51
|
Hosny KM, Rizg WY, Alhakamy NA, Alamoudi AJ, Mushtaq RY, Safhi AY. Utilization of nanotechnology and experimental design in development and optimization of Aloe vera gel loaded with Finasteride‒Garlic Oil‒Nanotransfersomes. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
52
|
Yahia S, Abo Dena AS, El Nashar RM, El-Sherbiny I. Nanomicelles-in-Coaxial Nanofibers with Exit Channels as Transdermal Delivery Platform for Smoking Cessation. J Mater Chem B 2022; 10:4984-4998. [DOI: 10.1039/d2tb00818a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Smoking has turned to a life-threatening habit; that is why many nicotine-replacement therapies (NRTs) were reported for smoking cessation including chewing gums, nicotine patches, lozenges, mouth sprays, inhalers and nasal...
Collapse
|
53
|
Hady MA, Darwish AB, Abdel-Aziz MS, Sayed OM. Design of transfersomal nanocarriers of nystatin for combating vulvovaginal candidiasis; A different prospective. Colloids Surf B Biointerfaces 2021; 211:112304. [PMID: 34959094 DOI: 10.1016/j.colsurfb.2021.112304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/26/2021] [Accepted: 12/20/2021] [Indexed: 11/25/2022]
Abstract
The objective of this study was to prepare and evaluate Nystatin (NYS) loaded transfersomes to achieve better treatment of vulvovaginal candidiasis. Nystatin transferosomes were formulated utilizing thin film hydration method. A 32 full factorial design was employed to evaluate the effect of different formulation variables. Two independent variables were chosen; the ratio between lecithin surfactant (X1) was set at three levels (10-40), and the type of surfactants (X2) was set at three levels (Span 60, Span 85 and Pluronic F-127). The dependent responses were; entrapment efficiency (Y1: EE %), vesicles size (Y2: VS) and release rate (Y3: RR). Design Expert® software was utilized to statistically optimize formulation variables. The vesicles revealed high NYS encapsulation efficiency ranging from 97.35 ± 0.03 to 98.01 ± 0.20% whereas vesicle size ranged from 194.8 ± 20.42 to 400.8 ± 42.09 nm. High negative zeta potential values indicated good stability of the prepared formulations. NYS release from transfersomes was biphasic and the release pattern followed Higuchi's model. The optimized formulation (F7) exhibited spherical morphology under transmission electron microscopy (TEM). In-vitro and in-vivo antifungal efficiency studies revealed that the optimized formula F7 exhibited significant eradication of candida infestation in comparison to free NYS. The results revealed that the developed NYS transfersomes could be a promising drug delivery system to enhance antifungal efficacy of NYS.
Collapse
Affiliation(s)
- Mayssa Abdel Hady
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt
| | - Asmaa B Darwish
- Department of Pharmaceutical Technology, National Research Centre, El Bohouth Street, Cairo12622, Egypt.
| | - Mohamed S Abdel-Aziz
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Division, National Research Centre, El Bohouth Street, Cairo 12622, Egypt
| | - Ossama M Sayed
- Department of Pharmaceutics Industrial Pharmacy, Faculty of Pharmacy, Sinai University - Kantara Branch, Egypt.
| |
Collapse
|
54
|
Ali SA, Sindi AM, Mair YH, Khallaf RA. Oral gel loaded by ethotransfersomes of antifungal drug for oral thrush: Preparation, characterization, and assessment of antifungal activity. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
55
|
Albash R, Yousry C, Al-Mahallawi AM, Alaa-Eldin AA. Utilization of PEGylated cerosomes for effective topical delivery of fenticonazole nitrate: in-vitro characterization, statistical optimization, and in-vivo assessment. Drug Deliv 2021; 28:1-9. [PMID: 33322971 PMCID: PMC7744155 DOI: 10.1080/10717544.2020.1859000] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/29/2020] [Accepted: 11/29/2020] [Indexed: 12/17/2022] Open
Abstract
In this investigation, we focused on ceramide IIIB, a skin component whose depletion tends to augment multiple skin disorders and fungal infections. Ceramide IIIB was included into PEGylated surfactant-based vesicular phospholipid system to formulate 'PEGylated cerosomes' (PCs) loaded with fenticonazole nitrate (FTN). FTN is a potent antifungal agent adopted in the treatment of mixed mycotic and bacterial infections. The ceramide content of the vesicles may provide protective and regenerative skin activity whereas Brij®; the PEGylated surfactant, can enhance drug deposition and skin hydration. Both components are expected to augment the topical effect of FTN. PCs were prepared by thin-film hydration technique. A 23 full-factorial design was applied to study the effect of ceramide amount (X1), Brij type (X2) and Brij amount (X3) on the physicochemical properties of the formulated PCs namely; entrapment efficiency (EE%;Y1), particle size (PS;Y2), polydispersity