51
|
Kasemeier-Kulesa JC, Teddy JM, Postovit LM, Seftor EA, Seftor REB, Hendrix MJC, Kulesa PM. Reprogramming multipotent tumor cells with the embryonic neural crest microenvironment. Dev Dyn 2008; 237:2657-66. [PMID: 18629870 PMCID: PMC2570047 DOI: 10.1002/dvdy.21613] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The embryonic microenvironment is an important source of signals that program multipotent cells to adopt a particular fate and migratory path, yet its potential to reprogram and restrict multipotent tumor cell fate and invasion is unrealized. Aggressive tumor cells share many characteristics with multipotent, invasive embryonic progenitors, contributing to the paradigm of tumor cell plasticity. In the vertebrate embryo, multiple cell types originate from a highly invasive cell population called the neural crest. The neural crest and the embryonic microenvironments they migrate through represent an excellent model system to study cell diversification during embryogenesis and phenotype determination. Recent exciting studies of tumor cells transplanted into various embryo models, including the neural crest rich chick microenvironment, have revealed the potential to control and revert the metastatic phenotype, suggesting further work may help to identify new targets for therapeutic intervention derived from a convergence of tumorigenic and embryonic signals. In this mini-review, we summarize markers that are common to the neural crest and highly aggressive human melanoma cells. We highlight advances in our understanding of tumor cell behaviors and plasticity studied within the chick neural crest rich microenvironment. In so doing, we honor the tremendous contributions of Professor Elizabeth D. Hay toward this important interface of developmental and cancer biology.
Collapse
|
52
|
Morgan SC, Lee HY, Relaix F, Sandell LL, Levorse JM, Loeken MR. Cardiac outflow tract septation failure in Pax3-deficient embryos is due to p53-dependent regulation of migrating cardiac neural crest. Mech Dev 2008; 125:757-67. [PMID: 18672055 PMCID: PMC2654333 DOI: 10.1016/j.mod.2008.07.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 06/19/2008] [Accepted: 07/07/2008] [Indexed: 10/21/2022]
Abstract
During neural tube closure, Pax3 is required to inhibit p53-dependent apoptosis. Pax3 is also required for migration of cardiac neural crest (CNC) from the neural tube to the heart and septation of the primitive single cardiac outflow tract into the aorta and pulmonary arteries. Whether Pax3 is required for CNC migration and outflow tract septation by inhibiting p53-dependent apoptosis is not known. In this study, mouse strains carrying reporters linked to Pax3 alleles were used to map the fate of CNC cells in embryos which were either Pax3-sufficient (expressing one or two functional Pax3 alleles) or Pax3-deficient (expressing two null Pax3 alleles), and in which p53 had been inactivated or not. Migrating CNC cells were observed in both Pax3-sufficient and -deficient embryos, but CNC cells were sparse and disorganized in Pax3-deficient embryos as migration progressed. The defective migration was associated with increased cell death. Suppression of p53, either by null mutation of the p53 gene, or administration of a p53 inhibitor, pifithrin-alpha, prevented the defective CNC migration and apoptosis in Pax3-deficient embryos, and also restored proper development of cardiac outflow tracts. These results indicate that Pax3 is required for cardiac outflow tract septation because it blocks p53-dependent processes during CNC migration.
