51
|
Origin of the thalamic projection to dorsal auditory cortex in hearing and deafness. Hear Res 2017; 343:108-117. [DOI: 10.1016/j.heares.2016.05.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/18/2016] [Accepted: 05/26/2016] [Indexed: 10/21/2022]
|
52
|
Glick H, Sharma A. Cross-modal plasticity in developmental and age-related hearing loss: Clinical implications. Hear Res 2017; 343:191-201. [PMID: 27613397 PMCID: PMC6590524 DOI: 10.1016/j.heares.2016.08.012] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/16/2016] [Accepted: 08/19/2016] [Indexed: 10/21/2022]
Abstract
This review explores cross-modal cortical plasticity as a result of auditory deprivation in populations with hearing loss across the age spectrum, from development to adulthood. Cross-modal plasticity refers to the phenomenon when deprivation in one sensory modality (e.g. the auditory modality as in deafness or hearing loss) results in the recruitment of cortical resources of the deprived modality by intact sensory modalities (e.g. visual or somatosensory systems). We discuss recruitment of auditory cortical resources for visual and somatosensory processing in deafness and in lesser degrees of hearing loss. We describe developmental cross-modal re-organization in the context of congenital or pre-lingual deafness in childhood and in the context of adult-onset, age-related hearing loss, with a focus on how cross-modal plasticity relates to clinical outcomes. We provide both single-subject and group-level evidence of cross-modal re-organization by the visual and somatosensory systems in bilateral, congenital deafness, single-sided deafness, adults with early-stage, mild-moderate hearing loss, and individual adult and pediatric patients exhibit excellent and average speech perception with hearing aids and cochlear implants. We discuss a framework in which changes in cortical resource allocation secondary to hearing loss results in decreased intra-modal plasticity in auditory cortex, accompanied by increased cross-modal recruitment of auditory cortices by the other sensory systems, and simultaneous compensatory activation of frontal cortices. The frontal cortices, as we will discuss, play an important role in mediating cognitive compensation in hearing loss. Given the wide range of variability in behavioral performance following audiological intervention, changes in cortical plasticity may play a valuable role in the prediction of clinical outcomes following intervention. Further, the development of new technologies and rehabilitation strategies that incorporate brain-based biomarkers may help better serve hearing impaired populations across the lifespan.
Collapse
Affiliation(s)
- Hannah Glick
- Department of Speech, Language, & Hearing Science; Institute of Cognitive Science, University of Colorado at Boulder, 2501 Kittredge Loop Road, 409 UCB, Boulder, CO 80309, USA
| | - Anu Sharma
- Department of Speech, Language, & Hearing Science; Institute of Cognitive Science, University of Colorado at Boulder, 2501 Kittredge Loop Road, 409 UCB, Boulder, CO 80309, USA.
| |
Collapse
|
53
|
Mitchell TV. Category selectivity of the N170 and the role of expertise in deaf signers. Hear Res 2016; 343:150-161. [PMID: 27770622 DOI: 10.1016/j.heares.2016.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/07/2016] [Accepted: 10/15/2016] [Indexed: 10/20/2022]
Abstract
Deafness is known to affect processing of visual motion and information in the visual periphery, as well as the neural substrates for these domains. This study was designed to characterize the effects of early deafness and lifelong sign language use on visual category sensitivity of the N170 event-related potential. Images from nine categories of visual forms including upright faces, inverted faces, and hands were presented to twelve typically hearing adults and twelve adult congenitally deaf signers. Classic N170 category sensitivity was observed in both participant groups, whereby faces elicited larger amplitudes than all other visual categories, and inverted faces elicited larger amplitudes and slower latencies than upright faces. In hearing adults, hands elicited a right hemispheric asymmetry while in deaf signers this category elicited a left hemispheric asymmetry. Pilot data from five hearing native signers suggests that this effect is due to lifelong use of American Sign Language rather than auditory deprivation itself.
Collapse
Affiliation(s)
- Teresa V Mitchell
- Eunice Kennedy Shriver Center, University of Massachusetts Medical School, Worcester, MA, USA; Brandeis University, Waltham, MA, USA.
| |
Collapse
|
54
|
Amaral L, Ganho-Ávila A, Osório A, Soares MJ, He D, Chen Q, Mahon BZ, Gonçalves OF, Sampaio A, Fang F, Bi Y, Almeida J. Hemispheric asymmetries in subcortical visual and auditory relay structures in congenital deafness. Eur J Neurosci 2016; 44:2334-9. [PMID: 27421820 DOI: 10.1111/ejn.13340] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/05/2016] [Accepted: 07/06/2016] [Indexed: 11/28/2022]
Abstract
Neuroplasticity - the capacity of the brain to change as a response to internal and external pressures - has been studied from a number of different perspectives. Perhaps one of the most powerful models is the study of populations that have been congenitally deprived of a sense. It has been shown that the right Auditory Cortex (AC) of congenitally deaf humans is neuroplastically modified in order to represent visual properties of a stimulus. One unresolved question is how this visual information is routed to the AC of congenitally deaf individuals. Here, we performed volumetric analysis of subcortical auditory and visual brains regions - namely the thalamus (along with three thalamic nuclei: the pulvinar, the lateral geniculate nucleus and the medial geniculate nucleus), and the inferior and superior colliculi - in deaf and hearing participants in order to identify which structures may be responsible for relaying visual information toward the altered AC. Because there is a hemispheric asymmetry in the neuroplastic changes observed in the AC of the congenitally deaf, we reasoned that subcortical structures that also showed a similar asymmetry in their total volume could have been enlisted in the effort of relaying visual information to the neuroplastically altered right AC. We show that for deaf, but not for hearing individuals, the right thalamus, right lateral geniculate nucleus and right inferior colliculus are larger than their left counterparts. These results suggest that these subcortical structures may be responsible for rerouting visual information to the AC in congenital deafness.