index (PDI;Y3) and zeta potential (ZP;Y4). The optimal formula was selected for further in-vivo dermatokinetic and histopathological study. The optimal FTN-loaded PC (PC6) showed nanosized cerosomes (551.60 nm) with high EE% (83.00%w/w), and an acceptable ZP value of 20.90 mV. Transmission electron micrographs of the optimal formula illustrated intertwined tubulation form deviated from the conventional spherical vesicles. Finally, the dermatokinetic study of PC6 showed higher drug concentration and localization of FTN in skin layers when compared with FTN suspension and the histopathological study confirmed its safety for topical application. The overall findings of our study verified the effectiveness of utilizing PEGylated cerosomes to augment the activity of FTN as a topical antifungal agent.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Carol Yousry
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Abdulaziz Mohsen Al-Mahallawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutics, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Ahmed Adel Alaa-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Elfayoum, Egypt
| |
Collapse
|
56
|
Formulation and characterization of propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride for wound healing: In-vitro and in-vivo wound healing assessment. Saudi Pharm J 2021; 29:1238-1249. [PMID: 34819785 PMCID: PMC8596291 DOI: 10.1016/j.jsps.2021.10.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/09/2021] [Indexed: 01/08/2023] Open
Abstract
This study aimed to develop propolis and tea tree oil nanoemulsion loaded with clindamycin hydrochloride to heal wound effectively. Nanoemulsion formulae were prepared and characterized by droplet size analysis, zeta potential, viscosity, ex-vivo permeation, and skin deposition. The optimal formula was evaluated in terms of morphology, cytotoxicity, and in-vitro wound healing assay. Also, the efficacy of the optimal formula was evaluated by in-vivo wound healing and histopathological studies. The optimal formula (F3) was composed of 9% tea tree oil and 0.4% propolis extracts with mean droplet size 19.42 ± 1.7 nm, zeta potential value −24.5 ± 0.2 mV, and viscosity 69.4 ± 1.8 mP. Furthermore, the optimal formula showed the highest skin deposition value 550.00 ± 4.9 µg/cm2 compared to other formulae. The TEM micrograph of the optimal formula showed that the nanoemulsion droplet has an almost spherical shape. Also, the optimal formula did not show noticeable toxicity to the human skin fibroblast cells. The in-vitro and in-vivo wound healing assay showed unexpected results that the un-loaded drug nanoemulsion formula had a comparable wound healing efficacy to the drug-loaded nanoemulsion formula. These results were confirmed with histopathological studies. Our results showed that the propolis and tea tree oil nanoemulsion, whether loaded or unloaded with an antibiotic, is an efficient local therapy for wound healing.
Collapse
|
57
|
Teaima M, Abdelmonem R, Adel YA, El-Nabarawi MA, El-Nawawy TM. Transdermal Delivery of Telmisartan: Formulation, in vitro, ex vivo, Iontophoretic Permeation Enhancement and Comparative Pharmacokinetic Study in Rats. Drug Des Devel Ther 2021; 15:4603-4614. [PMID: 34785889 PMCID: PMC8590984 DOI: 10.2147/dddt.s327860] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose The purpose of this study was to prepare telmisartan transethosomes, incorporate them into a gel, evaluate them for in vitro drug release and in vivo permeation using iontophoresis to enhance their transdermal delivery. Materials and Methods TE formulae were prepared using various surfactants (SAAs), different ethanol concentrations, and different phospholipid-to-SAA ratios with different cholesterol ratios, characterized according to their entrapment efficiency percentage (EE%), zeta potential (ZP), particle size (PS), and polydispersity index (PDI). The optimum three formulae were incorporated into a gel, evaluated physically, in vitro dissolution, and ex vivo drug permeation using rat skin and Iontophoresis was performed on the best formula. Results The optimum three formulae (F29, F31, F32) had an EE% of 97±0.26%, 89±0.25% and 88±0.17%, PS of 244±5.88 nm, 337±4.6 nm and 382.2±3.06 nm, PDI of 0.57±1.9, 0.5±1.4 and 0.63±2.2 and ZP of −31.6±1.59 mV, −28.3±3.79 mV and −31±5.65, respectively. Selecting F29 for in vivo study by iontophoretic enhancement, Cmax was increased by 1.85 folds compared to the commercial oral tablet and by 1.5 folds compared to transdermal gel. Tmax decreased by half using iontophoresis compared to commercial tablets and transdermal gel. Conclusion The transethosomal formulation of telmisartan enhanced its transdermal absorption and increased its bioavailability as well. Iontophoresis was used to increase maximum plasma concentration and reduce Tmax by half.