Collapse
Affiliation(s)
- Sarah C. Morgan
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Hyung-Yul Lee
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Frédéric Relaix
- UMR S 787, Institut National de la Santé et de la Recherche Médicale-UPMC-Paris VI, Faculté de Médecine Pitié-Salpétrière, 75634 Paris Cedex 13, France
| | - Lisa L. Sandell
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110
| | - John M. Levorse
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
53
|
Walls JR, Coultas L, Rossant J, Henkelman RM. Three-dimensional analysis of vascular development in the mouse embryo. PLoS One 2008; 3:e2853. [PMID: 18682734 PMCID: PMC2478714 DOI: 10.1371/journal.pone.0002853] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 06/11/2008] [Indexed: 02/07/2023] Open
Abstract
Key vasculogenic (de-novo vessel forming) and angiogenic (vessel remodelling) events occur in the mouse embryo between embryonic days (E) 8.0 and 10.0 of gestation, during which time the vasculature develops from a simple circulatory loop into a complex, fine structured, three-dimensional organ. Interpretation of vascular phenotypes exhibited by signalling pathway mutants has historically been hindered by an inability to comprehensively image the normal sequence of events that shape the basic architecture of the early mouse vascular system. We have employed Optical Projection Tomography (OPT) using frequency distance relationship (FDR)-based deconvolution to image embryos immunostained with the endothelial specific marker PECAM-1 to create a high resolution, three-dimensional atlas of mouse vascular development between E8.0 and E10.0 (5 to 30 somites). Analysis of the atlas has provided significant new information regarding normal development of intersomitic vessels, the perineural vascular plexus, the cephalic plexus and vessels connecting the embryonic and extraembryonic circulation. We describe examples of vascular remodelling that provide new insight into the mechanisms of sprouting angiogenesis, vascular guidance cues and artery/vein identity that directly relate to phenotypes observed in mouse mutants affecting vascular development between E8.0 and E10.0. This atlas is freely available at http://www.mouseimaging.ca/research/mouse_atlas.html and will serve as a platform to provide insight into normal and abnormal vascular development.
Collapse
Affiliation(s)
- Johnathon R. Walls
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Leigh Coultas
- Hospital for Sick Children Research Institute, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada
| | - Janet Rossant
- Hospital for Sick Children Research Institute, Developmental and Stem Cell Biology Program, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - R. Mark Henkelman
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto Centre for Phenogenomics, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
54
|
Morgan SC, Relaix F, Sandell LL, Loeken MR. Oxidative stress during diabetic pregnancy disrupts cardiac neural crest migration and causes outflow tract defects. ACTA ACUST UNITED AC 2008; 82:453-63. [PMID: 18435457 DOI: 10.1002/bdra.20457] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Maternal diabetes increases risk for congenital malformations, particularly cardiac outflow tract defects. Maternal diabetes inhibits expression of Pax3 in neuroepithelium through hyperglycemia-induced oxidative stress. The neuroepithelium gives rise to the neural crest, and Pax3 expression in cardiac neural crest (CNC) is required for CNC migration to the heart and for outflow tract septation. Here we tested whether maternal diabetes, through hyperglycemia-induced oxidative stress, before the onset of CNC delamination, impairs CNC migration and cardiac outflow tract septation. METHODS CNC migration was mapped in mouse embryos whose mothers were diabetic, or transiently hyperglycemic, or in which oxidative stress was transiently induced, using reporters linked to Pax3 expression. CNC apoptosis was examined by TUNEL assay. Outflow tract septation was examined histologically and by gross inspection. RESULTS Few, if any, migrating CNC cells were observed in embryos of diabetic mice, and this was associated with increased apoptosis along the path of CNC migration. Outflow tract defects were significantly increased in fetuses of diabetic mice. Notably, induction of hyperglycemia or oxidative stress on the day prior to the onset of Pax3 expression and CNC migration also impaired CNC migration, increased apoptosis, and caused outflow tract defects. However, antioxidants administered on the day prior to the onset of Pax3 expression and CNC migration prevented these effects of hyperglycemia or oxidative stress. CONCLUSIONS In diabetic pregnancy, oxidative stress, which inhibits expression of genes required for CNC viability, causes subsequent CNC depletion by apoptosis during migration, which leads to outflow tract defects.