Collapse
Affiliation(s)
- L Amaral
- Proaction Laboratory, Faculty of Psychology and Education Sciences, University of Coimbra, 3001-802, Coimbra, Portugal.,Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal.,CINEICC, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal
| | - A Ganho-Ávila
- Proaction Laboratory, Faculty of Psychology and Education Sciences, University of Coimbra, 3001-802, Coimbra, Portugal.,Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal.,Neuropsychophysiology Laboratory, Research Center in Psychology, School of Psychology, University of Minho, Minho, Portugal
| | - A Osório
- Social and Cognitive Neuroscience Laboratory and Developmental Disorders Program, Center for Health and Biological Sciences, Mackenzie Presbyterian University, Sao Paulo, Brazil
| | - M J Soares
- Proaction Laboratory, Faculty of Psychology and Education Sciences, University of Coimbra, 3001-802, Coimbra, Portugal.,Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal
| | - D He
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China
| | - Q Chen
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA
| | - B Z Mahon
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, NY, USA.,Center for Visual Science, University of Rochester, Rochester, NY, USA.,Department of Neurosurgery, University of Rochester, Rochester, NY, USA
| | - O F Gonçalves
- Neuropsychophysiology Laboratory, Research Center in Psychology, School of Psychology, University of Minho, Minho, Portugal.,Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA.,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - A Sampaio
- Neuropsychophysiology Laboratory, Research Center in Psychology, School of Psychology, University of Minho, Minho, Portugal
| | - F Fang
- Department of Psychology and Beijing Key Laboratory of Behavior and Mental Health, Peking University, Beijing, China.,PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, China
| | - Y Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China
| | - J Almeida
- Proaction Laboratory, Faculty of Psychology and Education Sciences, University of Coimbra, 3001-802, Coimbra, Portugal. .,Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal. .,CINEICC, Faculty of Psychology and Education Sciences, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
55
|
Crossmodal plasticity in auditory, visual and multisensory cortical areas following noise-induced hearing loss in adulthood. Hear Res 2016; 343:92-107. [PMID: 27387138 DOI: 10.1016/j.heares.2016.06.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/21/2016] [Accepted: 06/27/2016] [Indexed: 11/21/2022]
Abstract
Complete or partial hearing loss results in an increased responsiveness of neurons in the core auditory cortex of numerous species to visual and/or tactile stimuli (i.e., crossmodal plasticity). At present, however, it remains uncertain how adult-onset partial hearing loss affects higher-order cortical areas that normally integrate audiovisual information. To that end, extracellular electrophysiological recordings were performed under anesthesia in noise-exposed rats two weeks post-exposure (0.8-20 kHz at 120 dB SPL for 2 h) and age-matched controls to characterize the nature and extent of crossmodal plasticity in the dorsal auditory cortex (AuD), an area outside of the auditory core, as well as in the neighboring lateral extrastriate visual cortex (V2L), an area known to contribute to audiovisual processing. Computer-generated auditory (noise burst), visual (light flash) and combined audiovisual stimuli were delivered, and the associated spiking activity was used to determine the response profile of each neuron sampled (i.e., unisensory, subthreshold multisensory or bimodal). In both the AuD cortex and the multisensory zone of the V2L cortex, the maximum firing rates were unchanged following noise exposure, and there was a relative increase in the proportion of neurons responsive to visual stimuli, with a concomitant decrease in the number of neurons that were solely responsive to auditory stimuli despite adjusting the sound intensity to account for each rat's hearing threshold. These neighboring cortical areas differed, however, in how noise-induced hearing loss affected audiovisual processing; the total proportion of multisensory neurons significantly decreased in the V2L cortex (control 38.8 ± 3.3% vs. noise-exposed 27.1 ± 3.4%), and dramatically increased in the AuD cortex (control 23.9 ± 3.3% vs. noise-exposed 49.8 ± 6.1%). Thus, following noise exposure, the cortical area showing the greatest relative degree of multisensory convergence transitioned ventrally, away from the audiovisual area, V2L, toward the predominantly auditory area, AuD. Overall, the collective findings of the present study support the suggestion that crossmodal plasticity induced by adult-onset hearing impairment manifests in higher-order cortical areas as a transition in the functional border of the audiovisual cortex.
Collapse
|
56
|
Meredith MA, Lomber SG. Species-dependent role of crossmodal connectivity among the primary sensory cortices. Hear Res 2016; 343:83-91. [PMID: 27292113 DOI: 10.1016/j.heares.2016.05.014] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 11/19/2022]
Abstract
When a major sense is lost, crossmodal plasticity substitutes functional processing from the remaining, intact senses. Recent studies of deafness-induced crossmodal plasticity in different subregions of auditory cortex indicate that the phenomenon is largely based on the "unmasking" of existing inputs. However, there is not yet a consensus on the sources or effects of crossmodal inputs to primary sensory cortical areas. In the present review, a rigorous re-examination of the experimental literature indicates that connections between different primary sensory cortices consistently occur in rodents, while primary-to-primary projections are absent/inconsistent in non-rodents such as cats and monkeys. These observations suggest that crossmodal plasticity that involves primary sensory areas are likely to exhibit species-specific distinctions.
Collapse
Affiliation(s)
- M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0709, USA.
| | - Stephen G Lomber
- Department of Physiology & Pharmacology, University of Western Ontario, London, N6A 5B7 Canada; Cerebral Systems Laboratory, University of Western Ontario, London, N6A 5B7 Canada; Department of Psychology, University of Western Ontario, London, N6A 5B7 Canada; National Centre for Audiology, University of Western Ontario, London, N6A 5B7 Canada.
| |
Collapse
|
57
|
Butler BE, Chabot N, Lomber SG. Quantifying and comparing the pattern of thalamic and cortical projections to the posterior auditory field in hearing and deaf cats. J Comp Neurol 2016; 524:3042-63. [DOI: 10.1002/cne.24005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 03/21/2016] [Accepted: 03/24/2016] [Indexed: 11/08/2022]
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
| | - Stephen G. Lomber
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
- Brain and Mind Institute; University of Western Ontario; London Ontario Canada N6A 5B7
- National Centre for Audiology; University of Western Ontario; London Ontario Canada N6G 1H1
| |
Collapse
|
58
|
Chang JL, Pross SE, Findlay AM, Mizuiri D, Henderson-Sabes J, Garrett C, Nagarajan SS, Cheung SW. Spatial plasticity of the auditory cortex in single-sided deafness. Laryngoscope 2016; 126:2785-2791. [DOI: 10.1002/lary.25961] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Jolie L. Chang
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco California U.S.A
| | - Seth E. Pross
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco California U.S.A
| | - Anne M. Findlay
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; San Francisco California U.S.A
| | - Danielle Mizuiri
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; San Francisco California U.S.A
| | - Jennifer Henderson-Sabes
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco California U.S.A
| | - Coleman Garrett
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; San Francisco California U.S.A
| | - Srikantan S. Nagarajan
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco California U.S.A
- Department of Radiology and Biomedical Imaging; University of California, San Francisco; San Francisco California U.S.A
| | - Steven W. Cheung
- Department of Otolaryngology-Head and Neck Surgery; University of California, San Francisco; San Francisco California U.S.A
| |
Collapse
|
59
|