Collapse
Affiliation(s)
- Mahmoud Teaima
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Rehab Abdelmonem
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, 12566, Egypt
| | - Yomna A Adel
- Department of Pharmaceutics, Egyptian Drug Authority, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | | |
Collapse
|
58
|
Zaki I, Abou-Elkhair RAI, Abu Almaaty AH, A. Abu Ali O, Fayad E, Ahmed Gaafar AG, Zakaria MY. Design and Synthesis of Newly Synthesized Acrylamide Derivatives as Potential Chemotherapeutic Agents against MCF-7 Breast Cancer Cell Line Lodged on PEGylated Bilosomal Nano-Vesicles for Improving Cytotoxic Activity. Pharmaceuticals (Basel) 2021; 14:ph14101021. [PMID: 34681245 PMCID: PMC8540948 DOI: 10.3390/ph14101021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/27/2021] [Accepted: 09/30/2021] [Indexed: 12/14/2022] Open
Abstract
Cancer is a multifaceted disease. With the development of multi drug resistance, the need for the arousal of novel targets in order to avoid these drawbacks increased. A new series of acrylamide derivatives was synthesized from starting material 4-(furan-2-ylmethylene)-2-(3,4,5-trimethoxyphenyl)oxazol-5(4H)–one (1), and they are evaluated for their inhibitory activity against β-tubulin polymerization. The target molecules 2–5 d were screened for their cytotoxic activity against breast cancer MCF-7 cell line. The results of cytotoxicity screening revealed that compounds 4e and 5d showed good cytotoxic profile against MCF-7 cells. Compounds 4e produced significant reduction in cellular tubulin with excellent β-tubulin polymerization inhibition activity. In addition, compound 4e exhibited cytotoxic activity against MCF-7 cells by cell cycle arrest at pre-G1 and G2/M phases, as shown by DNA flow cytometry assay. Aiming to enhance the limited aqueous solubility and, hence, poor oral bioavailability of the prepared lead acrylamide molecule, 4e-charged PEGylated bilosomes were successfully fabricated via thin film hydration techniques as an attempt to improve these pitfalls. 23 full factorial designs were manipulated to examine the influence of formulation variables: types of bile salt including either sodium deoxy cholate (SDC) or sodium tauro cholate (STC), amount of bile salt (15 mg or 30 mg) and amount of DSPE–mPEG-2000 amount (25 mg or 50 mg) on the characteristics of the nanosystem. The F7 formula of entrapment efficiency (E.E% = 100 ± 5.6%), particle size (PS = 280.3 ± 15.4 nm) and zeta potential (ZP = −22.5 ± 3.4 mv) was picked as an optimum formula with a desirability value of 0.868. Moreover, prominent enhancement was observed at the compound’s cytotoxic activity (IC50 = 0.75 ± 0.03 µM) instead of (IC50 = 2.11 ± 0.19 µM) for the unformulated 4e after being included in the nano-PEGylated bilosomal system.
Collapse
Affiliation(s)
- Islam Zaki
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
| | - Reham A. I. Abou-Elkhair
- Applied Nucleic Acids Research Center & Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44523, Egypt;
| | - Ali H. Abu Almaaty
- Zoology Department, Faculty of Science, Port Said University, Port Said 42526, Egypt;
| | - Ola A. Abu Ali
- Chemistry Department, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Eman Fayad
- Biotechnology Department, Faculty of Sciences, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia;
| | - Ahmed Gaafar Ahmed Gaafar
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt;
| | - Mohamed Y. Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said 42526, Egypt
- Correspondence: ; Tel.: +20-1006-886-853
| |
Collapse
|
59
|
Velagacherla V, Suresh A, Mehta CH, Nayak UY. Advances and challenges in nintedanib drug delivery. Expert Opin Drug Deliv 2021; 18:1687-1706. [PMID: 34556001 DOI: 10.1080/17425247.2021.1985460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
INTRODUCTION Nintedanib (N.T.B) is an orally administered tyrosine kinase inhibitor that has been approved recently by U.S.F.D.A for idiopathic pulmonary fibrosis (I.P.F) and systemic sclerosis-associated interstitial lung disease (S.Sc-I.L.D). N.T.B is also prescribed in COVID-19 patients associated with I.P.F. However, it has an extremely low bioavailability of around 4.7%, and hence, researchers are attempting to address this drawback by different approaches. AREAS COVERED This review article focuses on enlisting all the formulation attempts explored by researchers to increase the bioavailability of N.T.B while also providing meaningful insight into the unexplored areas in formulation development, such as targeting of the lymphatic system and transdermal delivery. All the patents on the formulation development of N.T.B have also been summarized. EXPERT OPINION N.T.B has the potential to act on multiple diseases that are still being discovered, but its extremely low bioavailability is a challenge that is to be dealt with for obtaining the full benefit. Few studies have been performed aiming at improving the bioavailability, but there are unexplored areas that can be used, a few of which are explained in this article. However, the ability to reproduce laboratory results when scaling up to the industry level is the only factor to be taken into consideration.
Collapse
Affiliation(s)
- Varalakshmi Velagacherla
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Akhil Suresh
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Chetan H Mehta
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| | - Usha Y Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
60
|
Nayak D, Tippavajhala VK. A Comprehensive Review on Preparation, Evaluation and Applications of Deformable Liposomes. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2021; 20:186-205. [PMID: 34400952 PMCID: PMC8170744 DOI: 10.22037/ijpr.2020.112878.13997] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Elastic or deformable liposomes are phospholipid-based vesicular drug delivery systems that help improve the delivery of therapeutic agents through the intact skin membrane due to their deformable characteristics that overcome the problems of conventional liposomes. In the present review, different types of deformable liposomes such as transfersomes, ethosomes, menthosomes, invasomes and transethosome are studied, and their mechanism of action, characterization, preparation methods, and applications in pharmaceutical technology through topical, transdermal, nasal and oral routes for effective drug delivery are compared for their potential transdermal delivery of poorly permeable drugs. Due to the deformable characteristics of these vehicles, it resulted in modulation of increased drug encapsulation efficiency, permeation and penetration of the drug into or through the skin membrane and are found to be more effective than conventional drug delivery systems. So deformable liposomes can, therefore, be considered as a promising way of delivering the drugs transdermally.
