51
|
Marchini T, Zirlik A, Wolf D. Pathogenic Role of Air Pollution Particulate Matter in Cardiometabolic Disease: Evidence from Mice and Humans. Antioxid Redox Signal 2020; 33:263-279. [PMID: 32403947 DOI: 10.1089/ars.2020.8096] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Significance: Air pollution is a considerable global threat to human health that dramatically increases the risk for cardiovascular pathologies, such as atherosclerosis, myocardial infarction, and stroke. An estimated 4.2 million cases of premature deaths worldwide are attributable to outdoor air pollution. Among multiple other components, airborne particulate matter (PM) has been identified as the major bioactive constituent in polluted air. While PM-related illness was historically thought to be confined to diseases of the respiratory system, overwhelming clinical and experimental data have now established that acute and chronic exposure to PM causes a systemic inflammatory and oxidative stress response that promotes cardiovascular disease. Recent Advances: A large body of evidence has identified an impairment of redox metabolism and the generation of oxidatively modified lipids and proteins in the lung as initial tissue response to PM. In addition, the pathogenicity of PM is mediated by an inflammatory response that involves PM uptake by tissue-resident immune cells, the activation of proinflammatory pathways in various cell types and organs, and the release of proinflammatory cytokines as locally produced tissue response signals that have the ability to affect organ function in a remote manner. Critical Issues: In the present review, we summarize and discuss the functional participation of PM in cardiovascular pathologies and its risk factors with an emphasis on how oxidative stress, inflammation, and immunity interact and synergize as a response to PM. Future Directions: The impact of PM constituents, doses, and novel anti-inflammatory therapies against PM-related illness is also discussed.
Collapse
Affiliation(s)
- Timoteo Marchini
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Zirlik
- Department of Cardiology, University Heart Center Graz, Medical University Graz, Graz, Austria
| | - Dennis Wolf
- Department of Cardiology and Angiology I, University Heart Center Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
52
|
Gangwar RS, Bevan GH, Palanivel R, Das L, Rajagopalan S. Oxidative stress pathways of air pollution mediated toxicity: Recent insights. Redox Biol 2020; 34:101545. [PMID: 32505541 PMCID: PMC7327965 DOI: 10.1016/j.redox.2020.101545] [Citation(s) in RCA: 186] [Impact Index Per Article: 37.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/01/2020] [Accepted: 04/16/2020] [Indexed: 02/08/2023] Open
Abstract
Ambient air pollution is a leading environmental cause of morbidity and mortality globally with most of the outcomes of cardiovascular origin. While numerous mechanisms are proposed to explain the link between air pollutants and cardiovascular events, the evidence supports a role for oxidative stress as a critical intermediary pathway in the transduction of systemic responses in the cardiovascular system. Indeed, alterations in vascular function are a critical step in the development of cardiometabolic disorders such as hypertension, diabetes, and atherosclerosis. This review will provide an overview of the impact of particulate and gaseous pollutants on oxidative stress from human and animal studies published in the last five years. We discuss current gaps in knowledge and evidence to date implicating the role of oxidative stress with an emphasis on inhalational exposures. We conclude with the identification of gaps, and an exhortation for further studies to elucidate the impact of oxidative stress in air pollution mediated effects. Particulate matter air pollution is the leading risk factor for cardiovascular morbidity and mortality globally. Mechanisms of oxidative stress mediated pathways. How does lung inflammation crucial to inhalational exposure mediate systemic toxicity? Review of recent animal and human exposure studies providing insights into oxidative stress pathways.
Collapse
Affiliation(s)
- Roopesh Singh Gangwar
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Graham H Bevan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rengasamy Palanivel
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Lopa Das
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Sanjay Rajagopalan
- Cardiovascular Research Institute, University Hospitals, Case Western Reserve University, Cleveland, OH, 44106, USA.
| |
Collapse
|
53
|
Miller MR. Oxidative stress and the cardiovascular effects of air pollution. Free Radic Biol Med 2020; 151:69-87. [PMID: 31923583 PMCID: PMC7322534 DOI: 10.1016/j.freeradbiomed.2020.01.004] [Citation(s) in RCA: 120] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Cardiovascular causes have been estimated to be responsible for more than two thirds of the considerable mortality attributed to air pollution. There is now a substantial body of research demonstrating that exposure to air pollution has many detrimental effects throughout the cardiovascular system. Multiple biological mechanisms are responsible, however, oxidative stress is a prominent observation at many levels of the cardiovascular impairment induced by pollutant exposure. This review provides an overview of the evidence that oxidative stress is a key pathway for the different cardiovascular actions of air pollution.