The onset of visual experience gates auditory cortex critical periods. Nat Commun 2016; 7:10416. [PMID: 26786281 PMCID: PMC4736048 DOI: 10.1038/ncomms10416] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/08/2015] [Indexed: 01/19/2023] Open
Abstract
Sensory systems influence one another during development and deprivation can lead to cross-modal plasticity. As auditory function begins before vision, we investigate the effect of manipulating visual experience during auditory cortex critical periods (CPs) by assessing the influence of early, normal and delayed eyelid opening on hearing loss-induced changes to membrane and inhibitory synaptic properties. Early eyelid opening closes the auditory cortex CPs precociously and dark rearing prevents this effect. In contrast, delayed eyelid opening extends the auditory cortex CPs by several additional days. The CP for recovery from hearing loss is also closed prematurely by early eyelid opening and extended by delayed eyelid opening. Furthermore, when coupled with transient hearing loss that animals normally fully recover from, very early visual experience leads to inhibitory deficits that persist into adulthood. Finally, we demonstrate a functional projection from the visual to auditory cortex that could mediate these effects. Visual and auditory systems influence each other during development. Here, the authors show that the onset of eyelid opening regulates critical points during which the auditory cortex is sensitive to hearing loss or the restoration of hearing
Collapse
|
60
|
Jiwani S, Papsin BC, Gordon KA. Early unilateral cochlear implantation promotes mature cortical asymmetries in adolescents who are deaf. Hum Brain Mapp 2016; 37:135-52. [PMID: 26456629 PMCID: PMC6867517 DOI: 10.1002/hbm.23019] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Revised: 09/21/2015] [Accepted: 09/24/2015] [Indexed: 11/06/2022] Open
Abstract
Unilateral cochlear implant (CI) stimulation establishes hearing to children who are deaf but compromises bilateral auditory development if a second implant is not provided within ∼ 1.5 years. In this study we asked: 1) What are the cortical consequences of missing this early sensitive period once children reach adolescence? 2) What are the effects of unilateral deprivation on the pathways from the opposite ear? Cortical responses were recorded from 64-cephalic electrodes within the first week of bilateral CI activation in 34 adolescents who had over 10 years of unilateral right CI experience and in 16 normal hearing peers. Cortical activation underlying the evoked peaks was localized to areas of the brain using beamformer imaging. The first CI evoked activity which was more strongly lateralized to the contralateral left hemisphere than normal, with abnormal recruitment of the left prefrontal cortex (involved in cognition/attention), left temporo-parietal-occipital junction (multi-modal integration), and right precuneus (visual processing) region. CI stimulation in the opposite deprived ear evoked atypical cortical responses with abnormally large and widespread dipole activity across the cortex. Thus, using a unilateral CI to hear beyond the period of cortical maturation causes lasting asymmetries in the auditory system, requires recruitment of additional cortical areas to support hearing, and does little to protect the unstimulated pathways from effects of auditory deprivation. The persistence of this reorganization into maturity could signal a closing of a sensitive period for promoting auditory development on the deprived side.
Collapse
Affiliation(s)
- Salima Jiwani
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada, Ontario
| | - Blake C Papsin
- Archie's Cochlear Implant Laboratory, the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Karen A Gordon
- Institute of Medical Sciences, Faculty of Medicine, University of Toronto, Toronto, Canada, Ontario
- Archie's Cochlear Implant Laboratory, the Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Otolaryngology-Head & Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
61
|
Meredith MA, Clemo HR, Corley SB, Chabot N, Lomber SG. Cortical and thalamic connectivity of the auditory anterior ectosylvian cortex of early-deaf cats: Implications for neural mechanisms of crossmodal plasticity. Hear Res 2015; 333:25-36. [PMID: 26724756 DOI: 10.1016/j.heares.2015.12.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 11/23/2015] [Accepted: 12/01/2015] [Indexed: 01/31/2023]
Abstract
Early hearing loss leads to crossmodal plasticity in regions of the cerebrum that are dominated by acoustical processing in hearing subjects. Until recently, little has been known of the connectional basis of this phenomenon. One region whose crossmodal properties are well-established is the auditory field of the anterior ectosylvian sulcus (FAES) in the cat, where neurons are normally responsive to acoustic stimulation and its deactivation leads to the behavioral loss of accurate orienting toward auditory stimuli. However, in early-deaf cats, visual responsiveness predominates in the FAES and its deactivation blocks accurate orienting behavior toward visual stimuli. For such crossmodal reorganization to occur, it has been presumed that novel inputs or increased projections from non-auditory cortical areas must be generated, or that existing non-auditory connections were 'unmasked.' These possibilities were tested using tracer injections into the FAES of adult cats deafened early in life (and hearing controls), followed by light microscopy to localize retrogradely labeled neurons. Surprisingly, the distribution of cortical and thalamic afferents to the FAES was very similar among early-deaf and hearing animals. No new visual projection sources were identified and visual cortical connections to the FAES were comparable in projection proportions. These results support an alternate theory for the connectional basis for cross-modal plasticity that involves enhanced local branching of existing projection terminals that originate in non-auditory as well as auditory cortices.
Collapse
Affiliation(s)
- M Alex Meredith
- Virginia Commonwealth University School of Medicine, Department of Anatomy and Neurobiology, Richmond, VA 23298, USA.
| | - H Ruth Clemo
- Virginia Commonwealth University School of Medicine, Department of Anatomy and Neurobiology, Richmond, VA 23298, USA
| | - Sarah B Corley
- Virginia Commonwealth University School of Medicine, Department of Anatomy and Neurobiology, Richmond, VA 23298, USA; University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nicole Chabot
- Cerebral Systems Laboratory, The Brain and Mind Institute, Natural Sciences Centre, University of Western Ontario, London, Ontario N6A 5B7, Canada
| | - Stephen G Lomber
- Cerebral Systems Laboratory, The Brain and Mind Institute, Natural Sciences Centre, University of Western Ontario, London, Ontario N6A 5B7, Canada
| |
Collapse
|
62
|
Meredith MA, Allman BL. Single-unit analysis of somatosensory processing in the core auditory cortex of hearing ferrets. Eur J Neurosci 2015; 41:686-98. [PMID: 25728185 DOI: 10.1111/ejn.12828] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 11/07/2014] [Accepted: 12/10/2014] [Indexed: 11/29/2022]
Abstract
The recent findings in several species that the primary auditory cortex processes non-auditory information have largely overlooked the possibility of somatosensory effects. Therefore, the present investigation examined the core auditory cortices (anterior auditory field and primary auditory cortex) for tactile responsivity. Multiple single-unit recordings from anesthetised ferret cortex yielded histologically verified neurons (n = 311) tested with electronically controlled auditory, visual and tactile stimuli, and their combinations. Of the auditory neurons tested, a small proportion (17%) was influenced by visual cues, but a somewhat larger number (23%) was affected by tactile stimulation. Tactile effects rarely occurred alone and spiking responses were observed in bimodal auditory-tactile neurons. However, the broadest tactile effect that was observed, which occurred in all neuron types, was that of suppression of the response to a concurrent auditory cue. The presence of tactile effects in the core auditory cortices was supported by a substantial anatomical projection from the rostral suprasylvian sulcal somatosensory area. Collectively, these results demonstrate that crossmodal effects in the auditory cortex are not exclusively visual and that somatosensation plays a significant role in modulation of acoustic processing, and indicate that crossmodal plasticity following deafness may unmask these existing non-auditory functions.
Collapse
Affiliation(s)
- M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, 1101 E. Marshall Street, Sanger Hall Rm-12-067, Richmond, VA, 23298-0709, USA
| | | |
Collapse
|
63
|
Almeida J, He D, Chen Q, Mahon BZ, Zhang F, Gonçalves ÓF, Fang F, Bi Y. Decoding Visual Location From Neural Patterns in the Auditory Cortex of the Congenitally Deaf. Psychol Sci 2015; 26:1771-82. [PMID: 26423461 DOI: 10.1177/0956797615598970] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 07/14/2015] [Indexed: 11/17/2022] Open
Abstract
Sensory cortices of individuals who are congenitally deprived of a sense can exhibit considerable plasticity and be recruited to process information from the senses that remain intact. Here, we explored whether the auditory cortex of congenitally deaf individuals represents visual field location of a stimulus-a dimension that is represented in early visual areas. We used functional MRI to measure neural activity in auditory and visual cortices of congenitally deaf and hearing humans while they observed stimuli typically used for mapping visual field preferences in visual cortex. We found that the location of a visual stimulus can be successfully decoded from the patterns of neural activity in auditory cortex of congenitally deaf but not hearing individuals. This is particularly true for locations within the horizontal plane and within peripheral vision. These data show that the representations stored within neuroplastically changed auditory cortex can align with dimensions that are typically represented in visual cortex.
Collapse
Affiliation(s)
- Jorge Almeida
- Faculty of Psychology and Educational Sciences, University of Coimbra Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra
| | - Dongjun He
- Department of Psychology, Peking University Key Laboratory of Machine Perception (Ministry of Education), Peking University
| | - Quanjing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University IDG/McGovern Institute for Brain Research, Beijing Normal University Department of Brain and Cognitive Sciences, University of Rochester
| | - Bradford Z Mahon
- Department of Brain and Cognitive Sciences, University of Rochester Department of Neurosurgery, University of Rochester Center for Visual Science, University of Rochester
| | - Fan Zhang
- Faculty of Psychology and Educational Sciences, University of Coimbra Proaction Laboratory, Faculty of Psychology and Educational Sciences, University of Coimbra
| | - Óscar F Gonçalves
- School of Psychology, University of Minho Neuropsychophysiology Laboratory, Research Center in Psychology, School of Psychology, University of Minho Bouvé College of Health Sciences, Northeastern University
| | - Fang Fang
- Department of Psychology, Peking University Key Laboratory of Machine Perception (Ministry of Education), Peking University Peking-Tsinghua Center for Life Sciences, Peking University PKU-IDG/McGovern Institute for Brain Research, Peking University
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University IDG/McGovern Institute for Brain Research, Beijing Normal University
| |
Collapse
|
64
|
Cardin V, Smittenaar RC, Orfanidou E, Rönnberg J, Capek CM, Rudner M, Woll B. Differential activity in Heschl's gyrus between deaf and hearing individuals is due to auditory deprivation rather than language modality. Neuroimage 2015; 124:96-106. [PMID: 26348556 DOI: 10.1016/j.neuroimage.2015.08.073] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 08/23/2015] [Accepted: 08/24/2015] [Indexed: 10/23/2022] Open
Abstract
Sensory cortices undergo crossmodal reorganisation as a consequence of sensory deprivation. Congenital deafness in humans represents a particular case with respect to other types of sensory deprivation, because cortical reorganisation is not only a consequence of auditory deprivation, but also of language-driven mechanisms. Visual crossmodal plasticity has been found in secondary auditory cortices of deaf individuals, but it is still unclear if reorganisation also takes place in primary auditory areas, and how this relates to language modality and auditory deprivation. Here, we dissociated the effects of language modality and auditory deprivation on crossmodal plasticity in Heschl's gyrus as a whole, and in cytoarchitectonic region Te1.0 (likely to contain the core auditory cortex). Using fMRI, we measured the BOLD response to viewing sign language in congenitally or early deaf individuals with and without sign language knowledge, and in hearing controls. Results show that differences between hearing and deaf individuals are due to a reduction in activation caused by visual stimulation in the hearing group, which is more significant in Te1.0 than in Heschl's gyrus as a whole. Furthermore, differences between deaf and hearing groups are due to auditory deprivation, and there is no evidence that the modality of language used by deaf individuals contributes to crossmodal plasticity in Heschl's gyrus.
Collapse
Affiliation(s)
- Velia Cardin
- Deafness, Cognition and Language Research Centre, 49 Gordon Square, University College London, London WC1H 0BT, UK; Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Sweden.
| | - Rebecca C Smittenaar
- Experimental Psychology, 26 Bedford Way, University College London, London WC1H 0AP, UK
| | - Eleni Orfanidou
- Deafness, Cognition and Language Research Centre, 49 Gordon Square, University College London, London WC1H 0BT, UK; School of Psychology, University of Crete, Greece
| | - Jerker Rönnberg
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Sweden
| | - Cheryl M Capek
- School of Psychological Sciences, University of Manchester, Manchester M13 9PL, UK
| | - Mary Rudner
- Linnaeus Centre HEAD, Swedish Institute for Disability Research, Department of Behavioural Sciences and Learning, Linköping University, Sweden
| | - Bencie Woll
- Deafness, Cognition and Language Research Centre, 49 Gordon Square, University College London, London WC1H 0BT, UK
| |
Collapse
|
65
|
Chabot N, Butler BE, Lomber SG. Differential modification of cortical and thalamic projections to cat primary auditory cortex following early- and late-onset deafness. J Comp Neurol 2015; 523:2297-320. [DOI: 10.1002/cne.23790] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/26/2022]
Affiliation(s)
- Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute, University of Western Ontario; London Ontario Canada N6A 5B7
| | - Blake E. Butler
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute, University of Western Ontario; London Ontario Canada N6A 5B7
| | - Stephen G. Lomber
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Psychology; University of Western Ontario; London Ontario Canada N6A 5C2
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario Canada N6A 5C1
- Brain and Mind Institute, University of Western Ontario; London Ontario Canada N6A 5B7
- National Centre for Audiology; University of Western Ontario; London Ontario Canada N6A 1H1
| |
Collapse
|
66
|
Wong C, Chabot N, Kok MA, Lomber SG. Amplified somatosensory and visual cortical projections to a core auditory area, the anterior auditory field, following early- and late-onset deafness. J Comp Neurol 2015; 523:1925-47. [DOI: 10.1002/cne.23771] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 02/25/2015] [Accepted: 02/26/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Carmen Wong
- Cerebral Systems Laboratory, University of Western Ontario; London Ontario N6A 5K8 Canada
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario N6A 5K8 Canada
| | - Nicole Chabot
- Cerebral Systems Laboratory, University of Western Ontario; London Ontario N6A 5K8 Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario N6A 5K8 Canada
| | - Melanie A. Kok
- Cerebral Systems Laboratory, University of Western Ontario; London Ontario N6A 5K8 Canada