Collapse
Affiliation(s)
- Devika Nayak
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Vamshi Krishna Tippavajhala
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
61
|
Albash R, Elmahboub Y, Baraka K, Abdellatif MM, Alaa-Eldin AA. Ultra-deformable liposomes containing terpenes (terpesomes) loaded fenticonazole nitrate for treatment of vaginal candidiasis: Box-Behnken design optimization, comparative ex vivo and in vivo studies. Drug Deliv 2021; 27:1514-1523. [PMID: 33108907 PMCID: PMC7594706 DOI: 10.1080/10717544.2020.1837295] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Fenticonazole nitrate (FTN) is a potent antifungal drug adopted in the treatment of vaginal candidiasis. It has inadequate aqueous solubility hence, novel ultra-deformable liposomes 'Terpesomes' (TPs) were developed that might prevail over FTN poor solubility besides TPs might abstain the obstacles of mucus invasion. TPs were assembled by thin-film hydration then optimized by Box Behnken design utilizing terpenes ratio (X1), sodium deoxycholate amount (X2), and ethanol concentration (X3) as independent variable, whereas their impact was inspected for entrapment efficiency (Y1), particle size (Y2), and polydispersity index (Y3). Design Expert® was bestowed to select the optimal TP for more studies. The optimal TP had entrapment efficiency of 62.18 ± 1.39%, particle size of 310.00 ± 8.16 nm, polydispersity index of 0.20 ± 0.10, and zeta potential of -10.19 ± 0.2.00 mV. Elasticity results were greater in the optimal TP related to classical bilosomes. Further, ex vivo permeation illustrated tremendous permeability from the optimal TP correlated to classical bilosomes, and FTN suspension. Besides, in vivo assessment displayed significant inhibition effect in rats from FTN-TPs gel compared to FTN gel. The antifungal potency with undermost histopathological variation was detected in rats treated with FTN-TPs gel. Overall, the acquired findings verified the potency of utilizing FTN-TPs gel for treatment of vaginal candidiasis.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Yasmina Elmahboub
- College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Kholoud Baraka
- Microbiology and Immunology Department, Faculty of Pharmacy, Damanhour University, El Behira, Egypt
| | - Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Ahmed Adel Alaa-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum university, Elfayoum, Egypt
| |
Collapse
|
62
|
Zakaria MY, Fayad E, Althobaiti F, Zaki I, Abu Almaaty AH. Statistical optimization of bile salt deployed nanovesicles as a potential platform for oral delivery of piperine: accentuated antiviral and anti-inflammatory activity in MERS-CoV challenged mice. Drug Deliv 2021; 28:1150-1165. [PMID: 34121561 PMCID: PMC8208124 DOI: 10.1080/10717544.2021.1934190] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The objective of this paper is to confine piperine, a poor oral bioavailable herbal drug into bile salt based nano vesicles for improving its aqueous solubility, hence, its therapeutic activity. Piperine-loaded bilosomes were fabricated adopting thin film hydration technique according to 32.21 full factorial design to investigate the impact of different formulation variables on the characters of bilosomes: entrapment efficiency (EE%), particle size, and % of drug released post 8 h (Q8hr). The selected optimum formula was F2 (enclosing 1% bile salt, brij72 as a surfactant, and ratio of surfactant:cholesterol was 9:1) with desirability value 0.801, exhibiting high EE% (97.2 ± 0.8%) nanosized spherical vesicles (220.2 ± 20.5 nm) and Q8hr (88.2%±5.6). The superiority of the optimized formula (F2) over the drug suspension was revealed via ex vivo permeation study, also pharmacokinetic study denoted to the boosted oral bioavailability of piperine-loaded bilosome compared to piperine suspension. Moreover, antiviral activity and safety margin of F2 was significantly higher than that of the drug suspension. The ability of piperine to interact with the key amino acids in the receptor binding domain 4L3N as indicated by its docking configuration, rationalized its observed activity. Furthermore, F2 significantly reduce oxidant markers, inflammatory cytokines in MERS-CoV-infected mice. Hence, bilosomes can be considered as a carrier of choice for piperine with potential antiviral and anti-inflammatory activities.
Collapse
Affiliation(s)
- Mohamed Y Zakaria
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Eman Fayad
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Fayez Althobaiti
- Department of Biotechnology, Faculty of Sciences, Taif University, Taif, Saudi Arabia
| | - Islam Zaki
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Ali H Abu Almaaty
- Department of Zoology, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
63
|
Esenturk I, Gumrukcu S, Özdabak Sert AB, Kök FN, Döşler S, Gungor S, Erdal MS, Sarac AS. Silk-fibroin-containing nanofibers for topical sertaconazole delivery: preparation, characterization, and antifungal activity. INT J POLYM MATER PO 2021. [DOI: 10.1080/00914037.2020.1740992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Imren Esenturk
- Department of Pharmaceutical Technology, University of Health Sciences Turkey, Istanbul, Turkey
| | - Selin Gumrukcu
- Department of Chemistry, Istanbul Technical University, Istanbul, Turkey
| | - Ayşe Buse Özdabak Sert
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Fatma Neşe Kök
- Molecular Biology-Genetics and Biotechnology Program, MOBGAM, Istanbul Technical University, Istanbul, Turkey
- Department of Molecular Biology and Genetics, Istanbul Technical University, Istanbul, Turkey
| | - Sibel Döşler
- Department of Pharmaceutical Microbiology, Istanbul University, Istanbul, Turkey
