51
|
Hausfeld L, Riecke L, Formisano E. Acoustic and higher-level representations of naturalistic auditory scenes in human auditory and frontal cortex. Neuroimage 2018. [DOI: 10.1016/j.neuroimage.2018.02.065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
52
|
Discontinuity of early and late event-related brain potentials for selective attention in dichotic listening. Neuroreport 2018. [PMID: 29538097 DOI: 10.1097/wnr.0000000000001004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
If a representation of an auditory attention channel was present in the auditory cortices but not in the subcortical structures, it would be predicted that the early event-related brain potential (ERP) would disagree with the late ERP in selective attention effects. To examine this idea, the present study recorded the auditory brain stem response (ABR) as an early ERP and also the negative difference, the processing negativity and the irrelevant positive difference waves as late ERPs during dichotic listening. Each participant experienced two dichotic conditions: (i) 500-Hz standard tones to the left ear and 1000-Hz ones to the right ear (L500/R1000), (ii) 1000-Hz standard tones to the left ear and 500-Hz ones to the right ear (L1000/R500). In a control task, participants performed visual detection and ignored auditory stimuli. Although the negative difference and processing negativity were found to be identical between the two dichotic conditions, the ABR demonstrated a significant difference between relevant and irrelevant tasks only for the L500/R1000 condition. A response preference to lower-frequency tones was found for behavioural measures and late ERPs but not for the ABR. These results suggest difficulty in representing attention channels in the auditory brain stem. In addition, a weak effect of dichotic sound combination in behaviours corresponded only with earlier ERPs.
Collapse
|
53
|
Rinne T, Muers RS, Salo E, Slater H, Petkov CI. Functional Imaging of Audio-Visual Selective Attention in Monkeys and Humans: How do Lapses in Monkey Performance Affect Cross-Species Correspondences? Cereb Cortex 2018; 27:3471-3484. [PMID: 28419201 PMCID: PMC5654311 DOI: 10.1093/cercor/bhx092] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 11/22/2022] Open
Abstract
The cross-species correspondences and differences in how attention modulates brain responses in humans and animal models are poorly understood. We trained 2 monkeys to perform an audio–visual selective attention task during functional magnetic resonance imaging (fMRI), rewarding them to attend to stimuli in one modality while ignoring those in the other. Monkey fMRI identified regions strongly modulated by auditory or visual attention. Surprisingly, auditory attention-related modulations were much more restricted in monkeys than humans performing the same tasks during fMRI. Further analyses ruled out trivial explanations, suggesting that labile selective-attention performance was associated with inhomogeneous modulations in wide cortical regions in the monkeys. The findings provide initial insights into how audio–visual selective attention modulates the primate brain, identify sources for “lost” attention effects in monkeys, and carry implications for modeling the neurobiology of human cognition with nonhuman animals.
Collapse
Affiliation(s)
- Teemu Rinne
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.,Advanced Magnetic Imaging Centre, Aalto University School of Science, Espoo, Finland
| | - Ross S Muers
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Salo
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Heather Slater
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| | - Christopher I Petkov
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.,Centre for Behaviour and Evolution, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
54
|
Shestopalova LB, Petropavlovskaia EA, Semenova VV, Nikitin NI. Mismatch negativity and psychophysical detection of rising and falling intensity sounds. Biol Psychol 2018; 133:99-111. [PMID: 29421188 DOI: 10.1016/j.biopsycho.2018.01.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 10/18/2022]
Abstract
Human subjects demonstrate a perceptual priority for rising level sounds compared with falling level sounds. The aim of the present study was to investigate whether or not the perceptual preference for rising intensity can be found in the preattentive processing indexed by mismatch negativity (MMN). Reversed oddball stimulation was used to produce MMNs and to test the behavioral discrimination of rising, falling and constant level sounds. Three types of stimuli served as standards or deviants in different blocks: constant level sounds and two kinds of rising/falling sounds with gradual or stepwise change of intensity. The MMN amplitudes were calculated by subtracting ERPs to identical stimuli presented as standard in one block and deviant in another block. Both rising and falling level deviants elicited MMNs which peaked after 250 ms and did not overlap with N1 waves. MMN was elicited by level changes even when the deviants were not discriminated behaviorally. Most importantly, we found dissociation between earlier and later stages of auditory processing: the MMN responses to the level changes were mostly affected by the direction of deviance (increment or decrement) in the sequence, whereas behavioral performance depended on the direction of the level change within the stimuli (rising or falling).
Collapse
Affiliation(s)
- Lidia B Shestopalova
- I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia.
| | | | - Varvara V Semenova
- I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Nikolai I Nikitin
- I.P. Pavlov Institute of Physiology, Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
55
|
Häkkinen S, Rinne T. Intrinsic, stimulus-driven and task-dependent connectivity in human auditory cortex. Brain Struct Funct 2018; 223:2113-2127. [DOI: 10.1007/s00429-018-1612-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 01/14/2018] [Indexed: 12/29/2022]
|
56
|
Event-Related Potentials to Sound Stimuli with Delayed Onset of Motion in Conditions of Active and Passive Listening. ACTA ACUST UNITED AC 2017. [DOI: 10.1007/s11055-017-0536-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
57
|
Finkelmeyer A, He J, Maclachlan L, Watson S, Gallagher P, Newton JL, Blamire AM. Grey and white matter differences in Chronic Fatigue Syndrome - A voxel-based morphometry study. Neuroimage Clin 2017; 17:24-30. [PMID: 29021956 PMCID: PMC5633338 DOI: 10.1016/j.nicl.2017.09.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/07/2017] [Accepted: 09/26/2017] [Indexed: 01/21/2023]
Abstract
OBJECTIVE Investigate global and regional grey and white matter volumes in patients with Chronic Fatigue Syndrome (CFS) using magnetic resonance imaging (MRI) and recent voxel-based morphometry (VBM) methods. METHODS Forty-two patients with CFS and thirty healthy volunteers were scanned on a 3-Tesla MRI scanner. Anatomical MRI scans were segmented, normalized and submitted to a VBM analysis using randomisation methods. Group differences were identified in overall segment volumes and voxel-wise in spatially normalized grey matter (GM) and white matter (WM) segments. RESULTS Accounting for total intracranial volume, patients had larger GM volume and lower WM volume. The voxel-wise analysis showed increased GM volume in several structures including the amygdala and insula in the patient group. Reductions in WM volume in the patient group were seen primarily in the midbrain, pons and right temporal lobe. CONCLUSION Elevated GM volume in CFS is seen in areas related to processing of interoceptive signals and stress. Reduced WM volume in the patient group partially supports earlier findings of WM abnormalities in regions of the midbrain and brainstem.
Collapse
Affiliation(s)
- Andreas Finkelmeyer
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, England, UK.
| | - Jiabao He
- Aberdeen Biomedical Imaging Centre, University of Aberdeen, Scotland, UK
| | - Laura Maclachlan
- Department of Public Health and Community Medicine, Göteborgs Universitet, Göteborg, Sweden
| | - Stuart Watson
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, England, UK
| | - Peter Gallagher
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, England, UK
| | - Julia L Newton
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, England, UK
| | - Andrew M Blamire
- Newcastle Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne, England, UK
| |
Collapse
|
58
|
Elmer S, Hausheer M, Albrecht J, Kühnis J. Human Brainstem Exhibits higher Sensitivity and Specificity than Auditory-Related Cortex to Short-Term Phonetic Discrimination Learning. Sci Rep 2017; 7:7455. [PMID: 28785043 PMCID: PMC5547112 DOI: 10.1038/s41598-017-07426-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 06/28/2017] [Indexed: 01/09/2023] Open
Abstract
Phonetic discrimination learning is an active perceptual process that operates under the influence of cognitive control mechanisms by increasing the sensitivity of the auditory system to the trained stimulus attributes. It is assumed that the auditory cortex and the brainstem interact in order to refine how sounds are transcribed into neural codes. Here, we evaluated whether these two computational entities are prone to short-term functional changes, whether there is a chronological difference in malleability, and whether short-term training suffices to alter reciprocal interactions. We performed repeated cortical (i.e., mismatch negativity responses, MMN) and subcortical (i.e., frequency-following response, FFR) EEG measurements in two groups of participants who underwent one hour of phonetic discrimination training or were passively exposed to the same stimulus material. The training group showed a distinctive brainstem energy reduction in the trained frequency-range (i.e., first formant), whereas the passive group did not show any response modulation. Notably, brainstem signal change correlated with the behavioral improvement during training, this result indicating a close relationship between behavior and underlying brainstem physiology. Since we did not reveal group differences in MMN responses, results point to specific short-term brainstem changes that precede functional alterations in the auditory cortex.
Collapse
Affiliation(s)
- Stefan Elmer
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland.
| | - Marcela Hausheer
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Joëlle Albrecht
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| | - Jürg Kühnis
- Auditory Research Group Zurich (ARGZ), Division Neuropsychology, Institute of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
59
|
Neural correlates of distraction and conflict resolution for nonverbal auditory events. Sci Rep 2017; 7:1595. [PMID: 28487563 PMCID: PMC5431653 DOI: 10.1038/s41598-017-00811-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 03/16/2017] [Indexed: 11/16/2022] Open
Abstract
In everyday situations auditory selective attention requires listeners to suppress task-irrelevant stimuli and to resolve conflicting information in order to make appropriate goal-directed decisions. Traditionally, these two processes (i.e. distractor suppression and conflict resolution) have been studied separately. In the present study we measured neuroelectric activity while participants performed a new paradigm in which both processes are quantified. In separate block of trials, participants indicate whether two sequential tones share the same pitch or location depending on the block’s instruction. For the distraction measure, a positive component peaking at ~250 ms was found – a distraction positivity. Brain electrical source analysis of this component suggests different generators when listeners attended to frequency and location, with the distraction by location more posterior than the distraction by frequency, providing support for the dual-pathway theory. For the conflict resolution measure, a negative frontocentral component (270–450 ms) was found, which showed similarities with that of prior studies on auditory and visual conflict resolution tasks. The timing and distribution are consistent with two distinct neural processes with suppression of task-irrelevant information occurring before conflict resolution. This new paradigm may prove useful in clinical populations to assess impairments in filtering out task-irrelevant information and/or resolving conflicting information.
Collapse
|
60
|
Engaging in a tone-detection task differentially modulates neural activity in the auditory cortex, amygdala, and striatum. Sci Rep 2017; 7:677. [PMID: 28386101 PMCID: PMC5429729 DOI: 10.1038/s41598-017-00819-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 03/14/2017] [Indexed: 11/19/2022] Open
Abstract
The relationship between attention and sensory coding is an area of active investigation. Previous studies have revealed that an animal’s behavioral state can play a crucial role in shaping the characteristics of neural responses in the auditory cortex (AC). However, behavioral modulation of auditory response in brain areas outside the AC is not well studied. In this study, we used the same experimental paradigm to examine the effects of attention on neural activity in multiple brain regions including the primary auditory cortex (A1), posterior auditory field (PAF), amygdala (AMY), and striatum (STR). Single-unit spike activity was recorded while cats were actively performing a tone-detection task or passively listening to the same tones. We found that tone-evoked neural responses in A1 were not significantly affected by task-engagement; however, those in PAF and AMY were enhanced, and those in STR were suppressed. The enhanced effect was associated with an improvement of accuracy of tone detection, which was estimated from the spike activity. Additionally, the firing rates of A1 and PAF neurons decreased upon motor response (licking) during the detection task. Our results suggest that attention may have different effects on auditory responsive brain areas depending on their physiological functions.
Collapse
|
61
|
Salo E, Salmela V, Salmi J, Numminen J, Alho K. Brain activity associated with selective attention, divided attention and distraction. Brain Res 2017; 1664:25-36. [PMID: 28363436 DOI: 10.1016/j.brainres.2017.03.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 02/21/2017] [Accepted: 03/22/2017] [Indexed: 11/16/2022]
Abstract
Top-down controlled selective or divided attention to sounds and visual objects, as well as bottom-up triggered attention to auditory and visual distractors, has been widely investigated. However, no study has systematically compared brain activations related to all these types of attention. To this end, we used functional magnetic resonance imaging (fMRI) to measure brain activity in participants performing a tone pitch or a foveal grating orientation discrimination task, or both, distracted by novel sounds not sharing frequencies with the tones or by extrafoveal visual textures. To force focusing of attention to tones or gratings, or both, task difficulty was kept constantly high with an adaptive staircase method. A whole brain analysis of variance (ANOVA) revealed fronto-parietal attention networks for both selective auditory and visual attention. A subsequent conjunction analysis indicated partial overlaps of these networks. However, like some previous studies, the present results also suggest segregation of prefrontal areas involved in the control of auditory and visual attention. The ANOVA also suggested, and another conjunction analysis confirmed, an additional activity enhancement in the left middle frontal gyrus related to divided attention supporting the role of this area in top-down integration of dual task performance. Distractors expectedly disrupted task performance. However, contrary to our expectations, activations specifically related to the distractors were found only in the auditory and visual cortices. This suggests gating of the distractors from further processing perhaps due to strictly focused attention in the current demanding discrimination tasks.
Collapse
Affiliation(s)
- Emma Salo
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland.
| | - Viljami Salmela
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland
| | - Juha Salmi
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland; Faculty of Arts, Psychology and Theology, Åbo Akademi University, Turku, Finland
| | - Jussi Numminen
- Helsinki Medical Imaging Centre, Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto Neuroimaging, Aalto University School of Science and Technology, Espoo, Finland
| |
Collapse
|
62
|
Friedman AL, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A, Arnold PD, Hanna GL, Rosenberg DR, Diwadkar VA. Brain network dysfunction in youth with obsessive-compulsive disorder induced by simple uni-manual behavior: The role of the dorsal anterior cingulate cortex. Psychiatry Res 2017; 260:6-15. [PMID: 27992792 PMCID: PMC5302006 DOI: 10.1016/j.pscychresns.2016.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Revised: 12/09/2016] [Accepted: 12/10/2016] [Indexed: 10/20/2022]
Abstract
In an effort to elucidate differences in functioning brain networks between youth with obsessive-compulsive disorder and controls, we used fMRI signals to analyze brain network interactions of the dorsal anterior cingulate cortex (dACC) during visually coordinated motor responses. Subjects made a uni-manual response to briefly presented probes, at periodic (allowing participants to maintain a "motor set") or random intervals (demanding reactive responses). Network interactions were assessed using psycho-physiological interaction (PPI), a basic model of functional connectivity evaluating modulatory effects of the dACC in the context of each task condition. Across conditions, OCD were characterized by hyper-modulation by the dACC, with loci alternatively observed as both condition-general and condition-specific. Thus, dynamically driven task demands during simple uni-manual motor control induce compensatory network interactions in cortical-thalamic regions in OCD. These findings support previous research in OCD showing compensatory network interactions during complex memory tasks, but establish that these network effects are observed during basic sensorimotor processing. Thus, these patterns of network dysfunction may in fact be independent of the complexity of tasks used to induce brain network activity. Hypothesis-driven approaches coupled with sophisticated network analyses are a highly valuable approach in using fMRI to uncover mechanisms in disorders like OCD.
Collapse
Affiliation(s)
- Amy L Friedman
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Ashley Burgess
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Karthik Ramaseshan
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Phil Easter
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Dalal Khatib
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Asadur Chowdury
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Paul D Arnold
- Dept. of Psychiatry and Mathison Centre for Mental Health Research & Education, University of Calgary, Calgary, Alberta, Canada
| | - Gregory L Hanna
- Dept. of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David R Rosenberg
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Vaibhav A Diwadkar
- Dept. of Psychiatry & Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
63
|
Nourski KV, Steinschneider M, Rhone AE, Howard Iii MA. Intracranial Electrophysiology of Auditory Selective Attention Associated with Speech Classification Tasks. Front Hum Neurosci 2017; 10:691. [PMID: 28119593 PMCID: PMC5222875 DOI: 10.3389/fnhum.2016.00691] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/26/2016] [Indexed: 11/30/2022] Open
Abstract
Auditory selective attention paradigms are powerful tools for elucidating the various stages of speech processing. This study examined electrocorticographic activation during target detection tasks within and beyond auditory cortex. Subjects were nine neurosurgical patients undergoing chronic invasive monitoring for treatment of medically refractory epilepsy. Four subjects had left hemisphere electrode coverage, four had right coverage and one had bilateral coverage. Stimuli were 300 ms complex tones or monosyllabic words, each spoken by a different male or female talker. Subjects were instructed to press a button whenever they heard a target corresponding to a specific stimulus category (e.g., tones, animals, numbers). High gamma (70–150 Hz) activity was simultaneously recorded from Heschl’s gyrus (HG), superior, middle temporal and supramarginal gyri (STG, MTG, SMG), as well as prefrontal cortex (PFC). Data analysis focused on: (1) task effects (non-target words in tone detection vs. semantic categorization task); and (2) target effects (words as target vs. non-target during semantic classification). Responses within posteromedial HG (auditory core cortex) were minimally modulated by task and target. Non-core auditory cortex (anterolateral HG and lateral STG) exhibited sensitivity to task, with a smaller proportion of sites showing target effects. Auditory-related areas (MTG and SMG) and PFC showed both target and, to a lesser extent, task effects, that occurred later than those in the auditory cortex. Significant task and target effects were more prominent in the left hemisphere than in the right. Findings demonstrate a hierarchical organization of speech processing during auditory selective attention.
Collapse
Affiliation(s)
- Kirill V Nourski
- Human Brain Research Laboratory, Department of Neurosurgery, The University of Iowa Iowa City, IA, USA
| | - Mitchell Steinschneider
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine Bronx, NY, USA
| | - Ariane E Rhone
- Human Brain Research Laboratory, Department of Neurosurgery, The University of Iowa Iowa City, IA, USA
| | - Matthew A Howard Iii
- Human Brain Research Laboratory, Department of Neurosurgery, The University of IowaIowa City, IA, USA; Pappajohn Biomedical Institute, The University of IowaIowa City, IA, USA
| |
Collapse
|
64
|
Switching of auditory attention in "cocktail-party" listening: ERP evidence of cueing effects in younger and older adults. Brain Cogn 2016; 111:1-12. [PMID: 27814564 DOI: 10.1016/j.bandc.2016.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/28/2016] [Accepted: 09/13/2016] [Indexed: 11/23/2022]
Abstract
Verbal communication in a "cocktail-party situation" is a major challenge for the auditory system. In particular, changes in target speaker usually result in declined speech perception. Here, we investigated whether speech cues indicating a subsequent change in target speaker reduce the costs of switching in younger and older adults. We employed event-related potential (ERP) measures and a speech perception task, in which sequences of short words were simultaneously presented by four speakers. Changes in target speaker were either unpredictable or semantically cued by a word within the target stream. Cued changes resulted in a less decreased performance than uncued changes in both age groups. The ERP analysis revealed shorter latencies in the change-related N400 and late positive complex (LPC) after cued changes, suggesting an acceleration in context updating and attention switching. Thus, both younger and older listeners used semantic cues to prepare changes in speaker setting.
Collapse
|
65
|
Dretsch MN, Wood KH, Daniel TA, Katz JS, Deshpande G, Goodman AM, Wheelock MD, Wood KB, Denney Jr. TS, Traynham S, Knight DC. Exploring the Neurocircuitry Underpinning Predictability of Threat in Soldiers with PTSD Compared to Deployment Exposed Controls. Open Neuroimag J 2016; 10:111-124. [PMID: 27867434 PMCID: PMC5101630 DOI: 10.2174/1874440001610010111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 10/18/2016] [Accepted: 10/19/2016] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Prior work examining emotional dysregulation observed in posttraumatic stress disorder (PTSD) has primarily been limited to fear-learning processes specific to anticipation, habituation, and extinction of threat. In contrast, the response to threat itself has not been systematically evaluated. OBJECTIVE To explore potential disruption in fear conditioning neurocircuitry in service members with PTSD, specifically in response to predictable versus unpredictable threats. METHOD In the current study, active-duty U.S. Army soldiers with (PTSD group; n = 38) and without PTSD (deployment-exposed controls; DEC; n = 40), participated in a fear-conditioning study in which threat predictability was manipulated by presenting an aversive unconditioned stimulus (UCS) that was either preceded by a conditioned stimulus (i.e., predictable) or UCS alone (i.e., unpredictable). Threat expectation, skin conductance response (SCR), and functional magnetic resonance imaging (fMRI) signal to predictable and unpredictable threats (i.e., UCS) were assessed. RESULTS Both groups showed greater threat expectancy and diminished threat-elicited SCRs to predictable compared to unpredictable threat. Significant group differences were observed within the amygdala, hippocampus, insula, and superior and middle temporal gyri. Contrary to our predictions, the PTSD group showed a diminished threat-related response within each of these brain regions during predictable compared to unpredictable threat, whereas the DEC group showed increased activation. CONCLUSION Although, the PTSD group showed greater threat-related diminution, hypersensitivity to unpredictable threat cannot be ruled out. Furthermore, pre-trauma, trait-like factors may have contributed to group differences in activation of the neurocircuitry underpinning fear conditioning.
Collapse
Affiliation(s)
- Michael N. Dretsch
- U.S. Army Aeromedical Research Laboratory, Fort Rucker, AL, USA
- Human Dimension Division, HQ TRADOC, 950 Jefferson Ave, Fort Eustis, VA 23604, USA
| | - Kimberly H. Wood
- Department of Psychology, University of Alabama at Birmingham, AL, USA
| | - Thomas A. Daniel
- Department of Psychology, Auburn University, Auburn, AL, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Jeffrey S. Katz
- Department of Psychology, Auburn University, Auburn, AL, USA
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Gopikrishna Deshpande
- Department of Psychology, Auburn University, Auburn, AL, USA
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | - Adam M. Goodman
- Department of Psychology, Auburn University, Auburn, AL, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | | | - Kayli B. Wood
- Department of Psychology, University of Alabama at Birmingham, AL, USA
| | - Thomas S. Denney Jr.
- Department of Psychology, Auburn University, Auburn, AL, USA
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, USA
| | | | - David C. Knight
- Department of Psychology, University of Alabama at Birmingham, AL, USA
| |
Collapse
|
66
|
Shestopalova L, Petropavlovskaia E, Vaitulevich S, Nikitin N. Hemispheric asymmetry of ERPs and MMNs evoked by slow, fast and abrupt auditory motion. Neuropsychologia 2016; 91:465-479. [DOI: 10.1016/j.neuropsychologia.2016.09.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/25/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
67
|
Elmer S. Broca Pars Triangularis Constitutes a "Hub" of the Language-Control Network during Simultaneous Language Translation. Front Hum Neurosci 2016; 10:491. [PMID: 27746729 PMCID: PMC5040713 DOI: 10.3389/fnhum.2016.00491] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 09/15/2016] [Indexed: 12/02/2022] Open
Abstract
Until now, several branches of research have fundamentally contributed to a better understanding of the ramifications of bilingualism, multilingualism, and language expertise on psycholinguistic-, cognitive-, and neural implications. In this context, it is noteworthy to mention that from a cognitive perspective, there is a strong convergence of data pointing to an influence of multilingual speech competence on a variety of cognitive functions, including attention, short-term- and working memory, set shifting, switching, and inhibition. In addition, complementary neuroimaging findings have highlighted a specific set of cortical and subcortical brain regions which fundamentally contribute to administrate cognitive control in the multilingual brain, namely Broca's area, the middle-anterior cingulate cortex, the inferior parietal lobe, and the basal ganglia. However, a disadvantage of focusing on group analyses is that this procedure only enables an approximation of the neural networks shared within a population while at the same time smoothing inter-individual differences. In order to address both commonalities (i.e., within group analyses) and inter-individual variability (i.e., single-subject analyses) in language control mechanisms, here I measured five professional simultaneous interpreters while the participants overtly translated or repeated sentences with a simple subject-verb-object structure. Results demonstrated that pars triangularis was commonly activated across participants during backward translation (i.e., from L2 to L1), whereas the other brain regions of the "control network" showed a strong inter-individual variability during both backward and forward (i.e., from L1 to L2) translation. Thus, I propose that pars triangularis plays a crucial role within the language-control network and behaves as a fundamental processing entity supporting simultaneous language translation.
Collapse
Affiliation(s)
- Stefan Elmer
- Auditory Research Group Zurich, Division Neuropsychology, Institute of Psychology, University of ZurichZurich, Switzerland
| |
Collapse
|
68
|
Voicikas A, Niciute I, Ruksenas O, Griskova-Bulanova I. Effect of attention on 40 Hz auditory steady-state response depends on the stimulation type: Flutter amplitude modulated tones versus clicks. Neurosci Lett 2016; 629:215-220. [DOI: 10.1016/j.neulet.2016.07.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/19/2016] [Accepted: 07/13/2016] [Indexed: 11/28/2022]
|
69
|
Neural Mechanisms Underlying Musical Pitch Perception and Clinical Applications Including Developmental Dyslexia. Curr Neurol Neurosci Rep 2016; 15:51. [PMID: 26092314 DOI: 10.1007/s11910-015-0574-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Music production and perception invoke a complex set of cognitive functions that rely on the integration of sensorimotor, cognitive, and emotional pathways. Pitch is a fundamental perceptual attribute of sound and a building block for both music and speech. Although the cerebral processing of pitch is not completely understood, recent advances in imaging and electrophysiology have provided insight into the functional and anatomical pathways of pitch processing. This review examines the current understanding of pitch processing and behavioral and neural variations that give rise to difficulties in pitch processing, and potential applications of music education for language processing disorders such as dyslexia.
Collapse
|
70
|
Hong KS, Santosa H. Decoding four different sound-categories in the auditory cortex using functional near-infrared spectroscopy. Hear Res 2016; 333:157-166. [PMID: 26828741 DOI: 10.1016/j.heares.2016.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 01/15/2016] [Accepted: 01/18/2016] [Indexed: 01/13/2023]
Abstract
The ability of the auditory cortex in the brain to distinguish different sounds is important in daily life. This study investigated whether activations in the auditory cortex caused by different sounds can be distinguished using functional near-infrared spectroscopy (fNIRS). The hemodynamic responses (HRs) in both hemispheres using fNIRS were measured in 18 subjects while exposing them to four sound categories (English-speech, non-English-speech, annoying sounds, and nature sounds). As features for classifying the different signals, the mean, slope, and skewness of the oxy-hemoglobin (HbO) signal were used. With regard to the language-related stimuli, the HRs evoked by understandable speech (English) were observed in a broader brain region than were those evoked by non-English speech. Also, the magnitudes of the HbO signals evoked by English-speech were higher than those of non-English speech. The ratio of the peak values of non-English and English speech was 72.5%. Also, the brain region evoked by annoying sounds was wider than that by nature sounds. However, the signal strength for nature sounds was stronger than that for annoying sounds. Finally, for brain-computer interface (BCI) purposes, the linear discriminant analysis (LDA) and support vector machine (SVM) classifiers were applied to the four sound categories. The overall classification performance for the left hemisphere was higher than that for the right hemisphere. Therefore, for decoding of auditory commands, the left hemisphere is recommended. Also, in two-class classification, the annoying vs. nature sounds comparison provides a higher classification accuracy than the English vs. non-English speech comparison. Finally, LDA performs better than SVM.
Collapse
Affiliation(s)
- Keum-Shik Hong
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea; School of Mechanical Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea.
| | - Hendrik Santosa
- Department of Cogno-Mechatronics Engineering, Pusan National University, 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Republic of Korea
| |
Collapse
|
71
|
Peretz I, Vuvan D, Lagrois MÉ, Armony JL. Neural overlap in processing music and speech. Philos Trans R Soc Lond B Biol Sci 2016; 370:20140090. [PMID: 25646513 DOI: 10.1098/rstb.2014.0090] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Neural overlap in processing music and speech, as measured by the co-activation of brain regions in neuroimaging studies, may suggest that parts of the neural circuitries established for language may have been recycled during evolution for musicality, or vice versa that musicality served as a springboard for language emergence. Such a perspective has important implications for several topics of general interest besides evolutionary origins. For instance, neural overlap is an important premise for the possibility of music training to influence language acquisition and literacy. However, neural overlap in processing music and speech does not entail sharing neural circuitries. Neural separability between music and speech may occur in overlapping brain regions. In this paper, we review the evidence and outline the issues faced in interpreting such neural data, and argue that converging evidence from several methodologies is needed before neural overlap is taken as evidence of sharing.
Collapse
Affiliation(s)
- Isabelle Peretz
- International Laboratory of Brain, Music and Sound Research (BRAMS), and Center for Research on Brain, Language and Music (CRBLM), University of Montreal, Montreal, Quebec, Canada Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Dominique Vuvan
- International Laboratory of Brain, Music and Sound Research (BRAMS), and Center for Research on Brain, Language and Music (CRBLM), University of Montreal, Montreal, Quebec, Canada Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Marie-Élaine Lagrois
- International Laboratory of Brain, Music and Sound Research (BRAMS), and Center for Research on Brain, Language and Music (CRBLM), University of Montreal, Montreal, Quebec, Canada Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Jorge L Armony
- International Laboratory of Brain, Music and Sound Research (BRAMS), and Center for Research on Brain, Language and Music (CRBLM), University of Montreal, Montreal, Quebec, Canada Department of Psychiatry, McGill University and Douglas Mental Health University Institute, Montreal, Quebec, Canada
| |
Collapse
|
72
|
Wiens S, Szychowska M, Nilsson ME. Visual Task Demands and the Auditory Mismatch Negativity: An Empirical Study and a Meta-Analysis. PLoS One 2016; 11:e0146567. [PMID: 26741815 PMCID: PMC4704804 DOI: 10.1371/journal.pone.0146567] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 12/18/2015] [Indexed: 02/04/2023] Open
Abstract
Because the auditory system is particularly useful in monitoring the environment, previous research has examined whether task-irrelevant, auditory distracters are processed even if subjects focus their attention on visual stimuli. This research suggests that attentionally demanding visual tasks decrease the auditory mismatch negativity (MMN) to simultaneously presented auditory distractors. Because a recent behavioral study found that high visual perceptual load decreased detection sensitivity of simultaneous tones, we used a similar task (n = 28) to determine if high visual perceptual load would reduce the auditory MMN. Results suggested that perceptual load did not decrease the MMN. At face value, these nonsignificant findings may suggest that effects of perceptual load on the MMN are smaller than those of other demanding visual tasks. If so, effect sizes should differ systematically between the present and previous studies. We conducted a selective meta-analysis of published studies in which the MMN was derived from the EEG, the visual task demands were continuous and varied between high and low within the same task, and the task-irrelevant tones were presented in a typical oddball paradigm simultaneously with the visual stimuli. Because the meta-analysis suggested that the present (null) findings did not differ systematically from previous findings, the available evidence was combined. Results of this meta-analysis confirmed that demanding visual tasks reduce the MMN to auditory distracters. However, because the meta-analysis was based on small studies and because of the risk for publication biases, future studies should be preregistered with large samples (n > 150) to provide confirmatory evidence for the results of the present meta-analysis. These future studies should also use control conditions that reduce confounding effects of neural adaptation, and use load manipulations that are defined independently from their effects on the MMN.
Collapse
Affiliation(s)
- Stefan Wiens
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| | - Malina Szychowska
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
- Institute of Acoustics, Department of Physics, Adam Mickiewicz University, Poznan, Poland
| | - Mats E. Nilsson
- Gösta Ekman Laboratory, Department of Psychology, Stockholm University, Stockholm, Sweden
| |
Collapse
|
73
|
Brosch M, Selezneva E, Scheich H. Neuronal activity in primate auditory cortex during the performance of audiovisual tasks. Eur J Neurosci 2015; 41:603-14. [PMID: 25728179 DOI: 10.1111/ejn.12841] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/10/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022]
Abstract
This study aimed at a deeper understanding of which cognitive and motivational aspects of tasks affect auditory cortical activity. To this end we trained two macaque monkeys to perform two different tasks on the same audiovisual stimulus and to do this with two different sizes of water rewards. The monkeys had to touch a bar after a tone had been turned on together with an LED, and to hold the bar until either the tone (auditory task) or the LED (visual task) was turned off. In 399 multiunits recorded from core fields of auditory cortex we confirmed that during task engagement neurons responded to auditory and non-auditory stimuli that were task-relevant, such as light and water. We also confirmed that firing rates slowly increased or decreased for several seconds during various phases of the tasks. Responses to non-auditory stimuli and slow firing changes were observed during both the auditory and the visual task, with some differences between them. There was also a weak task-dependent modulation of the responses to auditory stimuli. In contrast to these cognitive aspects, motivational aspects of the tasks were not reflected in the firing, except during delivery of the water reward. In conclusion, the present study supports our previous proposal that there are two response types in the auditory cortex that represent the timing and the type of auditory and non-auditory elements of a auditory tasks as well the association between elements.
Collapse
Affiliation(s)
- Michael Brosch
- Leibniz-Institut für Neurobiologie, Brenneckestraße 6, 39118, Magdeburg, Deutschland, Germany
| | | | | |
Collapse
|
74
|
Häkkinen S, Ovaska N, Rinne T. Processing of pitch and location in human auditory cortex during visual and auditory tasks. Front Psychol 2015; 6:1678. [PMID: 26594185 PMCID: PMC4635202 DOI: 10.3389/fpsyg.2015.01678] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 10/19/2015] [Indexed: 01/22/2023] Open
Abstract
The relationship between stimulus-dependent and task-dependent activations in human auditory cortex (AC) during pitch and location processing is not well understood. In the present functional magnetic resonance imaging study, we investigated the processing of task-irrelevant and task-relevant pitch and location during discrimination, n-back, and visual tasks. We tested three hypotheses: (1) According to prevailing auditory models, stimulus-dependent processing of pitch and location should be associated with enhanced activations in distinct areas of the anterior and posterior superior temporal gyrus (STG), respectively. (2) Based on our previous studies, task-dependent activation patterns during discrimination and n-back tasks should be similar when these tasks are performed on sounds varying in pitch or location. (3) Previous studies in humans and animals suggest that pitch and location tasks should enhance activations especially in those areas that also show activation enhancements associated with stimulus-dependent pitch and location processing, respectively. Consistent with our hypotheses, we found stimulus-dependent sensitivity to pitch and location in anterolateral STG and anterior planum temporale (PT), respectively, in line with the view that these features are processed in separate parallel pathways. Further, task-dependent activations during discrimination and n-back tasks were associated with enhanced activations in anterior/posterior STG and posterior STG/inferior parietal lobule (IPL) irrespective of stimulus features. However, direct comparisons between pitch and location tasks performed on identical sounds revealed no significant activation differences. These results suggest that activations during pitch and location tasks are not strongly affected by enhanced stimulus-dependent activations to pitch or location. We also found that activations in PT were strongly modulated by task requirements and that areas in the inferior parietal lobule (IPL) showed task-dependent activation modulations, but no systematic activations to pitch or location. Based on these results, we argue that activations during pitch and location tasks cannot be explained by enhanced stimulus-specific processing alone, but rather that activations in human AC depend in a complex manner on the requirements of the task at hand.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Noora Ovaska
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Teemu Rinne
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland ; Advanced Magnetic Imaging Centre, Aalto University School of Science Espoo, Finland
| |
Collapse
|
75
|
Wikman PA, Vainio L, Rinne T. The effect of precision and power grips on activations in human auditory cortex. Front Neurosci 2015; 9:378. [PMID: 26528121 PMCID: PMC4606019 DOI: 10.3389/fnins.2015.00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/28/2015] [Indexed: 11/23/2022] Open
Abstract
The neuroanatomical pathways interconnecting auditory and motor cortices play a key role in current models of human auditory cortex (AC). Evidently, auditory-motor interaction is important in speech and music production, but the significance of these cortical pathways in other auditory processing is not well known. We investigated the general effects of motor responding on AC activations to sounds during auditory and visual tasks (motor regions were not imaged). During all task blocks, subjects detected targets in the designated modality, reported the relative number of targets at the end of the block, and ignored the stimuli presented in the opposite modality. In each block, they were also instructed to respond to targets either using a precision grip, power grip, or to give no overt target responses. We found that motor responding strongly modulated AC activations. First, during both visual and auditory tasks, activations in widespread regions of AC decreased when subjects made precision and power grip responses to targets. Second, activations in AC were modulated by grip type during the auditory but not during the visual task. Further, the motor effects were distinct from the present strong attention-related modulations in AC. These results are consistent with the idea that operations in AC are shaped by its connections with motor cortical regions.
Collapse
Affiliation(s)
- Patrik A Wikman
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Lari Vainio
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland
| | - Teemu Rinne
- Institute of Behavioural Sciences, University of Helsinki Helsinki, Finland ; Advanced Magnetic Imaging Centre, Aalto University School of Science Espoo, Finland
| |
Collapse
|
76
|
Badcock JC. A Neuropsychological Approach to Auditory Verbal Hallucinations and Thought Insertion - Grounded in Normal Voice Perception. ACTA ACUST UNITED AC 2015; 7:631-652. [PMID: 27617046 PMCID: PMC4995233 DOI: 10.1007/s13164-015-0270-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
A neuropsychological perspective on auditory verbal hallucinations (AVH) links key phenomenological features of the experience, such as voice location and identity, to functionally separable pathways in normal human audition. Although this auditory processing stream (APS) framework has proven valuable for integrating research on phenomenology with cognitive and neural accounts of hallucinatory experiences, it has not yet been applied to other symptoms presumed to be closely related to AVH – such as thought insertion (TI). In this paper, I propose that an APS framework offers a useful way of thinking about the experience of TI as well as AVH, providing a common conceptual framework for both. I argue that previous self-monitoring theories struggle to account for both the differences and similarities in the characteristic features of AVH and TI, which can be readily accommodated within an APS framework. Furthermore, the APS framework can be integrated with predictive processing accounts of psychotic symptoms; makes predictions about potential sites of prediction error signals; and may offer a template for understanding a range of other symptoms beyond AVH and TI.
Collapse
Affiliation(s)
- Johanna C Badcock
- Centre for Clinical Research in Neuropsychiatry, School of Psychiatry and Clinical Neurosciences, University of Western Australia, Crawley, 6009 Western Australia
| |
Collapse
|
77
|
Knott V, Impey D, Choueiry J, Smith D, de la Salle S, Saghir S, Smith M, Beaudry E, Ilivitsky V, Labelle A. An acute dose, randomized trial of the effects of CDP-Choline on Mismatch Negativity (MMN) in healthy volunteers stratified by deviance detection level. ACTA ACUST UNITED AC 2015. [DOI: 10.1186/s40810-014-0002-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
78
|
Horváth J. Action-related auditory ERP attenuation: Paradigms and hypotheses. Brain Res 2015; 1626:54-65. [PMID: 25843932 DOI: 10.1016/j.brainres.2015.03.038] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 02/22/2015] [Accepted: 03/23/2015] [Indexed: 11/15/2022]
Abstract
A number studies have shown that the auditory N1 event-related potential (ERP) is attenuated when elicited by self-induced or self-generated sounds. Because N1 is a correlate of auditory feature- and event-detection, it was generally assumed that N1-attenuation reflected the cancellation of auditory re-afference, enabled by the internal forward modeling of the predictable sensory consequences of the given action. Focusing on paradigms utilizing non-speech actions, the present review summarizes recent progress on action-related auditory attenuation. Following a critical analysis of the most widely used, contingent paradigm, two further hypotheses on the possible causes of action-related auditory ERP attenuation are presented. The attention hypotheses suggest that auditory ERP attenuation is brought about by a temporary division of attention between the action and the auditory stimulation. The pre-activation hypothesis suggests that the attenuation is caused by the activation of a sensory template during the initiation of the action, which interferes with the incoming stimulation. Although each hypothesis can account for a number of findings, none of them can accommodate the whole spectrum of results. It is suggested that a better understanding of auditory ERP attenuation phenomena could be achieved by systematic investigations of the types of actions, the degree of action-effect contingency, and the temporal characteristics of action-effect contingency representation-buildup and -deactivation. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
Affiliation(s)
- János Horváth
- Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, HAS, P.O.B. 286, H-1519 Budapest, Hungary.
| |
Collapse
|
79
|
Schröger E, Marzecová A, SanMiguel I. Attention and prediction in human audition: a lesson from cognitive psychophysiology. Eur J Neurosci 2015; 41:641-64. [PMID: 25728182 PMCID: PMC4402002 DOI: 10.1111/ejn.12816] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 11/30/2022]
Abstract
Attention is a hypothetical mechanism in the service of perception that facilitates the processing of relevant information and inhibits the processing of irrelevant information. Prediction is a hypothetical mechanism in the service of perception that considers prior information when interpreting the sensorial input. Although both (attention and prediction) aid perception, they are rarely considered together. Auditory attention typically yields enhanced brain activity, whereas auditory prediction often results in attenuated brain responses. However, when strongly predicted sounds are omitted, brain responses to silence resemble those elicited by sounds. Studies jointly investigating attention and prediction revealed that these different mechanisms may interact, e.g. attention may magnify the processing differences between predicted and unpredicted sounds. Following the predictive coding theory, we suggest that prediction relates to predictions sent down from predictive models housed in higher levels of the processing hierarchy to lower levels and attention refers to gain modulation of the prediction error signal sent up to the higher level. As predictions encode contents and confidence in the sensory data, and as gain can be modulated by the intention of the listener and by the predictability of the input, various possibilities for interactions between attention and prediction can be unfolded. From this perspective, the traditional distinction between bottom-up/exogenous and top-down/endogenous driven attention can be revisited and the classic concepts of attentional gain and attentional trace can be integrated.
Collapse
Affiliation(s)
- Erich Schröger
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| | - Anna Marzecová
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| | - Iria SanMiguel
- Institute for Psychology, BioCog - Cognitive and Biological Psychology, University of LeipzigNeumarkt 9-19, D-04109, Leipzig, Germany
| |
Collapse
|
80
|
Schmälzle R, Häcker FEK, Honey CJ, Hasson U. Engaged listeners: shared neural processing of powerful political speeches. Soc Cogn Affect Neurosci 2015; 10:1137-43. [PMID: 25653012 DOI: 10.1093/scan/nsu168] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/24/2014] [Indexed: 11/14/2022] Open
Abstract
Powerful speeches can captivate audiences, whereas weaker speeches fail to engage their listeners. What is happening in the brains of a captivated audience? Here, we assess audience-wide functional brain dynamics during listening to speeches of varying rhetorical quality. The speeches were given by German politicians and evaluated as rhetorically powerful or weak. Listening to each of the speeches induced similar neural response time courses, as measured by inter-subject correlation analysis, in widespread brain regions involved in spoken language processing. Crucially, alignment of the time course across listeners was stronger for rhetorically powerful speeches, especially for bilateral regions of the superior temporal gyri and medial prefrontal cortex. Thus, during powerful speeches, listeners as a group are more coupled to each other, suggesting that powerful speeches are more potent in taking control of the listeners' brain responses. Weaker speeches were processed more heterogeneously, although they still prompted substantially correlated responses. These patterns of coupled neural responses bear resemblance to metaphors of resonance, which are often invoked in discussions of speech impact, and contribute to the literature on auditory attention under natural circumstances. Overall, this approach opens up possibilities for research on the neural mechanisms mediating the reception of entertaining or persuasive messages.
Collapse
Affiliation(s)
- Ralf Schmälzle
- Department of Psychology, University of Konstanz, Baden-Württemberg, Germany,
| | - Frank E K Häcker
- Department of Psychology, University of Konstanz, Baden-Württemberg, Germany
| | | | - Uri Hasson
- Department of Psychology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
81
|
Attention modulates cortical processing of pitch feedback errors in voice control. Sci Rep 2015; 5:7812. [PMID: 25589447 PMCID: PMC4295089 DOI: 10.1038/srep07812] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/10/2014] [Indexed: 11/23/2022] Open
Abstract
Considerable evidence has shown that unexpected alterations in auditory feedback elicit fast compensatory adjustments in vocal production. Although generally thought to be involuntary in nature, whether these adjustments can be influenced by attention remains unknown. The present event-related potential (ERP) study aimed to examine whether neurobehavioral processing of auditory-vocal integration can be affected by attention. While sustaining a vowel phonation and hearing pitch-shifted feedback, participants were required to either ignore the pitch perturbations, or attend to them with low (counting the number of perturbations) or high attentional load (counting the type of perturbations). Behavioral results revealed no systematic change of vocal response to pitch perturbations irrespective of whether they were attended or not. At the level of cortex, there was an enhancement of P2 response to attended pitch perturbations in the low-load condition as compared to when they were ignored. In the high-load condition, however, P2 response did not differ from that in the ignored condition. These findings provide the first neurophysiological evidence that auditory-motor integration in voice control can be modulated as a function of attention at the level of cortex. Furthermore, this modulatory effect does not lead to a general enhancement but is subject to attentional load.
Collapse
|
82
|
Top-down controlled and bottom-up triggered orienting of auditory attention to pitch activate overlapping brain networks. Brain Res 2014; 1626:136-45. [PMID: 25557401 DOI: 10.1016/j.brainres.2014.12.050] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 12/20/2014] [Accepted: 12/23/2014] [Indexed: 11/23/2022]
Abstract
A number of previous studies have suggested segregated networks of brain areas for top-down controlled and bottom-up triggered orienting of visual attention. However, the corresponding networks involved in auditory attention remain less studied. Our participants attended selectively to a tone stream with either a lower pitch or higher pitch in order to respond to infrequent changes in duration of attended tones. The participants were also required to shift their attention from one stream to the other when guided by a visual arrow cue. In addition to these top-down controlled cued attention shifts, infrequent task-irrelevant louder tones occurred in both streams to trigger attention in a bottom-up manner. Both cued shifts and louder tones were associated with enhanced activity in the superior temporal gyrus and sulcus, temporo-parietal junction, superior parietal lobule, inferior and middle frontal gyri, frontal eye field, supplementary motor area, and anterior cingulate gyrus. Thus, the present findings suggest that in the auditory modality, unlike in vision, top-down controlled and bottom-up triggered attention activate largely the same cortical networks. Comparison of the present results with our previous results from a similar experiment on spatial auditory attention suggests that fronto-parietal networks of attention to location or pitch overlap substantially. However, the auditory areas in the anterior superior temporal cortex might have a more important role in attention to the pitch than location of sounds. This article is part of a Special Issue entitled SI: Prediction and Attention.
Collapse
|
83
|
Humphries C, Sabri M, Lewis K, Liebenthal E. Hierarchical organization of speech perception in human auditory cortex. Front Neurosci 2014; 8:406. [PMID: 25565939 PMCID: PMC4263085 DOI: 10.3389/fnins.2014.00406] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/22/2014] [Indexed: 11/22/2022] Open
Abstract
Human speech consists of a variety of articulated sounds that vary dynamically in spectral composition. We investigated the neural activity associated with the perception of two types of speech segments: (a) the period of rapid spectral transition occurring at the beginning of a stop-consonant vowel (CV) syllable and (b) the subsequent spectral steady-state period occurring during the vowel segment of the syllable. Functional magnetic resonance imaging (fMRI) was recorded while subjects listened to series of synthesized CV syllables and non-phonemic control sounds. Adaptation to specific sound features was measured by varying either the transition or steady-state periods of the synthesized sounds. Two spatially distinct brain areas in the superior temporal cortex were found that were sensitive to either the type of adaptation or the type of stimulus. In a relatively large section of the bilateral dorsal superior temporal gyrus (STG), activity varied as a function of adaptation type regardless of whether the stimuli were phonemic or non-phonemic. Immediately adjacent to this region in a more limited area of the ventral STG, increased activity was observed for phonemic trials compared to non-phonemic trials, however, no adaptation effects were found. In addition, a third area in the bilateral medial superior temporal plane showed increased activity to non-phonemic compared to phonemic sounds. The results suggest a multi-stage hierarchical stream for speech sound processing extending ventrolaterally from the superior temporal plane to the superior temporal sulcus. At successive stages in this hierarchy, neurons code for increasingly more complex spectrotemporal features. At the same time, these representations become more abstracted from the original acoustic form of the sound.
Collapse
Affiliation(s)
- Colin Humphries
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Merav Sabri
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Kimberly Lewis
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Einat Liebenthal
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA ; Department of Psychiatry, Brigham and Women's Hospital Boston, MA, USA
| |
Collapse
|
84
|
Liebenthal E, Desai RH, Humphries C, Sabri M, Desai A. The functional organization of the left STS: a large scale meta-analysis of PET and fMRI studies of healthy adults. Front Neurosci 2014; 8:289. [PMID: 25309312 PMCID: PMC4160993 DOI: 10.3389/fnins.2014.00289] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/26/2014] [Indexed: 11/13/2022] Open
Abstract
The superior temporal sulcus (STS) in the left hemisphere is functionally diverse, with sub-areas implicated in both linguistic and non-linguistic functions. However, the number and boundaries of distinct functional regions remain to be determined. Here, we present new evidence, from meta-analysis of a large number of positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) studies, of different functional specificity in the left STS supporting a division of its middle to terminal extent into at least three functional areas. The middle portion of the left STS stem (fmSTS) is highly specialized for speech perception and the processing of language material. The posterior portion of the left STS stem (fpSTS) is highly versatile and involved in multiple functions supporting semantic memory and associative thinking. The fpSTS responds to both language and non-language stimuli but the sensitivity to non-language material is greater. The horizontal portion of the left STS stem and terminal ascending branches (ftSTS) display intermediate functional specificity, with the anterior-dorsal ascending branch (fatSTS) supporting executive functions and motor planning and showing greater sensitivity to language material, and the horizontal stem and posterior-ventral ascending branch (fptSTS) supporting primarily semantic processing and displaying greater sensitivity to non-language material. We suggest that the high functional specificity of the left fmSTS for speech is an important means by which the human brain achieves exquisite affinity and efficiency for native speech perception. In contrast, the extreme multi-functionality of the left fpSTS reflects the role of this area as a cortical hub for semantic processing and the extraction of meaning from multiple sources of information. Finally, in the left ftSTS, further functional differentiation between the dorsal and ventral aspect is warranted.
Collapse
Affiliation(s)
- Einat Liebenthal
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA ; Department of Psychiatry, Brigham and Women's Hospital Boston, MA, USA
| | - Rutvik H Desai
- Department of Psychology, University of South Carolina Columbia, SC, USA
| | - Colin Humphries
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Merav Sabri
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| | - Anjali Desai
- Department of Neurology, Medical College of Wisconsin Milwaukee, WI, USA
| |
Collapse
|
85
|
Scharinger M, Herrmann B, Nierhaus T, Obleser J. Simultaneous EEG-fMRI brain signatures of auditory cue utilization. Front Neurosci 2014; 8:137. [PMID: 24926232 PMCID: PMC4044900 DOI: 10.3389/fnins.2014.00137] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/17/2014] [Indexed: 11/13/2022] Open
Abstract
Optimal utilization of acoustic cues during auditory categorization is a vital skill, particularly when informative cues become occluded or degraded. Consequently, the acoustic environment requires flexible choosing and switching amongst available cues. The present study targets the brain functions underlying such changes in cue utilization. Participants performed a categorization task with immediate feedback on acoustic stimuli from two categories that varied in duration and spectral properties, while we simultaneously recorded Blood Oxygenation Level Dependent (BOLD) responses in fMRI and electroencephalograms (EEGs). In the first half of the experiment, categories could be best discriminated by spectral properties. Halfway through the experiment, spectral degradation rendered the stimulus duration the more informative cue. Behaviorally, degradation decreased the likelihood of utilizing spectral cues. Spectrally degrading the acoustic signal led to increased alpha power compared to nondegraded stimuli. The EEG-informed fMRI analyses revealed that alpha power correlated with BOLD changes in inferior parietal cortex and right posterior superior temporal gyrus (including planum temporale). In both areas, spectral degradation led to a weaker coupling of BOLD response to behavioral utilization of the spectral cue. These data provide converging evidence from behavioral modeling, electrophysiology, and hemodynamics that (a) increased alpha power mediates the inhibition of uninformative (here spectral) stimulus features, and that (b) the parietal attention network supports optimal cue utilization in auditory categorization. The results highlight the complex cortical processing of auditory categorization under realistic listening challenges.
Collapse
Affiliation(s)
- Mathias Scharinger
- Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Björn Herrmann
- Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Till Nierhaus
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Jonas Obleser
- Max Planck Research Group "Auditory Cognition," Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| |
Collapse
|
86
|
Yoncheva Y, Maurer U, Zevin JD, McCandliss BD. Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere. Neuroimage 2014; 97:262-70. [PMID: 24746955 PMCID: PMC4414015 DOI: 10.1016/j.neuroimage.2014.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 03/04/2014] [Accepted: 04/04/2014] [Indexed: 11/25/2022] Open
Abstract
Selective attention to phonology, i.e., the ability to attend to sub-syllabic units within spoken words, is a critical precursor to literacy acquisition. Recent functional magnetic resonance imaging evidence has demonstrated that a left-lateralized network of frontal, temporal, and posterior language regions, including the visual word form area, supports this skill. The current event-related potential (ERP) study investigated the temporal dynamics of selective attention to phonology during spoken word perception. We tested the hypothesis that selective atten tion to phonology dynamically modulates stimulus encoding by recruiting left-lateralized processes specifically while the information critical for performance is unfolding. Selective attention to phonology was captured by ma nipulating listening goals: skilled adult readers attended to either rhyme or melody within auditory stimulus pairs. Each pair superimposed rhyming and melodic information ensuring identical sensory stimulation. Selective attention to phonology produced distinct early and late topographic ERP effects during stimulus encoding. Data- driven source localization analyses revealed that selective attention to phonology led to significantly greater re cruitment of left-lateralized posterior and extensive temporal regions, which was notably concurrent with the rhyme-relevant information within the word. Furthermore, selective attention effects were specific to auditory stimulus encoding and not observed in response to cues, arguing against the notion that they reflect sustained task setting. Collectively, these results demonstrate that selective attention to phonology dynamically engages a left-lateralized network during the critical time-period of perception for achieving phonological analysis goals. These findings support the key role of selective attention to phonology in the development of literacy and motivate future research on the neural bases of the interaction between phonological awareness and literacy, deemed central to both typical and atypical reading development.
Collapse
Affiliation(s)
- Yuliya Yoncheva
- Department of Child and Adolescent Psychiatry, Child Study Center, New York University, USA
| | - Urs Maurer
- Department of Psychology, University of Zurich, Switzerland
| | - Jason D Zevin
- Departments of Psychology and Linguistics, University of Southern California, USA; Department of Linguistics, University of Southern California, USA
| | - Bruce D McCandliss
- Department of Psychology and Human Development, Vanderbilt University, USA.
| |
Collapse
|
87
|
Nourski KV, Steinschneider M, Oya H, Kawasaki H, Howard MA. Modulation of response patterns in human auditory cortex during a target detection task: an intracranial electrophysiology study. Int J Psychophysiol 2014; 95:191-201. [PMID: 24681353 DOI: 10.1016/j.ijpsycho.2014.03.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/11/2014] [Accepted: 03/18/2014] [Indexed: 11/15/2022]
Abstract
Selective attention enhances cortical activity representing an attended sound stream in human posterolateral superior temporal gyrus (PLST). It is unclear, however, what mechanisms are associated with a target detection task that necessitates sustained attention (vigilance) to a sound stream. We compared responses elicited by target and non-target sounds, and to sounds presented in a passive-listening paradigm. Subjects were neurosurgical patients undergoing invasive monitoring for medically refractory epilepsy. Stimuli were complex tones, band-limited noise bursts and speech syllables. High gamma cortical activity (70-150 Hz) was examined in all subjects using subdural grid electrodes implanted over PLST. Additionally, responses were measured from depth electrodes implanted within Heschl's gyrus (HG) in one subject. Responses to target sounds recorded from PLST were increased when compared to responses elicited by the same sounds when they were not-targets, and when they were presented during passive listening. Increases in high gamma activity to target sounds occurred during later portions (after 250 ms) of the response. These increases were related to the task and not to detailed stimulus characteristics. In contrast, earlier activity that did not vary across conditions did represent stimulus acoustic characteristics. Effects observed on PLST were not noted in HG. No consistent effects were noted in the averaged evoked potentials in either cortical region. We conclude that task dependence modulates later activity in PLST during vigilance. Later activity may represent feedback from higher cortical areas. Study of concurrently recorded activity from frontoparietal areas is necessary to further clarify task-related modulation of activity on PLST.
Collapse
Affiliation(s)
- Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA.
| | | | - Hiroyuki Oya
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| | - Matthew A Howard
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
88
|
|
89
|
Affiliation(s)
- Deborah A Hall
- National Institute of Health Research (NIHR) Nottingham Hearing Biomedical Research Unit, University of Nottingham, Nottingham NG7 2RD, UK.
| | | |
Collapse
|
90
|
Plack CJ, Barker D, Hall DA. Pitch coding and pitch processing in the human brain. Hear Res 2013; 307:53-64. [PMID: 23938209 DOI: 10.1016/j.heares.2013.07.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 07/15/2013] [Accepted: 07/31/2013] [Indexed: 11/16/2022]
Abstract
Neuroimaging studies have provided important information regarding how and where pitch is coded and processed in the human brain. Recordings of the frequency-following response (FFR), an electrophysiological measure of neural temporal coding in the brainstem, have shown that the precision of temporal pitch information is dependent on linguistic and musical experience, and can even be modified by short-term training. However, the FFR does not seem to represent the output of a pitch extraction process, and this raises questions regarding how the peripheral neural signal is processed to produce a unified sensation. Since stimuli with a wide variety of spectral and binaural characteristics can produce the same pitch, it has been suggested that there is a place in the ascending auditory pathway at which the representations converge. There is evidence from many different human neuroimaging studies that certain areas of auditory cortex are specifically sensitive to pitch, although the location is still a matter of debate. Taken together, the results suggest that the initial temporal pitch code in the auditory periphery is converted to a code based on neural firing rate in the brainstem. In the upper brainstem or auditory cortex, the information from the individual harmonics of complex tones is combined to form a general representation of pitch. This article is part of a Special Issue entitled Human Auditory Neuroimaging.
Collapse
Affiliation(s)
- Christopher J Plack
- School of Psychological Sciences, The University of Manchester, Manchester M13 9PL, UK.
| | | | | |
Collapse
|