells transfected with amylod precursor protein and in vivo in brains specimens of TgCRND8 transgenic mice overproducing the amyloid peptide. Following Aβ25–35 exposure a significant increase in intracellular ROS was observed. These data were supported by the finding that Aβ25–35 induces DNA damage which in turn activates PARP-1. Challenge with Aβ25–35 is also able to activate NF-kB via PARP-1, as demonstrated by NF-kB impairment upon MC2050 treatment. Moreover, Aβ25–35via PARP-1 induces a significant increase in the p53 protein level and a parallel decrease in the anti-apoptotic Bcl-2 protein. These overall data support the hypothesis of PARP-1 involvment in cellular responses induced by Aβ and hence a possible rationale for the implication of PARP-1 in neurodegeneration is discussed.
Collapse
Affiliation(s)
- Sara Martire
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Andrea Fuso
- Department of Psychology-Sec.Neuroscience, Sapienza University, Rome, Italy
| | - Dante Rotili
- Department of Pharmaceutical Studies, Sapienza University, Rome, Italy
| | - Italo Tempera
- Fels Institute for Cancer Research & Molecular Biology, Temple University, Philadelphia, Pennsylvania, United States of America
| | - Cesare Giordano
- Department of Pharmaceutical Studies, Sapienza University, Rome, Italy
| | - Ivana De Zottis
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Alessia Muzi
- Department of Neuroscience, University of Roma “Tor Vergata”, Rome, Italy
| | - Patrizia Vernole
- Department of Public Health and Cell Biology, University of Roma “Tor Vergata”, Rome, Italy
| | - Grazia Graziani
- Department of Neuroscience, University of Roma “Tor Vergata”, Rome, Italy
| | - Emanuela Lococo
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Martina Faraldi
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Bruno Maras
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Sigfrido Scarpa
- Department of Surgery “P.Valdoni”, Sapienza University, Rome, Italy
| | - Luciana Mosca
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
| | - Maria d'Erme
- Department of Biochemical Sciences, Sapienza University, Rome, Italy
- Instituto Pasteur Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
- * E-mail:
| |
Collapse
|
89
|
Lara PC, López-Peñalver JJ, Farias VDA, Ruiz-Ruiz MC, Oliver FJ, Ruiz de Almodóvar JM. Direct and bystander radiation effects: a biophysical model and clinical perspectives. Cancer Lett 2013; 356:5-16. [PMID: 24045041 DOI: 10.1016/j.canlet.2013.09.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 09/03/2013] [Accepted: 09/08/2013] [Indexed: 12/12/2022]
Abstract
In planning treatment for each new patient, radiation oncologists pay attention to the aspects that they control. Thus their attention is usually focused on volume and dose. The dilemma for the physician is how to protract the treatment in a way that maximizes control of the tumor and minimizes normal tissue injury. The initial radiation-induced damage to DNA may be a biological indicator of the quantity of energy transferred to the DNA. However, until now the biophysical models proposed cannot explain either the early or the late adverse effects of radiation, and a more general theory appears to be required. The bystander component of tumor cell death after radiotherapy measured in many experimental works highlights the importance of confirming these observations in a clinical situation.
Collapse
Affiliation(s)
- Pedro Carlos Lara
- Radiation Oncology Department, Hospital Universitario de Gran Canaria Dr Negrín, Barranco de La Ballena s/n, Las Palmas de Gran Canaria, CP 35010, Spain
| | - Jesús Joaquín López-Peñalver
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - Virgínea de Araújo Farias
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - M Carmen Ruiz-Ruiz
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain
| | - Francisco Javier Oliver
- Instituto de Parasitología y Biomedicina López Neyra, CSIC, Avda. Conocimiento 4, 18016 Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Instituto de Biopatología y Medicina Regenerativa, Centro de Investigación Biomédica, Universidad de Granada, Avda. Conocimiento 2, 18016 Granada, Spain; Hospital Universitario San Cecilio, Avda. Dr. Olóriz s/n, 18012 Granada, Spain.