| | - Sevgi Gungor
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - M. Sedef Erdal
- Department of Pharmaceutical Technology, Istanbul University, Istanbul, Turkey
| | - A. Sezai Sarac
- Polymer Science and Technology, Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| |
Collapse
|
64
|
Bubić Pajić N, Vucen S, Ilić T, O'Mahony C, Dobričić V, Savić S. Comparative efficacy evaluation of different penetration enhancement strategies for dermal delivery of poorly soluble drugs - A case with sertaconazole nitrate. Eur J Pharm Sci 2021; 164:105895. [PMID: 34087357 DOI: 10.1016/j.ejps.2021.105895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 05/06/2021] [Accepted: 05/31/2021] [Indexed: 01/15/2023]
Abstract
The aim of this study was to compare the efficacy of different approaches for enhancement of dermal availability of the highly lipophilic antifungal model drug - sertaconazole nitrate (SN). For this purpose, a physical penetration enhancer - dissolving microneedles (MNs) was fabricated by filling moulds with liquid formulation based on polyvinylpyrrolidone and loaded with SN. Dissolving MNs were characterised regarding their morphological and mechanical characteristics. A penetration enhancement efficacy of MNs was evaluated in vitro using porcine ear skin in parallel with the efficacy of formerly developed chemical penetration enhancer - biocompatible microemulsion (ME) formulation. Moreover, an ability of solid silicon MNs to significantly improve delivery of SN from ME into the skin has also been investigated. The obtained results showed that dissolving MNs had satisfying morphological properties and mechanical strength. This type of MNs provided comparable drug deposition in the skin as ME formulation, but also revealed an indication of percutaneous absorption of a portion of the administered drug dose. However, the penetration/permeation study results were largely influenced by experimental setup and dosing regimen. Although solid silicon MNs assisted SN dermal delivery led to increase of drug cutaneous retention (1.9-fold) under infinite dosing regimen, the synergistic action of solid MNs and ME applied under finite dosing was more pronounced in comparison with the application either of physical (dissolving MNs) or chemical enhancer (ME) alone. Namely, SN amount accumulated into the skin increased up to 4.67 and 4.37 folds in comparison with ME and dissolving MNs alone, respectively, while reaching a significant decrease in drug permeation through the skin compared to the use of dissolving MNs. Application of ME per se was the only approach that provided selective in vitro dermal drug delivery without SN permeation across the skin. However, despite both types of the used MNs lead to SN permeation in vitro, the ratio between the drug amount deposited in the skin and SN content permeated was significantly higher for the combined approach (12.05) than for dissolving MNs (2.10). Therefore, a combination of solid silicon MNs and biocompatible ME favoured more pronouncedly SN skin accumulation, which is preferable in the treatment of skin fungal infections.
Collapse
Affiliation(s)
- Nataša Bubić Pajić
- University of Banja Luka, Faculty of Medicine, Department of Pharmaceutical Technology and Cosmetology, Save Mrkalja 14, 78000 Banja Luka, Bosnia and Herzegovina.
| | - Sonja Vucen
- School of Pharmacy, University College Cork, Cork, Ireland.
| | - Tanja Ilić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia
| | - Conor O'Mahony
- Tyndall National Institute, University College Cork, Cork, Ireland
| | - Vladimir Dobričić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Chemistry, 11221 Belgrade, Serbia.
| | - Snežana Savić
- University of Belgrade, Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology, Vojvode Stepe 450, 11221 Belgrade, Serbia.
| |
Collapse
|
65
|
Paiva-Santos AC, Silva AL, Guerra C, Peixoto D, Pereira-Silva M, Zeinali M, Mascarenhas-Melo F, Castro R, Veiga F. Ethosomes as Nanocarriers for the Development of Skin Delivery Formulations. Pharm Res 2021; 38:947-970. [PMID: 34036520 DOI: 10.1007/s11095-021-03053-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022]
Abstract
The use of nanotechnology has been extensively explored for developing efficient drug delivery systems towards topical and transdermal applications. Ethosomes constitute a vesicular nanocarrier containing a relatively high concentration of ethanol (20-45%). Ethanol is a well-known permeation enhancer, which confers ethosomes unique features, including high elasticity and deformability, allowing them to penetrate deeply across the skin and enhance drug permeation and deposition. The improved composition of ethosomes offer, thereby, significant advantages in the delivery of therapeutic agents over particularly the conventional liposomes regarding different pathologies, including acne, psoriasis, alopecia, skin infections, hormonal deficiencies, among others. This review provides a comprehensive overview of the ethosomal system and an assessment of its potential as an efficient nanocarrier towards the skin delivery of active ingredients. Special attention is given to the composition of ethosomes and the mechanism of skin permeation, as well as their potential applications in different pathologies, particularly skin pathologies (acne, psoriasis, atopic dermatitis, skin cancer and skin infections). Some examples of ethosome-based formulations for the management of skin disorders are also highlighted. Besides the need for further studies, particularly in humans, ethosomal-based formulations hold great promise in the skin delivery of active ingredients, which increasingly asserts oneself as a viable alternative to the oral route.