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario N6A 5K8 Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, University of Western Ontario; London Ontario N6A 5K8 Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario N6A 5K8 Canada
- Department of Psychology; University of Western Ontario; London Ontario N6A 5K8 Canada
- Brain and Mind Institute, University of Western Ontario; London Ontario N6A 5K8 Canada
- National Centre for Audiology, University of Western Ontario; London Ontario N6A 5K8 Canada
| |
Collapse
|
67
|
Dewey RS, Hartley DEH. Cortical cross-modal plasticity following deafness measured using functional near-infrared spectroscopy. Hear Res 2015; 325:55-63. [PMID: 25819496 DOI: 10.1016/j.heares.2015.03.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 03/17/2015] [Accepted: 03/17/2015] [Indexed: 10/23/2022]
Abstract
Evidence from functional neuroimaging studies suggests that the auditory cortex can become more responsive to visual and somatosensory stimulation following deafness, and that this occurs predominately in the right hemisphere. Extensive cross-modal plasticity in prospective cochlear implant recipients is correlated with poor speech outcomes following implantation, highlighting the potential impact of central auditory plasticity on subsequent aural rehabilitation. Conversely, the effects of hearing restoration with a cochlear implant on cortical plasticity are less well understood, since the use of most neuroimaging techniques in CI recipients is either unsafe or problematic due to the electromagnetic artefacts generated by CI stimulation. Additionally, techniques such as functional magnetic resonance imaging (fMRI) are confounded by acoustic noise produced by the scanner that will be perceived more by hearing than by deaf individuals. Subsequently it is conceivable that auditory responses to acoustic noise produced by the MR scanner may mask auditory cortical responses to non-auditory stimulation, and render inter-group comparisons less significant. Uniquely, functional near-infrared spectroscopy (fNIRS) is a silent neuroimaging technique that is non-invasive and completely unaffected by the presence of a CI. Here, we used fNIRS to study temporal-lobe responses to auditory, visual and somatosensory stimuli in thirty profoundly-deaf participants and thirty normally-hearing controls. Compared with silence, acoustic noise stimuli elicited a significant group fNIRS response in the temporal region of normally-hearing individuals, which was not seen in profoundly-deaf participants. Visual motion elicited a larger group response within the right temporal lobe of profoundly-deaf participants, compared with normally-hearing controls. However, bilateral temporal lobe fNIRS activation to somatosensory stimulation was comparable in both groups. Using fNIRS these results confirm that auditory deprivation is associated with cross-modal plasticity of visual inputs to auditory cortex. Although we found no evidence for plasticity of somatosensory inputs, it is possible that our recordings may have included activation of somatosensory cortex that masked any group differences in auditory cortical responses due to the limited spatial resolution associated with fNIRS.
Collapse
Affiliation(s)
- Rebecca S Dewey
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, 113 The Ropewalk, Nottingham, NG1 5DU, UK.
| | - Douglas E H Hartley
- Otology and Hearing Group, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK; National Institute for Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, 113 The Ropewalk, Nottingham, NG1 5DU, UK; MRC Institute of Hearing Research, University Park, Nottingham, NG7 2RD, UK.
| |
Collapse
|
68
|
Binaural fusion and listening effort in children who use bilateral cochlear implants: a psychoacoustic and pupillometric study. PLoS One 2015; 10:e0117611. [PMID: 25668423 PMCID: PMC4323344 DOI: 10.1371/journal.pone.0117611] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 12/29/2014] [Indexed: 11/23/2022] Open
Abstract
Bilateral cochlear implants aim to provide hearing to both ears for children who are deaf and promote binaural/spatial hearing. Benefits are limited by mismatched devices and unilaterally-driven development which could compromise the normal integration of left and right ear input. We thus asked whether children hear a fused image (ie. 1 vs 2 sounds) from their bilateral implants and if this “binaural fusion” reduces listening effort. Binaural fusion was assessed by asking 25 deaf children with cochlear implants and 24 peers with normal hearing whether they heard one or two sounds when listening to bilaterally presented acoustic click-trains/electric pulses (250 Hz trains of 36 ms presented at 1 Hz). Reaction times and pupillary changes were recorded simultaneously to measure listening effort. Bilaterally implanted children heard one image of bilateral input less frequently than normal hearing peers, particularly when intensity levels on each side were balanced. Binaural fusion declined as brainstem asymmetries increased and age at implantation decreased. Children implanted later had access to acoustic input prior to implantation due to progressive deterioration of hearing. Increases in both pupil diameter and reaction time occurred as perception of binaural fusion decreased. Results indicate that, without binaural level cues, children have difficulty fusing input from their bilateral implants to perceive one sound which costs them increased listening effort. Brainstem asymmetries exacerbate this issue. By contrast, later implantation, reflecting longer access to bilateral acoustic hearing, may have supported development of auditory pathways underlying binaural fusion. Improved integration of bilateral cochlear implant signals for children is required to improve their binaural hearing.
Collapse
|
69
|
Hubka P, Konerding W, Kral A. Auditory feedback modulates development of kitten vocalizations. Cell Tissue Res 2014; 361:279-94. [PMID: 25519045 PMCID: PMC4487352 DOI: 10.1007/s00441-014-2059-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 11/06/2014] [Indexed: 02/07/2023]
Abstract
Effects of hearing loss on vocal behavior are species-specific. To study the impact of auditory feedback on feline vocal behavior, vocalizations of normal-hearing, hearing-impaired (white) and congenitally deaf (white) cats were analyzed at around weaning age. Eleven animals were placed in a soundproof booth for 30 min at different ages, from the first to the beginning of the fourth postnatal month, every 2 weeks of life. In total, 13,874 vocalizations were analyzed using an automated procedure. Firstly, vocalizations were detected and segmented, with voiced and unvoiced vocalizations being differentiated. The voiced isolation calls (‘meow’) were further analyzed. These vocalizations showed developmental changes affecting several parameters in hearing controls, whereas the developmental sequence was delayed in congenitally deaf cats. In hearing-impaired and deaf animals, we observed differences both in vocal behavior (loudness and duration) and in the calls’ acoustic structure (fundamental frequency and higher harmonics). The fundamental frequency decreased with age in all groups, most likely due to maturation of the vocal apparatus. In deaf cats, however, other aspects of the acoustic structure of the vocalizations did not fully mature. The harmonic ratio (i.e., frequency of first harmonic divided by fundamental frequency) was higher and more variable in deaf cats than in the other study groups. Auditory feedback thus affects the acoustic structure of vocalizations and their ontogenetic development. The study suggests that both the vocal apparatus and its neuronal motor control are subject to maturational processes, whereas the latter is additionally dependent on auditory feedback in cats.
Collapse
Affiliation(s)
- Peter Hubka
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Cluster of Excellence ‘Hearing4all’, Hannover Medical School, Feodor-Lynen-Str. 35, 30175 Hannover, Germany
| | - Wiebke Konerding
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Cluster of Excellence ‘Hearing4all’, Hannover Medical School, Feodor-Lynen-Str. 35, 30175 Hannover, Germany
| | - Andrej Kral
- Institute of AudioNeuroTechnology and Department of Experimental Otology, ENT Clinics, Cluster of Excellence ‘Hearing4all’, Hannover Medical School, Feodor-Lynen-Str. 35, 30175 Hannover, Germany
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX USA
| |
Collapse
|
70
|
Clemo HR, Lomber SG, Meredith MA. Synaptic Basis for Cross-modal Plasticity: Enhanced Supragranular Dendritic Spine Density in Anterior Ectosylvian Auditory Cortex of the Early Deaf Cat. Cereb Cortex 2014; 26:1365-76. [PMID: 25274986 DOI: 10.1093/cercor/bhu225] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
In the cat, the auditory field of the anterior ectosylvian sulcus (FAES) is sensitive to auditory cues and its deactivation leads to orienting deficits toward acoustic, but not visual, stimuli. However, in early deaf cats, FAES activity shifts to the visual modality and its deactivation blocks orienting toward visual stimuli. Thus, as in other auditory cortices, hearing loss leads to cross-modal plasticity in the FAES. However, the synaptic basis for cross-modal plasticity is unknown. Therefore, the present study examined the effect of early deafness on the density, distribution, and size of dendritic spines in the FAES. Young cats were ototoxically deafened and raised until adulthood when they (and hearing controls) were euthanized, the cortex stained using Golgi-Cox, and FAES neurons examined using light microscopy. FAES dendritic spine density averaged 0.85 spines/μm in hearing animals, but was significantly higher (0.95 spines/μm) in the early deaf. Size distributions and increased spine density were evident specifically on apical dendrites of supragranular neurons. In separate tracer experiments, cross-modal cortical projections were shown to terminate predominantly within the supragranular layers of the FAES. This distributional correspondence between projection terminals and dendritic spine changes indicates that cross-modal plasticity is synaptically based within the supragranular layers of the early deaf FAES.
Collapse
Affiliation(s)
- H Ruth Clemo
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0709, USA
| | - Stephen G Lomber
- Brain and Mind Institute, National Centre for Audiology, University of Western Ontario, London, ON, Canada
| | - M Alex Meredith
- Department of Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298-0709, USA
| |
Collapse
|
71
|
The cortical distribution of multisensory neurons was modulated by multisensory experience. Neuroscience 2014; 272:1-9. [DOI: 10.1016/j.neuroscience.2014.04.068] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 04/14/2014] [Accepted: 04/28/2014] [Indexed: 11/23/2022]
|
72
|
Scott GD, Karns CM, Dow MW, Stevens C, Neville HJ. Enhanced peripheral visual processing in congenitally deaf humans is supported by multiple brain regions, including primary auditory cortex. Front Hum Neurosci 2014; 8:177. [PMID: 24723877 PMCID: PMC3972453 DOI: 10.3389/fnhum.2014.00177] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 03/10/2014] [Indexed: 11/17/2022] Open
Abstract
Brain reorganization associated with altered sensory experience clarifies the critical role of neuroplasticity in development. An example is enhanced peripheral visual processing associated with congenital deafness, but the neural systems supporting this have not been fully characterized. A gap in our understanding of deafness-enhanced peripheral vision is the contribution of primary auditory cortex. Previous studies of auditory cortex that use anatomical normalization across participants were limited by inter-subject variability of Heschl's gyrus. In addition to reorganized auditory cortex (cross-modal plasticity), a second gap in our understanding is the contribution of altered modality-specific cortices (visual intramodal plasticity in this case), as well as supramodal and multisensory cortices, especially when target detection is required across contrasts. Here we address these gaps by comparing fMRI signal change for peripheral vs. perifoveal visual stimulation (11-15° vs. 2-7°) in congenitally deaf and hearing participants in a blocked experimental design with two analytical approaches: a Heschl's gyrus region of interest analysis and a whole brain analysis. Our results using individually-defined primary auditory cortex (Heschl's gyrus) indicate that fMRI signal change for more peripheral stimuli was greater than perifoveal in deaf but not in hearing participants. Whole-brain analyses revealed differences between deaf and hearing participants for peripheral vs. perifoveal visual processing in extrastriate visual cortex including primary auditory cortex, MT+/V5, superior-temporal auditory, and multisensory and/or supramodal regions, such as posterior parietal cortex (PPC), frontal eye fields, anterior cingulate, and supplementary eye fields. Overall, these data demonstrate the contribution of neuroplasticity in multiple systems including primary auditory cortex, supramodal, and multisensory regions, to altered visual processing in congenitally deaf adults.
Collapse
Affiliation(s)
- Gregory D. Scott
- Brain Development Lab, Department of Psychology, University of OregonEugene, OR, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health and Science UniversityPortland, OR, USA
| | - Christina M. Karns
- Brain Development Lab, Department of Psychology, University of OregonEugene, OR, USA
| | - Mark W. Dow
- Brain Development Lab, Department of Psychology, University of OregonEugene, OR, USA
| | | | - Helen J. Neville
- Brain Development Lab, Department of Psychology, University of OregonEugene, OR, USA
| |
Collapse
|
73
|
Kok MA, Chabot N, Lomber SG. Cross-modal reorganization of cortical afferents to dorsal auditory cortex following early- and late-onset deafness. J Comp Neurol 2013; 522:654-75. [DOI: 10.1002/cne.23439] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Revised: 07/04/2013] [Accepted: 07/18/2013] [Indexed: 11/08/2022]
Affiliation(s)
- Melanie A. Kok
- Graduate Program in Neuroscience; University of Western Ontario; London Ontario N6A 5C1 Canada
- Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario N6A 5C1 Canada
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Nicole Chabot
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario N6A 5C1 Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario N6A 5C1 Canada
| | - Stephen G. Lomber
- Schulich School of Medicine and Dentistry; University of Western Ontario; London Ontario N6A 5C1 Canada
- Cerebral Systems Laboratory; University of Western Ontario; London Ontario N6A 5C1 Canada
- Department of Physiology and Pharmacology; University of Western Ontario; London Ontario N6A 5C1 Canada
- Department of Psychology; University of Western Ontario; London Ontario N6A 5C1 Canada
- Brain and Mind Institute, University of Western Ontario; London Ontario N6A 5C1 Canada
| |
Collapse
|
74
|
Lyness CR, Woll B, Campbell R, Cardin V. How does visual language affect crossmodal plasticity and cochlear implant success? Neurosci Biobehav Rev 2013; 37:2621-30. [PMID: 23999083 PMCID: PMC3989033 DOI: 10.1016/j.neubiorev.2013.08.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 08/07/2013] [Accepted: 08/21/2013] [Indexed: 11/14/2022]
Abstract
Cochlear implants (CI) are the most successful intervention for ameliorating hearing loss in severely or profoundly deaf children. Despite this, educational performance in children with CI continues to lag behind their hearing peers. From animal models and human neuroimaging studies it has been proposed the integrative functions of auditory cortex are compromised by crossmodal plasticity. This has been argued to result partly from the use of a visual language. Here we argue that 'cochlear implant sensitive periods' comprise both auditory and language sensitive periods, and thus cannot be fully described with animal models. Despite prevailing assumptions, there is no evidence to link the use of a visual language to poorer CI outcome. Crossmodal reorganisation of auditory cortex occurs regardless of compensatory strategies, such as sign language, used by the deaf person. In contrast, language deprivation during early sensitive periods has been repeatedly linked to poor language outcomes. Language sensitive periods have largely been ignored when considering variation in CI outcome, leading to ill-founded recommendations concerning visual language in CI habilitation.
Collapse
Affiliation(s)
- C R Lyness
- Cognitive, Perceptual and Brain Sciences, 26 Bedford Way, University College London, London WC1H 0AP, UK.
| | | | | | | |
Collapse
|
75
|
Butler BE, Lomber SG. Functional and structural changes throughout the auditory system following congenital and early-onset deafness: implications for hearing restoration. Front Syst Neurosci 2013; 7:92. [PMID: 24324409 PMCID: PMC3840613 DOI: 10.3389/fnsys.2013.00092] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 11/03/2013] [Indexed: 11/23/2022] Open
Abstract
The absence of auditory input, particularly during development, causes widespread changes in the structure and function of the auditory system, extending from peripheral structures into auditory cortex. In humans, the consequences of these changes are far-reaching and often include detriments to language acquisition, and associated psychosocial issues. Much of what is currently known about the nature of deafness-related changes to auditory structures comes from studies of congenitally deaf or early-deafened animal models. Fortunately, the mammalian auditory system shows a high degree of preservation among species, allowing for generalization from these models to the human auditory system. This review begins with a comparison of common methods used to obtain deaf animal models, highlighting the specific advantages and anatomical consequences of each. Some consideration is also given to the effectiveness of methods used to measure hearing loss during and following deafening procedures. The structural and functional consequences of congenital and early-onset deafness have been examined across a variety of mammals. This review attempts to summarize these changes, which often involve alteration of hair cells and supporting cells in the cochleae, and anatomical and physiological changes that extend through subcortical structures and into cortex. The nature of these changes is discussed, and the impacts to neural processing are addressed. Finally, long-term changes in cortical structures are discussed, with a focus on the presence or absence of cross-modal plasticity. In addition to being of interest to our understanding of multisensory processing, these changes also have important implications for the use of assistive devices such as cochlear implants.
Collapse
Affiliation(s)
- Blake E. Butler
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| | - Stephen G. Lomber
- Cerebral Systems Laboratory, Department of Physiology and Pharmacology and Department of Psychology, National Centre for Audiology, Brain and Mind Institute, University of Western OntarioLondon, ON, Canada
| |
Collapse
|
76
|
Gordon KA, Jiwani S, Papsin BC. Benefits and detriments of unilateral cochlear implant use on bilateral auditory development in children who are deaf. Front Psychol 2013; 4:719. [PMID: 24137143 PMCID: PMC3797443 DOI: 10.3389/fpsyg.2013.00719] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 09/18/2013] [Indexed: 12/04/2022] Open
Abstract
We have explored both the benefits and detriments of providing electrical input through a cochlear implant in one ear to the auditory system of young children. A cochlear implant delivers electrical pulses to stimulate the auditory nerve, providing children who are deaf with access to sound. The goals of implantation are to restrict reorganization of the deprived immature auditory brain and promote development of hearing and spoken language. It is clear that limiting the duration of deprivation is a key factor. Additional considerations are the onset, etiology, and use of residual hearing as each of these can have unique effects on auditory development in the pre-implant period. New findings show that many children receiving unilateral cochlear implants are developing mature-like brainstem and thalamo-cortical responses to sound with long term use despite these sources of variability; however, there remain considerable abnormalities in cortical function. The most apparent, determined by implanting the other ear and measuring responses to acute stimulation, is a loss of normal cortical response from the deprived ear. Recent data reveal that this can be avoided in children by early implantation of both ears simultaneously or with limited delay. We conclude that auditory development requires input early in development and from both ears.
Collapse
Affiliation(s)
- Karen A. Gordon
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick ChildrenToronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of TorontoToronto, ON, Canada
- Department of Otolaryngology – Head and Neck surgery, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Salima Jiwani
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick ChildrenToronto, ON, Canada
- Institute of Medical Sciences, Faculty of Medicine, University of TorontoToronto, ON, Canada
| | - Blake C. Papsin
- Archie’s Cochlear Implant Laboratory, The Hospital for Sick ChildrenToronto, ON, Canada
- Department of Otolaryngology – Head and Neck surgery, Faculty of Medicine, University of TorontoToronto, ON, Canada
| |
Collapse
|
77
|
Jiwani S, Papsin BC, Gordon KA. Central auditory development after long-term cochlear implant use. Clin Neurophysiol 2013; 124:1868-80. [DOI: 10.1016/j.clinph.2013.03.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 02/27/2013] [Accepted: 03/08/2013] [Indexed: 11/26/2022]
|
78
|
Kral A. Auditory critical periods: A review from system’s perspective. Neuroscience 2013; 247:117-33. [DOI: 10.1016/j.neuroscience.2013.05.021] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 05/07/2013] [Accepted: 05/08/2013] [Indexed: 11/17/2022]
|
79
|
Vachon P, Voss P, Lassonde M, Leroux JM, Mensour B, Beaudoin G, Bourgouin P, Lepore F. Reorganization of the auditory, visual and multimodal areas in early deaf individuals. Neuroscience 2013; 245:50-60. [PMID: 23590908 DOI: 10.1016/j.neuroscience.2013.04.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/26/2022]
|
80
|
Visual movement perception in deaf and hearing individuals. Adv Cogn Psychol 2013; 9:53-61. [PMID: 23826037 PMCID: PMC3699779 DOI: 10.2478/v10053-008-0131-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Accepted: 01/23/2013] [Indexed: 11/20/2022] Open
Abstract
A number of studies have investigated changes in the perception of visual motion as a result of altered sensory experiences. An animal study has shown that auditory-deprived cats exhibit enhanced performance in a visual movement detection task compared to hearing cats (Lomber, Meredith, & Kral, 2010). In humans, the behavioural evidence regarding the perception of motion is less clear. The present study investigated deaf and hearing adult participants using a movement localization task and a direction of motion task employing coherently-moving and static visual dot patterns. Overall, deaf and hearing participants did not differ in their movement localization performance, although within the deaf group, a left visual field advantage was found. When discriminating the direction of motion, however, deaf participants responded faster and tended to be more accurate when detecting small differences in direction compared with the hearing controls. These results conform to the view that visual abilities are enhanced after auditory deprivation and extend previous findings regarding visual motion processing in deaf individuals.
Collapse
|
81
|
Wong C, Chabot N, Kok MA, Lomber SG. Modified Areal Cartography in Auditory Cortex Following Early- and Late-Onset Deafness. Cereb Cortex 2013; 24:1778-92. [DOI: 10.1093/cercor/bht026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
82
|
Signed words in the congenitally deaf evoke typical late lexicosemantic responses with no early visual responses in left superior temporal cortex. J Neurosci 2012; 32:9700-5. [PMID: 22787055 DOI: 10.1523/jneurosci.1002-12.2012] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Congenitally deaf individuals receive little or no auditory input, and when raised by deaf parents, they acquire sign as their native and primary language. We asked two questions regarding how the deaf brain in humans adapts to sensory deprivation: (1) is meaning extracted and integrated from signs using the same classical left hemisphere frontotemporal network used for speech in hearing individuals, and (2) in deafness, is superior temporal cortex encompassing primary and secondary auditory regions reorganized to receive and process visual sensory information at short latencies? Using MEG constrained by individual cortical anatomy obtained with MRI, we examined an early time window associated with sensory processing and a late time window associated with lexicosemantic integration. We found that sign in deaf individuals and speech in hearing individuals activate a highly similar left frontotemporal network (including superior temporal regions surrounding auditory cortex) during lexicosemantic processing, but only speech in hearing individuals activates auditory regions during sensory processing. Thus, neural systems dedicated to processing high-level linguistic information are used for processing language regardless of modality or hearing status, and we do not find evidence for rewiring of afferent connections from visual systems to auditory cortex.
Collapse
|
83
|
Altered cross-modal processing in the primary auditory cortex of congenitally deaf adults: a visual-somatosensory fMRI study with a double-flash illusion. J Neurosci 2012; 32:9626-38. [PMID: 22787048 DOI: 10.1523/jneurosci.6488-11.2012] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The developing brain responds to the environment by using statistical correlations in input to guide functional and structural changes-that is, the brain displays neuroplasticity. Experience shapes brain development throughout life, but neuroplasticity is variable from one brain system to another. How does the early loss of a sensory modality affect this complex process? We examined cross-modal neuroplasticity in anatomically defined subregions of Heschl's gyrus, the site of human primary auditory cortex, in congenitally deaf humans by measuring the fMRI signal change in response to spatially coregistered visual, somatosensory, and bimodal stimuli. In the deaf Heschl's gyrus, signal change was greater for somatosensory and bimodal stimuli than that of hearing participants. Visual responses in Heschl's gyrus, larger in deaf than hearing, were smaller than those elicited by somatosensory stimulation. In contrast to Heschl's gyrus, in the superior-temporal cortex visual signal was comparable to somatosensory signal. In addition, deaf adults perceived bimodal stimuli differently; in contrast to hearing adults, they were susceptible to a double-flash visual illusion induced by two touches to the face. Somatosensory and bimodal signal change in rostrolateral Heschl's gyrus predicted the strength of the visual illusion in the deaf adults in line with the interpretation that the illusion is a functional consequence of the altered cross-modal organization observed in deaf auditory cortex. Our results demonstrate that congenital and profound deafness alters how vision and somatosensation are processed in primary auditory cortex.
Collapse
|
84
|
Compromise of auditory cortical tuning and topography after cross-modal invasion by visual inputs. J Neurosci 2012; 32:10338-51. [PMID: 22836267 DOI: 10.1523/jneurosci.6524-11.2012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain damage resulting in loss of sensory stimulation can induce reorganization of sensory maps in cerebral cortex. Previous research on recovery from brain damage has focused primarily on adaptive plasticity within the affected modality. Less attention has been paid to maladaptive plasticity that may arise as a result of ectopic innervation from other modalities. Using ferrets in which neonatal midbrain damage results in diversion of retinal projections to the auditory thalamus, we investigated how auditory cortical function is impacted by the resulting ectopic visual activation. We found that, although auditory neurons in cross-modal auditory cortex (XMAC) retained sound frequency tuning, their thresholds were increased, their tuning was broader, and tonotopic order in their frequency maps was disturbed. Multisensory neurons in XMAC also exhibited frequency tuning, but they had longer latencies than normal auditory neurons, suggesting they arise from multisynaptic, non-geniculocortical sources. In a control group of animals with neonatal deafferentation of auditory thalamus but without redirection of retinal axons, tonotopic order and sharp tuning curves were seen, indicating that this aspect of auditory function had developed normally. This result shows that the compromised auditory function in XMAC results from invasion by ectopic visual inputs and not from deafferentation. These findings suggest that the cross-modal plasticity that commonly occurs after loss of sensory input can significantly interfere with recovery from brain damage and that mitigation of maladaptive effects is critical to maximizing the potential for recovery.
Collapse
|
85
|
Enriched and deprived sensory experience induces structural changes and rewires connectivity during the postnatal development of the brain. Neural Plast 2012; 2012:305693. [PMID: 22848849 PMCID: PMC3400395 DOI: 10.1155/2012/305693] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 11/17/2022] Open
Abstract
During postnatal development, sensory experience modulates cortical development, inducing numerous changes in all of the components of the cortex. Most of the cortical changes thus induced occur during the critical period, when the functional and structural properties of cortical neurons are particularly susceptible to alterations. Although the time course for experience-mediated sensory development is specific for each system, postnatal development acts as a whole, and if one cortical area is deprived of its normal sensory inputs during early stages, it will be reorganized by the nondeprived senses in a process of cross-modal plasticity that not only increases performance in the remaining senses when one is deprived, but also rewires the brain allowing the deprived cortex to process inputs from other senses and cortices, maintaining the modular configuration. This paper summarizes our current understanding of sensory systems development, focused specially in the visual system. It delineates sensory enhancement and sensory deprivation effects at both physiological and anatomical levels and describes the use of enriched environment as a tool to rewire loss of brain areas to enhance other active senses. Finally, strategies to apply restorative features in human-deprived senses are studied, discussing the beneficial and detrimental effects of cross-modal plasticity in prostheses and sensory substitution devices implantation.
Collapse
|
86
|
Multisensory dysfunction accompanies crossmodal plasticity following adult hearing impairment. Neuroscience 2012; 214:136-48. [PMID: 22516008 DOI: 10.1016/j.neuroscience.2012.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Revised: 03/29/2012] [Accepted: 04/08/2012] [Indexed: 11/21/2022]
Abstract
Until now, cortical crossmodal plasticity has largely been regarded as the effect of early and complete sensory loss. Recently, massive crossmodal cortical reorganization was demonstrated to result from profound hearing loss in adult ferrets (Allman et al., 2009a). Moderate adult hearing loss, on the other hand, induced not just crossmodal reorganization, but also merged new crossmodal inputs with residual auditory function to generate multisensory neurons. Because multisensory convergence can lead to dramatic levels of response integration when stimuli from more than one modality are present (and thereby potentially interfere with residual auditory processing), the present investigation sought to evaluate the multisensory properties of auditory cortical neurons in partially deafened adult ferrets. When compared with hearing controls, partially-deaf animals revealed elevated spontaneous levels and a dramatic increase (∼2 times) in the proportion of multisensory cortical neurons, but few of which showed multisensory integration. Moreover, a large proportion (68%) of neurons with somatosensory and/or visual inputs was vigorously active in core auditory cortex in the absence of auditory stimulation. Collectively, these results not only demonstrate multisensory dysfunction in core auditory cortical neurons from hearing impaired adults but also reveal a potential cortical substrate for maladaptive perceptual effects such as tinnitus.
Collapse
|