| |
Collapse
|
90
|
Ko HL, Ng HJ, Goh EH, Ren EC. Reduced ADP-ribosylation by PARP1 natural polymorphism V762A and by PARP1 inhibitors enhance Hepatitis B virus replication. J Viral Hepat 2013; 20:658-65. [PMID: 23910651 DOI: 10.1111/jvh.12100] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 02/01/2013] [Indexed: 01/04/2023]
Abstract
HepG2 and Huh7 cell lines are frequently used as models to study viral hepatitis and hepatocellular carcinoma. However, they exhibit significantly different capacities in their ability to support hepatitis B virus (HBV) replication. To investigate the basis for this, transcription factor-binding motifs at the HBV core promoter (HBVCP) were tested in luciferase reporter constructs to identify the possible role of host factors. Among the transcription factors screened: PARP1, SP1, HNF4α, HNF3, hB1F and HNF1, deletion of the PARP1 binding motif abrogated transcriptional activity at the HBVCP in HepG2 but not Huh7 cells. Sequencing of the PARP1 gene revealed that HepG2 cells carried an Ala762 allele which has low ADP-ribosylation activity, which was shown to have increased PARP1 binding affinity to its cognate motif thus resulting in higher transcriptional activity. PARP1 inhibitors that are being developed as broad cancer therapeutics also target PARP1 ADP-ribosylation enzymatic function. Four PARP1 inhibitors: PJ-34, ABT888, AZD2281 and AG014699 were tested for their effect on HBV replication. All four small molecules effectively enhanced HBV replication in vitro, confirming the role of PARP1 in HBV replication and that alteration of ADP-ribosylation by mutation or drugs can affect HBV replication. Our data demonstrate that natural polymorphisms in the host affecting proteins such as PARP1 can have a significant effect on HBV replication. Hence, patients who are infected with HBV and are on clinical trials involving PARP1 inhibitors may be at risk from unintended side-effects such as exacerbation of HBV replication.
Collapse
Affiliation(s)
- H L Ko
- Singapore Immunology Network, A*STAR, Singapore
| | | | | | | |
Collapse
|
91
|
Oit-Wiscombe I, Virag L, Soomets U, Altraja A. Increased DNA damage in progression of COPD: a response by poly(ADP-ribose) polymerase-1. PLoS One 2013; 8:e70333. [PMID: 23894640 PMCID: PMC3722143 DOI: 10.1371/journal.pone.0070333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 06/21/2013] [Indexed: 11/19/2022] Open
Abstract
Chronic oxidative stress (OS), a major mechanism of chronic obstructive pulmonary disease (COPD), may cause significant damage to DNA. Poly(ADP-ribose) polymerase (PARP)-1 is rapidly activated by OS-induced DNA lesions. However, the degree of DNA damage along with the evolution of COPD is unclear. In peripheral blood mononuclear cells of non-smoking individuals, non-obstructive smokers, patients with COPD of all stages and those with COPD exacerbation, we evaluated DNA damage, PARP activity and PARP-1 mRNA expression using Comet Assay IV, biotinylated-NAD incorporation assay and qRT-PCR, respectively and subjected results to ordinal logistic regression modelling. Adjusted for demographics, smoking-related parameters and lung function, novel comet parameters, tail length/cell length ratio and tail migration/cell length ratio, showed the greatest increase along the study groups corresponding to the evolution of COPD [odds ratio (OR) 7.88, 95% CI 4.26–14.57; p<0.001 and OR 3.91, 95% CI 2.69–5.66; p<0.001, respectively]. Analogously, PARP activity increased significantly over the groups (OR = 1.01; 95%; p<0.001). An antioxidant tetrapeptide UPF17 significantly reduced the PARP-1 mRNA expression in COPD, compared to that in non-obstructive individuals (p = 0.040). Tail length/cell length and tail migration/cell length ratios provide novel progression-sensitive tools for assessment of DNA damage. However, it remains to be elucidated whether inhibition of an elevated PARP-1 activity has a safe enough potential to break the vicious cycle of the development and progression of COPD.
Collapse
Affiliation(s)
- Ingrid Oit-Wiscombe
- Department of Pulmonary Medicine, Faculty of Medicine, University of Tartu, Tartu, Estonia.
| | | | | | | |
Collapse
|
92
|
Wadhawan S, Gautam S, Sharma A. A component of gamma-radiation-induced cell death in E. coli is programmed and interlinked with activation of caspase-3 and SOS response. Arch Microbiol 2013; 195:545-57. [PMID: 23807199 DOI: 10.1007/s00203-013-0906-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 04/23/2013] [Accepted: 05/28/2013] [Indexed: 12/16/2022]
Abstract
The current study deals with the molecular mechanism of radiation-induced cell death (RICD) in Escherichia coli. Irradiated E. coli cells displayed markers similar to those found in eukaryotic programmed cell death (PCD) such as caspase-3 activation and phosphatidylserine externalization. RICD was found to be suppressed upon pretreatment with sublethal concentrations of rifampicin or chloramphenicol, indicating the requirement of de novo gene expression. RICD was also found to be inhibited by cell permeable inhibitors of caspase-3 or poly (ADP-ribose) polymerase, indicating the involvement of PCD during RICD in E. coli. Radiation-induced SOS response was alleviated as observed with decrease in LexA level and also reduced cell filamentation frequency in the presence of caspase inhibitor. Further, the inhibitor-mediated rescue was not observed in single-gene knockouts of umuC, umuD, recB and ruvA, the genes which are associated with SOS response. This implies a linkage between SOS response and PCD in radiation-exposed E. coli cells.
