51
|
Ennaceur A. Tests of unconditioned anxiety - pitfalls and disappointments. Physiol Behav 2014; 135:55-71. [PMID: 24910138 DOI: 10.1016/j.physbeh.2014.05.032] [Citation(s) in RCA: 166] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 04/21/2014] [Accepted: 05/28/2014] [Indexed: 02/05/2023]
Abstract
The plus-maze, the light-dark box and the open-field are the main current tests of unconditioned anxiety for mice and rats. Despite their disappointing achievements, they remain as popular as ever and seem to play an important role in an ever-growing demand for behavioral phenotyping and drug screening. Numerous reviews have repeatedly reported their lack of consistency and reliability but they failed to address the core question of whether these tests do provide unequivocal measures of fear-induced anxiety, that these measurements are not confused with measures of fear-induced avoidance or natural preference responses - i.e. discriminant validity. In the present report, I examined numerous issues that undermine the validity of the current tests, and I highlighted various flaws in the aspects of these tests and the methodologies pursued. This report concludes that the evidence in support of the validity of the plus-maze, the light/dark box and the open-field as anxiety tests is poor and methodologically questionable.
Collapse
Affiliation(s)
- A Ennaceur
- University of Sunderland, Department of Pharmacy, Wharncliffe Street, Sunderland SR1 3SD, UK.
| |
Collapse
|
52
|
Long-term memory deficits are associated with elevated synaptic ERK1/2 activation and reversed by mGluR5 antagonism in an animal model of autism. Neuropsychopharmacology 2014; 39:1664-73. [PMID: 24448645 PMCID: PMC4023139 DOI: 10.1038/npp.2014.13] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 12/31/2013] [Accepted: 01/07/2014] [Indexed: 12/21/2022]
Abstract
A significant proportion of patients with autism exhibit some degree of intellectual disability. The BTBR T(+) Itpr3(tf)/J mouse strain exhibits behaviors that align with the major diagnostic criteria of autism. To further evaluate the BTBR strain's cognitive impairments, we quantified hippocampus-dependent object location memory (OLM) and found that one-third of the BTBR mice exhibited robust memory, whereas the remainder did not. Fluorescence deconvolution tomography was used to test whether synaptic levels of activated extracellular signal-regulated kinase 1/2 (ERK1/2), a protein that contributes importantly to plasticity, correlate with OLM scores in individual mice. In hippocampal field CA1, the BTBRs had fewer post-synaptic densities associated with high levels of phosphorylated (p-) ERK1/2 as compared with C57BL/6 mice. Although counts of p-ERK1/2 immunoreactive synapses did not correlate with OLM performance, the intensity of synaptic p-ERK1/2 immunolabeling was negatively correlated with OLM scores across BTBRs. Metabotropic glutamate receptor (mGluR) 5 signaling activates ERK1/2. Therefore, we tested whether treatment with the mGluR5 antagonist MPEP normalizes synaptic and learning measures in BTBR mice: MPEP facilitated OLM and decreased synaptic p-ERK1/2 immunolabeling intensity without affecting numbers of p-ERK1/2+ synapses. In contrast, semi-chronic ampakine treatment, which facilitates memory in other models of cognitive impairment, had no effect on OLM in BTBRs. These results suggest that intellectual disabilities associated with different neurodevelopmental disorders on the autism spectrum require distinct therapeutic strategies based on underlying synaptic pathology.
Collapse
|
53
|
Yin A, Qiu Y, Jia B, Song T, Yu Y, Alberts I, Zhong M. The developmental pattern of the RAS/RAF/Erk1/2 pathway in the BTBR autism mouse model. Int J Dev Neurosci 2014; 39:2-8. [PMID: 24631207 DOI: 10.1016/j.ijdevneu.2014.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 01/22/2014] [Accepted: 01/22/2014] [Indexed: 12/01/2022] Open
Abstract
BTBR mice exhibit several autistic-like behaviors and are currently used as a model for understanding mechanisms that may be responsible for the pathogenesis of autism. Ras/Raf/ERK1/2 signaling has been suggested to play an important role in neural development, learning, memory, and cognition. Two studies reported that a deletion of a locus on chromosome 16 containing the mitogen-activated protein kinase 3 (MAPK3) gene, which encodes ERK1, is associated with autism. In the present study, Ras/Raf/ERK1/2 signaling was found to be up-regulated in BTBR mice relative to matched control B6 mice, to further suggest involvement in the pathogenesis of autism. To further characterize the developmental pattern of Ras/Raf/ERK1/2 signaling, varying stages during development were sampled to reveal an up-regulation in newborn and 2-week old BTBR mice relative to age-matched B6 mice. By the age of 3-week, Ras/Raf/ERK1/2 signaling in the brain of BTBR mice was unaltered relative to B6 mice, with this trend maintained in 6-week samples. These results suggest that the alteration of Ras/Raf/ERK signaling in the early developmental stages in mice could contribute to the noted autistic phenotype. Furthermore, these findings support the value of BTBR mice to serve as a human analog for autistic etiological research and aid in a better understanding of the developmental mechanisms of autism.
Collapse
Affiliation(s)
- Ailan Yin
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China; Southern Medical University, Guangzhou, China
| | - Yuwen Qiu
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China
| | - Bei Jia
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China
| | - Tianrong Song
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China
| | - Yanhong Yu
- Southern Medical University, Guangzhou, China
| | - Ian Alberts
- Department of Natural Sciences, LarGuardia CC, CUNY, NY, NY 11101, USA
| | - Mei Zhong
- Department of Obstetrics & Gynecology, Nanfang Hospital, Guangzhou, China.
| |
Collapse
|
54
|
Burket JA, Benson AD, Tang AH, Deutsch SI. Rapamycin improves sociability in the BTBR T(+)Itpr3(tf)/J mouse model of autism spectrum disorders. Brain Res Bull 2013; 100:70-5. [PMID: 24295733 DOI: 10.1016/j.brainresbull.2013.11.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 11/07/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
Abstract
Overactivation of the mammalian target of rapamycin (mTOR) has been implicated in the pathogenesis of syndromic forms of autism spectrum disorders (ASDs), such as tuberous sclerosis complex, neurofibromatosis 1, and fragile X syndrome. Administration of mTORC1 (mTOR complex 1) inhibitors (e.g. rapamycin) in syndromic mouse models of ASDs improved behavior, cognition, and neuropathology. However, since only a minority of ASDs are due to the effects of single genes (∼10%), there is a need to explore inhibition of mTOR activity in mouse models that may be more relevant to the majority of nonsyndromic presentations, such as the genetically inbred BTBR T(+)Itpr3(tf)/J (BTBR) mouse model of ASDs. BTBR mice have social impairment and exhibit increased stereotypic behavior. In prior work, d-cycloserine, a partial glycineB site agonist that targets the N-methyl-d-aspartate (NMDA) receptor, was shown to improve sociability in both Balb/c and BTBR mouse models of ASDs. Importantly, NMDA receptor activation regulates mTOR signaling activity. The current study investigated the ability of rapamycin (10mg/kg, i.p.×four days), an mTORC1 inhibitor, to improve sociability and stereotypic behavior in BTBR mice. Using a standard paradigm to assess mouse social behavior, rapamycin improved several measures of sociability in the BTBR mouse, suggesting that mTOR overactivation represents a therapeutic target that mediates or contributes to impaired sociability in the BTBR mouse model of ASDs. Interestingly, there was no effect of rapamycin on stereotypic behaviors in this mouse model.
Collapse
Affiliation(s)
- Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Andrew D Benson
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Amy H Tang
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Stephen I Deutsch
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA, USA; Anne Armistead Robinson Endowed Chair in Psychiatry, Department of Psychiatry and Behavioral Sciences, 825 FairFax Avenue, Suite 710, Norfolk, VA 23507, USA.
| |
Collapse
|
55
|
Dodero L, Damiano M, Galbusera A, Bifone A, Tsaftsaris SA, Scattoni ML, Gozzi A. Neuroimaging evidence of major morpho-anatomical and functional abnormalities in the BTBR T+TF/J mouse model of autism. PLoS One 2013; 8:e76655. [PMID: 24146902 PMCID: PMC3797833 DOI: 10.1371/journal.pone.0076655] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/01/2013] [Indexed: 02/05/2023] Open
Abstract
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations.
Collapse
Affiliation(s)
- Luca Dodero
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Mario Damiano
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Alberto Galbusera
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Angelo Bifone
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
| | - Sotirios A. Tsaftsaris
- IMT - Institute for Advanced Studies Lucca, Italy
- Department of Electrical Engineering and Computer Science, Evanston, Illinois, United States of America
| | - Maria Luisa Scattoni
- Istituto Superiore di Sanità, Neurotoxicology and Neuroendocrinology Section, Department of Cell Biology and Neurosciences, Rome, Italy
| | - Alessandro Gozzi
- Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems @UniTn, Rovereto, Italy
- * E-mail:
| |
Collapse
|
56
|
Onore CE, Careaga M, Babineau BA, Schwartzer JJ, Berman RF, Ashwood P. Inflammatory macrophage phenotype in BTBR T+tf/J mice. Front Neurosci 2013; 7:158. [PMID: 24062633 PMCID: PMC3774991 DOI: 10.3389/fnins.2013.00158] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 08/16/2013] [Indexed: 12/05/2022] Open
Abstract
Although autism is a behaviorally defined disorder, many studies report an association with increased pro-inflammatory cytokine production. Recent characterization of the BTBR T+tf/J (BTBR) inbred mouse strain has revealed several behavioral characteristics including social deficits, repetitive behavior, and atypical vocalizations which may be relevant to autism. We therefore hypothesized that, asocial BTBR mice, which exhibit autism-like behaviors, may have an inflammatory immune profile similar to that observed in children with autism. The objectives of this study were to characterize the myeloid immune profile of BTBR mice and to explore their associations with autism-relevant behaviors. C57BL/6J (C57) mice and BTBR mice were tested for social interest and repetitive self-grooming behavior. Cytokine production was measured in bone-marrow derived macrophages incubated for 24 h in either growth media alone, LPS, IL-4/LPS, or IFNγ/LPS to ascertain any M1/M2 skewing. After LPS stimulation, BTBR macrophages produced higher levels of IL-6, MCP-1, and MIP-1α and lower IL-10 (p < 0.01) than C57 mice, suggesting an exaggerated inflammatory profile. After exposure to IL-4/LPS BTBR macrophages produced less IL-10 (p < 0.01) than C57 macrophages and more IL-12p40 (p < 0.01) suggesting poor M2 polarization. Levels of IL-12(p70) (p < 0.05) were higher in BTBR macrophages after IFNγ/LPS stimulation, suggesting enhanced M1 polarization. We further observed a positive correlation between grooming frequency, and production of IL-12(p40), IL-12p70, IL-6, and TNFα (p < 0.05) after treatment with IFNγ/LPS across both strains. Collectively, these data suggest that the asocial BTBR mouse strain exhibits a more inflammatory, or M1, macrophage profile in comparison to the social C57 strain. We have further demonstrated a relationship between this relative increase in inflammation and repetitive grooming behavior, which may have relevance to repetitive and stereotyped behavior of autism.
Collapse
Affiliation(s)
- Charity E Onore
- The MIND Institute, University of California Davis, CA, USA ; Department of Medical Microbiology and Immunology, University of California Davis, CA, USA
| | | | | | | | | | | |
Collapse
|
57
|
Blaney CE, Gunn RK, Stover KR, Brown RE. Maternal genotype influences behavioral development of 3×Tg-AD mouse pups. Behav Brain Res 2013; 252:40-8. [DOI: 10.1016/j.bbr.2013.05.033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2013] [Revised: 05/15/2013] [Accepted: 05/20/2013] [Indexed: 12/19/2022]
|
58
|
Stapley NW, Guariglia SR, Chadman KK. Cued and contextual fear conditioning in BTBR mice is improved with training or atomoxetine. Neurosci Lett 2013; 549:120-4. [PMID: 23827222 DOI: 10.1016/j.neulet.2013.06.032] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 06/03/2013] [Accepted: 06/20/2013] [Indexed: 01/17/2023]
Abstract
The BTBR T+tf/J (BTBR) strain of mice is a model for autism spectrum disorders (ASDs). These mice display reduced social behavior, altered communication, and high levels of repetitive behavior. BTBR mice have shown a deficit in learning cued and contextual fear conditioning. In this study, experiments were conducted to determine if either changes in training or drug administration would improve learning in BTBR mice when compared to C57BL/6 (B6) mice in contextual and cued fear conditioning. The first experiment examined the effects of three conditioned stimulus-unconditioned stimulus (CS-US) training paradigms; a 1P (1 CS-US pairing), 4P (4 CS-US pairings), and 10P (10 CS-US pairings). Increasing the number of CS-US pairings to 10 caused an increase in freezing behavior by the BTBR mice in contextual and cued conditioning indicating that more training facilitated BTBR learning. B6 mice had a more complex reaction to the increased training; the mice increased freezing behavior in the cued fear conditioning but not contextual fear conditioning. The second experiment determined whether atomoxetine, a noradrenergic reuptake inhibitor that has been shown to improve attention and decrease hyperactivity, impulsivity, and social withdrawal, would enhance learning. There was a significant increase in freezing behavior in contextual fear conditioning following atomoxetine administration in BTBR mice but not in B6 mice. Our data demonstrates that contextual and cued learning in BTBR mice is facilitated by increased training. Furthermore, contextual learning is improved in BTBR mice with use of atomoxetine, which helps to improve attention. Both increased training and pharmacological intervention improved learning in the BTBR mice suggesting a role for the combination of the two.
Collapse
Affiliation(s)
- Nathan W Stapley
- The New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Road, Staten Island, NY 10314, United States.
| | | | | |
Collapse
|
59
|
Abstract
Autism is a neurodevelopmental disorder whose diagnosis is based on three behavioral criteria: unusual reciprocal social interactions, deficits in communication, and stereotyped repetitive behaviors with restricted interests. A large number of de novo single gene mutations and chromosomal deletions are associated with autism spectrum disorders. Based on the strong genetic evidence, mice with targeted mutations in homologous genes have been generated as translational research tools. Mouse models of autism have revealed behavioral and biological outcomes of mutations in risk genes. The field is now poised to employ the most robust phenotypes in the most replicable mouse models for preclinical screening of novel therapeutics.
Collapse
Affiliation(s)
- Jacqueline N Crawley
- Robert Chason Chair in Translational Research, M.I.N.D. Institute Professor of Psychiatry and Behavioral Sciences, School of Medicine, University of California, Davis, Sacramento, CA 95817, USA.
| |
Collapse
|
60
|
Burket JA, Benson AD, Tang AH, Deutsch SI. D-Cycloserine improves sociability in the BTBR T+ Itpr3tf/J mouse model of autism spectrum disorders with altered Ras/Raf/ERK1/2 signaling. Brain Res Bull 2013; 96:62-70. [PMID: 23685206 DOI: 10.1016/j.brainresbull.2013.05.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 11/16/2022]
Abstract
The genetically inbred BTBR T+ Itpr3tf/J (BTBR) mouse is a proposed model of autism spectrum disorders (ASDs). Similar to several syndromic forms of ASDs, mTOR activity may be enhanced in this mouse strain as a result of increased Ras signaling. Recently, D-cycloserine, a partial glycineB site agonist that targets the NMDA receptor, was shown to improve the sociability of the Balb/c mouse strain, another proposed genetically inbred model of ASDs. NMDA receptor activation is an important regulator of mTOR signaling activity. Given the ability of D-cycloserine to improve the sociability of the Balb/c mouse strain and the regulatory role of the NMDA receptor in mTOR signaling, we wondered if D-cycloserine would improve the impaired sociability of the BTBR mouse strain. D-Cycloserine (320 mg/kg, ip) improved measures of sociability in a standard sociability paradigm and spontaneous grooming that emerged during social interaction with an ICR stimulus mouse in the BTBR strain; however, similar effects were observed in the Swiss Webster comparator strain, raising questions about their strain-selectivity. Importantly, the profile of D-cycloserine's effects on both measures of sociability and stereotypies is consistent with that of a desired medication for ASDs; specifically, a desired medication would not improve sociability at the expense of worsening stereotypic behaviors or vice versa.
Collapse
Affiliation(s)
- Jessica A Burket
- Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | | | | | | |
Collapse
|
61
|
Silverman JL, Babineau BA, Oliver CF, Karras MN, Crawley JN. Influence of stimulant-induced hyperactivity on social approach in the BTBR mouse model of autism. Neuropharmacology 2013; 68:210-22. [PMID: 22968082 PMCID: PMC3522798 DOI: 10.1016/j.neuropharm.2012.07.042] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/09/2012] [Accepted: 07/24/2012] [Indexed: 12/12/2022]
Abstract
Translational research is needed to discover pharmacological targets and treatments for the diagnostic behavioral domains of autism spectrum disorders. Animal models with phenotypic relevance to diagnostic criteria offer clear experimental strategies to test the efficacy and safety of novel treatments. Antagonists of mGluR5 receptors are in clinical trials for Fragile X syndrome and under investigation for the treatment of autism spectrum disorders. However, in preclinical studies of mGluR5 compounds tested in our laboratory and others, increased locomotion following mGluR5 modulation has been observed. Understanding the influence of general activity on sociability and repetitive behaviors will increase the accuracy of interpretations of positive outcomes measured from pharmacological treatment that produces locomotor activating or sedating effects. In the present studies, dose-response curves for d-amphetamine (AMPH)-induced hyperlocomotion were similar in standard B6 mice and in the BTBR mouse model of autism. AMPH produced significant, robust reductions in the high level of repetitive self-grooming that characterizes BTBR, and also reduced the low baseline grooming in B6, indicating that AMPH-induced hyperlocomotion competes with time spent engaged in self-grooming. We then tested AMPH in B6 and BTBR on the 3-chambered social approach task. One component of sociability, the time spent in the chamber with the novel mouse, in B6 mice was reduced, while the sniffing time component of sociability in BTBR mice was enhanced. This finding replicated across multiple cohorts treated with AMPH and saline vehicle. In-depth analysis revealed that AMPH increased the number and decreased the duration of sniffing bouts in BTBR, suggesting BTBR treated with AMPH mostly engaged in brief sniffs rather than true social interactions with the novel mouse during the social approach task. Our data suggest that compounds with stimulant properties may have some direct benefits on reducing repetitive behaviors in autism spectrum disorders, particularly in the subset of autistic individuals with hyperactivity. This article is part of the Special Issue entitled 'Neurodevelopmental Disorders'.
Collapse
Affiliation(s)
- Jill L Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| | | | | | | | | |
Collapse
|
62
|
The BTBR mouse model of autism spectrum disorders has learning and attentional impairments and alterations in acetylcholine and kynurenic acid in prefrontal cortex. PLoS One 2013; 8:e62189. [PMID: 23638000 PMCID: PMC3634761 DOI: 10.1371/journal.pone.0062189] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/19/2013] [Indexed: 02/07/2023] Open
Abstract
Autism is a complex spectrum of disorders characterized by core behavioral deficits in social interaction, communication, repetitive stereotyped behaviors and restricted interests. Autism frequently presents with additional cognitive symptoms, including attentional deficits and intellectual disability. Preclinical models are important tools for studying the behavioral domains and biological underpinnings of autism, and potential treatment targets. The inbred BTBR T+tf/J (BTBR) mouse strain has been used as an animal model of core behavioral deficits in autism. BTBR mice exhibit repetitive behaviors and deficits in sociability and communication, but other aspects of their cognitive phenotype, including attentional performance, are not well characterized. We examined the attentional abilities of BTBR mice in the 5-choice serial reaction time task (5-CSRTT) using an automated touchscreen testing apparatus. The 5-CSRTT is an analogue of the human continuous performance task of attention, and so both the task and apparatus have translational relevance to human touchscreen cognitive testing. We also measured basal extracellular levels of a panel of neurotransmitters within the medial prefrontal cortex, a brain region critically important for performing the 5-CSRTT. We found that BTBR mice have increased impulsivity, defined as an inability to withhold responding, and decreased motivation, as compared to C57Bl/6J mice. Both of these features characterize attentional deficit disorders in humans. BTBR mice also display decreased accuracy in detecting short stimuli, lower basal levels of extracellular acetylcholine and higher levels of kynurenic acid within the prefrontal cortex. Intact cholinergic transmission in prefrontal cortex is required for accurate performance of the 5-CSRTT, consequently this cholinergic deficit may underlie less accurate performance in BTBR mice. Based on our findings that BTBR mice have attentional impairments and alterations in a key neural substrate of attention, we propose that they may be valuable for studying mechanisms for treatment of cognitive dysfunction in individuals with attention deficits and autism.
Collapse
|
63
|
Jones-Davis DM, Yang M, Rider E, Osbun NC, da Gente GJ, Li J, Katz AM, Weber MD, Sen S, Crawley J, Sherr EH. Quantitative trait loci for interhemispheric commissure development and social behaviors in the BTBR T⁺ tf/J mouse model of autism. PLoS One 2013; 8:e61829. [PMID: 23613947 PMCID: PMC3626795 DOI: 10.1371/journal.pone.0061829] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 03/18/2013] [Indexed: 12/21/2022] Open
Abstract
Background Autism and Agenesis of the Corpus Callosum (AgCC) are interrelated behavioral and anatomic phenotypes whose genetic etiologies are incompletely understood. We used the BTBR T+tf/J (BTBR) strain, exhibiting fully penetrant AgCC, a diminished hippocampal commissure, and abnormal behaviors that may have face validity to autism, to study the genetic basis of these disorders. Methods We generated 410 progeny from an F2 intercross between the BTBR and C57BL/6J strains. The progeny were phenotyped for social behaviors (as juveniles and adults) and commisural morphology, and genotyped using 458 markers. Quantitative trait loci (QTL) were identified using genome scans; significant loci were fine-mapped, and the BTBR genome was sequenced and analyzed to identify candidate genes. Results Six QTL meeting genome-wide significance for three autism-relevant behaviors in BTBR were identified on chromosomes 1, 3, 9, 10, 12, and X. Four novel QTL for commissural morphology on chromosomes 4, 6, and 12 were also identified. We identified a highly significant QTL (LOD score = 20.2) for callosal morphology on the distal end of chromosome 4. Conclusions We identified several QTL and candidate genes for both autism-relevant traits and commissural morphology in the BTBR mouse. Twenty-nine candidate genes were associated with synaptic activity, axon guidance, and neural development. This is consistent with a role for these processes in modulating white matter tract development and aspects of autism-relevant behaviors in the BTBR mouse. Our findings reveal candidate genes in a mouse model that will inform future human and preclinical studies of autism and AgCC.
Collapse
Affiliation(s)
- Dorothy M. Jones-Davis
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Mu Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Eric Rider
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Nathan C. Osbun
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Gilberto J. da Gente
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Jiang Li
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
| | - Adam M. Katz
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Michael D. Weber
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Saunak Sen
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Jacqueline Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Elliott H. Sherr
- Department of Neurology, University of California San Francisco, San Francisco, California, United States of America
- * E-mail:
| |
Collapse
|
64
|
Babineau BA, Yang M, Berman RF, Crawley JN. Low home cage social behaviors in BTBR T+tf/J mice during juvenile development. Physiol Behav 2013; 114-115:49-54. [PMID: 23510981 PMCID: PMC3652551 DOI: 10.1016/j.physbeh.2013.03.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 01/31/2013] [Accepted: 03/05/2013] [Indexed: 12/22/2022]
Abstract
BTBR T+tf/J (BTBR) is a genetically homogenous inbred strain of mice that displays abnormal social behaviors, deficits in vocalizations, and high levels of repetitive behaviors, relevant to the three diagnostic symptoms of autism spectrum disorder, leading to the use of this strain as a mouse model of autism. Comprehensive observations of BTBR social behaviors within the home cage during early stages of development have not been conducted. Here we evaluate the home cage behaviors of BTBR in two laboratory environments (NIMH, Bethesda, Maryland vs. UC Davis, Davis, California), starting from the day of weaning and continuing into adulthood. Extensive ethogram parameters were scored for BTBR in home cages that contained four BTBR conspecifics, versus home cages that contained four C57BL/6J (B6) conspecifics. BTBR were considerably less interactive than B6 in the home cage at both sites, as measured during the early dark stage of their circadian cycle. A novel home cage behavioral measure, frequency of long interactions, was found to be more frequent and of longer duration in B6 versus BTBR home cages across experimental sites. Significant strain differences in the occurrence of investigative and affiliative behaviors were also seen, however these findings were not fully consistent across the two testing sites. At the end of the 30-day home cage observation period, each seven-week old subject mouse was tested in the three-chambered social approach task. BTBR displayed lack of sociability and B6 displayed significant sociability, consistent with previous reports. Our findings reveal that BTBR engaged in lower levels of some components of spontaneous conspecific social interactions in the home cage environment throughout juvenile development, consistent with their deficits in juvenile and adult sociability as measured in specialized social tasks.
Collapse
Affiliation(s)
- Brooke A Babineau
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA.
| | | | | | | |
Collapse
|
65
|
Zhang Y, Bolivar VJ, Lawrence DA. Maternal exposure to mercury chloride during pregnancy and lactation affects the immunity and social behavior of offspring. Toxicol Sci 2013; 133:101-11. [PMID: 23392568 DOI: 10.1093/toxsci/kft023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Developmental HgCl2 exposures of F1 offspring (H-2(q/s)) from unsociable SJL/J (H-2(s)) dams with high susceptibility to Hg-induced autoimmunity (SFvF1) and from highly sociable FVB/NJ (FVB; H-2(q)) dams with lower susceptibility to Hg-induced autoimmunity (FvSF1) were investigated. Hg exposure increased the serum IgG levels of all offspring at postnatal day 21 (pnd21) and of SJL/J dams but not of FVB dams. Serum IgG anti-brain antibody (Ab) levels of pnd21 SFvF1 offspring and SJL dams were higher than those of the FvSF1 offspring and FVB dams, but Hg only increased the titers of the FVB dams and their offspring. Hg significantly elevated the presence of IgG in all brain regions of the pnd21 SFvF1 offspring, and the SFvF1 offspring had greater amounts of IgG in the brain than the FvSF1 offspring, which had Hg-induced increases in only two brain regions. Cytokine levels were elevated in the brain regions of Hg-treated pnd21 SFvF1 but not of FvSF1 offspring, and SFvF1 females had more brain regions expressing cytokines than the males. At pnd70, the serum IgG, serum antibrain Abs, amounts of brain IgG, and brain cytokine levels of all of the Hg-treated offspring were equivalent to those of their appropriate controls, suggesting that developmental Hg exposure did not induce chronic immunological effects. However, the social behaviors of Hg-exposed SFvF1 offspring at pnd70 were significantly impaired, and SFvF1 females displayed greater decline in social behaviors than males, suggesting that the higher neuroinflammation of SFvF1 females earlier in life is associated with the altered behavior. Thus, developmental Hg exposure induces long-lasting effects on social behavior of offspring, which is dependent on sex and genetics and the induction of neuroinflammation.
Collapse
Affiliation(s)
- Yubin Zhang
- Wadsworth Center, New York State Department of Health and The State University of New York at Albany School of Public Health, Albany, New York 12201, USA
| | | | | |
Collapse
|
66
|
Silverman JL, Oliver CF, Karras MN, Gastrell PT, Crawley JN. AMPAKINE enhancement of social interaction in the BTBR mouse model of autism. Neuropharmacology 2013; 64:268-82. [PMID: 22801296 PMCID: PMC3445667 DOI: 10.1016/j.neuropharm.2012.07.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 07/05/2012] [Accepted: 07/06/2012] [Indexed: 12/16/2022]
Abstract
Autism is a neurodevelopmental disorder in which the first diagnostic symptom is unusual reciprocal social interactions. Approximately half of the children diagnosed with an autism spectrum disorder also have intellectual impairments. General cognitive abilities may be fundamental to many aspects of social cognition. Cognitive enhancers could conceivably be of significant benefit to children and adults with autism. AMPAKINE compounds are a novel class of pharmacological agents that act as positive modulators of AMPA receptors to enhance excitatory glutamatergic neurotransmission. This class of compounds was reported to improve learning and memory in several rodent and non-human primate tasks, and to normalize respiratory abnormalities in a mouse model of Rett syndrome. Here we evaluate the actions of AMPA compounds in adult male and female BTBR mice, a well characterized mouse model of autism. Acute treatment with CX1837 and CX1739 reversed the deficit in sociability in BTBR mice on the most sensitive parameter, time spent sniffing a novel mouse as compared to time spent sniffing a novel object. The less sensitive parameter, time in the chamber containing the novel mouse versus time in the chamber containing the novel object, was not rescued by CX1837 or CX1739 treatment. Preliminary data with CX546, in which β-cyclodextrin was the vehicle, revealed behavioral effects of the acute intraperitoneal and oral administration of vehicle alone. To circumvent the artifacts introduced by the vehicle administration, we employed a novel treatment regimen using pellets of peanut butter for drug delivery. Absence of vehicle treatment effects when CX1837 and CX1739 were given in the peanut butter pellets, to multiple cohorts of BTBR and B6 control mice, confirmed that the pharmacologically-induced improvements in sociability in BTBR were not confounded by the administration procedures. The highest dose of CX1837 improved the cognitive deficit in novel object recognition in BTBR. No drug effects were detected on the high levels of repetitive self-grooming in BTBR. In open field tests, CX1837 and CX1739 did not induce hyperactivity or sedation in either strain. It is interesting to speculate that the ability of CX1837 and CX1739 to restore aspects of sociability in BTBR mice could utilize synaptic mechanisms regulating social cognition, suggesting a potential pharmacological target for interventions to treat symptoms of autism. This article is part of a Special Issue entitled 'Cognitive Enhancers'.
Collapse
MESH Headings
- Animals
- Autistic Disorder/drug therapy
- Autistic Disorder/physiopathology
- Behavior, Animal/drug effects
- Cognition Disorders/etiology
- Cognition Disorders/prevention & control
- Dioxoles/administration & dosage
- Dioxoles/adverse effects
- Dioxoles/therapeutic use
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Drugs, Investigational/administration & dosage
- Drugs, Investigational/adverse effects
- Drugs, Investigational/therapeutic use
- Excitatory Amino Acid Agonists/administration & dosage
- Excitatory Amino Acid Agonists/adverse effects
- Excitatory Amino Acid Agonists/therapeutic use
- Female
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Molecular Targeted Therapy
- Nootropic Agents/administration & dosage
- Nootropic Agents/adverse effects
- Nootropic Agents/therapeutic use
- Piperidines/administration & dosage
- Piperidines/adverse effects
- Piperidines/therapeutic use
- Random Allocation
- Receptors, AMPA/agonists
- Recognition, Psychology/drug effects
- Social Behavior
- Social Behavior Disorders/etiology
- Social Behavior Disorders/prevention & control
Collapse
Affiliation(s)
- J L Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| | | | | | | | | |
Collapse
|
67
|
Ellegood J, Babineau BA, Henkelman RM, Lerch JP, Crawley JN. Neuroanatomical analysis of the BTBR mouse model of autism using magnetic resonance imaging and diffusion tensor imaging. Neuroimage 2012; 70:288-300. [PMID: 23275046 DOI: 10.1016/j.neuroimage.2012.12.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 12/13/2012] [Accepted: 12/16/2012] [Indexed: 10/27/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. Autism-relevant phenotypes in the inbred mouse strain BTBR T+tf/J (BTBR) offer translational tools to discover biological mechanisms underlying unusual mouse behaviors analogous to symptoms of autism. Two of the most consistent findings with BTBR are lack of sociability as measured by the three-chamber social approach task and increased amount of time engaged in self-grooming in an empty cage. Here we evaluated BTBR as compared to two typical inbred strains with high sociability and low self-grooming, C57BL/6J (B6) and FVB/AntJ (FVB), on both the automated three-chambered social approach task and repetitive self-grooming assays. Brains from the behaviorally tested mice were analyzed using magnetic resonance imaging and diffusion tensor imaging to investigate potential neuroanatomical abnormalities throughout the brain; specifically, to discover neuroanatomical mechanisms which could explain the autism-relevant behavioral abnormalities. Significant differences in volume and white matter microstructure were detected in multiple anatomical regions throughout the brain of BTBR compared to B6 and FVB. Further, significant correlations were found between behavioral measures and areas of the brain known to be associated with those behaviors. For example, striatal volume was strongly correlated to time spent in self-grooming across strains. Our findings suggest that neuropathology exists in BTBR beyond the previously reported white matter abnormalities in the corpus callosum and hippocampal commissure and that these brain differences may be related to the behavioral abnormalities seen in BTBR.
Collapse
Affiliation(s)
- Jacob Ellegood
- Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada.
| | | | | | | | | |
Collapse
|
68
|
Ey E, Yang M, Katz AM, Woldeyohannes L, Silverman JL, Leblond CS, Faure P, Torquet N, Le Sourd AM, Bourgeron T, Crawley JN. Absence of deficits in social behaviors and ultrasonic vocalizations in later generations of mice lacking neuroligin4. GENES BRAIN AND BEHAVIOR 2012; 11:928-941. [PMID: 22989184 DOI: 10.1111/j.1601-183x.2012.00849.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/03/2012] [Accepted: 09/04/2012] [Indexed: 11/30/2022]
Abstract
Mutations in NLGN4X have been identified in individuals with autism spectrum disorders and other neurodevelopmental disorders. A previous study reported that adult male mice lacking neuroligin4 (Nlgn4) displayed social approach deficits in the three-chambered test, altered aggressive behaviors and reduced ultrasonic vocalizations. To replicate and extend these findings, independent comprehensive analyses of autism-relevant behavioral phenotypes were conducted in later generations of the same line of Nlgn4 mutant mice at the National Institute of Mental Health in Bethesda, MD, USA and at the Institut Pasteur in Paris, France. Adult social approach was normal in all three genotypes of Nlgn4 mice tested at both sites. Reciprocal social interactions in juveniles were similarly normal across genotypes. No genotype differences were detected in ultrasonic vocalizations in pups separated from the nest or in adults during reciprocal social interactions. Anxiety-like behaviors, self-grooming, rotarod and open field exploration did not differ across genotypes, and measures of developmental milestones and general health were normal. Our findings indicate an absence of autism-relevant behavioral phenotypes in subsequent generations of Nlgn4 mice tested at two locations. Testing environment and methods differed from the original study in some aspects, although the presence of normal sociability was seen in all genotypes when methods taken from Jamain et al. (2008) were used. The divergent results obtained from this study indicate that phenotypes may not be replicable across breeding generations, and highlight the significant roles of environmental, generational and/or procedural factors on behavioral phenotypes.
Collapse
Affiliation(s)
- E Ey
- Human Genetics and Cognitive Functions, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,CNRS, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, Sorbonne Paris Cité, University Paris Diderot, Paris, France
| | - M Yang
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - A M Katz
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - L Woldeyohannes
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - J L Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| | - C S Leblond
- Human Genetics and Cognitive Functions, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,CNRS, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, Sorbonne Paris Cité, University Paris Diderot, Paris, France
| | - P Faure
- CNRS, UMR 7102, University Paris 06, Paris, France
| | - N Torquet
- Human Genetics and Cognitive Functions, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,CNRS, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, Sorbonne Paris Cité, University Paris Diderot, Paris, France
| | - A-M Le Sourd
- Human Genetics and Cognitive Functions, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,CNRS, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, Sorbonne Paris Cité, University Paris Diderot, Paris, France
| | - T Bourgeron
- Human Genetics and Cognitive Functions, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,CNRS, URA 2182 'Genes, synapses and cognition', Institut Pasteur, Paris, France.,Human Genetics and Cognitive Functions, Sorbonne Paris Cité, University Paris Diderot, Paris, France
| | - J N Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
69
|
Fairless AH, Katz JM, Vijayvargiya N, Dow HC, Kreibich AS, Berrettini WH, Abel T, Brodkin ES. Development of home cage social behaviors in BALB/cJ vs. C57BL/6J mice. Behav Brain Res 2012; 237:338-47. [PMID: 22982070 DOI: 10.1016/j.bbr.2012.08.051] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 08/23/2012] [Accepted: 08/29/2012] [Indexed: 01/24/2023]
Abstract
BALB/cJ and C57BL/6J inbred mouse strains have been proposed as useful models of low and high levels of sociability (tendency to seek social interaction), respectively, based primarily on behaviors of ∼30-day-old mice in the Social Approach Test (SAT). In the SAT, approach and sniffing behaviors of a test mouse toward an unfamiliar stimulus mouse are measured in a novel environment. However, it is unclear whether such results generalize to a familiar environment with a familiar social partner, such as with a littermate in a home cage environment. We hypothesized that C57BL/6J mice would show higher levels of social behaviors than BALB/cJ mice in the home cage environment, particularly at 30 days-of-age. We measured active and passive social behaviors in home cages by pairs of BALB/cJ or C57BL/6J littermates at ages 30, 41, and 69 days. The strains did not differ robustly in their active social behaviors. C57BL/6J mice were more passively social than BALB/cJ mice at 30 days, and C57BL/6J levels of passive social behaviors declined to BALB/cJ levels by 69 days. The differences in passive social behaviors at 30 days-of-age were primarily attributable to differences in huddling. These results indicate that different test conditions (SAT conditions vs. home cage conditions) elicit strain differences in distinct types of behaviors (approach/sniffing vs. huddling behaviors, respectively). Assessment of the more naturalistic social interactions in the familiar home cage environment with a familiar littermate will provide a useful component of a comprehensive assessment of social behaviors in mouse models relevant to autism.
Collapse
Affiliation(s)
- Andrew H Fairless
- Center for Neurobiology and Behavior, Department of Psychiatry, Perelman School of Medicine at University of Pennsylvania, Translational Research Laboratory, 125 South 31st Street, Room 2220, Philadelphia, PA 19104-3403, USA
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Meyza KZ, Defensor EB, Jensen AL, Corley MJ, Pearson BL, Pobbe RLH, Bolivar VJ, Blanchard DC, Blanchard RJ. The BTBR T+ tf/J mouse model for autism spectrum disorders-in search of biomarkers. Behav Brain Res 2012; 251:25-34. [PMID: 22958973 DOI: 10.1016/j.bbr.2012.07.021] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 12/28/2022]
Abstract
Autism spectrum disorders (ASD) form a common group of neurodevelopmental disorders appearing to be under polygenic control, but also strongly influenced by multiple environmental factors. The brain mechanisms responsible for ASD are not understood and animal models paralleling related emotional and cognitive impairments may prove helpful in unraveling them. BTBR T+ tf/J (BTBR) mice display behaviors consistent with the three diagnostic categories for ASD. They show impaired social interaction and communication as well as increased repetitive behaviors. This review covers much of the data available to date on BTBR behavior, neuroanatomy and physiology in search for candidate biomarkers, which could both serve as diagnostic tools and help to design effective treatments for the behavioral symptoms of ASD.
Collapse
Affiliation(s)
- Ksenia Z Meyza
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-west Road, Honolulu, HI 96822, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Systematic autistic-like behavioral phenotyping of 4 mouse strains using a novel wheel-running assay. Behav Brain Res 2012; 233:405-14. [DOI: 10.1016/j.bbr.2012.05.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/11/2012] [Accepted: 05/16/2012] [Indexed: 12/14/2022]
|
72
|
Reduced excitatory neurotransmission and mild autism-relevant phenotypes in adolescent Shank3 null mutant mice. J Neurosci 2012; 32:6525-41. [PMID: 22573675 DOI: 10.1523/jneurosci.6107-11.2012] [Citation(s) in RCA: 295] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mutations in the synaptic scaffolding protein gene SHANK3 are strongly implicated in autism and Phelan-McDermid 22q13 deletion syndrome. The precise location of the mutation within the Shank3 gene is key to its phenotypic outcomes. Here, we report the physiological and behavioral consequences of null and heterozygous mutations in the ankyrin repeat domain in Shank3 mice. Both homozygous and heterozygous mice showed reduced glutamatergic transmission and long-term potentiation in the hippocampus with more severe deficits detected in the homozygous mice. Three independent cohorts were evaluated for magnitude and replicability of behavioral endophenotypes relevant to autism and Phelan-McDermid syndrome. Mild social impairments were detected, primarily in juveniles during reciprocal interactions, while all genotypes displayed normal adult sociability on the three-chambered task. Impaired novel object recognition and rotarod performance were consistent across cohorts of null mutants. Repetitive self-grooming, reduced ultrasonic vocalizations, and deficits in reversal of water maze learning were detected only in some cohorts, emphasizing the importance of replication analyses. These results demonstrate the exquisite specificity of deletions in discrete domains within the Shank3 gene in determining severity of symptoms.
Collapse
|
73
|
Silverman JL, Smith DG, Sukoff Rizzo SJ, Karras MN, Turner SM, Tolu SS, Bryce DK, Smith DL, Fonseca K, Ring RH, Crawley JN. Negative allosteric modulation of the mGluR5 receptor reduces repetitive behaviors and rescues social deficits in mouse models of autism. Sci Transl Med 2012; 4:131ra51. [PMID: 22539775 PMCID: PMC4904784 DOI: 10.1126/scitranslmed.3003501] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Neurodevelopmental disorders such as autism and fragile X syndrome were long thought to be medically untreatable, on the assumption that brain dysfunctions were immutably hardwired before diagnosis. Recent revelations that many cases of autism are caused by mutations in genes that control the ongoing formation and maturation of synapses have challenged this dogma. Antagonists of metabotropic glutamate receptor subtype 5 (mGluR5), which modulate excitatory neurotransmission, are in clinical trials for fragile X syndrome, a major genetic cause of intellectual disabilities. About 30% of patients with fragile X syndrome meet the diagnostic criteria for autism. Reasoning by analogy, we considered the mGluR5 receptor as a potential target for intervention in autism. We used BTBR T+tf/J (BTBR) mice, an established model with robust behavioral phenotypes relevant to the three diagnostic behavioral symptoms of autism--unusual social interactions, impaired communication, and repetitive behaviors--to probe the efficacy of a selective negative allosteric modulator of the mGluR5 receptor, GRN-529. GRN-529 reduced repetitive behaviors in three cohorts of BTBR mice at doses that did not induce sedation in control assays of open field locomotion. In addition, the same nonsedating doses reduced the spontaneous stereotyped jumping that characterizes a second inbred strain of mice, C58/J. Further, GRN-529 partially reversed the striking lack of sociability in BTBR mice on some parameters of social approach and reciprocal social interactions. These findings raise the possibility that a single targeted pharmacological intervention may alleviate multiple diagnostic behavioral symptoms of autism.
Collapse
MESH Headings
- Animals
- Behavior, Animal/drug effects
- Blood-Brain Barrier/metabolism
- Brain/drug effects
- Brain/metabolism
- Brain/physiopathology
- Capillary Permeability
- Child Development Disorders, Pervasive/drug therapy
- Child Development Disorders, Pervasive/metabolism
- Child Development Disorders, Pervasive/physiopathology
- Child Development Disorders, Pervasive/psychology
- Child, Preschool
- Disease Models, Animal
- Excitatory Amino Acid Antagonists/blood
- Excitatory Amino Acid Antagonists/pharmacology
- Female
- Humans
- Male
- Mice
- Mice, Inbred C57BL
- Motor Activity/drug effects
- Receptor, Metabotropic Glutamate 5
- Receptors, Metabotropic Glutamate/antagonists & inhibitors
- Receptors, Metabotropic Glutamate/metabolism
- Sleep/drug effects
- Social Behavior
- Stereotyped Behavior
- Time Factors
- Video Recording
Collapse
Affiliation(s)
- Jill L. Silverman
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Daniel G. Smith
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | | | - Michael N. Karras
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Sarah M. Turner
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Seda S. Tolu
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| | - Dianne K. Bryce
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Deborah L. Smith
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Kari Fonseca
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Robert H. Ring
- Pfizer Worldwide Research and Development, Groton, CT 06340, USA
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, Bethesda, MD 20892–3730, USA
| |
Collapse
|
74
|
Meyza KZ, Blanchard DC, Pearson BL, Pobbe RL, Blanchard RJ. Fractone-associated N-sulfated heparan sulfate shows reduced quantity in BTBR T+tf/J mice: a strong model of autism. Behav Brain Res 2012; 228:247-53. [PMID: 22101175 PMCID: PMC3268836 DOI: 10.1016/j.bbr.2011.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 11/01/2011] [Accepted: 11/03/2011] [Indexed: 12/20/2022]
Abstract
BTBR T+tf/J (BTBR) mice show abnormal social, communicatory, and repetitive/stereotyped behaviors paralleling many of the symptoms of autism spectrum disorders. BTBR also show agenesis of the corpus callosum (CC) suggesting major perturbations of growth or guidance factors in the dorsal forebrain [1]. Heparan sulfate (HS) is a polysaccaride found in the brain and other animal tissues. It binds to a wide variety of ligands and through these ligands modulates a number of biological processes, including cell proliferation and differentiation, migration and guidance. It is aggregated on fractal-like structures (fractones) in the subventricular zone (SVZ), that may be visualized by laminin immunoreactivity (LAM-ir), as well as by HS immunoreactivity (HS-ir). We report that the lateral ventricles of BTBR mice were drastically reduced in area compared to C57BL/6J (B6) mice while the BTBR SVZ was significantly shorter than that of B6. In addition to much smaller fractones for BTBR, both HS and LAM-ir associated with fractones were significantly reduced in BTBR, and their anterior-posterior distributions were also altered. Finally, the ratio of HS to LAM in individual fractones was significantly higher in BTBR than in B6 mice. These data, in agreement with other findings linking HS to callosal development, suggest that variations in the quantity and distribution of HS in the SVZ of the lateral ventricles may be important modulators of the brain structural abnormalities of BTBR mice, and, potentially, contribute to the behavioral pathologies of these animals.
Collapse
Affiliation(s)
- Ksenia Z. Meyza
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA
| | - D. Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Brandon L. Pearson
- Department of Psychology, University of Hawaii, 2430 Campus Road, Honolulu, HI 96822, USA
| | - Roger L.H. Pobbe
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA
| | - Robert J. Blanchard
- Department of Psychology, University of Hawaii, 2430 Campus Road, Honolulu, HI 96822, USA
| |
Collapse
|
75
|
Pobbe RLH, Pearson BL, Blanchard DC, Blanchard RJ. Oxytocin receptor and Mecp2 308/Y knockout mice exhibit altered expression of autism-related social behaviors. Physiol Behav 2012; 107:641-8. [PMID: 22406388 DOI: 10.1016/j.physbeh.2012.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 02/18/2012] [Accepted: 02/23/2012] [Indexed: 02/01/2023]
Abstract
The development of tasks measuring behaviors specific to the three major symptom categories for autism makes it possible to differentiate mouse models of autism spectrum disorders (ASD) in terms of changes in these specific categories. Prior studies indicate that BTBR T+tf/J mice, the strain that has been evaluated most extensively, show autism-relevant changes in all three symptom categories; reciprocal social interactions; communication; and repetitive, ritualized behaviors. This report reviews the behaviors of oxytocin receptor (Oxtr) and Mecp2(308/Y) wild-type (WT) and knockout (KO) mice, in a number of tests specifically designed to provide information on behaviors that may show functional parallels to the core symptoms of ASD. Oxtr KO mice show robust decreases in reciprocal social interactions, and reduced levels of communication, but no changes in repetitive, ritualized behaviors; whereas Mecp2(308/Y) KO mice show a slight but consistent enhancement of social behavior and communication, and no changes in repetitive, ritualized behaviors. This data base, although small, strongly indicates that mouse models can sort the diagnostic symptoms of autism, and suggests that biological and physiological analyses of these strains may be capable of providing differential information on the brain systems involved in particular symptoms of this disorder. Profiles of behavioral changes in other mouse models of ASD should provide additional specificity in the search for biomarkers associated with particular ASD symptoms and symptom clusters.
Collapse
Affiliation(s)
- Roger L H Pobbe
- Pacific Biosciences Research Center, University of Hawaii,1993 East-west Road, Honolulu, HI 96822, USA.
| | | | | | | |
Collapse
|
76
|
Yang M, Abrams DN, Zhang JY, Weber MD, Katz AM, Clarke AM, Silverman JL, Crawley JN. Low sociability in BTBR T+tf/J mice is independent of partner strain. Physiol Behav 2012; 107:649-62. [PMID: 22245067 DOI: 10.1016/j.physbeh.2011.12.025] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Revised: 12/14/2011] [Accepted: 12/27/2011] [Indexed: 01/25/2023]
Abstract
Inbred mouse strains differ greatly in social behaviors, making them a valuable resource to study genetic and non-genetic mechanisms underlying social deficits relevant to autism spectrum disorders. A hallmark symptom of autism is a lack of ability to understand other people's thoughts and intentions, which leads to impairments in adjusting behaviors in response to ever-changing social situations in daily life. We compared the ability of BTBR T+tf/J (BTBR), a strain with low sociability, and C57BL/6J (B6), a strain with high sociability, for their abilities to modulate responses to social cues from different partners in the reciprocal social interaction test. Results indicate that BTBR exhibited low sociability toward different partners and displayed minimal ability to modify behaviors toward different partners. In contrast, B6 showed high sociability toward different partners and was able to modify social behaviors toward different partners. Consistent results were found in two independent cohorts of different ages, and in both sexes. In the three-chambered test, high sociability in B6 and low sociability in BTBR were independent of strain of the novel mouse. Since social deficits in BTBR could potentially be caused by physical disabilities in detecting social olfactory cues, or in cognitive abilities, we tested BTBR and B6 mice on measures of olfaction and cognition. BTBR mice displayed more sniffing of social odors emitted by soiled bedding than of an odorless novel object, but failed to show a preference for a live novel mouse over a novel object. On olfactory habituation/dishabituation to a sequence of odors, BTBR displayed discrimination abilities across three non-social and two social odors. However, as compared to B6, BTBR displayed less sniff time for both non-social and social odors, and no significant dishabituation between cage odors from two different novel mouse strains, findings that will be important to investigate further. BTBR was generally normal in spatial acquisition on the Morris water maze test, but showed deficits in reversal learning. Time spent freezing on contextual and cued fear conditioning was lower in BTBR than in B6. Our findings suggest that BTBR has poor abilities to modulate its responses to different social partners, which may be analogous to social cognition deficits in autism, adding to the value of this strain as a mouse model of autism.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892-3730, USA.
| | | | | | | | | | | | | | | |
Collapse
|
77
|
|
78
|
Blanchard DC, Defensor EB, Meyza KZ, Pobbe RLH, Pearson BL, Bolivar VJ, Blanchard RJ. BTBR T+tf/J mice: autism-relevant behaviors and reduced fractone-associated heparan sulfate. Neurosci Biobehav Rev 2012; 36:285-96. [PMID: 21741402 PMCID: PMC3208071 DOI: 10.1016/j.neubiorev.2011.06.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Revised: 06/17/2011] [Accepted: 06/20/2011] [Indexed: 10/18/2022]
Abstract
BTBR T+tf/J (BTBR) mice have emerged as strong candidates to serve as models of a range of autism-relevant behaviors, showing deficiencies in social behaviors; reduced or unusual ultrasonic vocalizations in conspecific situations; and enhanced, repetitive self-grooming. Recent studies have described their behaviors in a seminatural visible burrow system (VBS); a Social Proximity Test in which avoidance of a conspecific is impossible; and in an object approach and investigation test evaluating attention to specific objects and potential stereotypies in the order of approaching/investigating objects. VBS results confirmed strong BTBR avoidance of conspecifics and in the Social Proximity Test, BTBR showed dramatic differences in several close-in behaviors, including specific avoidance of a nose-to-nose contact that may potentially be related to gaze-avoidance. Diazepam normalized social avoidance by BTBRs in a Three-Chamber Test, and some additional behaviors - but not nose to nose avoidance - in the Social Proximity Test. BTBR also showed higher levels of preference for particular objects, and higher levels of sequences investigating 3- or 4-objects in the same order. Heparan sulfate (HS) associated with fractal structures in the subventricular zone of the lateral ventricles was severely reduced in BTBR. HS may modulate the functions of a range of growth and guidance factors during development, and HS abnormalities are associated with relevant brain (callosal agenesis) and behavioral (reductions in sociality) changes; suggesting the value of examination of the dynamics of the HS system in the context of autism.
Collapse
Affiliation(s)
- D Caroline Blanchard
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | |
Collapse
|
79
|
Fairless AH, Dow HC, Kreibich AS, Torre M, Kuruvilla M, Gordon E, Morton EA, Tan J, Berrettini WH, Li H, Abel T, Brodkin ES. Sociability and brain development in BALB/cJ and C57BL/6J mice. Behav Brain Res 2011; 228:299-310. [PMID: 22178318 DOI: 10.1016/j.bbr.2011.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Revised: 11/30/2011] [Accepted: 12/01/2011] [Indexed: 12/22/2022]
Abstract
Sociability--the tendency to seek social interaction--propels the development of social cognition and social skills, but is disrupted in autism spectrum disorders (ASD). BALB/cJ and C57BL/6J inbred mouse strains are useful models of low and high levels of juvenile sociability, respectively, but the neurobiological and developmental factors that account for the strains' contrasting sociability levels are largely unknown. We hypothesized that BALB/cJ mice would show increasing sociability with age but that C57BL/6J mice would show high sociability throughout development. We also hypothesized that littermates would resemble one another in sociability more than non-littermates. Finally, we hypothesized that low sociability would be associated with low corpus callosum size and increased brain size in BALB/cJ mice. Separate cohorts of C57BL/6J and BALB/cJ mice were tested for sociability at 19-, 23-, 31-, 42-, or 70-days-of-age, and brain weights and mid-sagittal corpus callosum area were measured. BALB/cJ sociability increased with age, and a strain by age interaction in sociability between 31 and 42 days of age suggested strong effects of puberty on sociability development. Sociability scores clustered according to litter membership in both strains, and perinatal litter size and sex ratio were identified as factors that contributed to this clustering in C57BL/6J, but not BALB/cJ, litters. There was no association between corpus callosum size and sociability, but smaller brains were associated with lower sociability in BALB/cJ mice. The associations reported here will provide directions for future mechanistic studies of sociability development.
Collapse
Affiliation(s)
- Andrew H Fairless
- Center for Neurobiology and Behavior, Department of Psychiatry, University of Pennsylvania School of Medicine, Translational Research Laboratory, 125 South 31st Street, Philadelphia, PA 19104-3403, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
NF-κB signaling in the brain of autistic subjects. Mediators Inflamm 2011; 2011:785265. [PMID: 22046080 PMCID: PMC3199189 DOI: 10.1155/2011/785265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 08/18/2011] [Indexed: 02/01/2023] Open
Abstract
Autism is a neurodevelopmental disorder characterized by problems in communication, social skills, and repetitive behavior. Recent studies suggest that apoptotic and inflammatory mechanisms may contribute to the pathogenesis of this disorder. Nuclear factor-κB (NF-κB) is an important gene transcriptional factor involved in the mediation of inflammation and apoptosis. This study examined the activities of the NF-κB signaling pathway in the brain of autistic subjects and their age-matched controls. The NF-κB activation is also determined in the brain of BTBR mice, which is a promising animal model for study of pathogenic mechanisms responsible for autism. Our results showed that the level of IKKα kinase, which phosphorylates the inhibitory subunit IκBα, is significantly increased in the cerebellum of autistic subjects. However, the expression and phosphorylation of IκBα are not altered. In addition, our results demonstrated that the expression of NF-κB (p65), and the phosphorylation/activation of NF-κB (p65) at Ser536 are not significantly changed in the cerebellum and cortex of both autistic subjects and BTBR mice. Our findings suggest that the NF-κB signaling pathway is not disregulated in the brain of autistic subjects and thus may not be significantly involved in the processes of abnormal inflammatory responses suggested in autistic brain.
Collapse
|
81
|
Bishop SL, Lahvis GP. The autism diagnosis in translation: shared affect in children and mouse models of ASD. Autism Res 2011; 4:317-35. [PMID: 21882361 PMCID: PMC3684385 DOI: 10.1002/aur.216] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 06/22/2011] [Indexed: 01/18/2023]
Abstract
In the absence of molecular biomarkers that can be used to diagnose ASD, current diagnostic tools depend upon clinical assessments of behavior. Research efforts with human subjects have successfully utilized standardized diagnostic instruments, which include clinician interviews with parents and direct observation of the children themselves [Risi et al., 2006]. However, because clinical instruments are semi-structured and rely heavily on dynamic social processes and clinical skill, scores from these measures do not necessarily lend themselves directly to experimental investigations into the causes of ASD. Studies of the neurobiology of autism require experimental animal models. Mice are particularly useful for elucidating genetic and toxicological contributions to impairments in social function [Halladay et al., 2009]. Behavioral tests have been developed that are relevant to autism [Crawley, 2004, 2007], including measures of repetitive behaviors [Lewis, Tanimura, Lee, & Bodfish, 2007; Moy et al., 2008], social behavior [Brodkin, 2007; Lijam et al., 1997; Moretti, Bouwknecht, Teague, Paylor, & Zoghbi, 2005], and vocal communication [D'Amato et al., 2005; Panksepp et al., 2007; Scattoni et al., 2008]. Advances also include development of high-throughput measures of mouse sociability that can be used to reliably compare inbred mouse strains [Moy et al., 2008; Nadler et al., 2004], as well as measures of social reward [Panksepp & Lahvis, 2007] and empathy [Chen, Panksepp, & Lahvis, 2009; Langford et al., 2006]. With continued generation of mouse gene-targeted mice that are directly relevant to genetic linkages in ASD, there remains an urgent need to utilize a full suite of mouse behavioral tests that allows for a comprehensive assessment of the spectrum of social difficulties relevant to ASD. Using impairments in shared affect as an example, this paper explores potential avenues for collaboration between clinical and basic scientists, within an amply considered translational framework.
Collapse
Affiliation(s)
- Somer L. Bishop
- Cincinnati Children’s Hospital Medical Center (CCHMC) Division of Developmental and Behavioral Pediatrics 3333 Burnet Avenue Cincinnati, OH 45229 Phone: (513) 636-3849 Fax: 513-636-1360
| | - Garet P. Lahvis
- Oregon Health and Science University 3181 SW Sam Jackson Park Rd., Mail Code L470 Portland, OR 97239 Phone: (503) 346 0820 Fax: (503) 494 6877
| |
Collapse
|
82
|
Yang K, Sheikh AM, Malik M, Wen G, Zou H, Brown WT, Li X. Upregulation of Ras/Raf/ERK1/2 signaling and ERK5 in the brain of autistic subjects. GENES BRAIN AND BEHAVIOR 2011; 10:834-43. [PMID: 21848643 DOI: 10.1111/j.1601-183x.2011.00723.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by impairments in social interaction, verbal communication and repetitive behaviors. A number of studies have shown that the Ras/Raf/ERK1/2 (extracellular signal-regulated kinase) signaling pathway plays important roles in the genesis of neural progenitors, learning and memory. Ras/Raf/ERK1/2 and ERK5 have also been shown to have death-promoting apoptotic roles in neural cells. Recent studies have shown a possible association between neural cell death and autism. In addition, two recent studies reported that a deletion of a locus on chromosome 16, which included the mitogen-activated protein kinase 3 (MAPK3) gene that encodes ERK1, is associated with autism. Most recently, our laboratory detected that Ras/Raf/ERK1/2 signaling activities were significantly enhanced in the brain of BTBR mice that model autism, as they exhibit many autism-like behaviors. We thus hypothesized that Ras/Raf/ERK1/2 signaling and ERK5 could be abnormally regulated in the brain of autistic subjects. In this study, we show that the expression of Ras protein was significantly elevated in the frontal cortex of autistic subjects. C-Raf phosphorylation was increased in the frontal cortex, while both C-Raf and A-Raf activities were enhanced in the cerebellum of autistic subjects. We also detected that both the protein expression and activities of ERK1/2 were significantly upregulated in the frontal cortex of autistic subjects, but not in the cerebellum. Furthermore, we showed that ERK5 protein expression is upregulated in both frontal cortex and cerebellum of autistic subjects. These results suggest that the upregulation of Ras/Raf/ERK1/2 signaling and ERK5 activities mainly found in the frontal cortex of autistic subjects may be critically involved in the pathogenesis of autism.
Collapse
Affiliation(s)
- K Yang
- Department of Neurochemistry, NY State Institute for Basic Research in Developmental Disabilities, New York, NY 10314, USA
| | | | | | | | | | | | | |
Collapse
|
83
|
Fairless AH, Shah RY, Guthrie AJ, Li H, Brodkin ES. Deconstructing sociability, an autism-relevant phenotype, in mouse models. Anat Rec (Hoboken) 2011; 294:1713-25. [PMID: 21905241 DOI: 10.1002/ar.21318] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 11/05/2010] [Indexed: 11/10/2022]
Abstract
Reduced sociability is a core feature of autism spectrum disorders (ASD) and is highly disabling, poorly understood, and treatment refractory. To elucidate the biological basis of reduced sociability, multiple laboratories are developing ASD-relevant mouse models in which sociability is commonly assessed using the Social Choice Test. However, various measurements included in that test sometimes support different conclusions. Specifically, measurements of time the "test" mouse spends near a confined "stimulus" mouse (chamber scores) sometimes support different conclusions from measurements of time the test mouse sniffs the cylinder containing the stimulus mouse (cylinder scores). This raises the question of which type of measurements are best for assessing sociability. We assessed the test-retest reliability and ecological validity of chamber and cylinder scores. Compared with chamber scores, cylinder scores showed higher correlations between test and retest measurements, and cylinder scores showed higher correlations with time spent in social interaction in a more naturalistic phase of the test. This suggests that cylinder scores are more reliable and valid measures of sociability in mouse models. Cylinder scores are reported less commonly than chamber scores, perhaps because little work has been done to establish automated software systems for measuring the former. In this study, we found that a particular automated software system performed at least as well as human raters at measuring cylinder scores. Our data indicate that cylinder scores are more reliable and valid than chamber scores, and that the former can be measured very accurately using an automated video analysis system in ASD-relevant models.
Collapse
Affiliation(s)
- Andrew H Fairless
- Department of Psychiatry, Center for Neurobiology and Behavior, University of Pennsylvania School of Medicine, Translational Research Laboratory, Philadelphia, USA
| | | | | | | | | |
Collapse
|
84
|
Yang M, Silverman JL, Crawley JN. Automated three-chambered social approach task for mice. CURRENT PROTOCOLS IN NEUROSCIENCE 2011; Chapter 8:Unit 8.26. [PMID: 21732314 PMCID: PMC4904775 DOI: 10.1002/0471142301.ns0826s56] [Citation(s) in RCA: 397] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Autism is diagnosed by three major symptom categories: unusual reciprocal social interactions, impaired communication, and repetitive behaviors with restricted interests. Direct social approach in mice has strong face validity to simple social approach behaviors in humans, which are frequently impaired in autism. This unit presents a basic protocol for a standardized, high-throughput social approach test for assaying mouse sociability. Our automated three-chambered social approach task quantifies direct social approach behaviors when a subject mouse is presented with the choice of spending time with either a novel mouse or a novel object. Sociability is defined as the subject mouse spending more time in the chamber containing the novel target mouse than in the chamber containing the inanimate novel object. The Basic Protocol describes procedures for testing one subject at a time in a single apparatus. A Support Protocol addresses data collection.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, National Institute of Mental Health, NIH, Bethesda, Maryland, USA
| | | | | |
Collapse
|
85
|
Zou H, Yu Y, Sheikh AM, Malik M, Yang K, Wen G, Chadman KK, Brown WT, Li X. Retracted: Association of upregulated Ras/Raf/ERK1/2 signaling with autism. GENES BRAIN AND BEHAVIOR 2011; 10:615-24. [DOI: 10.1111/j.1601-183x.2011.00702.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
86
|
Cox KH, Rissman EF. Sex differences in juvenile mouse social behavior are influenced by sex chromosomes and social context. GENES, BRAIN, AND BEHAVIOR 2011; 10:465-72. [PMID: 21414140 PMCID: PMC3107935 DOI: 10.1111/j.1601-183x.2011.00688.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Play behavior in juvenile primates, rats and other species is sexually dimorphic, with males showing more play than females. In mice, sex differences in juvenile play have only been examined in out-bred CD-1 mice. In this strain, contrary to other animals, male mice display less play soliciting than females. Using an established same-sex dyadic interaction test, we examined play in in-bred C57BL/6J (B6) 21-day-old mice. When paired with non-siblings, males tended to be more social than females, spending more time exploring the test cage. Females displayed significantly more anogenital sniffing and solicited play more frequently than did males. To determine if the origin of the sex difference was sex chromosome genes or gonadal sex, next we used the four core genotype mouse. We found significant interactions between gonadal sex and genotype for several behaviors. Finally, we asked if sibling pairs (as compared to non-siblings) would display qualitatively or quantitatively different behavior. In fact, XX females paired with a sibling were more social and less exploratory or investigative, whereas XY males exhibited less investigative and play soliciting behaviors in tests with siblings. Many neurobehavioral disorders, like autism spectrum disorder (ASD), are sexually dimorphic in incidence and patients interact less than normal with other children. Our results suggest that sex chromosome genes interact with gonadal hormones to shape the development of juvenile social behavior, and that social context can drastically alter sex differences. These data may have relevance for understanding the etiology of sexually dimorphic disorders such as ASD.
Collapse
Affiliation(s)
- Kimberly H. Cox
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| | - Emilie F. Rissman
- Department of Biochemistry and Molecular Genetics and Graduate Program in Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22908 USA
| |
Collapse
|
87
|
Silverman JL, Turner SM, Barkan CL, Tolu SS, Saxena R, Hung AY, Sheng M, Crawley JN. Sociability and motor functions in Shank1 mutant mice. Brain Res 2011; 1380:120-37. [PMID: 20868654 PMCID: PMC3041833 DOI: 10.1016/j.brainres.2010.09.026] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/03/2010] [Accepted: 09/03/2010] [Indexed: 02/07/2023]
Abstract
Autism is a neurodevelopmental disorder characterized by aberrant reciprocal social interactions, impaired communication, and repetitive behaviors. While the etiology remains unclear, strong evidence exists for a genetic component, and several synaptic genes have been implicated. SHANK genes encode a family of synaptic scaffolding proteins located postsynaptically on excitatory synapses. Mutations in SHANK genes have been detected in several autistic individuals. To understand the consequences of SHANK mutations relevant to the diagnostic and associated symptoms of autism, comprehensive behavioral phenotyping on a line of Shank1 mutant mice was conducted on multiple measures of social interactions, social olfaction, repetitive behaviors, anxiety-related behaviors, motor functions, and a series of control measures for physical abilities. Results from our comprehensive behavioral phenotyping battery indicated that adult Shank1 null mutant mice were similar to their wildtype and heterozygous littermates on standardized measures of general health, neurological reflexes and sensory skills. Motor functions were reduced in the null mutants on open field activity, rotarod, and wire hang, replicating and extending previous findings (Hung et al., 2008). A partial anxiety-like phenotype was detected in the null mutants in some components of the light ↔ dark task, as previously reported (Hung et al., 2008) but not in the elevated plus-maze. Juvenile reciprocal social interactions did not differ across genotypes. Interpretation of adult social approach was confounded by a lack of normal sociability in wildtype and heterozygous littermates. All genotypes were able to discriminate social odors on an olfactory habituation/dishabituation task. All genotypes displayed relatively high levels of repetitive self-grooming. Our findings support the interpretation that Shank1 null mice do not demonstrate autism-relevant social interaction deficits, but confirm and extend a role for Shank1 in motor functions.
Collapse
Affiliation(s)
- Jill L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Defensor EB, Pearson BL, Pobbe RLH, Bolivar VJ, Blanchard DC, Blanchard RJ. A novel social proximity test suggests patterns of social avoidance and gaze aversion-like behavior in BTBR T+ tf/J mice. Behav Brain Res 2011; 217:302-8. [PMID: 21055421 PMCID: PMC3124342 DOI: 10.1016/j.bbr.2010.10.033] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2010] [Revised: 10/19/2010] [Accepted: 10/22/2010] [Indexed: 01/02/2023]
Abstract
The BTBR T+ tf/J (BTBR) inbred mouse strain displays a low sociability phenotype relevant to the first diagnostic symptom of autism, deficits in reciprocal social interactions. Previous studies have shown that BTBR mice exhibit reduced social approach, juvenile play, and interactive behaviors. The present study evaluated the behavior of the BTBR and C57BL/6J (B6) strains in social proximity. Subjects were closely confined and tested in four experimental conditions: same strain male pairs (Experiment 1); different strain male pairs (Experiment 2); same strain male pairs and female pairs (Experiment 3); same strain male pairs treated with an anxiolytic (Experiment 4). Results showed that BTBR mice displayed decreased nose tip-to-nose tip, nose-to-head and upright behaviors and increased nose-to-anogenital, crawl under and crawl over behaviors. These results demonstrated avoidance of reciprocal frontal orientations in the BTBR, providing a parallel to gaze aversion, a fundamental predictor of autism. For comparative purposes, Experiment 3 assessed male and female mice in a three-chamber social approach test and in the social proximity test. Results from the three-chamber test showed that male B6 and female BTBR displayed a preference for the sex and strain matched conspecific stimulus, while female B6 and male BTBR did not. Although there was no significant interaction between sex and strain in the social proximity test, a significant main effect of sex indicated that female mice displayed higher levels of nose tip-to-nose tip contacts and lower levels of anogenital investigation (nose-to-anogenital) in comparison to male mice, all together suggesting different motivations for sociability in males and females. Systemic administration of the anxiolytic, diazepam, decreased the frequency of two behaviors associated with anxiety and defensiveness, upright and jump escape, as well as crawl under behavior. This result suggests that crawl under behavior, observed at high levels in BTBR mice, is elicited by the aversiveness of social proximity, and possibly serves to avoid reciprocal frontal orientations with other mice.
Collapse
Affiliation(s)
- Erwin B Defensor
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
89
|
Pearson BL, Pobbe RLH, Defensor EB, Oasay L, Bolivar VJ, Blanchard DC, Blanchard RJ. Motor and cognitive stereotypies in the BTBR T+tf/J mouse model of autism. GENES, BRAIN, AND BEHAVIOR 2011; 10:228-35. [PMID: 21040460 PMCID: PMC3037433 DOI: 10.1111/j.1601-183x.2010.00659.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The BTBR T+tf/J inbred mouse strain displays a variety of persistent phenotypic alterations similar to those exhibited in autism spectrum disorders (ASDs). The unique genetic background of the BTBR strain is thought to underlie its lack of reciprocal social interactions, elevated repetitive self-directed grooming, and restricted exploratory behaviors. In order to clarify the existence, range, and mechanisms of abnormal repetitive behaviors within BTBR mice, we performed detailed analyses of the microstructure of self-grooming patterns and noted increased overall grooming, higher percentages of interruptions in grooming bouts and a concomitant decrease in the proportion of incorrect sequence transitions compared to C57BL/6J inbred mice. Analyses of active phase home-cage behavior also revealed an increase in stereotypic bar-biting behavior in the BTBR strain relative to B6 mice. Finally, in a novel object investigation task, the BTBR mice exhibited greater baseline preference for specific unfamiliar objects as well as more patterned sequences of sequential investigations of those items. These results suggest that the repetitive, stereotyped behavior patterns of BTBR mice are relatively pervasive and reflect both motor and cognitive mechanisms. Furthermore, other pre-clinical mouse models of ASDs may benefit from these more detailed analyses of stereotypic behavior.
Collapse
Affiliation(s)
- B L Pearson
- Department of Psychology, and Békésy Laboratory of Neurobiology, Pacific Biosciences Research Center, University of Hawaii at Manoa, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | | | |
Collapse
|
90
|
Scattoni ML, Ricceri L, Crawley JN. Unusual repertoire of vocalizations in adult BTBR T+tf/J mice during three types of social encounters. GENES, BRAIN, AND BEHAVIOR 2011; 10:44-56. [PMID: 20618443 PMCID: PMC2972364 DOI: 10.1111/j.1601-183x.2010.00623.x] [Citation(s) in RCA: 258] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BTBR T+tf/J (BTBR) is an inbred mouse strain that displays social deficits and repetitive behaviors analogous to the first and third diagnostic symptoms of autism. We previously reported an unusual pattern of ultrasonic vocalizations in BTBR pups that may represent a behavioral homolog to the second diagnostic symptom of autism, impaired communication. This study investigated the social and vocal repertoire in adult BTBR mice, to evaluate the role of ultrasonic vocalizations in multiple social situations at the adult stage of development. Three different social contexts were considered: male-female, male-male (resident-intruder) and female-female interactions. Behavioral responses and ultrasonic vocalizations were recorded for BTBR and for the highly social control strain C57BL/6J (B6). No episodes of overt fighting or mating were observed during the short durations of the three different experimental encounters. BTBR displayed lower levels of vocalizations and social investigation in all three social contexts as compared with B6. In addition, the correlation analyses between social investigation and ultrasonic vocalization emission rate showed that in B6 mice, the two variables were positively correlated in all the three different social settings, whereas in BTBR mice, the positive correlation was significant only in the male-female interactions. These findings strongly support the value of simultaneously recording two aspects of the mouse social repertoire: social motivation and bioacoustic communication. Moreover, our findings in adults are consistent with previous results in pups, showing an unusual vocal repertoire in BTBR as compared with B6.
Collapse
Affiliation(s)
- M L Scattoni
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD, USA.
| | | | | |
Collapse
|
91
|
Wöhr M, Roullet FI, Crawley JN. Reduced scent marking and ultrasonic vocalizations in the BTBR T+tf/J mouse model of autism. GENES, BRAIN, AND BEHAVIOR 2011; 10:35-43. [PMID: 20345893 PMCID: PMC2903641 DOI: 10.1111/j.1601-183x.2010.00582.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Qualitative impairments in communication, such as delayed language and poor interactive communication skills, are fundamental to the diagnosis of autism. Investigations into social communication in adult BTBR T+tf/J (BTBR) mice are needed to determine whether this inbred strain incorporates phenotypes relevant to the second diagnostic symptom of autism, communication deficits, along with its strong behavioral phenotypes relevant to the first and third diagnostic symptoms, impairments in social interactions and high levels of repetitive behavior. The aim of the present study was to simultaneously measure female urine-elicited scent marking and ultrasonic vocalizations in adult male BTBR mice, in comparison with a standard control strain with high sociability, C57BL/6J (B6), for the assessment of a potential communication deficit in BTBR. Adult male BTBR mice displayed lower scent marking and minimal ultrasonic vocalization responses to female urine obtained from both B6 and BTBR females. Lower scent marking and ultrasonic vocalizations in a social setting by BTBR, as compared with B6, are consistent with the well-replicated social deficits in this inbred mouse strain. Our findings support the interpretation that BTBR incorporate communication deficits, and suggest that scent marking and ultrasonic vocalizations offer promising measures of interest in social cues that may be widely applicable to investigations of mouse models of autism.
Collapse
Affiliation(s)
- M Wöhr
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Porter Neuroscience Research Center, Bethesda, MD, USA.
| | | | | |
Collapse
|
92
|
Yang M, Perry K, Weber MD, Katz AM, Crawley JN. Social peers rescue autism-relevant sociability deficits in adolescent mice. Autism Res 2011; 4:17-27. [PMID: 20928844 PMCID: PMC3065860 DOI: 10.1002/aur.163] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 08/13/2010] [Indexed: 01/14/2023]
Abstract
Behavioral therapies are currently the most effective interventions for treating the diagnostic symptoms of autism. We employed a mouse model of autism to evaluate components of behavioral interventions that improve sociability in mice. BTBR T+tf/J (BTBR) is an inbred mouse strain that exhibits prominent behavioral phenotypes with face validity to all three diagnostic symptom categories of autism, including robust and well-replicated deficits in social approach and reciprocal social interactions. To investigate the role of peer interactions in the development of sociability, BTBR juvenile mice were reared in the same home cage with juvenile mice of a highly social inbred strain, C57BL/6J (B6). Subject mice were tested as young adults for sociability and repetitive behaviors. B6 controls reared with B6 showed their strain-typical high sociability. BTBR controls reared with BTBR showed their strain-typical lack of sociability. In contrast, BTBR reared with B6 as juveniles showed significant sociability as young adults. A 20-day intervention was as effective as a 40-day intervention for improving social approach behavior. High levels of repetitive self-grooming in BTBR were not rescued by peer-rearing with B6, indicating specificity of the intervention to the social domain. These results from a robust mouse model of autism support the interpretation that social enrichment with juvenile peers is a beneficial intervention for improving adult outcome in the social domain. This novel paradigm may prove useful for discovering factors that are essential for effective behavioral treatments, and biological mechanisms underlying effective behavioral interventions.
Collapse
Affiliation(s)
- Mu Yang
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, Maryland 20892-3730, USA.
| | | | | | | | | |
Collapse
|
93
|
Pobbe RLH, Defensor EB, Pearson BL, Bolivar VJ, Blanchard DC, Blanchard RJ. General and social anxiety in the BTBR T+ tf/J mouse strain. Behav Brain Res 2011; 216:446-51. [PMID: 20816701 PMCID: PMC2975778 DOI: 10.1016/j.bbr.2010.08.039] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 08/19/2010] [Accepted: 08/25/2010] [Indexed: 12/13/2022]
Abstract
BTBR T+ tf/J (BTBR) is an inbred mouse strain that shows behavioral traits with analogies to the three diagnostic symptoms of autism spectrum disorder (ASD); deficits in social interaction, impaired communication, and repetitive behaviors with restricted interests. Previous findings reveal that when compared to C57BL/6J (B6) and other inbred strains, BTBR exhibit normal to low anxiety-like traits in paradigms designed to assess anxiety-related behaviors. The current study assessed the generality of these anxiety findings. In experiment 1, B6 and BTBR mice were tested in the elevated plus maze (EPM), mouse defense test battery (MDTB) and elevated zero-maze. BTBR mice exhibited an anxiogenic profile in the EPM, with a reduction in open arm time and an increase in risk assessment behaviors, as compared to B6. In the MDTB, BTBR showed enhanced vocalization to the predator, and significantly less locomotor activity than B6 in the pre-threat situation, but significantly more locomotion than B6 following exposure to a predator threat, suggesting enhanced defensiveness to the predator. In the zero-maze, BTBR mice showed a significantly higher number of entries and time spent in the open segments of the apparatus, when compared to B6. In experiment 2, a three-chambered social preference test was used to evaluate effects of the systemic administration of an anxiolytic compound, diazepam, on B6 and BTBR social approach. Diazepam consistently increased time in the compartment containing the social stimulus, for both B6 and BTBR mice. However, in the vehicle treated groups, B6 mice spent significantly more time while BTBR mice spent significantly less time in the social stimulus compartment; after diazepam administration both B6 and BTBR strains significantly preferred the social stimulus chamber. These results suggest that while the anxiety responses of BTBR mice to novel situations (EPM and zero-maze) are inconsistent, BTBR mice appear to be more defensive to animate threat stimuli (predator or another mouse). Reduction of anxiety by diazepam normalized the social preference of BTBR for a mouse stimulus in the three-chambered test.
Collapse
Affiliation(s)
- Roger L H Pobbe
- Pacific Biosciences Research Center, University of Hawaii,1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Autism is a neurodevelopmental disorder that is currently diagnosed by the presence of three behavioral criteria (1) qualitative impairments in reciprocal social interactions, (2) deficits in communication, including delayed language and noninteractive conversation, and (3) motor stereotypies, repetitive behaviors, insistence on sameness, and restricted interests. This chapter describes analogous behavioral assays that have been developed for mice, including tests for social approach, reciprocal social interactions, olfactory communication, ultrasonic vocalizations, repetitive and perseverative behaviors, and motor stereotypies. Examples of assay applications to genetic mouse models of autism are provided. Robust endophenotypes that are highly relevant to the core symptoms of autism are enabling the search for the genetic and environmental causes of autism, and the discovery of effective treatments.
Collapse
Affiliation(s)
- Florence I. Roullet
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Building 35 Room 1C-903/909, Mail Code 3730, Bethesda, MD 20892-3730, USA
| | - Jacqueline N. Crawley
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Building 35 Room 1C-903/909, Mail Code 3730, Bethesda, MD 20892-3730, USA
| |
Collapse
|
95
|
Gould GG, Hensler JG, Burke TF, Benno RH, Onaivi ES, Daws LC. Density and function of central serotonin (5-HT) transporters, 5-HT1A and 5-HT2A receptors, and effects of their targeting on BTBR T+tf/J mouse social behavior. J Neurochem 2011; 116:291-303. [PMID: 21070242 PMCID: PMC3012263 DOI: 10.1111/j.1471-4159.2010.07104.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
BTBR mice are potentially useful tools for autism research because their behavior parallels core social interaction impairments and restricted-repetitive behaviors. Altered regulation of central serotonin (5-HT) neurotransmission may underlie such behavioral deficits. To test this, we compared 5-HT transporter (SERT), 5-HT(1A) and 5-HT(2A) receptor densities among BTBR and C57 strains. Autoradiographic [(3) H] cyanoimipramine (1 nM) binding to SERT was 20-30% lower throughout the adult BTBR brain as compared to C57BL/10J mice. In hippocampal membrane homogenates, [(3) H] citalopram maximal binding (B(max) ) to SERT was 95 ± 13 fmol/mg protein in BTBR and 171 ± 20 fmol/mg protein in C57BL/6J mice, and the BTBR dissociation constant (K(D) ) was 2.0 ± 0.3 nM versus 1.1 ± 0.2 in C57BL/6J mice. Hippocampal 5-HT(1A) and 5-HT(2A) receptor binding was similar among strains. However, 8-OH-DPAT-stimulated [(35) S] GTPγS binding in the BTBR hippocampal CA(1) region was 28% higher, indicating elevated 5-HT(1A) capacity to activate G-proteins. In BTBR mice, the SERT blocker, fluoxetine (10 mg/kg) and the 5-HT(1A) receptor partial-agonist, buspirone (2 mg/kg) enhanced social interactions. The D(2) /5-HT(2) receptor antagonist, risperidone (0.1 mg/kg) reduced marble burying, but failed to improve sociability. Overall, altered SERT and/or 5-HT(1A) functionality in hippocampus could contribute to the relatively low sociability of BTBR mice.
Collapse
MESH Headings
- Animals
- Brain/drug effects
- Brain/metabolism
- Brain/physiology
- Buspirone/pharmacology
- Fluoxetine/pharmacology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Protein Binding/physiology
- Protein Transport
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptor, Serotonin, 5-HT1A/physiology
- Receptor, Serotonin, 5-HT2A/metabolism
- Receptor, Serotonin, 5-HT2A/physiology
- Serotonin Plasma Membrane Transport Proteins/metabolism
- Serotonin Plasma Membrane Transport Proteins/physiology
- Social Behavior
Collapse
Affiliation(s)
- Georgianna G Gould
- Department of Physiology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | |
Collapse
|
96
|
Fluoxetine but not risperidone increases sociability in the BTBR mouse model of autism. Pharmacol Biochem Behav 2011; 97:586-94. [DOI: 10.1016/j.pbb.2010.09.012] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Revised: 09/10/2010] [Accepted: 09/16/2010] [Indexed: 11/21/2022]
|
97
|
Roullet FI, Wöhr M, Crawley JN. Female urine-induced male mice ultrasonic vocalizations, but not scent-marking, is modulated by social experience. Behav Brain Res 2011; 216:19-28. [PMID: 20540967 PMCID: PMC3094925 DOI: 10.1016/j.bbr.2010.06.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 05/25/2010] [Accepted: 06/01/2010] [Indexed: 12/20/2022]
Abstract
Despite the evidence for a communicative function of rodent scent marks and ultrasonic vocalizations, relatively little is known about the impact of social factors on these two forms of communication. Here, we tested the effects of two important social factors, prior exposure to a female and freshness of female urine, on male scent marks and ultrasonic vocalizations elicited by female urine. We also asked whether a recently reported strain difference between the highly social strain C57BL/6J (B6) and the mouse model of autism BTBR T+tf/J (BTBR) herein is specifically seen in response to female urine or also detectable in response to male urine traces. Results show that the emission of female urine-elicited ultrasonic vocalizations was dependent on previous female experience, while scent-marking behavior was not affected. A positive correlation was detected between scent-marking behavior and ultrasonic calling in the most biologically relevant context, male mice exposed to fresh female urine after female experience. Correlations were less prominent or missing in less biologically relevant contexts, e.g. in male mice exposed to fresh female urine without previous female experience, indicating that previous female experience is affecting both the emission of female urine-elicited ultrasonic vocalizations and the correlation between olfactory and acoustic communication. The strain difference in scent-marking behavior and ultrasonic calling between B6 and BTBR appears to be specific to female urine-elicited behavior as it was not seen in response to male urine traces, highlighting the relevance of the social context in which mouse communication is evaluated.
Collapse
Affiliation(s)
- Florence I Roullet
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA.
| | | | | |
Collapse
|
98
|
Silverman JL, Yang M, Turner SM, Katz AM, Bell DB, Koenig JI, Crawley JN. Low stress reactivity and neuroendocrine factors in the BTBR T+tf/J mouse model of autism. Neuroscience 2010; 171:1197-208. [PMID: 20888890 PMCID: PMC2991427 DOI: 10.1016/j.neuroscience.2010.09.059] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 09/02/2010] [Accepted: 09/28/2010] [Indexed: 12/31/2022]
Abstract
Autism is a neurodevelopmental disorder characterized by abnormal reciprocal social interactions, communication deficits, and repetitive behaviors with restricted interests. BTBR T+tf/J (BTBR) is an inbred mouse strain that displays robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of autism, including low social interactions, reduced vocalizations in social settings, and high levels of repetitive self-grooming. Autism-relevant phenotypes in BTBR offer translational tools to discover neurochemical mechanisms underlying unusual mouse behaviors relevant to symptoms of autism. Because repetitive self-grooming in mice may be a displacement behavior elevated by stressors, we investigated neuroendocrine markers of stress and behavioral reactivity to stressors in BTBR mice, as compared to C57BL/6J (B6), a standard inbred strain with high sociability. Radioimmunoassays replicated previous findings that circulating corticosterone is higher in BTBR than in B6. Higher basal glucocorticoid receptor mRNA and higher oxytocin peptide levels were detected in the brains of BTBR as compared to B6. No significant differences were detected in corticotrophin releasing factor (CRF) peptide or CRF mRNA. In response to behavioral stressors, BTBR and B6 were generally similar on behavioral tasks including stress-induced hyperthermia, elevated plus-maze, light ↔ dark exploration, tail flick, acoustic startle and prepulse inhibition. BTBR displayed less reactivity than B6 to a noxious thermal stimulus in the hot plate, and less immobility than B6 in both the forced swim and tail suspension depression-related tasks. BTBR, therefore, exhibited lower depression-like scores than B6 on two standard tests sensitive to antidepressants, did not differ from B6 on two well-validated anxiety-like behaviors, and did not exhibit unusual stress reactivity to sensory stimuli. Our findings support the interpretation that autism-relevant social deficits, vocalizations, and repetitive behaviors are not the result of abnormal stress reactivity in the BTBR mouse model of autism.
Collapse
MESH Headings
- Adaptation, Ocular/genetics
- Adaptation, Ocular/physiology
- Animals
- Autistic Disorder/genetics
- Autistic Disorder/metabolism
- Autistic Disorder/pathology
- Autistic Disorder/physiopathology
- Corticosterone/metabolism
- Corticotropin-Releasing Hormone/genetics
- Corticotropin-Releasing Hormone/metabolism
- Disease Models, Animal
- Fever/etiology
- Hindlimb Suspension/physiology
- Interpersonal Relations
- Maze Learning/physiology
- Mice
- Mice, Inbred C57BL
- Mice, Inbred Strains
- Oxytocin/metabolism
- Pain Threshold/physiology
- RNA, Messenger/metabolism
- Radioimmunoassay
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Reflex, Acoustic/physiology
- Stress, Psychological/etiology
- Stress, Psychological/genetics
Collapse
Affiliation(s)
- J L Silverman
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute of Mental Health, Bethesda, MD, USA.
| | | | | | | | | | | | | |
Collapse
|
99
|
Pobbe RLH, Pearson BL, Defensor EB, Bolivar VJ, Blanchard DC, Blanchard RJ. Expression of social behaviors of C57BL/6J versus BTBR inbred mouse strains in the visible burrow system. Behav Brain Res 2010; 214:443-9. [PMID: 20600340 PMCID: PMC2928226 DOI: 10.1016/j.bbr.2010.06.025] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2010] [Revised: 06/10/2010] [Accepted: 06/18/2010] [Indexed: 01/18/2023]
Abstract
The core symptoms of autism spectrum disorder (ASD) include deficits in social interaction, impaired communication, and repetitive behaviors with restricted interests. Mouse models with behavioral phenotypes relevant to these core symptoms offer an experimental approach to advance the investigation of genes associated with ASD. Previous findings demonstrate that BTBR T+ tf/J (BTBR) is an inbred mouse strain that shows robust behavioral phenotypes with analogies to all three of the diagnostic symptoms of ASD. In the present study, we investigated the expression of social behaviors in a semi-natural visible burrow system (VBS), during colony formation and maintenance in groups comprising three adult male mice of the same strain, either C57BL/6J (B6) or BTBR. For comparative purposes, an extensively investigated three-chambered test was subsequently used to assess social approach in both strains. The effects of strain on these two situations were consistent and highly significant. In the VBS, BTBR mice showed reductions in all interactive behaviors: approach (front and back), flight, chase/follow, allo-grooming and huddling, along with increases in self-grooming and alone, as compared to B6. These results were corroborated in the three-chambered test: in contrast to B6, male BTBR mice failed to spend more time in the side of the test box containing the unfamiliar CD-1 mouse. Overall, the present data indicates that the strain profile for BTBR mice, including consistent social deficits and high levels of repetitive self-grooming, models multiple components of the ASD phenotype.
Collapse
Affiliation(s)
- Roger L H Pobbe
- Pacific Biosciences Research Center, University of Hawaii, 1993 East-West Road, Honolulu, HI 96822, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Silverman JL, Yang M, Lord C, Crawley JN. Behavioural phenotyping assays for mouse models of autism. Nat Rev Neurosci 2010; 11:490-502. [PMID: 20559336 PMCID: PMC3087436 DOI: 10.1038/nrn2851] [Citation(s) in RCA: 1144] [Impact Index Per Article: 76.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autism is a heterogeneous neurodevelopmental disorder of unknown aetiology that affects 1 in 100-150 individuals. Diagnosis is based on three categories of behavioural criteria: abnormal social interactions, communication deficits and repetitive behaviours. Strong evidence for a genetic basis has prompted the development of mouse models with targeted mutations in candidate genes for autism. As the diagnostic criteria for autism are behavioural, phenotyping these mouse models requires behavioural assays with high relevance to each category of the diagnostic symptoms. Behavioural neuroscientists are generating a comprehensive set of assays for social interaction, communication and repetitive behaviours to test hypotheses about the causes of autism. Robust phenotypes in mouse models hold great promise as translational tools for discovering effective treatments for components of autism spectrum disorders.
Collapse
Affiliation(s)
- Jill L Silverman
- National Institute of Mental Health, Porter Neuroscience Research Center, Bethesda, MD 20892-3730, USA
| | | | | | | |
Collapse
|