Collapse
Affiliation(s)
- Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal.
| | - Ana Luísa Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Catarina Guerra
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Diana Peixoto
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Miguel Pereira-Silva
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Mahdi Zeinali
- Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Filipa Mascarenhas-Melo
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - Ricardo Castro
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- CQC, Department of Chemistry of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
66
|
Ma Q, Zhang J, Lu B, Lin H, Sarkar R, Wu T, Li X. Nanoemulgel for Improved Topical Delivery of Desonide: Formulation Design and Characterization. AAPS PharmSciTech 2021; 22:163. [PMID: 34031790 DOI: 10.1208/s12249-021-02035-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/27/2021] [Indexed: 02/01/2023] Open
Abstract
This research aimed to develop a novel drug delivery system to improve treatment of skin disorders. The system is comprised of a Carbopol 980-based nanoemulgel (NE-gel) containing a desonide (DES; 0.05%, w/w) nanoemulsion (NE), which has a small particle size, high encapsulation efficiency, good thermodynamic stability, good permeation ability, and high skin retention. DES-loaded NE (DES-NE) was prepared by high-pressure homogenization. The developed formulation was characterized by differential scanning calorimetry (DSC), X-ray diffraction, drug release, skin permeation, and drug retention. DES in vitro release and skin permeation studies with different formulations of artificial membrane and rat abdominal skin were performed with the Franz diffusion cell system. Confocal laser scanning microscopy (CLSM) was used to detect the localization and permeation pathways of drugs in the skin. Compared with commercially available gel (CA-gel) and NE, the NE-gel release process conformed to the Higuchi release model (R2 = 0.9813). NE-gel prolonged the drug release time and allowed for reduced administration dose and frequency. The unit cumulative permeation of NE and NE-gel through the skin for 12 h was 63.13 ± 2.78 and 42.53 ± 2.06 μg/cm2, respectively, values significantly higher (p < 0.01) than that of the CA-gel (30.65 ± 1.25 μg/cm2) and CA-cream (15.21 ± 0.97 μg/cm2). The DES-NE and DES NE-gel skin drug retention was significantly higher than commercially available formulations (p < 0.01). Hence, the prepared NE-gel is a potential vehicle for improved topical DES delivery for better treatment of skin disorders.
Collapse
|
67
|
Skin penetration/permeation success determinants of nanocarriers: Pursuit of a perfect formulation. Colloids Surf B Biointerfaces 2021; 203:111748. [PMID: 33853001 DOI: 10.1016/j.colsurfb.2021.111748] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/12/2021] [Accepted: 04/03/2021] [Indexed: 12/14/2022]
Abstract
The advent of nanocarriers in the field of pharmaceutical drug delivery, while exhibiting considerable advantages, has created challenges for researchers. Among the applications of nanocarriers, drug delivery to the skin has attracted increasing attention in recent decades due to its advantages over oral and parenteral administration. Accordingly, this work attempts to discuss the major obstacles surrounding topically applied formulations and different nanocarriers' potential to overcome these barriers to investigate whether their passive penetration through the skin is likely. Therefore, skin anatomical views and transcutaneous pathways are briefly reviewed. Factors commonly thought to influence skin penetration are discussed from the perspective of particularly penetrating nanocarriers. The formulation of these nanocarriers is outlined, and promising constituents are highlighted to help investigators optimize nanocarrier formulations.
Collapse
|
68
|
|
69
|
Tenoxicam loaded hyalcubosomes for osteoarthritis. Int J Pharm 2021; 601:120483. [PMID: 33737098 DOI: 10.1016/j.ijpharm.2021.120483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/25/2022]
Abstract
The main aim is to develop transcutaneous tenoxicam (TNX) loaded vesicles to control osteoarthritis (OA) without common side effects. Different vesicles were prepared by the emulsification technique, where poloxamer and glyceryl monooleate used for cubosomes. Then, hyalcubosomes were prepared by adding sodium hyaluronate to cubosomes components. Different characterization techniques were used. The selected formulations were tested using an ex-vivo permeation study to evaluate the ability to penetrate and retained in skin layers. Also, in-vitro cell studies using human skin fibroblasts were evaluated the safety of the formulation. The anti-inflammatory efficiency was tested using an in-vivo carrageenan-induced rat paw edema model. Finally, the efficiency to control OA symptoms was tested on three patients with a medical history of knee OA. Results confirmed the successful development of spherical cubosomes with particle size <250 nm, -14.5 mV, high entrapment efficiency percentage (>90%). Moreover, the addition of sodium hyaluronate to selected cubosomes improved viscosity and spreadability. Permeation study confirmed drug penetration and deposition. Cell studies proved the safety of the selected formulation. The animal model showed high anti-inflammatory activity. Finally, the preliminary clinical study demonstrates the potential efficacy and safety of the formulation in controlling OA symptoms over 8 weeks of therapy.
Collapse
|
70
|
Nanocarriers Mediated Cutaneous Drug Delivery. Eur J Pharm Sci 2021; 158:105638. [DOI: 10.1016/j.ejps.2020.105638] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023]
|
71
|
Xu X, Dai Z, Zhang Z, Kou X, You X, Sun H, Guo H, Liu M, Zhu H. Fabrication of oral nanovesicle in-situ gel based on Epigallocatechin gallate phospholipid complex: Application in dental anti-caries. Eur J Pharmacol 2021; 897:173951. [PMID: 33607105 DOI: 10.1016/j.ejphar.2021.173951] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/02/2021] [Accepted: 02/12/2021] [Indexed: 11/20/2022]
Abstract
The conventional anti-caries agents exhibit many shortcomings such as poor stability, low efficacy or short residence time in the oral environment, it is urgent to develop efficacy treatments to prevent dental caries. As the most active polyphenols from tea, Epigallocatechin gallate (EGCG) shows remarkable anti-cariogenic bioactivity. However, the poor stability and low bioavailability of EGCG limit its potential application. This study aimed to fabricate nanovesicles in-situ gel based on EGCG phospholipid complex in order to increase its stability and efficacy. The formation of EGCG phospholipid complex was characterized by Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). The ethanol injection method was used to prepare the EGCG-loaded nanovesicles, an optimal ratio of Poloxamer407 (P407) and Poloxamer188 (P188) as in-situ gel matrix was selected to fabricate oral nanovesicles in-situ gel. EGCG-loaded nanovesicle in-situ gel based on the phospholipid complex had uniform spherical shape without any agglomeration. The discrete nanoparticle with a size (131.44 ± 4.24 nm) and a negative zeta potential value at -30.7 ± 0.5 mV possessed good physical stability and high entrapment efficiency (83.66 ± 3.2%). The formulation exhibited a strong antibacterial activity on S. mutans, which could reduce acid production and tooth surface adhesion. In addition, EGCG formulation could inhibit the formation of glucan and biofilm from S. mutans by suppressing the activity of glycosyltransferase enzymes (GTF). In conclusion, the EGCG-loaded nanovesicle in-situ gel holds great promise as an efficient anti-cariogenic formulation for topical oral delivery.