Collapse
Affiliation(s)
- Surbhi Wadhawan
- Food Technology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | | |
Collapse
|
93
|
Scarpa ES, Fabrizio G, Di Girolamo M. A role of intracellular mono-ADP-ribosylation in cancer biology. FEBS J 2013; 280:3551-62. [PMID: 23590234 DOI: 10.1111/febs.12290] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 04/09/2013] [Indexed: 01/01/2023]
Abstract
During the development, progression and dissemination of neoplastic lesions, cancer cells can hijack normal pathways and mechanisms. This includes the control of the function of cellular proteins through reversible post-translational modifications, such as ADP-ribosylation, phosphorylation, and acetylation. In the case of mono-ADP-ribosylation and poly-ADP-ribosylation, the addition of one or several units of ADP-ribose to target proteins occurs via two families of enzymes that can generate ADP-ribosylated proteins: the diphtheria toxin-like ADP-ribosyltransferase (ARTD) family, comprising 17 different proteins that are either poly-ADP-ribosyltransferases or mono-ADP-ribosyltransferases or inactive enzymes; and the clostridial toxin-like ADP-ribosyltransferase family, with four human members, two of which are active mono-ADP-ribosyltransferases, and two of which are enzymatically inactive. In line with a central role for poly-ADP-ribose polymerase 1 in response to DNA damage, specific inhibitors of this enzyme have been developed as anticancer therapeutics and evaluated in several clinical trials. Recently, in combination with the discovery of a large number of enzymes that can catalyse mono-ADP-ribosylation, the role of this modification has been linked to human diseases, such as inflammation, diabetes, neurodegeneration, and cancer, thus revealing the need for the development of specific ARTD inhibitors. This will provide a better understanding of the roles of these enzymes in human physiology and pathology, so that they can be targeted in the future to generate new and efficacious drugs. This review summarizes our present knowledge of the ARTD enzymes that are involved in mono-ADP-ribosylation reactions and that have roles in cancer biology. In particular, the well-documented role of macro-containing ARTD8 in lymphoma and the putative role of ARTD15 in cancer are discussed.
Collapse
Affiliation(s)
- Emanuele S Scarpa
- Department of Cellular and Translational Pharmacology, Consorzio Mario Negri Sud, Santa Maria Imbaro, Chieti, Italy
| | | | | |
Collapse
|
94
|
Crawford RS, Albadawi H, Robaldo A, Peck MA, Abularrage CJ, Yoo HJ, Lamuraglia GM, Watkins MT. Divergent systemic and local inflammatory response to hind limb demand ischemia in wild-type and ApoE-/- mice. J Surg Res 2013; 183:952-62. [PMID: 23528286 DOI: 10.1016/j.jss.2013.02.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 02/18/2013] [Accepted: 02/20/2013] [Indexed: 12/18/2022]
Abstract
BACKGROUND We designed studies to determine whether the ApoE-/- phenotype modulates the local skeletal muscle and systemic inflammatory (plasma) responses to lower extremity demand ischemia. The ApoE-/- phenotype is an experimental model for atherosclerosis in humans. METHODS Aged female ApoE-/- and C57BL6 mice underwent femoral artery ligation, then were divided into sedentary and demand ischemia (exercise) groups on day 14. We assessed baseline and postexercise limb perfusion and hind limb function. On day 14, animals in the demand ischemia group underwent daily treadmill exercise through day 28. Sedentary mice were not exercised. On day 28, we harvested plasma and skeletal muscle from ischemic limbs from sedentary and exercised mice. We assayed muscle for angiogenic and proinflammatory proteins, markers of skeletal muscle regeneration, and evidence of skeletal muscle fiber maturation. RESULTS Hind limb ischemia was similar in ApoE-/- and C57 mice before the onset of exercise. Under sedentary conditions, plasma vascular endothelial cell growth factor and interleukin-6, but not keratinocyte chemoattractant factor (KC) or macrophage inflammatory protein-2 (MIP-2), were higher in ApoE (P < 0.0001). After exercise, plasma levels of vascular endothelial cell growth factor, KC, and MIP-2, but not IL-6, were lower in ApoE (P < 0.004). The cytokines KC and MIP-2 in muscle were greater in exercised ApoE-/- mice compared with C57BL6 mice (P = 0.01). Increased poly-ADP-ribose activity and mature muscle regeneration were associated with demand ischemia in the C57BL6 mice, compared with the ApoE-/- mice (P = 0.01). CONCLUSIONS Demand limb ischemia in the ApoE-/- phenotype exacerbated the expression of select systemic cytokines in plasma and blunted indices of muscle regeneration.