Collapse
Affiliation(s)
- Mark R Miller
- University/BHF Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, EH4 3RL, United Kingdom.
| |
Collapse
|
54
|
Su X, Tian J, Li B, Zhou L, Kang H, Pei Z, Zhang M, Li C, Wu M, Wang Q, Han B, Chu C, Pang Y, Ning J, Zhang B, Niu Y, Zhang R. Ambient PM2.5 caused cardiac dysfunction through FoxO1-targeted cardiac hypertrophy and macrophage-activated fibrosis in mice. CHEMOSPHERE 2020; 247:125881. [PMID: 31978653 DOI: 10.1016/j.chemosphere.2020.125881] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/31/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Plenty of epidemiological evidences have shown that ambient particulate matter (PM2.5) exposure increased the prevalence of cardiovascular disease, but the potential mechanism has not been known clearly. We established mice models by ambient PM2.5 exposure system to explore the adverse effects of PM2.5 on cardiac function in mice. Forty-eight C57BL/6 mice were randomly divided into 3 groups and exposed to filtered air (FA), unfiltered air (UA) and concentrated PM2.5 air (CA) for 8 or 16 weeks, 6 hours per day, 7 days per week, respectively. The changes of cardiac structure and function, histological analysis and related mechanism were investigated. The main manifestations of cardiac structure were cardiac hypertrophy and fibrosis in a dose- and time-dependent manner after PM2.5 exposure, which led to the decrease of cardiac systolic function. Cardiac hypertrophy in mice might be regulated by PI3K/Akt/FoxO1 signal. Cardiac fibrosis might be attributed to inflammatory infiltration caused by macrophage activation. Consequently, our data indicated that cardiac hypertrophy and fibrosis might be important factors of PM2.5-induced cardiac dysfunction in mice.
Collapse
Affiliation(s)
- Xuan Su
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Junzhi Tian
- Department of Physical Examination, the Second Hospital of Hebei Medical University, Shijiazhuang, 050000, PR China
| | - Binghua Li
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Lixiao Zhou
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Hui Kang
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Zijie Pei
- Department of Pathology, Medical School, China Three Gorge University, Yichang, 443002, PR China
| | - Mengyue Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chen Li
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Mengqi Wu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Qian Wang
- Department of Experimental Center, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Bin Han
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Chen Chu
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yaxian Pang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Jie Ning
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Boyuan Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, 050017, PR China; Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, PR China.
| |
Collapse
|
55
|
Gao Y, Sun J, Dong C, Zhao M, Hu Y, Jin F. Extracellular Vesicles Derived from Adipose Mesenchymal Stem Cells Alleviate PM2.5-Induced Lung Injury and Pulmonary Fibrosis. Med Sci Monit 2020; 26:e922782. [PMID: 32304204 PMCID: PMC7191958 DOI: 10.12659/msm.922782] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Exposure to PM2.5 (fine particulate matter ≤2.5 μm in aerodynamic diameter) in air increases the risk of lung injury and pulmonary fibrosis (PF). Extracellular vesicles (EVs) derived from adipose mesenchymal stem cells (ADSCs) have been identified as a potential treatment based on the proteins or RNAs delivery and immunomodulatory properties. Here, we assessed the protective effects and mechanisms of ADSCs-EVs on PM2.5-induced lung injury or PF. Material/Methods Rats (male, 6 weeks old) were exposed to PBS or PM2.5 (1.5 mg/kg/day) for 3 days a week for 4 weeks. ADSCs-EVs were extracted by ultracentrifugation. PBS and ADSCs-EVs were administrated through intratracheal instillation. After the end of exposure, the rats were anesthetized and killed. Lung tissues with different treatments were collected for Western blot analysis and HE, IHC, and IF staining analysis. Cells exposed to PM2.5 or “PM2.5+ADSCs-EVs” in vitro were also collected for further Western blotting, qRT-PCR, and IF staining evaluation. Results The results indicated that the initial response of lungs exposed to PM2.5 was lung injury with oxidative stress and inflammation. Long-term PM2.5 exposure resulted in obvious PF in rats. Treatment with ADSCs-EVs decreased PM2.5-induced apoptosis and necrosis in type II alveolar epithelial cells and alleviated lung injury and PF in rats. ADSCs-EVs suppressed reactive oxygen species (ROS) levels and inflammation induced by PM2.5. Furthermore, ADSCs-EVs inhibited TGF-βRI by transferring let-7d-5p and further mitigated PF. Conclusions Our results suggest that EVs derived from ADSCs can alleviate PM2.5-induced lung injury and PF.
Collapse
Affiliation(s)
- Yongheng Gao
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Jinbo Sun
- Department of Urology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Chuan Dong
- Department of Orthopedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Mingxuan Zhao
- Research Center of Clinical Pharmacology, The First Affiliated Hospital of Yunnan University of Chinese Medicine, Kunming, Yunnan, China (mainland)
| | - Ying Hu
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| | - Faguang Jin
- Department of Respiration, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China (mainland)
| |
Collapse
|
56
|
Sun B, Shi Y, Li Y, Jiang J, Liang S, Duan J, Sun Z. Short-term PM 2.5 exposure induces sustained pulmonary fibrosis development during post-exposure period in rats. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121566. [PMID: 31761645 DOI: 10.1016/j.jhazmat.2019.121566] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/21/2019] [Accepted: 10/29/2019] [Indexed: 05/05/2023]
Abstract
Up to now, while some toxicological studies have identified pulmonary fibrosis immediately induced by long-term PM2.5 exposure, there has been no evidence indicating, whether short-term exposure can lead to post-exposure development of pulmonary fibrosis. Here, we treated rats with PM2.5 for 1 month (10 times), followed by normal feeding for 18 months. 18F-FDG intake, which is linked with the initiation and development of pulmonary fibrosis in living bodies, was found to gradually increase in lung following exposure through micro PET/CT imaging. Histolopathological examination revealed continuous deterioration of pulmonary injury post-exposure. Collagen deposition and hydroxyproline content continued to increase all along in the post-exposure duration, indicating pulmonary fibrosis development. Chronic and persistent induction of pulmonary inflammatory gene expression (Tnf, Il1b, Il6, Ccl2, and Icam1), epithelial mesenchymal transition (EMT, reduction of E-cadherin and elevation of fibronectin) and RelA/p65 upregulation, as well as serum inflammatory cytokine production, were also found in PM2.5-treated rats. Pulmonary oxidative stress, manifested by increase of MDA and decrease of GSH and SOD, was induced during exposure but disappeared in later post-exposure duration. These results suggested that short-term PM2.5 exposure could lead to sustained post-exposure pulmonary fibrosis development, which was mediated by oxidative-stress-initiated NF-κB/inflammation/EMT pathway.
Collapse
Affiliation(s)
- Baiyang Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yanfeng Shi
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Yang Li
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Jinjin Jiang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Shuang Liang
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China
| | - Junchao Duan
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| | - Zhiwei Sun
- Department of Toxicology and Sanitary Chemistry, Capital Medical University, Beijing, 100069, PR China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing, 100069, PR China.
| |
Collapse
|
57
|
Han X, Liu H, Zhang Z, Yang W, Wu C, Liu X, Zhang F, Sun B, Zhao Y, Jiang G, Yang YG, Ding W. Epitranscriptomic 5-Methylcytosine Profile in PM 2.5-induced Mouse Pulmonary Fibrosis. GENOMICS, PROTEOMICS & BIOINFORMATICS 2020; 18:41-51. [PMID: 32135311 PMCID: PMC7393542 DOI: 10.1016/j.gpb.2019.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/26/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022]
Abstract
Exposure of airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is epidemiologically associated with lung dysfunction and respiratory symptoms, including pulmonary fibrosis. However, whether epigenetic mechanisms are involved in PM2.5-induced pulmonary fibrosis is currently poorly understood. Herein, using a PM2.5-induced pulmonary fibrosis mouse model, we found that PM2.5 exposure leads to aberrant mRNA 5-methylcytosine (m5C) gain and loss in fibrotic lung tissues. Moreover, we showed the m5C-mediated regulatory map of gene functions in pulmonary fibrosis after PM2.5 exposure. Several genes act as m5C gain-upregulated factors, probably critical for the development of PM2.5-induced fibrosis in mouse lungs. These genes, including Lcn2, Mmp9, Chi3l1, Adipoq, Atp5j2, Atp5l, Atpif1, Ndufb6, Fgr, Slc11a1, and Tyrobp, are highly related to oxidative stress response, inflammatory responses, and immune system processes. Our study illustrates the first epitranscriptomic RNA m5C profile in PM2.5-induced pulmonary fibrosis and will be valuable in identifying biomarkers for PM2.5 exposure-related lung pathogenesis with translational potential.
Collapse
Affiliation(s)
- Xiao Han
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Hanchen Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zezhong Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Wenlan Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chunyan Wu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China
| | - Xueying Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baofa Sun
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Guibin Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yun-Gui Yang
- CAS Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, College of Future Technology, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China; Institute of Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China.
| | - Wenjun Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 101408, China.
| |
Collapse
|
58
|
Gao J, Yuan J, Wang Q, Lei T, Shen X, Cui B, Zhang F, Ding W, Lu Z. Metformin protects against PM 2.5-induced lung injury and cardiac dysfunction independent of AMP-activated protein kinase α2. Redox Biol 2020; 28:101345. [PMID: 31669973 PMCID: PMC6838896 DOI: 10.1016/j.redox.2019.101345] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/30/2019] [Accepted: 10/15/2019] [Indexed: 01/01/2023] Open
Abstract
Fine particulate matter (PM2.5) airborne pollution increases the risk of respiratory and cardiovascular diseases. Although metformin is a well-known antidiabetic drug, it also confers protection against a series of diseases through the activation of AMP-activated protein kinase (AMPK). However, whether metformin affects PM2.5-induced adverse health effects has not been investigated. In this study, we exposed wild-type (WT) and AMPKα2-/- mice to PM2.5 every other day via intratracheal instillation for 4 weeks. After PM2.5 exposure, the AMPKα2-/- mice developed more severe lung injury and cardiac dysfunction than were developed in the WT mice; however the administration of metformin was effective in attenuating PM2.5-induced lung injury and cardiac dysfunction in both the WT and AMPKα2-/- mice. In the PM2.5-exposed mice, metformin treatment resulted in reduced systemic and pulmonary inflammation, preserved left ventricular ejection fraction, suppressed induction of pulmonary and myocardial fibrosis and oxidative stress, and increased levels of mitochondrial antioxidant enzymes. Moreover, pretreatment with metformin significantly attenuated PM2.5-induced cell death and oxidative stress in control and AMPKα2-depleted BEAS-2B and H9C2 cells, and was associated with preserved expression of mitochondrial antioxidant enzymes. These data support the notion that metformin protects against PM2.5-induced adverse health effects through a pathway that appears independent of AMPKα2. Our findings suggest that metformin may also be a novel drug for therapies that treat air pollution associated disease.
Collapse
Affiliation(s)
- Junling Gao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Juntao Yuan
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qiao'e Wang
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Tong Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyue Shen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bingqing Cui
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongbing Lu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
59
|
Le Y, Hu X, Zhu J, Wang C, Yang Z, Lu D. Ambient fine particulate matter induces inflammatory responses of vascular endothelial cells through activating TLR-mediated pathway. Toxicol Ind Health 2019; 35:670-678. [PMID: 31601156 DOI: 10.1177/0748233719871778] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aims to investigate the role of Toll-like receptors (TLRs) on fine particulate matter (PM2.5)-induced inflammatory responses of vascular endothelial cells. Inflammatory factors and TLRs were examined in the aorta of mice after nonsurgical intratracheal instillation of PM2.5 as well as in the human umbilical vein endothelial cells (HUVECs) treated with PM2.5. In addition, the effects of TLR2 and TLR4 inhibitors in the secretion of interleukin 6 (IL-6) and IL-1β and the expression of TLRs were determined in the HUVECs. The results showed that PM2.5 could increase the expression of IL-1β, IL-6, TLR2, and TLR4 in vitro and in vivo. Anti-TLR2 IgG or TAK242, an inhibitor of TLR4, decreased the secretion of IL-1β and IL-6 by HUVECs and reduced the expression of corresponding TLRs. In conclusion, we demonstrate that both TLR2 and TLR4 are involved in PM2.5-induced inflammatory responses of vascular endothelial cells. Inhibition of TLR2 and TLR4 expression has the potential to prevent PM2.5-induced cardiovascular diseases.
Collapse
Affiliation(s)
- Yifei Le
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao Hu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Ji Zhu
- Clinical Laboratory, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Cui Wang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhen Yang
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Dezhao Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
60
|
Wang H, Shen X, Liu J, Wu C, Gao J, Zhang Z, Zhang F, Ding W, Lu Z. The effect of exposure time and concentration of airborne PM 2.5 on lung injury in mice: A transcriptome analysis. Redox Biol 2019; 26:101264. [PMID: 31279222 PMCID: PMC6612658 DOI: 10.1016/j.redox.2019.101264] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/18/2019] [Accepted: 06/30/2019] [Indexed: 12/22/2022] Open
Abstract
The association between airborne fine particulate matter (PM2.5) concentration and the risk of respiratory diseases has been well documented by epidemiological studies. However, the mechanism underlying the harmful effect of PM2.5 has not been fully understood. In this study, we exposed the C57BL/6J mice to airborne PM2.5 for 3 months (mean daily concentration ~50 or ~110 μg/m3, defined as PM2.5-3L or PM2.5-3H) or 6 months (mean daily concentration ~50 μg/m3, defined as PM2.5-6L) through a whole-body exposure system. Histological and biochemical analysis revealed that PM2.5-3H exposure caused more severe lung injury than did PM2.5-3L, and the difference was greater than that of PM2.5-6L vs PM2.5-3L exposure. With RNA-sequencing technique, we found that the lungs exposed with different concentration of PM2.5 have distinct transcriptional profiles. PM2.5-3H exposure caused more differentially expressed genes (DEGs) in lungs than did PM2.5-3L or PM2.5-6L. The DEGs induced by PM2.5-3L or PM2.5-6L exposure were mainly enriched in immune pathways, including Hematopoietic cell lineage and Cytokine-cytokine receptor interaction, while the DEGs induced by PM2.5-3H exposure were mainly enriched in cardiovascular disease pathways, including Hypertrophic cardiomyopathy and Dilated cardiomyopathy. In addition, we found that upregulation of Cd5l and reduction of Hspa1 and peroxiredoxin-4 was associated with PM2.5-induced pulmonary inflammation and oxidative stress. These results may provide new insight into the cytotoxicity mechanism of PM2.5 and help to development of new strategies to attenuate air pollution associated respiratory disease.
Collapse
Affiliation(s)
- Hongyun Wang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiyue Shen
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingli Liu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chunyan Wu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junling Gao
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zezhong Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang Zhang
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjun Ding
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
61
|
Lee W, Jeong SY, Gu MJ, Lim JS, Park EK, Baek MC, Kim JS, Hahn D, Bae JS. Inhibitory effects of compounds isolated from Dioscorea batatas Decne peel on particulate matter-induced pulmonary injury in mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:727-740. [PMID: 31342870 DOI: 10.1080/15287394.2019.1646174] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Particulate matter 2.5 (PM2.5), with an aerodynamic diameter of ≤2.5 μm, is the primary air pollutant that plays a key role associated with lung injury produced by loss of vascular barrier integrity. Dioscorea batatas Decne (Chinese yam), a perennial plant belonging to Dioscoreaceae family, is widely cultivated in tropical and subtropical regions across Asia. Both aerial parts and root of D. batatas are consumed for nutritional and medicinal purposes. The aim of this study was to (1) identify the bioactive compounds present in D. batatas peel which may be responsible for inhibition of PM2.5-induced pulmonary inflammation in mice and (2) examine in vitro mechanisms underlying the observed effects of these compounds on mouse lung microvascular endothelial cells. The measured parameters include permeability, leukocyte migration, proinflammatory protein activation, reactive oxygen species (ROS) generation, and histology. Two phenanthrene compounds, 2,7-dihydroxy-4,6-dimethoxyphenanthrene (1) and 6,7-dihydroxy-2,4-dimethoxyphenanthrene (2) were isolated from D. batatas peels. Both these phenanthrene compounds exhibited significant scavenging activity against PM2.5-induced ROS and inhibited ROS-induced activation of p38 mitogen-activated protein kinase. In addition, enhancement of Akt pathway, involved in the maintenance of endothelial integrity, was noted. These phenanthrene compounds also reduced vascular protein leakage, leukocyte infiltration, and proinflammatory cytokine release in the bronchoalveolar lavage fluid obtained from PM2.5-induced lung tissues. Evidence thus indicates that phenanthrene compounds derived from D. batatas may exhibit protective effects against PM2.5-induced inflammatory lung injury and vascular hyperpermeability in mice.
Collapse
Affiliation(s)
- Wonhwa Lee
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
- b Aging Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB) , Daejeon , Republic of Korea
| | - So Yeon Jeong
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
| | - Myeong Ju Gu
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Ji Sun Lim
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Eui Kyun Park
- d Department of Pathology and Regenerative Medicine, School of Dentistry, Kyungpook National University , Daegu , Republic of Korea
| | - Moon-Chang Baek
- e Department of Molecular Medicine, CMRI, School of Medicine, Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sang Kim
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
- f Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Dongyup Hahn
- c School of Food Science and Biotechnology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
- f Institute of Agricultural Science and Technology, College of Agriculture and Life Sciences, Kyungpook National University , Daegu , Republic of Korea
| | - Jong-Sup Bae
- a College of Pharmacy, CMRI, Research Institute of Pharmaceutical Sciences, BK21 Plus KNU Multi-Omics based Creative Drug Research Team, Kyungpook National University , Daegu , Republic of Korea
| |
Collapse
|
62
|
Tao S, Zhang H, Xue L, Jiang X, Wang H, Li B, Tian H, Zhang Z. Vitamin D protects against particles-caused lung injury through induction of autophagy in an Nrf2-dependent manner. ENVIRONMENTAL TOXICOLOGY 2019; 34:594-609. [PMID: 30698894 DOI: 10.1002/tox.22726] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 01/05/2019] [Accepted: 01/13/2019] [Indexed: 06/09/2023]
Abstract
Fine particulate matter is a well-known air pollutant threatening public health. Studies have confirmed long-term exposure to the particles could decrease the pulmonary function, induce asthma exacerbation, and chronic obstructive pulmonary disease, as well as increase the incidence and mortality of lung cancer. A clinical study has explored that the prevalence and risks of vitamin D (VD) deficiency in various chronic disease and toxins induced tissue damage. Our current study aimed to explore the mechanism and further therapeutic potential of VD administration to ameliorate fine particles exposure induced pulmonary damage in vivo and in vitro. To elucidate the effects and mechanisms of VD in particles-induced pulmonary damage, a murine model was established with fine particles intratracheal instillation along with VD intramuscular injection. Our study demonstrated that treatment with VD attenuated particles-induced pulmonary damage and promoted tissue repair by repressing of TGFβ1 signaling pathway and upregulation of MMP9 expression. VD treatment could also regulate the autophagy-related signals along with activation of Nrf2 transcription factor. Furthermore, the results from the in vitro study demonstrated that VD protected against particles-induced cells' damage through the induction of autophagy in an Nrf2-dependent manner. VD treatment caused the degradation of P62 and its bound Keap1, which decreased the Nrf2 ubiquitination and increasing its protein stability. Our work explored a novel potential mechanism in the protection of VD in particles-induced pulmonary injury and tissue repair, and could further bring insights into exploring antifine particles exposure caused inflammation among other natural products and contributes to inflammation disease medical therapies.
Collapse
Affiliation(s)
- Shasha Tao
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Hong Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Lian Xue
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Xiaoyan Jiang
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Hongyan Wang
- Department of Endocrinology and Nephrology, Chongqing University Central Hospital, Chongqing Emergency Medical Center, Chongqing, China
| | - Bingyan Li
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Hailin Tian
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| | - Zengli Zhang
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou, China
| |
Collapse
|
63
|
Yue W, Tong L, Liu X, Weng X, Chen X, Wang D, Dudley SC, Weir EK, Ding W, Lu Z, Xu Y, Chen Y. Short term Pm2.5 exposure caused a robust lung inflammation, vascular remodeling, and exacerbated transition from left ventricular failure to right ventricular hypertrophy. Redox Biol 2019; 22:101161. [PMID: 30861460 PMCID: PMC6411784 DOI: 10.1016/j.redox.2019.101161] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 11/17/2022] Open
Abstract
Heart failure (HF) is the single largest cause for increased hospitalization after fine particulate matter (PM2.5) exposure. Patients with left HF often progress to right ventricular (RV) failure even with optimal medical care. An increase of PM2.5 of 10 μg per cubic meter was associated with a 76% increase in the risk of death from cardiovascular disease in 4 years' period. However, the role and mechanism of PM2.5 in HF progression are not known. Here we investigated the role of PM2.5 exposure in mice with existing HF mice produced by transverse aortic constriction (TAC). TAC-induced HF caused lung inflammation, vascular remodeling and RV hypertrophy. We found increased PM2.5 profoundly exacerbated lung oxidative stress in mice with existing left HF. To our surprise, PM2.5 exposure had no effect on LV hypertrophy and function, but profoundly exacerbated lung inflammation, vascular remodeling, and RV hypertrophy in mice with existing left HF. These striking findings demonstrate that PM2.5 and/or air pollution is a critical factor for overall HF progression by regulating lung oxidative stress, inflammation and remodeling as well as RV hypertrophy. Improving air quality may save HF patients from a dismal fate.
Collapse
Affiliation(s)
- Wenhui Yue
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lei Tong
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong Liu
- Shanxi Provincial People's Hospital, Taiyuan, China
| | - Xinyu Weng
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaoyu Chen
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongzhi Wang
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Samuel C Dudley
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - E Kenneth Weir
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Wenjun Ding
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongbing Lu
- College of Life Science, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Yingjie Chen
- Cardiovascular Division and Lillehei Heart Institute, University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
64
|
Zhang Y, Song Y, Wu J, Li R, Hu D, Lin Z, Cai Z. A magnetic covalent organic framework as an adsorbent and a new matrix for enrichment and rapid determination of PAHs and their derivatives in PM2.5 by surface-assisted laser desorption/ionization-time of flight-mass spectrometry. Chem Commun (Camb) 2019; 55:3745-3748. [DOI: 10.1039/c9cc00384c] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fe3O4@COFs served as an adsorbent and new matrix for SALDI-TOF-MS analysis of PAHs and their derivatives in PM2.5 with clear background, good reproducibility and sensitivity.
Collapse
Affiliation(s)
- Yanhao Zhang
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- China
| | - Yuanyuan Song
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- China
| | - Jie Wu
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Ruijin Li
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- China
- Institute of Environmental Science
| | - Di Hu
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- China
| | - Zian Lin
- Ministry of Education Key Laboratory of Analytical Science for Food Safety and Biology
- Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety
- Department of Chemistry
- Fuzhou University
- Fuzhou
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis
- Department of Chemistry
- Hong Kong Baptist University
- China
- Guangzhou Key Laboratory of Environmental catalysis and Pollution Control
| |
Collapse
|
65
|
Zhang H, Xue L, Li B, Tian H, Zhang Z, Tao S. Therapeutic potential of bixin in PM2.5 particles-induced lung injury in an Nrf2-dependent manner. Free Radic Biol Med 2018; 126:166-176. [PMID: 30120979 DOI: 10.1016/j.freeradbiomed.2018.08.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 08/12/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
Fine particulate matter (PM 2.5) is a well-known air pollutant threatening public health. Studies has confirmed that long-term exposure to the particles could reduce the pulmonary function, cause exacerbation of asthma and chronic obstructive pulmonary disease, and increase incidence and mortality of lung cancer. Bixin is a natural compound that is widely used as a food additive. Our previous studies demonstrated that bixin i.p. administration could protect against particles intratracheal exposure (56 days)-induced lung injury in an Nrf2-dependent manner. But the detail mechanisms are still unclarified. Our current study aimed to explore the further therapeutic potential and mechanism of bixin to slow the progression of lung injury and inflammation in vivo and in vitro. The results from the in vivo study showed that bixin treatment attenuated the accumulation of inflammatory cells, decreased the levels of tissue apoptosis, and increase the ability of cell proliferation. Besides that, bixin also could regulate the expression of MMP9, TGFβ1, and its downstream Fibronectin (FN), along with activation of Nrf2 signals. In vitro experiments in human bronchial epithelial cells demonstrated that Nrf2 activated by bixin contributes to tissue repair by alleviating oxidative stress, increasing proliferation and migration, decreasing apoptosis, which may be partially through modulating the expression of MMP9, TGFβ1, and FN. This study provides convincing experimental evidences that bixin could be used therapeutically to promote tissue repair and improve pulmonary injury induced by particles exposure.
Collapse
Affiliation(s)
- Hong Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Lian Xue
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Bingyan Li
- Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Hailin Tian
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Zengli Zhang
- School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China
| | - Shasha Tao
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Disease, School of Public Health, Soochow University, Suzhou 215123, China; School of Public Health, Medical College of Soochow University, 199 Ren'ai Road, Suzhou 215123, Jiangsu, China.
| |
Collapse
|