Collapse
Affiliation(s)
- Xiaodi Xu
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Zihan Dai
- School of Stomatology, Zhengzhou University, Zhengzhou, China
| | - Zilin Zhang
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xianyong Kou
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Xiangyu You
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongmei Sun
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Huilin Guo
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Mingxing Liu
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China
| | - Hongda Zhu
- School of Food and Biological Engineering, Key Laboratory of Fermentation Engineering, Ministry of Education, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, China.
| |
Collapse
|
72
|
Gebreel RM, Edris NA, Elmofty HM, Tadros MI, El-Nabarawi MA, Hassan DH. Development and Characterization of PLGA Nanoparticle-Laden Hydrogels for Sustained Ocular Delivery of Norfloxacin in the Treatment of Pseudomonas Keratitis: An Experimental Study. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:399-418. [PMID: 33584095 PMCID: PMC7875077 DOI: 10.2147/dddt.s293127] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 12/20/2022]
Abstract
Aim Norfloxacin (NFX) has low ocular bioavailability. The current work aimed to develop NFX-loaded nanoparticle (NP)-laden hydrogels to improve the ocular potential of NFX, minimize the need for frequent instillations and lower undesirable side effects. Methods NFX-loaded NPs were developed via the double-emulsion/solvent evaporation technique, according to 21.41 full factorial design, using two types of polylactic-co-glycolic acid (PLGA) polymer and four (drug: polymer) ratios. NPs were evaluated for particle size (PS), polydispersity index (PDI), zeta potential (ZP), drug entrapment efficiency percentage (EE%), drug percentage released after 30 min (Q30min) and 12 hours (Q12h), drug percentage permeated through goat corneas after 30 min (P30min) and 12 hours (P12h) and morphology. Two formulae were statistically selected and incorporated into hydroxypropyl methylcellulose (HPMC)-based hydrogels; G1 – G4. The latter systems were evaluated for appearance, clarity, pH, spreadability, rheology, drug percentages released, drug percentages permeated, antimicrobial activity against Pseudomonas aeruginosa, and histopathological changes. Results The selected NPs (NP2 and NP6) were spherical in shape and possessed suitable PS (392.02 nm and 190.51 nm) and PDI (0.17 and 0.18), high magnitude of ZP (−30.43 mV and −33.62 mV), high EE% (79.24% and 91.72%), low Q30min (10.96% and 16.65%) and P30min (17.39% and 21.05%) and promising Q12h (58.23% and 71.20%) and P12h (53.31% and 65.01%), respectively. Clear, spreadable, tolerable, pseudoplastic, and thixotropic HPMC-based hydrogels were developed. They showed more prolonged drug release and drug permeation profiles. NP2- and NP6-laden hydrogels (G3 and G4 systems, respectively) had promising antibacterial activity, and reasonable histopathological safety. Conclusion G3 and G4 are potential ocular delivery systems for NFX.