Collapse
Affiliation(s)
- Robert S Crawford
- Division of Vascular and Endovascular Surgery, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Le TVT, Suh JH, Kim N, Park HJ. In silico identification of poly(ADP-ribose)polymerase-1 inhibitors and their chemosensitizing effects against cisplatin-resistant human gastric cancer cells. Bioorg Med Chem Lett 2013; 23:2642-6. [PMID: 23522835 DOI: 10.1016/j.bmcl.2013.02.094] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 02/16/2013] [Accepted: 02/21/2013] [Indexed: 11/27/2022]
Abstract
Poly(ADP-ribose)polymerase-1 (PARP-1) enzyme is involved in the repair of DNA damages made by certain anticancer agents. It is suggested that PARP-1 inhibitors potentiate the cytotoxic effects and circumvent the resistance of DNA-modifying anticancer agents such as cisplatin. In this study, we conducted virtual screening of Korea Chemical Bank database targeting PARP-1 and identified several potent PARP-1 inhibitors with submicromolar IC50 values (77-79 nM). We then examined the chemosensitization of cisplatin by pre-treatment of PARP-1 inhibitors in cisplatin-resistant human gastric cancer cells. Our results show that PARP-1 inhibitors suppress the formation of poly(ADP-ribose) and enhance the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Tuong Vy Thi Le
- School of Pharmacy, Sungkyunkwan [corrected] University, Suwon 440-746, Republic of Korea
| | | | | | | |
Collapse
|
96
|
Papeo G, Casale E, Montagnoli A, Cirla A. PARP inhibitors in cancer therapy: an update. Expert Opin Ther Pat 2013; 23:503-14. [DOI: 10.1517/13543776.2013.768615] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
97
|
Szántó M, Brunyánszki A, Kiss B, Nagy L, Gergely P, Virág L, Bai P. Poly(ADP-ribose) polymerase-2: emerging transcriptional roles of a DNA-repair protein. Cell Mol Life Sci 2012; 69:4079-92. [PMID: 22581363 PMCID: PMC11114944 DOI: 10.1007/s00018-012-1003-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 04/17/2012] [Accepted: 04/19/2012] [Indexed: 12/30/2022]
Abstract
Poly(ADP-ribose) polymerase (PARP)-2 is a nuclear enzyme that belongs to the PARP family and PARP-2 is responsible for 5-15 % of total cellular PARP activity. PARP-2 was originally described in connection to DNA repair and in physiological and pathophysiological processes associated with genome maintenance (e.g., centromere and telomere protection, spermiogenesis, thymopoiesis, azoospermia, and tumorigenesis). Recent reports have identified important rearrangements in gene expression upon the knockout of PARP-2. Such rearrangements heavily impact inflammation and metabolism. Metabolic effects are mediated through modifying PPARγ and SIRT1 function. Altered gene expression gives rise to a complex phenotype characterized primarily by enhanced mitochondrial activity that results both in beneficial (loss of fat, enhanced insulin sensitivity) and in disadvantageous (pancreatic beta cell hypofunction upon high fat feeding) consequences. Enhanced mitochondrial biogenesis provides protection in oxidative stress-related diseases. Hereby, we review the recent developments in PARP-2 research with special attention to the involvement of PARP-2 in transcriptional and metabolic regulation.
Collapse
Affiliation(s)
- Magdolna Szántó
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Attila Brunyánszki
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Borbála Kiss
- Medical and Health Science Center, Department of Dermatology, University of Debrecen, 4032 Debrecen, Hungary
| | - Lilla Nagy
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Pál Gergely
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - László Virág
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| | - Péter Bai
- Medical and Health Science Center, MHSC, Department of Medical Chemistry, University of Debrecen, Nagyerdei krt. 98., Pf. 7, 4032 Debrecen, Hungary
| |
Collapse
|
98
|
Ko HL, Ren EC. Functional Aspects of PARP1 in DNA Repair and Transcription. Biomolecules 2012; 2:524-48. [PMID: 24970148 PMCID: PMC4030864 DOI: 10.3390/biom2040524] [Citation(s) in RCA: 132] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 10/24/2012] [Accepted: 10/31/2012] [Indexed: 01/08/2023] Open
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is an ADP-ribosylating enzyme essential for initiating various forms of DNA repair. Inhibiting its enzyme activity with small molecules thus achieves synthetic lethality by preventing unwanted DNA repair in the treatment of cancers. Through enzyme-dependent chromatin remodeling and enzyme-independent motif recognition, PARP1 also plays important roles in regulating gene expression. Besides presenting current findings on how each process is individually controlled by PARP1, we shall discuss how transcription and DNA repair are so intricately linked that disturbance by PARP1 enzymatic inhibition, enzyme hyperactivation in diseases, and viral replication can favor one function while suppressing the other.
Collapse
Affiliation(s)
- Hui Ling Ko
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| | - Ee Chee Ren
- Singapore Immunology Network, A*STAR, 8A Biomedical Grove, #03-06 Immunos, Singapore 138648, Singapore.
| |
Collapse
|
99
|
Celik O, Nazıroğlu M. Melatonin modulates apoptosis and TRPM2 channels in transfected cells activated by oxidative stress. Physiol Behav 2012; 107:458-65. [PMID: 23041488 DOI: 10.1016/j.physbeh.2012.09.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Revised: 08/05/2012] [Accepted: 09/26/2012] [Indexed: 12/16/2022]
Abstract
Transient receptor potential melastatin-like 2 (TRPM2) is a non-selective Ca(2+) permeable cation channel and is known to be activated by H(2)O(2), one of the most important indicators of intracellular oxidative stress. A neurohormone melatonin may have a modulator role on TRPM2 channels activated by oxidative stress because it is a strong antioxidant. In this study we investigated the effects of melatonin on apoptosis, whole cell currents and Ca(2+) influx arising from TRPM2 channels activated by H(2)O(2). In whole-cell patch clamp experiments, TRPM2 channels in transfected Chinese hamster ovary (CHO) cells were activated by H(2)O(2). However, the currents were inhibited either by intracellular or by extracellular melatonin. When intracellular melatonin was introduced by pipette, TRPM2 channel currents were not activated by H(2)O(2) although H(2)O(2)-induced Ca(2+) gating and release were not blocked 2-aminoethyldiphenyl borate (2-APB). Cytosolic Ca(2+) release was measured by Fura-2 and was higher in H(2)O(2) groups than in control. Melatonin also inhibited apoptosis in the transfected cells. In conclusion, we observed modulator roles of intracellular and extracellular melatonin on Ca(2+) influx and apoptosis through a TRPM2 channel in transfected CHO cells.
Collapse
Affiliation(s)
- Omer Celik
- Department of Biophysics, Medical Faculty, Suleyman Demirel University, Isparta, Turkey.
| | | |
Collapse
|
100
|
Treatment with the PARP-inhibitor PJ34 causes enhanced doxorubicin-mediated cell death in HeLa cells. Anticancer Drugs 2012; 23:627-37. [PMID: 22293659 DOI: 10.1097/cad.0b013e328350900f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Adjuvant therapies can incorporate a number of different drugs to minimize the cardiotoxicity of cancer chemotherapy, decrease the development of drug resistance and increase the overall efficacy of the treatment regime. Topoisomerase IIα is a major target of many commonly used anticancer drugs, where cell death is brought about by an accumulation of double-strand DNA breaks. Poly (ADP-ribose) polymerase (PARP)-1 has been extensively studied for its role in the repair of double-strand DNA breaks, but its ability to add highly negative biopolymers (ribosylation) to target proteins provides a vast number of pathways where it can also be important in mediating cell death. In this study, we combine the classical topoisomerase IIα poison doxorubicin with the PARP inhibitor PJ34 to investigate the potentiation of chemotherapeutic efficiency in HeLa cells. We demonstrate that PJ34 treatment has the capacity to increase endogenous topoisomerase IIα protein by about 20%, and by combining doxorubicin treatment with PJ34, we observed a 50% improvement in doxorubicin-mediated cell death in HeLa cells. These results were correlated with the ribosylation of transcription factor specificity factor 1 after doxorubicin treatment, thereby altering its affinity for binding to known regulatory elements within the human topoisomerase IIα promoter. Taken together, these results highlight the synergistic potential of combining PARP inhibitors with classical topoisomerase IIα-targeting drugs.
Collapse
|