Collapse
Affiliation(s)
- Sarah C Morgan
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, Massachusetts 02215, USA
| | | | | | | |
Collapse
|
55
|
Hong SJ, Lardaro T, Oh MS, Huh Y, Ding Y, Kang UJ, Kirfel J, Buettner R, Kim KS. Regulation of the noradrenaline neurotransmitter phenotype by the transcription factor AP-2beta. J Biol Chem 2008; 283:16860-7. [PMID: 18424435 PMCID: PMC2423267 DOI: 10.1074/jbc.m709106200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2007] [Revised: 02/27/2008] [Indexed: 12/23/2022] Open
Abstract
AP-2 family transcription factors are essential for development and morphogenesis of diverse tissues and organs, but their precise roles in specification of neural crest stem cell (NCSC)-derived cell types have not been determined. Among three members known to be expressed in the NCSC (i.e. AP-2alpha, AP-2beta, and AP-2gamma), we found that only AP-2beta is predominantly expressed in the sympathetic ganglia of developing mouse embryos, supporting its role in sympathetic development. Indeed, AP-2beta null mice expressed significantly reduced levels of both noradrenaline (NA) and NA-synthesizing dopamine beta-hydroxylase in the peripheral nervous system. Strikingly, we also found that NA neuron development was significantly compromised in the locus coeruleus as well. Pharmacological treatment with an NA intermediate during pregnancy significantly rescues the neonatal lethality of AP-2beta(-/-) mice, indicating that NA deficiency is one of the main causes for lethality found in AP-2beta(-/-) mice. We also showed that forced expression of AP-2beta, but not other AP-2 factors, in NCSC favors their differentiation into NA neurons. In summary, we propose that AP-2beta plays critical and distinctive roles in the NA phenotype specification in both the peripheral and central nervous system during development.
Collapse
Affiliation(s)
- Seok Jong Hong
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Thomas Lardaro
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Myung Sook Oh
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Youngbuhm Huh
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Yunmin Ding
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Un Jung Kang
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Jutta Kirfel
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Reinhard Buettner
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| | - Kwang-Soo Kim
- Molecular Neurobiology
Laboratory, McLean Hospital, Harvard Medical School, Belmont, Massachusetts
02478, the Department of Neurology
and Neurobiology, Pharmacology & Physiology, University of Chicago,
Chicago, Illinois 60637, and the
Institute of Pathology, University
Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
56
|
Sauka-Spengler T, Bronner-Fraser M. Insights from a sea lamprey into the evolution of neural crest gene regulatory network. THE BIOLOGICAL BULLETIN 2008; 214:303-314. [PMID: 18574106 DOI: 10.2307/25470671] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The neural crest is a vertebrate innovation that forms at the embryonic neural plate border, transforms from epithelial to mesenchymal, migrates extensively throughout the embryo along well-defined pathways, and differentiates into a plethora of derivatives that include elements of peripheral nervous system, craniofacial skeleton, melanocytes, etc. The complex process of neural crest formation is guided by multiple regulatory modules that define neural crest gene regulatory network (NC GRN), which allows the neural crest to progressively acquire all of its defining characteristics. The molecular study of neural crest formation in lamprey, a basal extant vertebrate, consisting in identification and functional tests of molecular elements at each regulatory level of this network, has helped address the question of the timing of emergence of NC GRN and define its basal state. The results have revealed striking conservation in deployment of upstream factors and regulatory modules, suggesting that proximal portions of the network arose early in vertebrate evolution and have been tightly conserved for more than 500 million years. In contrast, certain differences were observed in deployment of some neural crest specifier and downstream effector genes expected to confer species-specific migratory and differentiation properties.
Collapse
Affiliation(s)
- Tatjana Sauka-Spengler
- Division of Biology 139-74, California Institute of Technology, Pasadena, California 91125, USA.
| | | |
Collapse
|
57
|
Abstract
Many of the features that distinguish the vertebrates from other chordates are derived from the neural crest, and it has long been argued that the emergence of this multipotent embryonic population was a key innovation underpinning vertebrate evolution. More recently, however, a number of studies have suggested that the evolution of the neural crest was less sudden than previously believed. This has exposed the fact that neural crest, as evidenced by its repertoire of derivative cell types, has evolved through vertebrate evolution. In this light, attempts to derive a typological definition of neural crest, in terms of molecular signatures or networks, are unfounded. We propose a less restrictive, embryological definition of this cell type that facilitates, rather than precludes, investigating the evolution of neural crest. While the evolutionary origin of neural crest has attracted much attention, its subsequent evolution has received almost no attention and yet it is more readily open to experimental investigation and has greater relevance to understanding vertebrate evolution. Finally, we provide a brief outline of how the evolutionary emergence of neural crest potentiality may have proceeded, and how it may be investigated.
Collapse
|
58
|
Hong SJ, Chae H, Lardaro T, Hong S, Kim KS. Trim11 increases expression of dopamine beta-hydroxylase gene by interacting with Phox2b. Biochem Biophys Res Commun 2008; 368:650-5. [PMID: 18275850 PMCID: PMC2712928 DOI: 10.1016/j.bbrc.2008.01.165] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/25/2008] [Indexed: 11/26/2022]
Abstract
The homeodomain transcription factor Phox2b is one of the key determinants involved in the development of noradrenergic (NA) neurons in both the central nervous system (CNS) and the peripheral nervous system (PNS). Using yeast two-hybrid screening, we isolated a Phox2b interacting protein, Trim11, which belongs to TRIM (Tripartite motif) or RBCC proteins family, and contains a RING domain, B-boxes, a coiled-coil domain, and the B30.2/SPRY domain. Protein-protein interaction assays showed that Phox2b was able to physically interact with Trim11. The B30.2/SPRY domain of Trim11 was required for the interaction with Phox2b. Expression of Phox2b and Trim11 was detected in the sympathetic ganglia (SG) of mouse embryos. Forced expression of Trim11 with Phox2b further increased mRNA levels of dopamine beta-hydroxylase (DBH) gene in primary avian neural crest stem cell (NCSC) culture. This study suggests a potential role for Trim11 in the specification of NA phenotype by interaction with Phox2b.
Collapse
Affiliation(s)
- Seok Jong Hong
- Molecular Neurobiology Laboratory, McLean Hospital, Harvard Medical School, 115 Mill Street, Belmont, MA 02478, USA
| | | | | | | | | |
Collapse
|
59
|
Takatsuka A, Yagi R, Koike M, Oneyama C, Nada S, Schmedt C, Uchiyama Y, Okada M. Ablation of Csk in neural crest lineages causes corneal anomaly by deregulating collagen fibril organization and cell motility. Dev Biol 2008; 315:474-88. [PMID: 18262517 DOI: 10.1016/j.ydbio.2008.01.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Revised: 12/29/2007] [Accepted: 01/04/2008] [Indexed: 12/25/2022]
Abstract
Src family kinases (SFKs) have been implicated in the regulation of cell motility. To verify their in vivo roles during development, we generated mutant mice in which Csk, a negative regulator of SFKs, was inactivated in neural crest lineages using the Protein zero promoter in a Cre-loxP system. Inactivation of Csk caused deformities in various tissues of neural crest origins, including facial dysplasia and corneal opacity. In the cornea, the stromal collagen fibril was disorganized and there was an overproduction of collagen 1a1 and several metalloproteases. The corneal endothelium failed to overlie the central region of the eye and the peripheral endothelium displayed a disorganized cytoskeleton. Corneal mesenchymal cells cultured from mutant mice showed attenuated cell motility. In these cells, p130 Crk-associated substrate (Cas) was hyperphosphorylated and markedly downregulated. The expression of a dominant negative Cas (Cas Delta SD) could suppress the cell motility defects. Fluorescence resonance energy transfer analysis revealed that activation of Rac1 and Cdc42 was depolarized in Csk-inactivated cells, which was restored by the expression of either Csk or Cas Delta SD. These results demonstrate that the SFKs/Csk circuit plays crucial roles in corneal development by controlling stromal organization and by ensuring cell motility via the Cas-Rac/Cdc42 pathways.
Collapse
Affiliation(s)
- Atsuko Takatsuka
- Department of Oncogene Research, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
60
|
Revet I, Huizenga G, Chan A, Koster J, Volckmann R, van Sluis P, Øra I, Versteeg R, Geerts D. The MSX1 homeobox transcription factor is a downstream target of PHOX2B and activates the Delta-Notch pathway in neuroblastoma. Exp Cell Res 2008; 314:707-19. [PMID: 18201699 DOI: 10.1016/j.yexcr.2007.12.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2007] [Revised: 11/05/2007] [Accepted: 12/05/2007] [Indexed: 02/03/2023]
Abstract
Neuroblastoma is an embryonal tumour of the peripheral sympathetic nervous system (SNS). One of the master regulator genes for peripheral SNS differentiation, the homeobox transcription factor PHOX2B, is mutated in familiar and sporadic neuroblastomas. Here we report that inducible expression of PHOX2B in the neuroblastoma cell line SJNB-8 down-regulates MSX1, a homeobox gene important for embryonic neural crest development. Inducible expression of MSX1 in SJNB-8 caused inhibition of both cell proliferation and colony formation in soft agar. Affymetrix micro-array and Northern blot analysis demonstrated that MSX1 strongly up-regulated the Delta-Notch pathway genes DLK1, NOTCH3, and HEY1. In addition, the proneural gene NEUROD1 was down-regulated. Western blot analysis showed that MSX1 induction caused cleavage of the NOTCH3 protein to its activated form, further confirming activation of the Delta-Notch pathway. These experiments describe for the first time regulation of the Delta-Notch pathway by MSX1, and connect these genes to the PHOX2B oncogene, indicative of a role in neuroblastoma biology. Affymetrix micro-array analysis of a neuroblastic tumour series consisting of neuroblastomas and the more benign ganglioneuromas showed that MSX1, NOTCH3 and HEY1 are more highly expressed in ganglioneuromas. This suggests a block in differentiation of these tumours at distinct developmental stages or lineages.
Collapse
Affiliation(s)
- Ingrid Revet
- Department of Human Genetics, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Wrage PC, Tran T, To K, Keefer EW, Ruhn KA, Hong J, Hattangadi S, Treviño I, Tansey MG. The neuro-glial properties of adipose-derived adult stromal (ADAS) cells are not regulated by Notch 1 and are not derived from neural crest lineage. PLoS One 2008; 3:e1453. [PMID: 18197263 PMCID: PMC2180194 DOI: 10.1371/journal.pone.0001453] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2007] [Accepted: 12/14/2007] [Indexed: 12/20/2022] Open
Abstract
We investigated whether adipose-derived adult stromal (ADAS) are of neural crest origin and the extent to which Notch 1 regulates their growth and differentiation. Mouse ADAS cells cultured in media formulated for neural stem cells (NSC) displayed limited capacity for self-renewal, clonogenicity, and neurosphere formation compared to NSC from the subventricular zone in the hippocampus. Although ADAS cells expressed Nestin, GFAP, NSE and Tuj1 in vitro, exposure to NSC differentiation supplements did not induce mature neuronal marker expression. In contrast, in mesenchymal stem cell (MSC) media, ADAS cells retained their ability to proliferate and differentiate beyond 20 passages and expressed high levels of Nestin. In neuritizing cocktails, ADAS cells extended processes, downregulated Nestin expression, and displayed depolarization-induced Ca(2+) transients but no spontaneous or evoked neural network activity on Multi-Electrode Arrays. Deletion of Notch 1 in ADAS cell cultures grown in NSC proliferation medium did not significantly alter their proliferative potential in vitro or the differentiation-induced downregulation of Nestin. Co-culture of ADAS cells with fibroblasts that stably expressed the Notch ligand Jagged 1 or overexpression of the Notch intracellular domain (NICD) did not alter ADAS cell growth, morphology, or cellular marker expression. ADAS cells did not display robust expression of neural crest transcription factors or genes (Sox, CRABP2, and TH); and lineage tracing analyses using Wnt1-Cre;Rosa26R-lacZ or -EYFP reporter mice confirmed that fewer than 2% of the ADAS cell population derived from a Wnt1-positive population during development. In summary, although media formulations optimized for MSCs or NSCs enable expansion of mouse ADAS cells in vitro, we find no evidence that these cells are of neural crest origin, that they can undergo robust terminal differentiation into functionally mature neurons, and that Notch 1 is likely to be a key regulator of their cellular and molecular characteristics.
Collapse
Affiliation(s)
- Philip C. Wrage
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Thi Tran
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Khai To
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Edward W. Keefer
- Department of Plastic Surgery, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Kelly A. Ruhn
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - John Hong
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Supriya Hattangadi
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Isaac Treviño
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Malú G. Tansey
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
62
|
Kuratani S, Ota KG. Hagfish (cyclostomata, vertebrata): Searching for the ancestral developmental plan of vertebrates. Bioessays 2008; 30:167-72. [DOI: 10.1002/bies.20701] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
63
|
Coles EG, Taneyhill LA, Bronner-Fraser M. A critical role for Cadherin6B in regulating avian neural crest emigration. Dev Biol 2007; 312:533-44. [PMID: 17991460 PMCID: PMC2266065 DOI: 10.1016/j.ydbio.2007.09.056] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Revised: 09/27/2007] [Accepted: 09/27/2007] [Indexed: 01/11/2023]
Abstract
Neural crest cells originate in the dorsal neural tube but subsequently undergo an epithelial-to-mesenchymal transition (EMT), delaminate, and migrate to diverse locations in the embryo where they contribute to a variety of derivatives. Cadherins are a family of cell-cell adhesion molecules expressed in a broad range of embryonic tissues, including the neural tube. In particular, cadherin6B (Cad6B) is expressed in the dorsal neural tube prior to neural crest emigration but is then repressed by the transcription factor Snail2, expressed by premigratory and early migrating cranial neural crest cells. To examine the role of Cad6B during neural crest EMT, we have perturbed Cad6B protein levels in the cranial neural crest-forming region and have examined subsequent effects on emigration and migration. The results show that knock-down of Cad6B leads to premature neural crest cell emigration, whereas Cad6B overexpression disrupts migration. Our data reveal a novel role for Cad6B in controlling the proper timing of neural crest emigration and delamination from the neural tube of the avian embryo.
Collapse
Affiliation(s)
- E G Coles
- California Institute of Technology, Division of Biology, Pasadena, CA 91125, USA
| | | | | |
Collapse
|
64
|
Sauka-Spengler T, Meulemans D, Jones M, Bronner-Fraser M. Ancient evolutionary origin of the neural crest gene regulatory network. Dev Cell 2007; 13:405-20. [PMID: 17765683 DOI: 10.1016/j.devcel.2007.08.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 03/09/2007] [Accepted: 08/15/2007] [Indexed: 11/16/2022]
Abstract
The vertebrate neural crest migrates from its origin, the neural plate border, to form diverse derivatives. We previously hypothesized that a neural crest gene regulatory network (NC-GRN) guides neural crest formation. Here, we investigate when during evolution this hypothetical network emerged by analyzing neural crest formation in lamprey, a basal extant vertebrate. We identify 50 NC-GRN homologs and use morpholinos to demonstrate a critical role for eight transcriptional regulators. The results reveal conservation in deployment of upstream factors, suggesting that proximal portions of the network arose early in vertebrate evolution and have been conserved for >500 million years. We found biphasic expression of neural crest specifiers and differences in deployment of some specifiers and effectors expected to confer species-specific properties. By testing the collective expression and function of neural crest genes in a single, basal vertebrate, we reveal the ground state of the NC-GRN and resolve ambiguities between model organisms.
Collapse
|
65
|
Nagatomo KI, Hashimoto C. Xenopus hairy2 functions in neural crest formation by maintaining cells in a mitotic and undifferentiated state. Dev Dyn 2007; 236:1475-83. [PMID: 17436284 DOI: 10.1002/dvdy.21152] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The neural crest is a population of mitotically active, multipotent progenitor cells that arise at the neural plate border. Neural crest progenitors must be maintained in a multipotent state until after neural tube closure. However, the molecular underpinnings of this process have yet to be fully elucidated. Here we show that the basic helix-loop-helix (bHLH) transcriptional repressor gene, Xenopus hairy2 (Xhairy2), is an essential early regulator of neural crest formation in Xenopus. During gastrulation, Xhairy2 is localized at the presumptive neural crest prior to the expression of such neural crest markers as Slug and FoxD3. Morpholino-mediated knockdown of Xhairy2 results in the repression of neural crest marker gene expression while inducing the ectopic expression of the cell cycle inhibitor p27(xic1) in the presumptive neural crest. We also found that ectopic p27(xic1) disturbs neural crest formation. Furthermore, the depletion of Xhairy2 leads to the apoptosis of mitotic cells. Our results suggest that Xhairy2 functions in neural crest specification by maintaining cells in the mitotic and undifferentiated state.
Collapse
Affiliation(s)
- Kan-Ichiro Nagatomo
- Department of Biology, Graduate School of Science, Osaka University, and JT Biohistory Research Hall, Osaka, Japan
| | | |
Collapse
|
66
|
Li HY, Say EHM, Zhou XF. Isolation and Characterization of Neural Crest Progenitors from Adult Dorsal Root Ganglia. Stem Cells 2007; 25:2053-65. [PMID: 17525237 DOI: 10.1634/stemcells.2007-0080] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
After peripheral nerve injury, the number of sensory neurons in the adult dorsal root ganglia (DRG) is initially reduced but recovers to a normal level several months later. The mechanisms underlying the neuronal recovery after injury are not clear. Here, we showed that in the DRG explant culture, a subpopulation of cells that emigrated out from adult rat DRG expressed nestin and p75 neurotrophin receptor and formed clusters and spheres. They differentiated into neurons, glia, and smooth muscle cells in the presence or absence of serum and formed secondary and tertiary neurospheres in cloning assays. Molecular expression analysis demonstrated the characteristics of neural crest progenitors and their potential for neuronal differentiation by expressing a set of well-defined genes related to adult stem cells niches and neuronal fate decision. Under the influence of neurotrophic factors, some of these progenitors gave rise to neuropeptide-expressing cells and protein zero-expressing Schwann cells. In a 5-bromo-2'-deoxyuridine chasing study, we showed that these progenitors likely originate from satellite glial cells. Our study suggests that a subpopulation of glia in adult DRG is likely to be progenitors for neurons and glia and may play a role in neurogenesis after nerve injury. Disclosure of potential conflicts of interest is found at the end of this article.
Collapse
Affiliation(s)
- Hong-Yun Li
- Department of Human Physiology, Flinders University, Adelaide, SA, Australia
| | | | | |
Collapse
|
67
|
Rosenquist TH, Finnell RH. Another key role for the cardiac neural crest in heart development. Am J Physiol Heart Circ Physiol 2007; 292:H1225-6. [PMID: 17098821 DOI: 10.1152/ajpheart.01218.2006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Thomas H Rosenquist
- Univ of Nebraska Medical Center, 987878 Nebraska Medical Center, Omaha, NE 68198-7878, USA.
| | | |
Collapse
|
68
|
Li W, Cornell RA. Redundant activities of Tfap2a and Tfap2c are required for neural crest induction and development of other non-neural ectoderm derivatives in zebrafish embryos. Dev Biol 2006; 304:338-54. [PMID: 17258188 PMCID: PMC1904501 DOI: 10.1016/j.ydbio.2006.12.042] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2006] [Revised: 12/18/2006] [Accepted: 12/19/2006] [Indexed: 11/17/2022]
Abstract
A knockdown study suggested that transcription factor AP-2 alpha (Tfap2a) is required for neural crest induction in frog embryos. However, because Tfap2a is expressed in neural crest and in presumptive epidermis, a source of signals that induce neural crest, it was unclear whether this requirement is cell autonomous. Moreover, neural crest induction occurs normally in zebrafish tfap2a and mouse Tcfap2a mutant embryos, so it was unclear if a requirement for Tfap2a in this process has been evolutionarily conserved. Here we show that zebrafish tfap2c, encoding AP-2 gamma (Tfap2c), is expressed in non-neural ectoderm including transiently in neural crest. Inhibition of tfap2c with antisense oligonucleotides does not visibly perturb development. However, simultaneous inhibition of tfap2a and tfap2c utterly prevents neural crest induction, supporting a conserved role for Tfap2-type activity in neural crest induction. Transplant studies suggest that this role is cell-autonomous. In addition, in tfap2a/tfap2c doubly deficient embryos cranial placode derivatives are reduced, although gene expression characteristic of pre-placodal domain is normal. Unexpectedly, Rohon-Beard sensory neurons, which previous studies indicated are derived from the same precursor population as neural crest, are reduced by less than half in such embryos, implying a non-neural crest origin for a subset of them.
Collapse
Affiliation(s)
- Wei Li
- Interdisciplinary Graduate Program in Genetics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | |
Collapse
|