Collapse
Affiliation(s)
- Rana M Gebreel
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Noha A Edris
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala M Elmofty
- Department of Ophthalmology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mina I Tadros
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Doaa H Hassan
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| |
Collapse
|
73
|
Abouhussein DM. Enhanced transdermal permeation of BCS class IV aprepitant using binary ethosome: Optimization, characterization and ex vivo permeation. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
74
|
Albash R, Al-Mahallawi AM, Hassan M, Alaa-Eldin AA. Development and Optimization of Terpene-Enriched Vesicles (Terpesomes) for Effective Ocular Delivery of Fenticonazole Nitrate: In vitro Characterization and in vivo Assessment. Int J Nanomedicine 2021; 16:609-621. [PMID: 33531804 PMCID: PMC7847387 DOI: 10.2147/ijn.s274290] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 12/11/2020] [Indexed: 11/29/2022] Open
Abstract
Objective The aim of the current study was to load fenticonazole nitrate, a slightly water-soluble antifungal agent, into terpene-enriched phospholipid vesicles (terpesomes) as a potential delivery system for the management of ocular fungal infection. Methods Thin film hydration method was used to prepare terpesomes according to a 32 full factorial design to inspect the effect of several variables on vesicles’ features. The investigated factors were terpenes type (X1) and terpenes amount (X2) while the dependent responses were encapsulation efficiency percent (Y1), particle size (Y2) and polydispersity index (Y3). Design Expert® program was used to chose the best achieved formula. The selected terpesomes were further optimized via incorporation of a positive charge inducer (stearylamine) to enhance adhesion to the negatively charged mucus covering the eye surface. The in vivo performance of the optimized fenticonazole nitrate-loaded terpesomes relative to drug suspension was evaluated by measuring the antifungal activity (against Candida albicans) retained in the tear's fluid at different time intervals after ocular application in albino rabbits. Results The optimized terpesomes showed spherical vesicles with entrapment efficiency of 79.02±2.35%, particle size of 287.25±9.55 nm, polydispersity index of 0.46±0.01 and zeta potential of 36.15±1.06 mV. The in vivo study demonstrated significantly higher ocular retention of the optimized fenticonazole nitrate-loaded terpesomes relative to the drug suspension. Moreover, the histopathological studies proved the safety and biocompatibility of the prepared terpesomes. Conclusion The obtained results verified the potential of the terpesomes for safe and effective ocular delivery of fenticonazole nitrate.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | | | - Mariam Hassan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed Adel Alaa-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, Fayoum University, Elfayoum, Egypt
| |
Collapse
|
75
|
Ahmed TA, Alzahrani MM, Sirwi A, Alhakamy NA. The Antifungal and Ocular Permeation of Ketoconazole from Ophthalmic Formulations Containing Trans-Ethosomes Nanoparticles. Pharmaceutics 2021; 13:151. [PMID: 33498849 PMCID: PMC7912274 DOI: 10.3390/pharmaceutics13020151] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/10/2021] [Accepted: 01/21/2021] [Indexed: 01/18/2023] Open
Abstract
Ketoconazole (KET), a synthetic imidazole broad-spectrum antifungal agent, is characterized by its poor aqueous solubility and high molecular weight, which might hamper its corneal permeation. The aim was to develop an ophthalmic formulation loaded with optimized trans-ethosomal vesicles to enhance KET ocular permeation, antifungal activity, rapid drug drainage, and short elimination half-life. Four formulation factors affecting the vesicles' size, zeta potential, entrapment efficiency, and flexibility of the trans-ethosomes formulations were optimized. The optimum formulation was characterized, and their morphological and antifungal activity were studied. Different ophthalmic formulations loaded with the optimized vesicles were prepared and characterized. The ocular irritation and in vivo corneal permeation were investigated. Results revealed that the drug-to-phospholipid-molar ratio, the percentage of edge activator, the percentage of ethanol, and the percentage of stearyl amine significantly affect the characteristics of the vesicles. The optimized vesicles were spherical and showed an average size of 151.34 ± 8.73 nm, a zeta potential value of +34.82 ± 2.64 mV, an entrapment efficiency of 94.97 ± 5.41%, and flexibility of 95.44 ± 4.33%. The antifungal activity of KET was significantly improved following treatment with the optimized vesicles. The developed in situ gel formulations were found to be nonirritating to the cornea. The trans-ethosomes vesicles were able to penetrate deeper into the posterior eye segment without any toxic effects. Accordingly, the in situ developed gel formulation loaded with KET trans-ethosomes vesicles represents a promising ocular delivery system for the treatment of deep fungal eye infections.
Collapse
Affiliation(s)
- Tarek A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.); (N.A.A.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt
| | - Maram M. Alzahrani
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.); (N.A.A.)
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Alaa Sirwi
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.M.A.); (N.A.A.)
| |
Collapse
|
76
|
Kassem AA, Abd El-Alim SH. Vesicular Nanocarriers: A Potential Platform for Dermal and Transdermal Drug Delivery. NANOPHARMACEUTICALS: PRINCIPLES AND APPLICATIONS VOL. 2 2021. [DOI: 10.1007/978-3-030-44921-6_5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
77
|
Ghose A, Nabi B, Rehman S, Md S, Alhakamy NA, Ahmad OAA, Baboota S, Ali J. Development and Evaluation of Polymeric Nanosponge Hydrogel for Terbinafine Hydrochloride: Statistical Optimization, In Vitro and In Vivo Studies. Polymers (Basel) 2020; 12:polym12122903. [PMID: 33287406 PMCID: PMC7761813 DOI: 10.3390/polym12122903] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022] Open
Abstract
Terbinafine hydrochloride, although one of the prominent antifungal agents, suffers from low drug permeation owing to its hydrophobic nature. The approach of nanosponge formulation may thus help to resolve this concern. Thus, the present research was envisioned to fabricate the nanosponge hydrogel of terbinafine hydrochloride for topical delivery since nanosponge augments the skin retentivity of the drug. The optimized formulation was obtained using Box Behnken Design. The dependent and independent process parameters were also determined wherein polyvinyl alcohol (%), ethylcellulose (%), and tween 80 (%) were taken as independent process parameters and particle size, polydispersity index (PDI), and entrapment efficiency (EE) were the dependent parameters. The nanosponge was then incorporated into the hydrogel and characterized. In-vitro drug release from the hydrogel was 90.20 ± 0.1% which was higher than the drug suspension and marketed formulation. In vitro permeation potential of the developed formulation through rat skin showed a flux of 0.594 ± 0.22 µg/cm2/h while the permeability coefficient was 0.059 ± 0.022 cm/s. Nanosponge hydrogel was evaluated for non-irritancy and antifungal activity against C. albicans and T. rubrum confirming the substantial outcome. