51
|
Yao Q, Zhang M, Zu S, Yang H, Xie W, Chen J, Chen Z, Ge Y, Zeng W, Zhao Z. Integrated mRNA and microRNA Transcriptome Sequencing Characterizes Sequence Variants and mRNA-microRNA Regulatory Networks in Grass Carp Fibroblasts Infected with Virulent and Attenuated GCRV. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2021; 23:342-355. [PMID: 33748916 DOI: 10.1007/s10126-021-10029-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Grass carp hemorrhagic disease is a fatal disease caused by the grass carp reovirus (GCRV). The aberrant regulation of transcripts has been implicated in many types of diseases. In the present study, we characterized mRNA and miRNA transcriptomes of different virulent GCRVs using RNA sequencing (RNA-Seq). One hundred eighteen miRNAs were identified as being differentially expressed between different virulent viruses in grass carp fibroblasts. Eight miRNAs were selected to verify the RNA-Seq results using RT-PCR and mRNA methods. In total, 996 differentially expressed mRNA genes were identified in grass carp fibroblasts, while 901 miRNA-mRNA target pairs were observed to be inversely regulated in grass carp fibroblasts. Integrated mRNA/miRNA expression profiling analysis results showed that the most influenced processes were the immune response and cell death. Three miRNAs were shown to exhibit the same expression patterns when two different methods were used and had important functions during viral infection. These results provide insights into the miRNA-mediated regulation of mRNA and valuable resources on transcript variation and regulation during GCRV infection, which are potentially useful for mechanistic and drug studies.
Collapse
Affiliation(s)
- Qiucheng Yao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Mengdi Zhang
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Shaopo Zu
- Haikou Customs District P.R. China, Haikou, Hainan, China
| | - Hong Yang
- Nanchang Animal Disease Prevention and Control Center, Jiangxi, Nanchang, People's Republic of China
| | - Weitian Xie
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Jinjun Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Zhibao Chen
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China
| | - Ye Ge
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China.
| | - Weiwei Zeng
- School of Life Science and Engineering, Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, Foshan University, Foshan, 528231, China.
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Guangdong Province, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, People's Republic of China.
| | - Zhihui Zhao
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, People's Republic of China.
| |
Collapse
|
52
|
Vargas D, Vallejos-Vidal E, Reyes-Cerpa S, Oyarzún-Arrau A, Acuña-Castillo C, Imarai M, Reyes-López FE, Sandino AM. The Analysis of Live-Attenuated Piscirickettsia salmonis Vaccine Reveals the Short-Term Upregulation of Innate and Adaptive Immune Genes in Atlantic Salmon ( Salmo salar): An In Situ Open-Sea Cages Study. Microorganisms 2021; 9:microorganisms9040703. [PMID: 33805284 PMCID: PMC8066903 DOI: 10.3390/microorganisms9040703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/02/2023] Open
Abstract
Piscirickettsia salmonis, the etiological agent of the Salmon Rickettsial Septicemia (SRS), is one the most serious health problems for the Chilean salmon industry. Typical antimicrobial strategies used against P. salmonis include antibiotics and vaccines, but these applications have largely failed. A few years ago, the first attenuated-live vaccine against SRS (ALPHA JECT LiVac® SRS vaccine) was released to the market. However, there is no data about the agents involved in the activation of the immune response induced under field conditions. Therefore, in this study we evaluated the expression profile of a set of gene markers related to innate and adaptive immunity in the context of a cellular response in Atlantic salmon (Salmo salar) reared under productive farm conditions and immunized with a live-attenuated vaccine against P. salmonis. We analyzed the expression at zero, 5-, 15- and 45-days post-vaccination (dpv). Our results reveal that the administration of the attenuated live SRS LiVac vaccine induces a short-term upregulation of the cellular-mediated immune response at 5 dpv modulated by the upregulation of ifnα, ifnγ, and the cd4 and cd8α T cell surface markers. In addition, we also registered the upregulation of il-10 and tgfβ. Altogether, the results suggest that a balanced activation of the immune response took place only at early times post-vaccination (5 dpv). The scope of this short-term upregulation of the cellular-mediated immune response against a natural outbreak in fish subjected to productive farm conditions deserves further research.
Collapse
Affiliation(s)
- Deborah Vargas
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Eva Vallejos-Vidal
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Sebastián Reyes-Cerpa
- Centro de Genómica y Bioinformática, Facultad de Ciencias, Universidad Mayor, 8580745 Santiago, Chile;
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, 8580745 Santiago, Chile
| | - Aarón Oyarzún-Arrau
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
| | - Claudio Acuña-Castillo
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Mónica Imarai
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
| | - Felipe E. Reyes-López
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, 7500975 Providencia, Chile
- Correspondence: (F.E.R.-L.); (A.M.S.)
| | - Ana María Sandino
- Consorcio Tecnológico de Sanidad Acuícola, Ictio Biotechnologies S.A., 7500652 Santiago, Chile; (D.V.); (A.O.-A.); (M.I.)
- Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, 9170002 Santiago, Chile;
- Correspondence: (F.E.R.-L.); (A.M.S.)
| |
Collapse
|
53
|
A 20-year retrospective review of global aquaculture. Nature 2021; 591:551-563. [PMID: 33762770 DOI: 10.1038/s41586-021-03308-6] [Citation(s) in RCA: 500] [Impact Index Per Article: 125.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/29/2021] [Indexed: 02/01/2023]
Abstract
The sustainability of aquaculture has been debated intensely since 2000, when a review on the net contribution of aquaculture to world fish supplies was published in Nature. This paper reviews the developments in global aquaculture from 1997 to 2017, incorporating all industry sub-sectors and highlighting the integration of aquaculture in the global food system. Inland aquaculture-especially in Asia-has contributed the most to global production volumes and food security. Major gains have also occurred in aquaculture feed efficiency and fish nutrition, lowering the fish-in-fish-out ratio for all fed species, although the dependence on marine ingredients persists and reliance on terrestrial ingredients has increased. The culture of both molluscs and seaweed is increasingly recognized for its ecosystem services; however, the quantification, valuation, and market development of these services remain rare. The potential for molluscs and seaweed to support global nutritional security is underexploited. Management of pathogens, parasites, and pests remains a sustainability challenge industry-wide, and the effects of climate change on aquaculture remain uncertain and difficult to validate. Pressure on the aquaculture industry to embrace comprehensive sustainability measures during this 20-year period have improved the governance, technology, siting, and management in many cases.
Collapse
|
54
|
Non-Lethal Sequential Individual Monitoring of Viremia in Relation to DNA Vaccination in Fish-Example Using a Salmon Alphavirus DNA Vaccine in Atlantic Salmon Salmo salar. Vaccines (Basel) 2021; 9:vaccines9020163. [PMID: 33671162 PMCID: PMC7922653 DOI: 10.3390/vaccines9020163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 02/04/2021] [Accepted: 02/04/2021] [Indexed: 11/26/2022] Open
Abstract
Traditionally, commercial testing for vaccine efficacy has relied on the mass infection of vaccinated and unvaccinated animals and the comparison of mortality prevalence and incidence. For some infection models where disease does not cause mortality this approach to testing vaccine efficacy is not useful. Additionally, in fish experimental studies on vaccine efficacy and immune response the norm is that several individuals are lethally sampled at sequential timepoints, and results are extrapolated to represent the kinetics of immune and disease parameters of an individual fish over the entire experimental infection period. In the present study we developed a new approach to vaccine testing for viremic viruses in fish by following the same individuals over the course of a DNA vaccination and experimental infection through repeated blood collection and analyses. Injectable DNA vaccines are particularly efficient against viral disease in fish. To date, two DNA vaccines have been authorised for use in fish farming, one in Canada against Infectious Haemorrhagic Necrotic virus and more recently one in Europe against Salmon Pancreatic Disease virus (SPDv) subtype 3. In the current study we engineered and used an experimental DNA vaccine against SPDv subtype 1. We measured viremia using a reporter cell line system and demonstrated that the viremia phase was completely extinguished following DNA vaccination. Differences in viremia infection kinetics between fish in the placebo group could be related to subsequent antibody levels in the individual fish, with higher antibody levels at terminal sampling in fish showing earlier viremia peaks. The results indicate that sequential non-lethal sampling can highlight associations between infection traits and immune responses measured at asynchronous timepoints and, can provide biological explanations for variation in data. Similar to results observed for the SPDv subtype 3 DNA vaccine, the SPDv subtype 1 DNA vaccine also induced an interferon type 1 response after vaccination and provided high protection against SPDv under laboratory conditions when fish were challenged at 7 weeks post-vaccination.
Collapse
|
55
|
Miccoli A, Manni M, Picchietti S, Scapigliati G. State-of-the-Art Vaccine Research for Aquaculture Use: The Case of Three Economically Relevant Fish Species. Vaccines (Basel) 2021; 9:140. [PMID: 33578766 PMCID: PMC7916455 DOI: 10.3390/vaccines9020140] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/05/2021] [Accepted: 02/06/2021] [Indexed: 11/16/2022] Open
Abstract
In the last three decades, the aquaculture sector has experienced a 527% growth, producing 82 million tons for a first sale value estimated at 250 billion USD. Infectious diseases caused by bacteria, viruses, or parasites are the major causes of mortality and economic losses in commercial aquaculture. Some pathologies, especially those of bacterial origin, can be treated with commercially available drugs, while others are poorly managed. In fact, despite having been recognized as a useful preventive measure, no effective vaccination against many economically relevant diseases exist yet, such as for viral and parasitic infections. The objective of the present review is to provide the reader with an updated perspective on the most significant and innovative vaccine research on three key aquaculture commodities. European sea bass (Dicentrarchus labrax), Nile tilapia (Oreochromis niloticus), and Atlantic salmon (Salmo salar) were chosen because of their economic relevance, geographical distinctiveness, and representativeness of different culture systems. Scientific papers about vaccines against bacterial, viral, and parasitic diseases will be objectively presented; their results critically discussed and compared; and suggestions for future directions given.
Collapse
|
56
|
Gong H, Wang Q, Lai Y, Zhao C, Sun C, Chen Z, Tao J, Huang Z. Study on Immune Response of Organs of Epinephelus coioides and Carassius auratus After Immersion Vaccination With Inactivated Vibrio harveyi Vaccine. Front Immunol 2021; 11:622387. [PMID: 33633740 PMCID: PMC7900426 DOI: 10.3389/fimmu.2020.622387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/21/2020] [Indexed: 12/04/2022] Open
Abstract
Immersion vaccination relies on the response of fish mucosa-associated lymphoid tissues, the Crucian carp (Carassius auratus) and Grouper (Epinephelus coioides) were researched in this paper to examine local mucosal immune responses and associated humoral system responses following immersion vaccination. We administered 1.5 × 107 CFU/ml formalin-inactivated Vibrio harveyi cells and measured mucus and serum antibody titers as well as IgM, MHC II mRNA levels in immune organs. The mucosal antibody response preceded the serum response indicating a role for local mucosal immunity in immersion vaccination. IgM and MHC II mRNA levels were relatively greater for the spleen and head kidney indicating the importance and central position of systemic immunity. Expression levels were also high for the gills while skin levels were the lowest. IgM and MHC II mRNA levels were altered over time following vaccination and the hindgut, liver and spleen were similar indicating a close relationship, so the absolute value of r is used to analyze the correlation among different organs immunized. It can be inferred the existence of an internal immune molecular mechanism for Immune synergy hindgut-liver-spleen, from the peak time (14th day), the relative ratio of genes expression in the same tissues between the immunized grouper and the control group (26 times), and Pearson correlation coefficient (0.8<|r|<1). Injection challenges with live V. harveyi indicated that the relative protection rates for the crucian carp and Grouper was basically the same at 44.4% and 47.4%, respectively. It is believe that crucian carp may be used as a substitute for the valuable grouper in immunity experiment, just from aspect of the relative percent survival (RPS) and how it changes with time. But they were not consistent about the IgM mRNA expression between that of crucian carp and grouper after immersion the Vibrio vaccine.
Collapse
Affiliation(s)
- Hua Gong
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingtiao Lai
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Changchen Zhao
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Chenwen Sun
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zonghui Chen
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Jiafa Tao
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Zhibin Huang
- Key Lab of Aquatic Animal Immune Technology of Guangdong Province, Key Lab of Fishery Drug Development of Ministry of Agriculture and Rural Affairs, Pearl River Fisheries Research Institute of Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
57
|
Zeng W, Wang Y, Hu H, Wang Q, Bergmann SM, Wang Y, Li B, Lv Y, Li H, Yin J, Li Y. Cell Culture-Derived Tilapia Lake Virus-Inactivated Vaccine Containing Montanide Adjuvant Provides High Protection against Viral Challenge for Tilapia. Vaccines (Basel) 2021; 9:vaccines9020086. [PMID: 33503930 PMCID: PMC7911875 DOI: 10.3390/vaccines9020086] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/16/2022] Open
Abstract
Tilapia lake virus (TiLV) is a newly emerging pathogen responsible for high mortality and economic losses in the global tilapia industry. Currently, no antiviral therapy or vaccines are available for the control of this disease. The goal of the present study was to evaluate the immunological effects and protective efficacy of formaldehyde- and β-propiolactone-inactivated vaccines against TiLV in the presence and absence of the Montanide IMS 1312 VG adjuvant in tilapia. We found that β-propiolactone inactivation of viral particles generated a vaccine with a higher protection efficacy against virus challenge than did formaldehyde. The relative percent survivals of vaccinated fish at doses of 108, 107, and 106 50% tissue culture infectious dose (TCID50)/mL were 42.9%, 28.5%, and 14.3% in the absence of the adjuvant and 85.7%, 64.3%, and 32.1% in its presence, respectively. The vaccine generated specific IgM and neutralizing antibodies against TiLV at 3 weeks following immunization that were significantly increased after a second booster immunization. The steady state mRNA levels of the genes tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), interferon γ (IFN-γ), cluster of differentiation 4 (CD4), major histocompatibility complex (MHC)-Ia, and MHC-II were all increased and indicated successful immune stimulation against TiLV. The vaccine also significantly lowered the viral loads and resulted in significant increases in survival, indicating that the vaccine may also inhibit viral proliferation as well as stimulate a protective antibody response. The β-propiolactone-inactivated TiLV vaccine coupled with the adjuvant Montanide IMS 1312 VG and booster immunizations can provide a high level of protection from virus challenge in tilapia.
Collapse
Affiliation(s)
- Weiwei Zeng
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
- Correspondence: (W.Z.); (Q.W.)
| | - Yingying Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Huzi Hu
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Qing Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
- Correspondence: (W.Z.); (Q.W.)
| | - Sven M. Bergmann
- Institute of Infectology, Friedrich-Loffler-Institut (FLI), Federal Research Institute for Animal Health, Greifswald-Insel Riems, 17493 Greifswald, Germany;
| | - Yahui Wang
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Bo Li
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Yuefeng Lv
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| | - Hua Li
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
| | - Jiyuan Yin
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528000, China; (H.L.); (J.Y.)
| | - Yingying Li
- Key Laboratory of Aquatic Animal Immune Technology, Key Laboratory of Fishery Drug Development, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Ministry of Agriculture, Guangzhou 510380, China; (Y.W.); (H.H.); (Y.W.); (B.L.); (Y.L.); (Y.L.)
| |
Collapse
|
58
|
Nasr-Eldahan S, Nabil-Adam A, Shreadah MA, Maher AM, El-Sayed Ali T. A review article on nanotechnology in aquaculture sustainability as a novel tool in fish disease control. AQUACULTURE INTERNATIONAL : JOURNAL OF THE EUROPEAN AQUACULTURE SOCIETY 2021; 29:1459-1480. [PMID: 33688117 PMCID: PMC7933385 DOI: 10.1007/s10499-021-00677-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 02/19/2021] [Indexed: 05/10/2023]
Abstract
In recent decades, aquaculture has played a significant role in fulfilling the vast demand for animal protein requirements and consequently in food security. However, environmental contamination and disease prevalence are considered essential challenges for the sector. In this regard, new approaches have been paved in technology to deal effectively with such challenges. Among these, nanotechnology-as a novel and innovative tool-has a broad spectrum of uses and a tremendous potential in aquaculture and seafood preservation. It can provide new technologies for management of drugs as liberation of vaccines and therefore hold the assurance for civilized protection of farmed fish against disease-causing pathogens. This article presents a review of nanotechnology and its applications in aquaculture. Additionally, it gives a brief idea about the fish disease and classical ways of controlling pathogens. On the other hand, this review sheds the light on nanotechnology as a potential novel tool which may possibly enhance the management and the control of disease prevalence. Therefore, the importance of this technology to promote sustainable aquaculture has also been highlighted. Focusing on the role of selenium nanoparticles as an efficient element is discussed also in this article.
Collapse
Affiliation(s)
- Sameh Nasr-Eldahan
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | - Asmaa Nabil-Adam
- National Institute of Oceanography and Fisheries (NIOF), Alexandria, Egypt
| | | | - Adham M. Maher
- Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Tamer El-Sayed Ali
- Oceanography Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
59
|
Karami AM, Ødegård J, Marana MH, Zuo S, Jaafar R, Mathiessen H, von Gersdorff Jørgensen L, Kania PW, Dalsgaard I, Nielsen T, Buchmann K. A Major QTL for Resistance to Vibrio anguillarum in Rainbow Trout. Front Genet 2020; 11:607558. [PMID: 33447254 PMCID: PMC7802751 DOI: 10.3389/fgene.2020.607558] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 12/08/2020] [Indexed: 02/03/2023] Open
Abstract
Genetic selection of disease resistant fish is a major strategy to improve health, welfare and sustainability in aquaculture. Mapping of single nucleotide polymorphisms (SNP) in the fish genome may be a fruitful tool to define relevant quantitative trait loci (QTL) and we here show its use for characterization of Vibrio anguillarum resistant rainbow trout (Oncorhynchus mykiss). Fingerlings were exposed to the pathogen V. anguillarum serotype O1 in a solution of 1.5 × 107 cfu/ml and observed for 14 days. Disease signs appeared 3 days post exposure (dpe) whereafter mortality progressed exponentially until 6 dpe reaching a total mortality of 55% within 11 days. DNA was sampled from all fish – including survivors – and analyzed on a 57 k Affymetrix SNP platform whereby it was shown that disease resistance was associated with a major QTL on chromosome 21 (Omy 21). Gene expression analyses showed that diseased fish activated genes associated with innate and adaptive immune responses. The possible genes associated with resistance are discussed.
Collapse
Affiliation(s)
- Asma M Karami
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Moonika H Marana
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Shaozhi Zuo
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rzgar Jaafar
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Heidi Mathiessen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Louise von Gersdorff Jørgensen
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Per W Kania
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Inger Dalsgaard
- Institute of Aquatic Resources, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Kurt Buchmann
- Laboratory of Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
60
|
Veenstra KA, Hodneland K, Fischer S, Takehana K, Belmonte R, Fischer U. Cellular Immune Responses in Rainbow Trout ( Onchorhynchus mykiss) Following Vaccination and Challenge Against Salmonid Alphavirus (SAV). Vaccines (Basel) 2020; 8:vaccines8040725. [PMID: 33276596 PMCID: PMC7761581 DOI: 10.3390/vaccines8040725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/23/2020] [Accepted: 11/27/2020] [Indexed: 01/25/2023] Open
Abstract
Viral disease outbreaks remain a significant limiting factor for aquaculture. The majority of licensed vaccines used in the industry are administered as oil-adjuvanted formulations carrying inactivated whole pathogens. Cell-mediated immune responses, in particular those based on virus-specific cytotoxic T-cells (CTLs) to conventional inactivated oil-based vaccines, are largely unexplored. As vaccines cannot be optimized against viral pathogens if knowledge of host cellular immune mechanisms remains unknown, in this study we examined fundamental cell-mediated immune responses after vaccination of rainbow trout with an oil-adjuvanted inactivated vaccine against salmonid alphavirus (SAV) and after infection with SAV. A unique in vitro model system was developed to examine MHC class I restricted CTL responses in a clonal line of rainbow trout. The levels of cell-mediated cytotoxicity were compared to pathology, virus load, specific antibody response, changes in immune cell populations, and mRNA expression. Our results hint that different protective mechanisms are being triggered by infection compared to vaccination. While vaccination itself did not cause a strong cytotoxic or humoral response, subsequent challenge of vaccinated fish resulted in significantly stronger and faster specific cytotoxicity, alongside reduced viral titers and pathology. Hence, testing a vaccine on the capacity to induce cell-mediated cytotoxicity will still require a challenge test. Examination of cellular markers additionally indicates that the initial innate response induced by the vaccine could play an important role in steering adaptive mechanisms.
Collapse
Affiliation(s)
- Kimberly A. Veenstra
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kjartan Hodneland
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Susanne Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
| | - Kota Takehana
- Nagano Prefectural Fisheries Experimental Station, 2871 Oaza-Nakagawate, Akashina, Azumino-shi, Nagano 399-7102, Japan;
| | - Rodrigo Belmonte
- MSD Animal Health Innovation, Thormøhlens Gate 55, 5006 Bergen, Norway; (K.H.); (R.B.)
| | - Uwe Fischer
- Friedrich-Loeffler-Institut (FLI), Federal Research Institute for Animal Health, Institute of Infectology, Südufer 10, 17493 Greifswald-Insel Riems, Germany; (K.A.V.); (S.F.)
- Correspondence: ; Tel.: +49-38351-71175
| |
Collapse
|
61
|
Germination-Arrest Bacillus subtilis Spores as An Oral Delivery Vehicle of Grass Carp Reovirus (GCRV) Vp7 Antigen Augment Protective Immunity in Grass Carp ( Ctenopharyngodon idella). Genes (Basel) 2020; 11:genes11111351. [PMID: 33202570 PMCID: PMC7696455 DOI: 10.3390/genes11111351] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/09/2020] [Accepted: 11/11/2020] [Indexed: 12/15/2022] Open
Abstract
Oral vaccination is a practical method for the active immunization of farmed fish in the matter of animal welfare and handling costs. However, it always shows insufficient protective immunity, mainly due to antigen degradation in the gastrointestinal tract (GIT). Bacillus subtilis spores have been shown to be able to protect surface-display heterologous antigens against degradation. Neverthless, the spores can germinate in GIT, which causes loss of the antigens with spore coat disassembly. Here, we developed a novel surface display system using the B. subtilis spore coat proteins CotB and CotC as anchors for the heterogenous antigen, and the germination-controlling genes cwlJ and sleB as the ectopic integration sites for the fusion genes. Using this display system, we engineered germination-arrest spores displaying the model antigen Vp7 of grass carp reovirus (GCRV) on their surface. Oral vaccination of the engineered spores could confer immune protection against GCRV in grass carp (Ctenopharyngodon idella) via eliciting adaptive humoral and cellular immune responses. Most importantly, the germination-arrest spores were shown to significantly augment immunogenicity and protection above the engineered spores based on the existing surface display system. Therefore, the presently reported antigen expression strategy opens new and promising avenues for developing oral vaccines for the immunization of farmed fish species.
Collapse
|
62
|
Host genetic variation explains reduced protection of commercial vaccines against Piscirickettsia salmonis in Atlantic salmon. Sci Rep 2020; 10:18252. [PMID: 33106499 PMCID: PMC7588420 DOI: 10.1038/s41598-020-70847-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 08/04/2020] [Indexed: 12/11/2022] Open
Abstract
Vaccination is a widely used control strategy to prevent Piscirickettsia salmonis causing disease in salmon farming. However, it is not known why all the currently available commercial vaccines generally fail to protect against this pathogenic bacteria. Here, we report, from two different populations, that between-family variation is a strong intrinsic factor that determines vaccine protection for this disease. While in some full-sib families, the protection added by vaccination increased the survival time in 13 days in comparison with their unvaccinated siblings; in other families, there was no added protection by vaccination or even it was slightly negative. Resistance to P. salmonis, measured as days to death, was higher in vaccinated than unvaccinated fish, but only a moderate positive genetic correlation was obtained between these traits. This disputes a previous hypothesis, that stated that both traits were fully controlled by the same genes, and challenges the use of unvaccinated fish as gold standard for evaluating and selecting fish resistant to P. salmonis, particularly if the offspring will be vaccinated. More studies are necessary to evaluate if variation in the host immune response to vaccination could explain the between-family differences in resistance observed in vaccinated fish.
Collapse
|
63
|
Delalay G, Berezowski JA, Diserens N, Schmidt-Posthaus H. An understated danger: Antimicrobial resistance in aquaculture and pet fish in Switzerland, a retrospective study from 2000 to 2017. JOURNAL OF FISH DISEASES 2020; 43:1299-1315. [PMID: 32830338 DOI: 10.1111/jfd.13234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 06/11/2023]
Abstract
Aquaculture is a rapidly growing field of food production. However, morbidity and mortality are higher in aquaculture species than in domestic animals. Bacterial diseases are a leading cause of farmed fish morbidity and are often treated with antimicrobials. Since most Swiss fish farms release effluents directly into surface water without treatment and since aquaculture fish are consumed by humans, antimicrobial resistance (AMR) and multi-resistance in aquaculture fish are important for environmental and public health. In this study, AMR tests for 14 antimicrobials were performed on 1,448 isolates from 1,134 diagnostic laboratory submissions from farmed and ornamental fish submissions for the period from 2000 to 2017. Amoxicillin, gentamycin and norfloxacin had the lowest proportion of resistant samples. However, AMR was highly variable over time. Resistance proportions were higher in: (a) ornamental fish compared with farmed fish, (b) fish from recirculation systems compared with those from other farming systems and (c) isolates originating from skin compared with those originating from inner organs. Multiple resistances were common. The results of this study provide useful data for Swiss fish veterinarians and some interesting hypotheses about risk factors for AMR in aquaculture and pet fish in Switzerland. However, further research is needed to define risk factors.
Collapse
Affiliation(s)
- Gary Delalay
- Veterinary Public Health Institute, University of Bern, Bern, Switzerland
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
- Department of Animal Health, Federal Food Safety and Veterinary Office FSVO, Bern, Switzerland
| | | | | | - Heike Schmidt-Posthaus
- Centre for Fish and Wildlife Health, Department of Infectious Diseases and Pathobiology, University of Bern, Bern, Switzerland
| |
Collapse
|
64
|
Ramos-Espinoza FC, Cueva-Quiroz VA, Yunis-Aguinaga J, Alvarez-Rubio NC, Paganoti de Mello N, Engrácia de Moraes JR. Efficacy of two adjuvants administrated with a novel hydrogen peroxide-inactivated vaccine against Streptococcus agalactiae in Nile tilapia fingerlings. FISH & SHELLFISH IMMUNOLOGY 2020; 105:350-358. [PMID: 32717322 DOI: 10.1016/j.fsi.2020.07.051] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/08/2020] [Accepted: 07/22/2020] [Indexed: 05/26/2023]
Abstract
Streptococcus agalactiae is considered the main bacterial pathogen in cultured Nile tilapia. Formaldehyde-inactivated vaccines are the most accepted method for prevention and control of the disease. However, alternative inactivation methods for S. agalactiae vaccines have not been fully explored. Recently, we developed a hydrogen peroxide-inactivated vaccine against S. agalactiae with moderate efficacy, with the possibility to improve vaccine efficacy by adding adjuvants. The current study compared the efficacy of aluminum hydroxide and Freund's incomplete adjuvant (FIA) incorporated into a novel hydrogen peroxide-inactivated intraperitoneal vaccine against S. agalactiae for Nile tilapia fingerlings. The relative percentage survival (RPS) for aluminum hydroxide-adjuvanted vaccine (59.3%), and FIA-adjuvanted vaccine (77.8%) were higher than the vaccine without adjuvant (40.7%). In addition, fish immunized with aluminum hydroxide-adjuvanted vaccine had significantly higher levels of specific antibodies than control fish at 4 weeks post vaccination (wpv). Blood lymphocytes counts showed a decrease in vaccinated groups when compared to control fish, suggesting white cells migration to the tissues where antigen presentation is ongoing. Fish that received FIA-adjuvanted vaccine exhibited persistence of adjuvant deposits on intraperitoneal surfaces for at least 4 wpv that may be related to its superior performance compared to aluminum hydroxide adjuvanted vaccine, which did not evidence any type of deposit at any sampling times. The results observed in this study demonstrate that hydrogen peroxide-inactivated vaccine administered with either aluminum hydroxide or FIA induce optimal levels of protection, with a superior performance for FIA vaccine, which could be a good alternative to conventional formaldehyde-inactivated vaccines against S. agalactiae, due to its shorter manufacture time, and less toxicity.
Collapse
Affiliation(s)
- Fernando Carlos Ramos-Espinoza
- Aquaculture Center of Unesp (Caunesp), Sao Paulo State University (Unesp). Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil
| | - Victor Alexander Cueva-Quiroz
- Aquaculture Center of Unesp (Caunesp), Sao Paulo State University (Unesp). Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil
| | - Jefferson Yunis-Aguinaga
- Aquaculture Center of Unesp (Caunesp), Sao Paulo State University (Unesp). Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil; Aquatic Pathobiology Laboratory, Sea Institute of Peru (IMARPE), Esquina Gamarra y GeneralValle s/n, Chucuito, Callao, Peru
| | - Norquis Caled Alvarez-Rubio
- Aquaculture Center of Unesp (Caunesp), Sao Paulo State University (Unesp). Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil
| | - Nicoli Paganoti de Mello
- Aquaculture Center of Unesp (Caunesp), Sao Paulo State University (Unesp). Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil
| | - Julieta Rodini Engrácia de Moraes
- Aquaculture Center of Unesp (Caunesp), Sao Paulo State University (Unesp). Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil; Department of Veterinary Pathology, School of Agricultural and Veterinary Sciences (FCAV), Unesp, Via Prof. Paulo Donato Castellane, km 05, 14884-900, Jaboticabal, SP, Brazil.
| |
Collapse
|
65
|
Dong F, Tacchi L, Xu Z, LaPatra SE, Salinas I. Vaccination Route Determines the Kinetics and Magnitude of Nasal Innate Immune Responses in Rainbow Trout ( Oncorhynchus mykiss). BIOLOGY 2020; 9:biology9100319. [PMID: 33019693 PMCID: PMC7601189 DOI: 10.3390/biology9100319] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022]
Abstract
Simple Summary Many pathogens exploit the olfactory route to reach critical organs in the body such as the brain or lungs. Thus, effective onset of an early innate immune response in the nasal epithelium is key to stopping pathogen progression. The stimulation of nasal immunity by vaccines may depend on the type of vaccine and vaccination route. The goal of this study was to evaluate the ability of a live attenuated viral vaccine to stimulate innate immunity in the olfactory organ of rainbow trout, a teleost fish of commercial aquaculture value. The kinetics and magnitude of the innate immune response depended on the route of vaccination, with the strongest and fastest responses recorded in intranasally vaccinated fish. Injection vaccination had an intermediate effect, whereas immersion vaccination resulted in delayed and weak nasal innate immunity. Injection vaccination, even with the vehicle control, induced mortality in fingerlings, whereas nasal and immersion vaccines were safe. Challenge experiments with the live virus revealed that nasal and injected vaccines conferred very high and comparable levels of protection, but immersion vaccination only induced transient protection. In conclusion, the route of vaccination determines the type, magnitude and velocity of the innate immune response in the nasal epithelium of animals. Abstract Many pathogens infect animal hosts via the nasal route. Thus, understanding how vaccination stimulates early nasal immune responses is critical for animal and human health. Vaccination is the most effective method to prevent disease outbreaks in farmed fish. Nasal vaccination induces strong innate and adaptive immune responses in rainbow trout and was shown to be highly effective against infectious hematopoietic necrosis (IHN). However, direct comparisons between intranasal, injection and immersion vaccination routes have not been conducted in any fish species. Moreover, whether injection or immersion routes induce nasal innate immune responses is unknown. The goal of this study is to compare the effects of three different vaccine delivery routes, including intranasal (IN), intramuscular (i.m.) injection and immersion (imm) routes on the trout nasal innate immune response. Expression analyses of 13 immune-related genes in trout nasopharynx-associated lymphoid tissue (NALT), detected significant changes in immune expression in all genes analyzed in response to the three vaccination routes. However, nasal vaccination induced the strongest and fastest changes in innate immune gene expression compared to the other two routes. Challenge experiments 7 days post-vaccination (dpv) show the highest survival rates in the IN- and imm-vaccinated groups. However, survival rates in the imm group were significantly lower than the IN- and i.m.-vaccinated groups 28 dpv. Our results confirm that nasal vaccination of rainbow trout with live attenuated IHNV is highly effective and that the protection conferred by immersion vaccination is transient. These results also demonstrate for the first time that immersion vaccines stimulate NALT immune responses in salmonids.
Collapse
Affiliation(s)
- Fen Dong
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; (F.D.); (L.T.)
| | - Luca Tacchi
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; (F.D.); (L.T.)
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China;
| | | | - Irene Salinas
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA; (F.D.); (L.T.)
- Correspondence:
| |
Collapse
|
66
|
Wu P, Zhou S, Su Z, Liu C, Zeng F, Pang H, Xie M, Jian J. Functional characterization of T3SS C-ring component VscQ and evaluation of its mutant as a live attenuated vaccine in zebrafish (Danio rerio) model. FISH & SHELLFISH IMMUNOLOGY 2020; 104:123-132. [PMID: 32473362 DOI: 10.1016/j.fsi.2020.05.063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 05/02/2020] [Accepted: 05/23/2020] [Indexed: 06/11/2023]
Abstract
Vibrio alginolyticus, a Gram-negative bacterium, has been recognized as an opportunistic pathogen in marine animals as well as humans. Type III secretion system (T3SS) is critical for pathogen virulence and disease development. However, no more information is known about the C-ring component VscQ and its physiological role. In this study, gene vscQ was cloned from V. alginolyticus wild-type strain HY9901 and the mutant strain HY9901ΔvscQ was constructed by the in-frame deletion method. The HY9901ΔvscQ mutant showed an attenuated swarming phenotype and a closely 4.6-fold decrease in the virulence to Danio rerio. However, the HY9901ΔvscQ mutant showed no difference in growth, biofilm formation and ECPase activity. HY9901ΔvscQ reduces the release of LDH, NO and caspase-3 activity of infected FHM cell, which are involved in fish cell apoptosis. Deletion of gene vscQ downregulates the expression level of T3SS-related genes including vscL, vopB, hop, vscO, vscK, vopD, vcrV and vopS and flagellum-related genes (flaA and fliG). And Danio rerio vaccinated via i.m injection with HY9901ΔvscQ induced a relative percent survival (RPS) value of 71% after challenging with the wild-type HY9901. Real-time PCR assays showed that vaccination with HY9901ΔvscQ enhanced the expression of immune-related genes, including TNF-α, TLR5, IL-6R, IgM and c/ebpβ in liver and spleen after vaccination, indicating that it is able to induce humoral and cell-mediated immune response in zebrafish. These results demonstrate that the HY9901ΔvscQ mutant could be used as an effective live vaccine to combat V. alginolyticus infection.
Collapse
Affiliation(s)
- Peiwen Wu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Shihui Zhou
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Zehui Su
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Chang Liu
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Fuyuan Zeng
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Huanying Pang
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| | - Miao Xie
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China
| | - Jichang Jian
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China; Fisheries College of Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang 524025, China; Guangdong Key Laboratory of Control for Diseases of Aquatic Economic Animals, Zhanjiang, 524025, China; Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, China.
| |
Collapse
|
67
|
Schulz P, Terech-Majewska E, Siwicki AK, Kazuń B, Demska-Zakęś K, Rożyński M, Zakęś Z. Effect of Different Routes of Vaccination against Aeromonas salmonicida on Rearing Indicators and Survival after an Experimental Challenge of Pikeperch ( Sander lucioperca) in Controlled Rearing. Vaccines (Basel) 2020; 8:vaccines8030476. [PMID: 32858831 PMCID: PMC7565658 DOI: 10.3390/vaccines8030476] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 11/16/2022] Open
Abstract
Bacterial diseases are a significant problem in the controlled rearing of fish. Furunculosis (Aeromonas sp.), flavobacteriosis (Flavobacterium sp.), and pseudomonadosis (Pseudomonas sp.) are currently the most frequently identified diseases in recirculating aquaculture systems of various fish species. Such a situation is also observed in pikeperch rearing. Due to the emerging difficulties of effective prophylaxis using commercial vaccines, interest in the use of autovaccinations is increasing, not only in ichthyopathology but also in other veterinary fields. Our research aimed to assess the effect of the vaccination method on the overall condition of the fish and survival after the experimental infection with Aeromonas salmonicida. Pikeperch were vaccinated by (1) bath, (2) a single i.p. injection, or (3) feed. The fish were measured and weighed on day 0 and after 28 and 56 days of the experiment. Specific growth rate, daily growth rate, condition factor, and feed conversion ratio were calculated. On days 7, 14, 21, and 28 of the experiment, ceruloplasmin and lysozyme levels were rated. In addition, a challenge test was performed. The obtained results showed that the method of vaccination is important and affects the growth of fish, the overall condition of fish, and survival after experimental infection.
Collapse
Affiliation(s)
- Patrycja Schulz
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
- Correspondence:
| | - Elżbieta Terech-Majewska
- Department of Epizootiology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Andrzej Krzysztof Siwicki
- Department of Microbiology and Clinical Immunology, Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Barbara Kazuń
- Department of Fish Pathology and Immunology, Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland;
| | - Krystyna Demska-Zakęś
- Department of Ichthyology, Faculty of Environmental Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland;
| | - Maciej Rożyński
- Department of Aquaculture, The Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland; (M.R.); (Z.Z.)
| | - Zdzisław Zakęś
- Department of Aquaculture, The Stanislaw Sakowicz Inland Fisheries Institute, 10-719 Olsztyn, Poland; (M.R.); (Z.Z.)
| |
Collapse
|
68
|
Sotomayor-Gerding D, Troncoso JM, Pino A, Almendras F, Diaz MR. Assessing the Immune Response of Atlantic Salmon ( Salmo salar) after the Oral Intake of Alginate-Encapsulated Piscirickettsia salmonis Antigens. Vaccines (Basel) 2020; 8:vaccines8030450. [PMID: 32796725 PMCID: PMC7565443 DOI: 10.3390/vaccines8030450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022] Open
Abstract
Salmon rickettsial septicaemia (SRS) is the infectious disease that produces the highest losses in the Chilean salmon industry. As a new strategy for the control of SRS outbreaks, in this study we evaluated the effect of alginate-encapsulated Piscirickettsia salmonis antigens (AEPSA) incorporated in the feed as an oral vaccine to induce the immune response in Atlantic salmon (Salmo salar). Fish were distributed into three vaccination groups (injectable, oral high dose, oral low dose). Feed intake and fish growth were recorded during the trial. The P. salmonis-specific IgM levels in blood plasma were measured by ELISA. Alginate microparticles containing the antigen were effectively incorporated in fish feed to produce the oral vaccine. Incorporation of AEPSA did not affect the palatability of the feed or the fish appetite. Furthermore, the oral vaccine did not have a negative effect on fish growth. Finally, the oral vaccine (high and low dose) produced an acquired immune response (IgM) similar to the injectable vaccine, generating a statistically significant increase in the IgM levels at 840-degree days for both experimental groups. These findings suggest that AEPSA incorporated in the feed can be an effective alternative to boost the immune response in Atlantic salmon (S. salar).
Collapse
Affiliation(s)
- Daniela Sotomayor-Gerding
- Programa de Doctorado en Ciencias de Recursos Naturales, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Correspondence: (D.S.-G.); (M.R.D.); Tel.: +56-45-2744240 (D.S.-G.); +56-45-2744232 (M.R.D.)
| | | | - Alejandro Pino
- Anasac Chile S.A., Veterinary Division, Almirante Pastene 300, Providencia 7500534, Santiago, Chile;
| | | | - Mónica Rubilar Diaz
- Department of Chemical Engineering, Faculty of Engineering and Science, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Scientific and Technological Bioresource Nucleus, BIOREN, Universidad de La Frontera, Avenida Francisco Salazar 01145, Temuco 4811230, Chile
- Correspondence: (D.S.-G.); (M.R.D.); Tel.: +56-45-2744240 (D.S.-G.); +56-45-2744232 (M.R.D.)
| |
Collapse
|
69
|
Zhao XL, Wu G, Chen H, Li L, Kong XH. Analysis of virulence and immunogenic factors in Aeromonas hydrophila: Towards the development of live vaccines. JOURNAL OF FISH DISEASES 2020; 43:747-755. [PMID: 32478415 DOI: 10.1111/jfd.13174] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 05/27/2023]
Abstract
Aeromonas hydrophila, a bacterium that is widespread in aquatic environments, is responsible for causing haemorrhagic disease in both aquatic and terrestrial species. With the purpose of developing a live vaccine, herein we have investigated nine strains of A. hydrophila (Ah-01 to Ah-09) isolated from diseased fish. A study of virulence factors that contribute to pathogenicity and immunogenicity in the host Cyprinus carpio suggests that the presence of β-hly, act and fla genes contribute to pathogenesis: strains Ah-01, Ah-02 and Ah-03 (β-hly+ /act+ /fla+ genotype) were highly pathogenic to C. carpio, whereas Ah-05 and Ah-06 (β-hly- /act- /fla- genotype) showed weak pathogenicity. Accordingly, Ah-02 and Ah-03 were selected to prepare inactivated vaccines, whereas Ah-05 and Ah-06 were chosen as live vaccines. Ah-06 live vaccine was found to have the best protective efficacy, with a protective rate of about 85%, whereas rates of other vaccines were significantly lower, in the range 37%-59%. In addition, DNA vaccines based on genes altA, aha and omp showed immune protection rates of 25%, 37.5% and 75%, respectively. Our data demonstrate that the β-hly- /act- /fla- /altA+ /aha+ /omp+ genotype has weak pathogenicity and high immunogenicity, and provide a simple and effective way to screen for live A. hydrophila vaccines.
Collapse
Affiliation(s)
- Xian-Liang Zhao
- College of Life Sciences, Henan Normal University, Xinxiang, China
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Gan Wu
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - He Chen
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Li Li
- College of Fisheries, Henan Normal University, Xinxiang, China
| | - Xiang-Hui Kong
- College of Life Sciences, Henan Normal University, Xinxiang, China
- College of Fisheries, Henan Normal University, Xinxiang, China
| |
Collapse
|
70
|
Gulla S, Tengs T, Mohammad SN, Gjessing M, Garseth ÅH, Sveinsson K, Moldal T, Petersen PE, Tørud B, Dale OB, Dahle MK. Genotyping of Salmon Gill Poxvirus Reveals One Main Predominant Lineage in Europe, Featuring Fjord- and Fish Farm-Specific Sub-Lineages. Front Microbiol 2020; 11:1071. [PMID: 32547516 PMCID: PMC7272583 DOI: 10.3389/fmicb.2020.01071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/29/2020] [Indexed: 11/18/2022] Open
Abstract
Salmon gill poxvirus (SGPV) can cause serious gill disease in Atlantic salmon (Salmo salar L.) and represents a significant problem to aquaculture industries in Northern Europe. Here, a single-tube multi-locus variable-number tandem-repeat (VNTR) analysis (MLVA) genotyping assay, targeting eight VNTR loci, was developed for studying the epizootiology of SGPV. Through MLVA typing of SGPV positive samples from 180 farmed and wild Atlantic salmon in Northern Europe, the first molecular population study of this virus was undertaken. Comparison of resulting MLVA profiles by cluster analysis revealed considerable micro-diversity, while only a limited degree of specific clustering by country of origin could be observed, and no clustering relating to the severity of disease outbreaks. Phylogenetic analysis, based on genomic data from six SGPV specimens (three Norwegian, one Scottish, one Faroese and one Canadian), complemented and corroborated MLVA by pointing to a marked transatlantic divide in the species, with one main, relatively conserved, SGPV lineage as predominant in Europe. Within certain fjord systems and individual freshwater salmon smolt farms in Norway, however, discrete MLVA clustering patterns that prevailed over time were observed, likely reflecting local predominance of specific SGPV sub-lineages. MLVA typing was also used to refute two suspected instances of vertical SGPV transmission from salmon broodstock to offspring, and to confirm a failed disinfection attempt in one farm. These novel insights into the previously undocumented population structure of SGPV provide important clues, e.g., regarding the mechanisms underlying spread and recurrence of the virus amongst wild and farmed salmon populations, but so far no indications of more or less virulent SGPV sub-lineages have been found. The MLVA scheme represents a highly sensitive genotyping tool particularly well suited for illuminating SGPV infection routes, and adds to the relatively low number of MLVA protocols that have so far been published for viral species. Typing is reasonably inexpensive, with a moderate technological requirement, and may be completed within a single working day. Resulting MLVA profiles can be readily shared and compared across laboratories, facilitating rapid placement of samples in an international ezpizootiological context.
Collapse
Affiliation(s)
| | - Torstein Tengs
- Department of Molecular Biology, Norwegian Institute of Public Health, Oslo, Norway
| | | | | | | | | | | | | | - Brit Tørud
- Norwegian Veterinary Institute, Oslo, Norway
| | | | - Maria K Dahle
- Norwegian Veterinary Institute, Oslo, Norway.,The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
71
|
Aquaculture at the crossroads of global warming and antimicrobial resistance. Nat Commun 2020; 11:1870. [PMID: 32312964 PMCID: PMC7170852 DOI: 10.1038/s41467-020-15735-6] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 03/19/2020] [Indexed: 01/26/2023] Open
Abstract
In many developing countries, aquaculture is key to ensuring food security for millions of people. It is thus important to measure the full implications of environmental changes on the sustainability of aquaculture. We conduct a double meta-analysis (460 articles) to explore how global warming and antimicrobial resistance (AMR) impact aquaculture. We calculate a Multi-Antibiotic Resistance index (MAR) of aquaculture-related bacteria (11,274 isolates) for 40 countries, of which mostly low- and middle-income countries present high AMR levels. Here we show that aquaculture MAR indices correlate with MAR indices from human clinical bacteria, temperature and countries’ climate vulnerability. We also find that infected aquatic animals present higher mortalities at warmer temperatures. Countries most vulnerable to climate change will probably face the highest AMR risks, impacting human health beyond the aquaculture sector, highlighting the need for urgent action. Sustainable solutions to minimise antibiotic use and increase system resilience are therefore needed. Global environmental changes threaten many food-producing sectors, including aquaculture. Here the authors show that countries most vulnerable to climate change will probably face the highest antimicrobial resistance in aquaculture-related bacteria, and that infected aquatic animals have higher mortality at warmer temperatures.
Collapse
|
72
|
Gaafar AY, Yamashita H, Istiqomah I, Kawato Y, Ninomiya K, Younes A, Nakai T. Comparative immunohistological study on using capsaicin, piperine, and okadaic acid for the transepithelial passage of the inactivated viral and bacterial vaccines in fish. Microsc Res Tech 2020; 83:979-987. [PMID: 32282995 DOI: 10.1002/jemt.23491] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/26/2020] [Indexed: 12/18/2022]
Abstract
The practical difficulty of parenteral application of fish vaccines against devastating fish diseases diverted the interest toward oral vaccination. Search for effective methods to enhance the oral uptake of viral and bacterial vaccines is continuing. The current research focus on a new role of mucosal fish vaccine adjuvants inducing the antigen uptake by enhancing vascularity or increasing intestinal permeability. Some inflammatory substances cause reversible pathology to the intestinal epithelium, which could be employed for the transepithelial passage of vaccine particles. The natural inflammatory substances used were capsaicin, piperine, and okadaic acid as 1 mg, 2 mg, and 1 μg/fish, respectively. Two inactivated vaccines were used as antigens to test the effect of these inflammatory substances in two different fish hosts. Tested vaccines were inactivated redspotted grouper nervous necrosis virus vaccine in sevenband grouper (Epinephelus septemfasciatus) and inactivated Edwardsiella tarda vaccine in red sea bream (Pagrus major) fish models. The inflammatory substances and each vaccine were anally intubated to fish. Capsaicin proved to be effectively aiding the transepithelial passage of vaccine particles more than piperine, while okadaic acid had no detectable effect.
Collapse
Affiliation(s)
| | - Hirofumi Yamashita
- Ehime Research Institute of Agriculture, Forestry and Fisheries, Ehime, Japan
| | - Indah Istiqomah
- Laboratory of Fish Diseases, Department of Fisheries, Faculty of Agriculture, Yogyakarta, Indonesia
| | - Yasuhiko Kawato
- National Research Institute of Fisheries Science, Fisheries Research Agency, Minamiise, Japan
| | - Kanae Ninomiya
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| | - Abdelgayed Younes
- Veterinary Research Division, National Research Centre, Cairo, Egypt
| | - Toshihiro Nakai
- Graduate School of Biosphere Science, Hiroshima University, Higashihiroshima, Japan
| |
Collapse
|
73
|
Halimi M, Alishahi M, Abbaspour MR, Ghorbanpoor M, Tabandeh MR. High efficacy and economical procedure of oral vaccination against Lactococcus garvieae/Streptococcus iniae in rainbow trout (Oncorhynchus mykiss). FISH & SHELLFISH IMMUNOLOGY 2020; 99:505-513. [PMID: 32092407 DOI: 10.1016/j.fsi.2020.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/10/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
The present study was aimed to examine the efficacy of chitosan-alginate coated vaccines against pathogenicity of Lactococcus garvieae and Streptococcus iniae in rainbow trout. Fish were divided into four groups including: Group A: fish immunized by chitosan-alginate coated vaccine, Group B: fish immunized by non-coated vaccine, Group C: fish feed by chitosan-alginate coated pellets without vaccine and Group D: fish feed by basic diet (non-coated and without vaccine). In groups A and B, the vaccination was carried out for 14 days and after that supplemented with fundamental diet (control diet). Comparable to groups A and B, fish of group C were also fed 14 days with test diets and after that fed control food. On day 0, 20, 40 and 60 of the experiment, serum samples were given. Fish have been challenged with live L. garvieae and S. iniae after 60 days. The levels of bactericidal activity and complement activity among innate immunity components extended on day 20 of the research and after that decreased in group A and B (P < 0.05) all through the examination. The relative expression of IL-6 and IgM in groups A and B extended on examination day 20. The expression of these genes illustrated no advancements in different groups in during the examination (P > 0.05). In group A, the serum antibody titer against L. garvieae and S. iniae broadly raised on day 40 and 60 of examination, whereas in group B, the immune response titer against S. iniae and L. garvieae illustrated a significant elevation on day 60 of the trial (P < 0.05). After challenge with live bacteria, survival rate of 83 ± 9.1%(challenged with S. iniae) and 72.18 ± 9.8% (challenged with L. garvieae) were gotten independently in group A, which were higher than survival of other exploratory groups (P < 0.05). In conclusion, the results of the present examination appear that the orally vaccination of rainbow trout with chitosan-alginate covered vaccine stimulates immunity system and also efficiently protects rainbow trout against Lactococcus garvieae and Streptococcus iniae.
Collapse
Affiliation(s)
- Mostafa Halimi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mojtaba Alishahi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Ghorbanpoor
- Department of Microbiology and Immunology,Faculty of Veterinary Medicine,Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
74
|
Injection Vaccines Formulated with Nucleotide, Liposomal or Mineral Oil Adjuvants Induce Distinct Differences in Immunogenicity in Rainbow Trout. Vaccines (Basel) 2020; 8:vaccines8010103. [PMID: 32106599 PMCID: PMC7157222 DOI: 10.3390/vaccines8010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/23/2022] Open
Abstract
Protection facilitated by the widespread use of mineral oil adjuvanted injection vaccines in salmonid fish comes with adverse effects of varying severity. In this study, we characterized the immunological profiles of two alternative vaccine formulations, both with proven efficacy and an improved safety profile in rainbow trout. Experimental injection vaccines were prepared on an identical whole-cell Aeromonas salmonicida bacterin platform and were formulated with CpG oligodeoxynucleotides, a liposomal (CAF01) or a benchmark mineral oil adjuvant, respectively. A naïve group, as well as bacterin and saline-injected groups were also included. Following administration, antigen-specific serum antibody titers, the tissue distribution of immune cell markers, and the expression of immune-relevant genes following the in vitro antigenic restimulation of anterior kidney leukocytes was investigated. Immunohistochemical staining suggested prolonged antigen presentation for the particulate formulations and increased mucosal presence of antigen-presenting cells in all immunized fish. Unlike the other immunized groups, the CAF01 group only displayed a transient elevation in specific antibody titers and immunohistochemical observations, and the transcription data suggest an increased role of cell-mediated immunity for this group. Finally, the transcription profile of the CpG formulation approached that of a TH1 profile. When compared to the benchmark formulation, CAF01 and CpG adjuvants induce slight, but distinct differences in the resulting protective immune responses. This is important, as it allows a broader immunological approach for the future development of safer vaccines.
Collapse
|
75
|
Zhao Z, Zhang C, Lin Q, Li NQ, Huang ZB, Zhao M, Fu XZ, Wang GX, Zhu B. Single-walled carbon nanotubes as delivery vehicles enhance the immunoprotective effect of an immersion DNA vaccine against infectious spleen and kidney necrosis virus in mandarin fish. FISH & SHELLFISH IMMUNOLOGY 2020; 97:432-439. [PMID: 31883470 DOI: 10.1016/j.fsi.2019.12.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/18/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
As a high mortality disease, Infectious spleen and kidney necrosis virus (ISKNV) can cause massive economic damage on mandarin fish farming industry in China, which seriously hindered the development of mandarin fish farming industry. In this research, SWCNTs (single-walled carbon nanotubes) as a candidate for DNA vaccine carrier was vaccinated by immersion (1, 2, 5, 10, 20 mg/L) in juvenile mandarin fish. In muscle, spleen and kidney tissues, the results showed that transcription and expression of MCP gene can be detected in pcDNA-MCP and SWCNTs-pcDNA-MCP groups after bath immunization. The immune response (immune-related genes expression, serum antibody production, enzyme activities and C3 content) was significantly enhanced in fish which vaccinated with SWCNTs-pcDNA-MCP in comparison with those vaccinated with pcDNA-MCP alone. After 14 d challenge, the RPS (relative percentage survival) can be enhanced which using SWCNTs as a carrier in SWCNTs-pcDNA-MCP (82.4%) group at 20 mg/L (the highest vaccine dose) than the naked pcDNA-MCP (54.2%) group. This study reveals that functionalized SWCNTs could be a promising immersion DNA vaccine carrier in aquaculture.
Collapse
Affiliation(s)
- Zhao Zhao
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Chen Zhang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China
| | - Qiang Lin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Ning-Qiu Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Zhi-Bin Huang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Guangdong Provincial Engineering Technology Research Center for Healthy Breeding of Important Economic Fish, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Xiao-Zhe Fu
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture and Rural Affairs, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510380, PR China.
| | - Gao-Xue Wang
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| | - Bin Zhu
- College of Animal Science and Technology, Northwest A&F University, Xinong Road 22nd, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
76
|
Wang Q, Ji W, Xu Z. Current use and development of fish vaccines in China. FISH & SHELLFISH IMMUNOLOGY 2020; 96:223-234. [PMID: 31821845 DOI: 10.1016/j.fsi.2019.12.010] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/19/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
In the past decades, the aquaculture industry made great progress in China, which contributes more than 70% yield of the world's farmed fish. Along with the rapid growth of fish production, increased emergence and outbreak of numbers of diseases pose harm to the aquaculture industry and food safety. From the efficient, safe, environmental and ethical aspects, vaccines is definitely the most appropriate and focused method to control different kinds of fish diseases. In China, researchers have done huge works on the fish vaccines, and so far six domestic aquatic vaccine products along with one imported aquatic vaccine have obtained the national veterinary medicine certificate. More critically, some new vaccines have also entered the field experiment stage and showed broad market prospects. In the present review, authors summarize seven aquatic vaccines, including the live vaccine against grass carp hemorrhagic disease, the inactivated vaccine against Aeromonas hydrophila sepsis in fish, the live vaccine against Edwardsiella tarda in turbot, the anti-idiotypic antibody vaccine against Vibrio alginolyticus, V. parahaemolyticus, and E. tarda in Japanese flounder, the cell-cultured inactivated vaccine against grass carp hemorrhagic disease, the inactivated vaccine against fish infectious spleen and kidney necrosis virus (ISKNV), and the genetically engineered live vaccine against V. anguillarum in turbot. Moreover, different delivery routes of fish vaccines are also compared in this review, along with differential fish immune response after vaccination. All these efforts will ultimately benefit the healthy and sustainable development of aquaculture industry in China.
Collapse
Affiliation(s)
- Qingchao Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Ji
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China
| | - Zhen Xu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| |
Collapse
|
77
|
Tadmor-Levi R, Doron-Faigenboim A, Marcos-Hadad E, Petit J, Hulata G, Forlenza M, Wiegertjes GF, David L. Different transcriptional response between susceptible and resistant common carp (Cyprinus carpio) fish hints on the mechanism of CyHV-3 disease resistance. BMC Genomics 2019; 20:1019. [PMID: 31878870 PMCID: PMC6933926 DOI: 10.1186/s12864-019-6391-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 12/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Infectious disease outbreaks form major setbacks to aquaculture production and to further development of this important sector. Cyprinid herpes virus-3 (CyHV-3) is a dsDNA virus widely hampering production of common carp (Cyprinus carpio), one of the most farmed fish species worldwide. Genetically disease resistant strains are highly sought after as a sustainable solution to this problem. To study the genetic basis and cellular pathways underlying disease resistance, RNA-Seq was used to characterize transcriptional responses of susceptible and resistant fish at day 4 after CyHV-3 infection. Results In susceptible fish, over four times more differentially expressed genes were up-regulated between day 0 and 4 compared to resistant fish. Susceptible and resistant fish responded distinctively to infection as only 55 (9%) of the up-regulated genes were shared by these two fish types. Susceptible fish elicited a typical anti-viral response, involving interferon and interferon responsive genes, earlier than resistant fish did. Furthermore, chemokine profiles indicated that the two fish types elicited different cellular immunity responses. A comparative phylogenetic approach assisted in chemokine copies annotation pointing to different orthologous copies common to bony-fishes and even carp-specific paralogs that were differentially regulated and contributed to the different response of these two fish types. Susceptible fish up-regulated more ccl19 chemokines, which attract T-cells and macrophages, the anti-viral role of which is established, whereas resistant fish up-regulated more cxcl8/il8 chemokines, which attract neutrophils, the antiviral role of which is unfamiliar. Conclusions Taken together, by pointing out transcriptional differences between susceptible and resistant fish in response to CyHV-3 infection, this study unraveled possible genes and pathways that take part in disease resistance mechanisms in fish and thus, enhances our understanding of fish immunogenetics and supports the development of sustainable and safe aquaculture.
Collapse
Affiliation(s)
- Roni Tadmor-Levi
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.,National Natural History Collections and Department of Ecology, Evolution and Behavior, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | - Evgeniya Marcos-Hadad
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Jules Petit
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands.,Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Gideon Hulata
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Maria Forlenza
- Cell Biology and Immunology Group, Wageningen University & Research, Wageningen, Netherlands
| | - Geert F Wiegertjes
- Aquaculture and Fisheries Group, Wageningen University & Research, Wageningen, Netherlands
| | - Lior David
- Department of Animal Sciences, RH Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
| |
Collapse
|
78
|
Ma J, Bruce TJ, Jones EM, Cain KD. A Review of Fish Vaccine Development Strategies: Conventional Methods and Modern Biotechnological Approaches. Microorganisms 2019; 7:E569. [PMID: 31744151 PMCID: PMC6920890 DOI: 10.3390/microorganisms7110569] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/10/2019] [Accepted: 11/14/2019] [Indexed: 01/09/2023] Open
Abstract
Fish immunization has been carried out for over 50 years and is generally accepted as an effective method for preventing a wide range of bacterial and viral diseases. Vaccination efforts contribute to environmental, social, and economic sustainability in global aquaculture. Most licensed fish vaccines have traditionally been inactivated microorganisms that were formulated with adjuvants and delivered through immersion or injection routes. Live vaccines are more efficacious, as they mimic natural pathogen infection and generate a strong antibody response, thus having a greater potential to be administered via oral or immersion routes. Modern vaccine technology has targeted specific pathogen components, and vaccines developed using such approaches may include subunit, or recombinant, DNA/RNA particle vaccines. These advanced technologies have been developed globally and appear to induce greater levels of immunity than traditional fish vaccines. Advanced technologies have shown great promise for the future of aquaculture vaccines and will provide health benefits and enhanced economic potential for producers. This review describes the use of conventional aquaculture vaccines and provides an overview of current molecular approaches and strategies that are promising for new aquaculture vaccine development.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Timothy J. Bruce
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Evan M. Jones
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| | - Kenneth D. Cain
- Department of Fish and Wildlife Sciences, College of Natural Resources, University of Idaho, Moscow, ID 83844, USA (T.J.B.); (E.M.J.)
- Aquaculture Research Institute, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
79
|
Attaya A, Jiang Y, Secombes CJ, Wang T. Distinct response of immune gene expression in peripheral blood leucocytes modulated by bacterin vaccine candidates in rainbow trout Oncorhynchus mykiss: A potential in vitro screening and batch testing system for vaccine development in aquaculture. FISH & SHELLFISH IMMUNOLOGY 2019; 93:631-640. [PMID: 31377431 DOI: 10.1016/j.fsi.2019.08.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/02/2019] [Accepted: 08/01/2019] [Indexed: 06/10/2023]
Abstract
Fish aquaculture is the world's fastest growing food production industry and infectious diseases are a major limiting factor. Vaccination is the most appropriate method for controlling infectious diseases and a key reason for the success of salmonid cultivation and has reduced the use of antibiotics. The development of fish vaccines requires the use of a great number of experimental animals that are challenged with virulent pathogens. In vitro cell culture systems have the potential to replace in vivo pathogen exposure for initial screening and testing of novel vaccine candidates/preparations, and for batch potency and safety tests. PBL contain major immune cells that enable the detection of both innate and adaptive immune responses in vitro. Fish PBL can be easily prepared using a hypotonic method and is the only way to obtain large numbers of immune cells non-lethally. Distinct gene expression profiles of innate and adaptive immunity have been observed between bacterins prepared from different bacterial species, as well as from different strains or culturing conditions of the same bacterial species. Distinct immune pathways are activated by pathogens or vaccines in vivo that can be detected in PBL in vitro. Immune gene expression in PBL after stimulation with vaccine candidates may shed light on the immune pathways involved that lead to vaccine-mediated protection. This study suggests that PBL are a suitable platform for initial screening of vaccine candidates, for evaluation of vaccine-induced immune responses, and a cheap alternative for potency testing to reduce animal use in aquaculture vaccine development.
Collapse
Affiliation(s)
- Ahmed Attaya
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Yousheng Jiang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK; College of Fishery and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Christopher J Secombes
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK
| | - Tiehui Wang
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, School of Biological Sciences, University of Aberdeen, Aberdeen, AB24 2TZ, UK.
| |
Collapse
|
80
|
Teige LH, Kumar S, Johansen GM, Wessel Ø, Vendramin N, Lund M, Rimstad E, Boysen P, Dahle MK. Detection of Salmonid IgM Specific to the Piscine Orthoreovirus Outer Capsid Spike Protein Sigma 1 Using Lipid-Modified Antigens in a Bead-Based Antibody Detection Assay. Front Immunol 2019; 10:2119. [PMID: 31552049 PMCID: PMC6743345 DOI: 10.3389/fimmu.2019.02119] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 08/22/2019] [Indexed: 11/13/2022] Open
Abstract
Bead-based multiplex immunoassays are promising tools for determination of the specific humoral immune response. In this study, we developed a multiplexed bead-based immunoassay for the detection of Atlantic salmon (Salmo salar) antibodies against Piscine orthoreovirus (PRV). Three different genotypes of PRV (PRV-1, PRV-2, and PRV-3) cause disease in farmed salmonids. The PRV outer capsid spike protein σ1 is predicted to be a host receptor binding protein and a target for neutralizing and protective antibodies. While recombinant σ1 performed poorly as an antigen to detect specific antibodies, N-terminal lipid modification of recombinant PRV-1 σ1 enabled sensitive detection of specific IgM in the bead-based assay. The specificity of anti-PRV-1 σ1 antibodies was confirmed by western blotting and pre-adsorption of plasma. Binding of non-specific IgM to beads coated with control antigens also increased after PRV infection, indicating a release of polyreactive antibodies. This non-specific binding was reduced by heat treatment of plasma. The same immunoassay also detected anti-PRV-3 σ1 antibodies from infected rainbow trout. In summary, a refined bead based immunoassay created by N-terminal lipid-modification of the PRV-1 σ1 antigen allowed sensitive detection of anti-PRV-1 and anti-PRV-3 antibodies from salmonids.
Collapse
Affiliation(s)
- Lena Hammerlund Teige
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Subramani Kumar
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway.,Stem Cell and Cancer Biology Lab, Centre for Biotechnology, Anna University, Chennai, India
| | - Grethe M Johansen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Øystein Wessel
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Niccolò Vendramin
- National Institute of Aquatic Resources, Technical University of Denmark, Lyngby, Denmark
| | - Morten Lund
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway.,PatoGen, Alesund, Norway
| | - Espen Rimstad
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Preben Boysen
- Department of Food Safety and Infection Biology, Norwegian University of Life Sciences, Oslo, Norway
| | - Maria K Dahle
- Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| |
Collapse
|
81
|
Laith AA, Abdullah MA, Nurhafizah WWI, Hussein HA, Aya J, Effendy AWM, Najiah M. Efficacy of live attenuated vaccine derived from the Streptococcus agalactiae on the immune responses of Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2019; 90:235-243. [PMID: 31009810 DOI: 10.1016/j.fsi.2019.04.052] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/30/2019] [Accepted: 04/18/2019] [Indexed: 06/09/2023]
Abstract
Streptococcus agalactiae species have been recognized as the main pathogen causing high mortality in fish leading to significant worldwide economical losses to the aquaculture industries. Vaccine development has become a priority in combating multidrug resistance in bacteria; however, there is a lack of commercial live attenuated vaccine (LAV) against S. agalactiae in Malaysia. The aim of this study is to compare two methods using attenuated bacteria as live vaccine and to evaluate the efficacy of selected LAV on the immune responses and resistance of Oreochromis niloticus (tilapia) against S. agalactiae. The LAV derived from S. agalactiae had been weakened using the chemical agent Acriflavine dye (LAV1), whereas the second vaccine was weakened using serial passages of bacteria on broth media (LAV2). Initial immunization was carried out only on day one, given twice-in the morning and evening, for the 42 day period. Serum samples were collected to determine the systemic antibody (IgM) responses and lysozymal (LSZ) activity using ELISA. On day 43 after immunization, the fish were injected intraperitoneally (i.p) with 0.1 mL of S. agalactiae at LD50 = 1.5 × 105 (CFU)/fish. Fish were monitored daily for 10 days. Clinical signs, mortality and the relative percent of survival (RPS) were recorded. Trial 1 results showed a significant increased (P < 0.05) in serum IgM titers and LSZ activity as compared to LAV2 and the control group (unvaccinated fish). The efficacy of LAV1 was proven effective as determined by the RPS values, LAV1 at 81.58% as compared to LAV2 at 65.79%. Trial 2 of LAV1 and control group were further determined by administering primary and booster doses revealed a RPS value for LAV1 of 82.05%, with the significant enhancement on the immune responses of tilapia as compared to control group. In conclusion, LAV revealed to elevate antibody IgM levels, LSZ activity and provide long-term protection when added to feed. LAV is a low-cost vaccine shown to rapidly increase the immune response of fish and increase survival rates of fish against S. agalactiae infection.
Collapse
Affiliation(s)
- A A Laith
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia.
| | - M A Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - W W I Nurhafizah
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - H A Hussein
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - J Aya
- Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - A W M Effendy
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| | - M Najiah
- School of Fisheries and Aquaculture Sciences, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia; Institute of Tropical Aquaculture, Universiti Malaysia Terengganu, 21030, Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
82
|
Chakraborty S, Cao T, Hossain A, Gnanagobal H, Vasquez I, Boyce D, Santander J. Vibrogen-2 vaccine trial in lumpfish (Cyclopterus lumpus) against Vibrio anguillarum. JOURNAL OF FISH DISEASES 2019; 42:1057-1064. [PMID: 31087342 DOI: 10.1111/jfd.13010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/04/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Lumpfish (Cyclopterus lumpus), a native fish of the North Atlantic Ocean, is utilized as cleaner fish to biocontrol sea lice infestations in Atlantic salmon aquaculture. However, bacterial infections are affecting cleaner fish performance. Vibrio anguillarum, the aetiological agent of vibriosis, is one of the most frequent bacterial infections in lumpfish, and effective vaccine programmes against this pathogen have been identified as a high priority for lumpfish. Vibrogen-2 is a commercial polyvalent bath vaccine that contains formalin-inactivated cultures of V. anguillarum serotypes O1 and O2, and Vibrio ordalii. In this study, we evaluated Vibrogen-2 efficacy in lumpfish against a local isolated V. anguillarum strain. Two groups of 125 lumpfish were bath-immunized, bath-boost-immunized at four weeks post-primary immunization, and intraperitoneally (i.p.) boost-immunized at eight weeks post-primary immunization. The control groups were i.p. mock-immunized with PBS. Twenty-seven weeks post-primary immunization, the fish were i.p. challenged with 10 or 100 times the V. anguillarum J360 LD50 dose. After the challenge, survival was monitored daily, and samples of tissues were collected at ten days post-challenge. Commercial vaccine Vibrogen-2 reduced V. anguillarum tissue colonization and delayed mortality but did not confer immune protection to C. lumpus against the V. anguillarum i.p. challenge.
Collapse
Affiliation(s)
- Setu Chakraborty
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Trung Cao
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Ahmed Hossain
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Hajarooba Gnanagobal
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Ignacio Vasquez
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Danny Boyce
- Dr. Joe Brown Aquatic Research Building, Department of Ocean Sciences, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| | - Javier Santander
- Marine Microbial Pathogenesis and Vaccinology Laboratory, Department of Ocean Sciences, Faculty of Science, Memorial University of Newfoundland, St John's, Newfoundland, Canada
| |
Collapse
|
83
|
Adams A. Progress, challenges and opportunities in fish vaccine development. FISH & SHELLFISH IMMUNOLOGY 2019; 90:210-214. [PMID: 31039441 DOI: 10.1016/j.fsi.2019.04.066] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
In 2014 the contribution of aquaculture to supply food for human consumption overtook wild-caught fish for the first time. Despite improvements in the aquaculture industry, it has been estimated that as much as 10% of all cultured aquatic animals are lost because of infectious diseases, amounting to >10 billion USD in losses annually on a global scale. Vaccination to prevent disease is used routinely in finfish aquaculture, especially for Atlantic salmon (Salmo salar), while in a limited capacity (or not at all) in many other fish species due to lack of vaccines, poor performance or cost. There has, nevertheless, been impressive progress in fish vaccine development over the last 4 decades with 24 licenced fish vaccines now commercially available for use in a variety of fish species. These comprise whole killed, peptide subunit, recombinant protein, DNA and live attenuated vaccines. Challenges do, however, still exist as the majority of commercial vaccines are killed whole cell pathogen preparations administered by intraperitoneal injection. This may not be the optimal route to deliver some vaccines, but lack of effective adjuvants and basic knowledge on immune response has hindered progress in the development of mucosal vaccines. The cost of injecting fish may also be prohibitive in some countries leading to disease treatment (e.g. with antibiotics) rather than using preventative measures. It is important that these issues are addressed as the industry continues to grow globally. Exciting opportunities exist for rapid development of fish vaccines in the future, with continued reduction in cost of technologies (e.g. of whole genome sequencing), regulations changing (e.g. DNA vaccines can now authorised in Europe), the introduction of novel antigen expression and delivery systems (such as virus-like particles, VLPs), development of novel adjuvants and advancements in the elucidation of basic mechanisms of mucosal immunity. Development of effective mucosal vaccines and optimisation of their delivery will facilitate novel vaccine development, and enable the aquaculture industries in LMIC to use vaccination routinely in the future. In addition, effective use of emergency (autogenous) vaccines will assist in tackling emerging disease challenges.
Collapse
Affiliation(s)
- Alexandra Adams
- Institute of Aquaculture, University of Stirling, Stirling, FK9 4LA, Scotland, UK.
| |
Collapse
|
84
|
Kwon KC, Lamb A, Fox D, Porphy Jegathese SJ. An evaluation of microalgae as a recombinant protein oral delivery platform for fish using green fluorescent protein (GFP). FISH & SHELLFISH IMMUNOLOGY 2019; 87:414-420. [PMID: 30703550 DOI: 10.1016/j.fsi.2019.01.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/15/2019] [Accepted: 01/25/2019] [Indexed: 05/15/2023]
Abstract
Recombinant proteins produced by biological systems such as bacteria, yeasts, mammalian and insect cell cultures are widely used for clinical or industrial purposes. Most therapeutic protein drugs require purification, cold chain, and injection, which make them prohibitively expensive and hinders their widespread use. Here, we describe a new economical oral vaccination platform using algae and evaluated its potential for the delivery of recombinant drugs using GFP expressed in the chloroplast of algal cells. The transplastomic algae expressing recombinant GFPs were freeze-dried for long-term storage at ambient temperature and for easy handling in feeding. GFPs bioencapsulated by lyophilized Chlamydomonas reinhardtii were found intact without degradation for several months at ambient temperature. The expression level of GFP in the lyophilized algae was estimated at 0.47 μg/mg dry weight. The GFPs bioencapsulated and orally delivered to Danio rerio were immunostained and observed in the intestinal tissues using a confocal microscope. Furthermore, the uptaken GFPs in the intestine were detected in the blood using ELISA and the detected level was 5.4 ng of GFP/μl of serum. These results demonstrate that microalgae can be a viable protein production and oral delivery system to vaccinate fish. The results give greater justification to continue exploring the concept of microalgal-based oral vaccines. The potential of the technology would greatly benefit aquaculture farmers by providing them with affordable, environmentally sustainable, and user-friendly vaccines.
Collapse
Affiliation(s)
- Kwang-Chul Kwon
- MicroSynbiotiX Ltd, 11011 N Torrey Pines Rd Ste. #135, La Jolla, CA, 92037, USA.
| | - Antonio Lamb
- MicroSynbiotiX Ltd, 11011 N Torrey Pines Rd Ste. #135, La Jolla, CA, 92037, USA
| | - David Fox
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Simon Jegan Porphy Jegathese
- MicroSynbiotiX Ltd, University College, Cork, Food Science Building, Level 4, Lab 442, Microbiology Department, Cork, Republic of Ireland
| |
Collapse
|
85
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
86
|
Lai CY, Yu GY, Luo Y, Xiang R, Chuang TH. Immunostimulatory Activities of CpG-Oligodeoxynucleotides in Teleosts: Toll-Like Receptors 9 and 21. Front Immunol 2019; 10:179. [PMID: 30800129 PMCID: PMC6375897 DOI: 10.3389/fimmu.2019.00179] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/21/2019] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern-recognition receptors that detect a wide variety of microbial pathogens for the initiation of host defense immunological responses. Thirteen TLRs have been identified in mammals, and teleosts contain 22 mammalian or non-mammalian TLRs. Of these, TLR9 and TLR21 are the cytosine-phosphate-guanosine-oligodeoxynucleotides (CpG-ODNs) recognition TLRs in teleosts. TLR9 is a mammalian TLR expressed in teleost but not in the avian species. TLR21 is a non-mammalian TLR expressed in both teleost and the avian species. Synthetic CpG-ODNs are potent immunostimulants that are being studied for their application against tumors, allergies, and infectious diseases, and as a vaccine adjuvant in humans. The immunostimulatory effects of CpG-ODNs as vaccine adjuvants and their antimicrobial function in domestic animals and teleosts are also being investigated. Most of our current knowledge about the molecular basis for the immunostimulatory activity of CpG-ODNs comes from earlier studies of the interaction between CpG-ODN and TLR9. More recent studies indicate that in addition to TLR9, TLR21 is another receptor for CpG-ODN recognition in teleosts to initiate immune responses. Whether these two receptors have differential functions in mediating the immunostimulatory activity of CpG-ODN in teleost has not been well-studied. Nevertheless, the existence of two recognition TLRs suggests that the molecular basis for the immunostimulatory activity of CpG-ODN in teleosts is different and more complex than in mammals. This article reviews the current knowledge of TLR9 and TLR21 activation by CpG-ODNs. The key points that need to be considered for CpG-ODNs as immunostimulants with maximum effectiveness in activation of immune responses in teleosts are discussed. This includes the structure/activity relationship of CpG-ODN activities for TLR9 and TLR21, the structure/functional relationship of these two TLRs, and differential expression levels and tissue distributions for these two TLRs.
Collapse
Affiliation(s)
- Chao-Yang Lai
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Yunping Luo
- Deptartment of Immunology, Chinese Academy of Medical Science, School of Basic Medicine, Peking Union Medical College, Institute of Basic Medical Science, Beijing, China.,Collaborative Innovation Center for Biotherapy, School of Basic Medical Science, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Rong Xiang
- Department of Immunology, School of Medicine, Nankai University, Tianjin, China.,International Joint Center for Biomedical Research of the Ministry of Education, Tianjin, China
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Zhunan, Taiwan.,Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
87
|
Lund H, Bakke AF, Sommerset I, Afanasyev S, Schriwer G, Thorisdottir A, Boysen P, Krasnov A. A time-course study of gene expression and antibody repertoire at early time post vaccination of Atlantic salmon. Mol Immunol 2019; 106:99-107. [DOI: 10.1016/j.molimm.2018.12.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 12/17/2018] [Accepted: 12/17/2018] [Indexed: 12/19/2022]
|
88
|
Sepúlveda D, Lorenzen E, Rasmussen JS, Einer-Jensen K, Collet B, Secombes CJ, Lorenzen N. Time-course study of the protection induced by an interferon-inducible DNA vaccine against viral haemorrhagic septicaemia in rainbow trout. FISH & SHELLFISH IMMUNOLOGY 2019; 85:99-105. [PMID: 29969707 DOI: 10.1016/j.fsi.2018.06.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/28/2018] [Accepted: 06/30/2018] [Indexed: 06/08/2023]
Abstract
The highly effective DNA vaccines against diseases caused by fish rhabdoviruses in farmed fish consist of a DNA plasmid vector encoding the viral glycoprotein under the control of a constitutive cytomegalovirus promoter (CMV). Among others, attempts to improve efficacy and safety of these DNA vaccines have focused on regulatory elements of plasmid vectors, which play a major role in controlling expression levels of vaccine antigens. Depending on the context, use of a fish-derived promoter with minimal activity in mammalian cells could be preferable. Another aspect related to the CMV promoter is that constitutive expression of the vaccine antigen may lead to rapid elimination of antigen expressing cells in the fish and thereby potentially reduce the long-term effects of the vaccine. In this study, we compared DNA vaccines with the interferon-inducible Mx promoter from rainbow trout and the CMV promoter, respectively. Plasmid constructs encoding the enhanced green fluorescent protein (EGFP) were used for the in vitro analysis, whereas DNA vaccines encoding the glycoprotein (G) of the viral haemorrhagic septicaemia virus (VHSV) were applied for the in vivo examination. The in vitro analysis showed that while the DNA vaccine with the CMV promoter constitutively drove the expression of EGFP in both fish and human cell lines, the DNA vaccine with the Mx promoter inducibly enhanced the expression of EGFP in the fish cell line. To address the impact on protection, a time-course model was followed as suggested by Kurath et al. (2006), where vaccinated fish were challenged with VHSV at 2, 8 and 78 weeks post-vaccination (wpv). The DNA vaccine with the CMV promoter protected at all times, while vaccination with the DNA vaccine containing the Mx promoter only protected the fish at 8 wpv. However, following induction with Poly (I:C) one week before the challenge, high protection was also evident at 2 wpv. In conclusion, the results revealed a more fish host dependent activity of the trout Mx promoter compared to the traditionally used cross species-active CMV promoter, but improvements will be needed for its application in DNA vaccines to ensure long term protection.
Collapse
Affiliation(s)
| | | | | | | | | | - C J Secombes
- School of Biological Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | |
Collapse
|
89
|
Xu W, Jiao C, Bao P, Liu Q, Wang P, Zhang R, Liu X, Zhang Y. Efficacy of Montanide™ ISA 763 A VG as aquatic adjuvant administrated with an inactivated Vibrio harveyi vaccine in turbot (Scophthalmus maximus L.). FISH & SHELLFISH IMMUNOLOGY 2019; 84:56-61. [PMID: 30201447 DOI: 10.1016/j.fsi.2018.09.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Turbot (Scophthalmus maximus L.) is a commercially important fish species in China. Despite of its great economic potential, fish farms often suffer severe economic losses due to certain fish diseases. Vaccination has become a common strategy to prevent diseases caused by pathogens in aquaculture industry. However, no inactivated vaccine against Vibrio harveyi of turbot has been reported so far. In this study, we developed an inactivated vaccine using formalin-killed cells of V. harveyi and the efficacy of a commercial adjuvant Montanide™ ISA 763 A VG on the inactivated vaccine was evaluated. We found that with an optimum vaccine dosage at 1.0 × 108 CFU/fish, a high relative percent survival (RPS) more than 75% was observed at 4 weeks post vaccination (w.p.v.). Moreover, enhanced antibody titer, lysozyme activity, total serum protein and antibacterial property in sera of vaccinated fish were observed at 4, 8, 12 and 16 w.p.v. In conclusion, we developed an efficient inactivated vaccine against V. harveyi in turbot, which not only induced humoral immunity, but also enhanced initial innate immune response for long-term protection.
Collapse
Affiliation(s)
- Wenting Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Chenglong Jiao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Pengcheng Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Qin Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| | - Pengbo Wang
- Shanghai Wei Sheng Marine Biotechnology Co., Ltd., Shanghai, 200237, China
| | - Ruilin Zhang
- School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China.
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai, 200237, China
| |
Collapse
|
90
|
Delphino MK, Barone RS, Leal CA, Figueiredo HC, Gardner IA, Gonçalves VS. Economic appraisal of vaccination against Streptoccocus agalactiae in Nile tilapia farms in Brazil. Prev Vet Med 2019; 162:131-135. [DOI: 10.1016/j.prevetmed.2018.12.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 11/20/2018] [Accepted: 12/06/2018] [Indexed: 01/23/2023]
|
91
|
Ma J, Bruce TJ, Sudheesh PS, Knupp C, Loch TP, Faisal M, Cain KD. Assessment of cross-protection to heterologous strains of Flavobacterium psychrophilum following vaccination with a live-attenuated coldwater disease immersion vaccine. JOURNAL OF FISH DISEASES 2019; 42:75-84. [PMID: 30370695 DOI: 10.1111/jfd.12902] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/05/2018] [Accepted: 09/07/2018] [Indexed: 06/08/2023]
Abstract
Bacterial coldwater disease, caused by Flavobacterium psychrophilum, remains one of the most significant bacterial diseases of salmonids worldwide. A previously developed and reported live-attenuated immersion vaccine (F. psychrophilum; B.17-ILM) has been shown to confer significant protection to salmonids. To further characterize this vaccine, a series of experiments were carried out to determine the cross-protective efficacy of this B.17-ILM vaccine against 9 F. psychrophilum isolates (representing seven sequence types/three clonal complexes as determined by multilocus sequence typing) in comparison with a wild-type virulent strain, CSF-259-93. To assess protection, 28-day experimental challenges of rainbow trout (Oncorhynchus mykiss) fry were conducted following immersion vaccinations with the B.17-ILM vaccine. F. psychrophilum strains used in challenge trials were isolated from several fish species across the globe; however, all were found to be virulent in rainbow trout. The B.17-ILM vaccine provided significant protection against all strains, with relative percent survival values ranging from 51% to 72%. All vaccinated fish developed an adaptive immune response (as measured by F. psychrophilum-specific antibodies) that increased out to the time of challenge (8 weeks postimmunization). Previous studies have confirmed that antibody plays an important role in protection against F. psychrophilum challenge; therefore, specific antibodies to the B.17-ILM vaccine strain appear to contribute to the cross-protection observed to heterologous strain. The ability of such antibodies to bind to similar antigenic regions for all strains was confirmed by western blot analyses. Results presented here support the practical application of this live-attenuated vaccine, and suggest that it will be efficacious even in aquaculture operations affected by diverse strains of F. psychrophilum.
Collapse
Affiliation(s)
- Jie Ma
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
| | - Timothy J Bruce
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
| | - Ponnerassery S Sudheesh
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
- Bronson Animal Disease Diagnostic Laboratory, Florida Department of Agriculture and Consumer Services, Kissimmee, Florida
| | - Christopher Knupp
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
| | - Thomas P Loch
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Mohamed Faisal
- Department of Fisheries and Wildlife, College of Agriculture and Natural Resources, Michigan State University, East Lansing, Michigan
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan
| | - Kenneth D Cain
- Department of Fisheries and Wildlife Sciences and the Aquaculture Research Institute, College of Natural Resources, University of Idaho, Moscow, Idaho
| |
Collapse
|
92
|
Zeng W, Wang Y, Guo Y, Bergmann SM, Yin J, Li Y, Ren Y, Shi C, Wang Q. Development of a VP38 recombinant protein-based indirect ELISA for detection of antibodies against grass carp reovirus genotype II (iELISA for detection of antibodies against GCRV II). JOURNAL OF FISH DISEASES 2018; 41:1811-1819. [PMID: 30255607 DOI: 10.1111/jfd.12890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 08/03/2018] [Accepted: 08/07/2018] [Indexed: 06/08/2023]
Abstract
Currently, serological assays for grass carp reovirus genotype II (GCRV-II) diagnosis are not available. In this study, an indirect enzyme-linked immunosorbent assay (ELISA) for the detection of antibodies against GCRV-II was developed. The structural protein VP38 of GCRV-II was used as the coating antigen. Monoclonal antibodies (mAb) against IgM of grass carp labelled with HRP were used as a secondary antibody. The antigen concentration and serum dilution were optimized using chess board titration. Furthermore, the specificity of indirect ELISA assay was confirmed by cross check with sera positive for other grass carp pathogens. In comparison with results obtained from indirect immunofluorescence assay (IFA) and Western blot by testing of 60 serum samples to evaluate the sensitivity and specificity of the ELISA, agreement between 90% and 96.7% was reached, respectively. A serological survey was performed using the assay with grass carp field serum samples. The seropositive rate of the 242 serum samples was 69.8%. In conclusion, the developed indirect ELISA is a very specific and sensitive test that will be useful for large-scale serological surveys to detect indirectly GCRV II infections as well as to monitor the changes of antibody level after immunization.
Collapse
Affiliation(s)
- Weiwei Zeng
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yanmin Guo
- College of Medical Science and Technology, Heze University, Heze, China
| | | | - Jiyuan Yin
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yingying Li
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Yan Ren
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Cunbin Shi
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Qing Wang
- Key Laboratory of Fishery Drug Development, Ministry of Agriculture, Key Laboratory of Aquatic Animal Immune Technology, Pearl River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| |
Collapse
|
93
|
Ziklo N, Colorni A, Gao LY, Du SJ, Ucko M. Humoral and Cellular Immune Response of European Seabass Dicentrarchus labrax Vaccinated with Heat-Killed Mycobacterium marinum (iipA::kan Mutant). JOURNAL OF AQUATIC ANIMAL HEALTH 2018; 30:312-324. [PMID: 30120830 DOI: 10.1002/aah.10042] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 08/12/2018] [Indexed: 05/19/2023]
Abstract
No vaccine is yet commercially available against Mycobacterium marinum, the etiological agent of fish mycobacteriosis (also known as "fish tuberculosis"). The mycobacterial gene responsible for invasion and intracellular persistence, iipA, is known to moderate M. marinum pathology in Zebrafish Danio rerio. Two doses of heat-killed, wild-type, virulent M. marinum and two doses of a heat-killed, avirulent M. marinum iipA::kan mutant strain were used in parallel to vaccinate European Seabass Dicentrarchus labrax. The fish were then challenged with live, virulent M. marinum, and the pathogenesis of the infection was monitored. High specific immunoglobulin M (IgM) response and an increase in cytokine tumor necrosis factor alpha (TNF-α) messenger RNA expression levels were observed in all vaccinated fish. At 1 month postchallenge, TNF-α expression levels increased in spleen tissues of fish vaccinated with the virulent type and in those of unvaccinated fish, whereas in the head kidney, expression was up-regulated only in unvaccinated fish. The expression then decreased, and at 2 months postchallenge, expression appeared similar in all vaccination types. The highest survival rate (75%) was recorded in the group of fish that were vaccinated with a high dose of avirulent iipA::kan mutant. The iipA::kan mutant induced a strong immune response accompanied by only modest tissue disruption. Coupled with an effective program of booster treatments, the iipA::kan mutant vaccine may be developed into a powerful preventive measure against fish mycobacteriosis.
Collapse
Affiliation(s)
- N Ziklo
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
- Eilat Campus, Marine Biology and Biotechnology Program, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - A Colorni
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| | - L-Y Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, 20742, USA
| | - S J Du
- Department of Biochemistry and Molecular Biology, University of Maryland, Baltimore, Maryland, 21202, USA
| | - M Ucko
- Israel Oceanographic and Limnological Research, National Center for Mariculture, Eilat, 8811201, Israel
| |
Collapse
|
94
|
Shin Y, Jung M, Shin GH, Jung HJ, Baek SJ, Lee GY, Kang BC, Shim J, Hong JM, Park JY, An CM, Kim YO, Noh JK, Kim JW, Nam BH, Park CI. First draft genome sequence of the rock bream in the family Oplegnathidae. Sci Data 2018; 5:180234. [PMID: 30351299 PMCID: PMC6198749 DOI: 10.1038/sdata.2018.234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 09/04/2018] [Indexed: 11/09/2022] Open
Abstract
The rock bream (Oplegnathus fasciatus) is one of the most economically valuable marine fish in East Asia, and due to various environmental factors, there is substantial revenue loss in the production sector. Therefore, knowledge of its genome is required to uncover the genetic factors and the solutions to these problems. In this study, we constructed the first draft genome of O. fasciatus as a reference for the family Oplegnathidae. The genome size is estimated to be 749 Mb, and it was assembled into 766 Mb by combining Illumina and PacBio sequences. A total of 24,053 transcripts (23,338 genes) are predicted, and among those transcripts, 23,362 (97%), are annotated with functional terms. Finally, the completeness of the genome assembly was assessed by CEGMA, which resulted in the complete mapping of 220 (88.7%) core genes in the genome. To the best of our knowledge, this is the first draft genome for the family Oplegnathidae.
Collapse
Affiliation(s)
- Younhee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea.,Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Myunghee Jung
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea.,Department of Forest Science, Research Institute of Agriculture and Life Science, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ga-Hee Shin
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Ho-Jin Jung
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Su-Jin Baek
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Gi-Yong Lee
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Byeong-Chul Kang
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Jaeyoung Shim
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Ji-Man Hong
- Research and Development Center, Insilicogen Inc., Yongin-si 16954, Gyeonggi-do, Republic of Korea
| | - Jung Youn Park
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Cheul Min An
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Young-Ok Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jae Koo Noh
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Ju-Won Kim
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Bo-Hye Nam
- Biotechnology Research Division, National Institute of Fisheries Science, Haean-ro 216, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 53064, Republic of Korea
| |
Collapse
|
95
|
Jørgensen LVG, Korbut R, Jeberg S, Kania PW, Buchmann K. Association between adaptive immunity and neutrophil dynamics in zebrafish (Danio rerio) infected by a parasitic ciliate. PLoS One 2018; 13:e0203297. [PMID: 30204772 PMCID: PMC6133357 DOI: 10.1371/journal.pone.0203297] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023] Open
Abstract
The protective immune response in zebrafish (Danio rerio) against the parasitic ciliate Ichthyophthirius multifiliis, targeting host skin, fins and gills, comprises an accelerated and manifold elevated immunoglobulin gene expression as well as a significantly elevated number of neutrophils at infected sites. Experimental fish were subjected to a primary I. multifiliis infection followed by a series of secondary exposures before they were challenged by a high dosage of infective theronts. Immunized fish responded immediately with a protective response suggesting existence of immunological memory whereas fish exposed to the parasite for the first time obtained a marked infection. The primary response to infection was dominated by expression of genes encoding acute phase reactants and inflammatory cytokines as well as recruitment of neutrophils at infected locations. Immunized fish showed a significantly upregulated immunoglobulin gene expression following challenge, which indicates existence of a secondary response effected by antibodies. Both responses induced a significantly elevated expression of the Th2 signature cytokine Il13. The increased presence of neutrophils in immunized fish suggests that innate cell mediated immunity supplements or influence the protective response against the parasite.
Collapse
Affiliation(s)
- Louise von Gersdorff Jørgensen
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
- * E-mail:
| | - Rozalia Korbut
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Sandra Jeberg
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Per Walter Kania
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| | - Kurt Buchmann
- Section of Parasitology and Aquatic Pathobiology, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
96
|
Simjee S, McDermott P, Trott DJ, Chuanchuen R. Present and Future Surveillance of Antimicrobial Resistance in Animals: Principles and Practices. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0028-2017. [PMID: 30003869 PMCID: PMC11633600 DOI: 10.1128/microbiolspec.arba-0028-2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
There is broad consensus internationally that surveillance of the levels of antimicrobial resistance (AMR) occurring in various systems underpins strategies to address the issue. The key reasons for surveillance of resistance are to determine (i) the size of the problem, (ii) whether resistance is increasing, (iii) whether previously unknown types of resistance are emerging, (iv) whether a particular type of resistance is spreading, and (v) whether a particular type of resistance is associated with a particular outbreak. The implications of acquiring and utilizing this information need to be considered in the design of a surveillance system. AMR surveillance provides a foundation for assessing the burden of AMR and for providing the necessary evidence for developing efficient and effective control and prevention strategies. The codevelopment of AMR surveillance programs in humans and animals is essential, but there remain several key elements that make data comparisons between AMR monitoring programs, and between regions, difficult. Currently, AMR surveillance relies on uncomplicated in vitro antimicrobial susceptibility methods. However, the lack of harmonization across programs and the limitation of genetic information of AMR remain the major drawbacks of these phenotypic methods. The future of AMR surveillance is moving toward genotypic detection, and molecular analysis methods are expected to yield a wealth of information. However, the expectation that these molecular techniques will surpass phenotypic susceptibility testing in routine diagnosis and monitoring of AMR remains a distant reality, and phenotypic testing remains necessary in the detection of emerging resistant bacteria, new resistance mechanisms, and trends of AMR.
Collapse
Affiliation(s)
- S Simjee
- Elanco Animal Health, Basingstoke, UK
| | - P McDermott
- Food and Drug Administration, Center for Veterinary Medicine, Rockville MD
| | - D J Trott
- University of Adelaide, Roseworthy, Australia
| | | |
Collapse
|
97
|
Palaiokostas C, Cariou S, Bestin A, Bruant JS, Haffray P, Morin T, Cabon J, Allal F, Vandeputte M, Houston RD. Genome-wide association and genomic prediction of resistance to viral nervous necrosis in European sea bass (Dicentrarchus labrax) using RAD sequencing. Genet Sel Evol 2018; 50:30. [PMID: 29884113 PMCID: PMC5994081 DOI: 10.1186/s12711-018-0401-2] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/31/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND European sea bass (Dicentrarchus labrax) is one of the most important species for European aquaculture. Viral nervous necrosis (VNN), commonly caused by the redspotted grouper nervous necrosis virus (RGNNV), can result in high levels of morbidity and mortality, mainly during the larval and juvenile stages of cultured sea bass. In the absence of efficient therapeutic treatments, selective breeding for host resistance offers a promising strategy to control this disease. Our study aimed at investigating genetic resistance to VNN and genomic-based approaches to improve disease resistance by selective breeding. A population of 1538 sea bass juveniles from a factorial cross between 48 sires and 17 dams was challenged with RGNNV with mortalities and survivors being recorded and sampled for genotyping by the RAD sequencing approach. RESULTS We used genome-wide genotype data from 9195 single nucleotide polymorphisms (SNPs) for downstream analysis. Estimates of heritability of survival on the underlying scale for the pedigree and genomic relationship matrices were 0.27 (HPD interval 95%: 0.14-0.40) and 0.43 (0.29-0.57), respectively. Classical genome-wide association analysis detected genome-wide significant quantitative trait loci (QTL) for resistance to VNN on chromosomes (unassigned scaffolds in the case of 'chromosome' 25) 3, 20 and 25 (P < 1e06). Weighted genomic best linear unbiased predictor provided additional support for the QTL on chromosome 3 and suggested that it explained 4% of the additive genetic variation. Genomic prediction approaches were tested to investigate the potential of using genome-wide SNP data to estimate breeding values for resistance to VNN and showed that genomic prediction resulted in a 13% increase in successful classification of resistant and susceptible animals compared to pedigree-based methods, with Bayes A and Bayes B giving the highest predictive ability. CONCLUSIONS Genome-wide significant QTL were identified but each with relatively small effects on the trait. Tests of genomic prediction suggested that incorporating genome-wide SNP data is likely to result in higher accuracy of estimated breeding values for resistance to VNN. RAD sequencing is an effective method for generating such genome-wide SNPs, and our findings highlight the potential of genomic selection to breed farmed European sea bass with improved resistance to VNN.
Collapse
Affiliation(s)
- Christos Palaiokostas
- The Roslin Institute¸Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| | - Sophie Cariou
- Ferme Marine De Douhet, BP 4, 17840 La Brée Les Bains, France
| | - Anastasia Bestin
- SYSAAF, LPGP-INRA, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | - Pierrick Haffray
- SYSAAF, LPGP-INRA, Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health and Safety (ANSES), Ploufragan-Plouzané Laboratory, Viral Fish Pathology Unit, National Reference Laboratory for Regulated Fish Diseases, Bretagne Loire University, Technopôle Brest-Iroise, BP 70, 29280 Plouzané, France
| | - François Allal
- MARBEC, Université de Montpellier, Ifremer-CNRS-IRD-UM, Palavas-les-Flots, France
| | - Marc Vandeputte
- GABI, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Ross D. Houston
- The Roslin Institute¸Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
98
|
Use of high-resolution melting curve analysis to differentiate vaccine and wild type strains of grass carp reovirus genotype II. J Virol Methods 2018; 256:111-115. [DOI: 10.1016/j.jviromet.2018.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 03/14/2018] [Accepted: 03/15/2018] [Indexed: 11/22/2022]
|
99
|
Robledo D, Matika O, Hamilton A, Houston RD. Genome-Wide Association and Genomic Selection for Resistance to Amoebic Gill Disease in Atlantic Salmon. G3 (BETHESDA, MD.) 2018; 8:1195-1203. [PMID: 29420190 PMCID: PMC5873910 DOI: 10.1534/g3.118.200075] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 02/01/2018] [Indexed: 11/18/2022]
Abstract
Amoebic gill disease (AGD) is one of the largest threats to salmon aquaculture, causing serious economic and animal welfare burden. Treatments can be expensive and environmentally damaging, hence the need for alternative strategies. Breeding for disease resistance can contribute to prevention and control of AGD, providing long-term cumulative benefits in selected stocks. The use of genomic selection can expedite selection for disease resistance due to improved accuracy compared to pedigree-based approaches. The aim of this work was to quantify and characterize genetic variation in AGD resistance in salmon, the genetic architecture of the trait, and the potential of genomic selection to contribute to disease control. An AGD challenge was performed in ∼1,500 Atlantic salmon, using gill damage and amoebic load as indicator traits for host resistance. Both traits are heritable (h2 ∼0.25-0.30) and show high positive correlation, indicating they may be good measurements of host resistance to AGD. While the genetic architecture of resistance appeared to be largely polygenic in nature, two regions on chromosome 18 showed suggestive association with both AGD resistance traits. Using a cross-validation approach, genomic prediction accuracy was up to 18% higher than that obtained using pedigree, and a reduction in marker density to ∼2,000 SNPs was sufficient to obtain accuracies similar to those obtained using the whole dataset. This study indicates that resistance to AGD is a suitable trait for genomic selection, and the addition of this trait to Atlantic salmon breeding programs can lead to more resistant stocks.
Collapse
Affiliation(s)
- Diego Robledo
- The Roslin Institute and Royal (Dick) School of Veterinary Studies and
| | - Oswald Matika
- The Roslin Institute and Royal (Dick) School of Veterinary Studies and
| | - Alastair Hamilton
- Landcatch Natural Selection Ltd., Roslin Innovation Centre, University of Edinburgh, EH25 9RG Midlothian, United Kingdom,and
- Hendrix Genetics Aquaculture BV/ Netherlands, Villa 'de Körver', Spoorstraat 69, 5831 CK Boxmeer, The Netherlands
| | - Ross D Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies and
| |
Collapse
|
100
|
Liu X, Jiao C, Ma Y, Wang Q, Zhang Y. A live attenuated Vibrio anguillarum vaccine induces efficient immunoprotection in Tiger puffer (Takifugu rubripes). Vaccine 2018; 36:1460-1466. [DOI: 10.1016/j.vaccine.2018.01.067] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/19/2018] [Accepted: 01/20/2018] [Indexed: 10/18/2022]
|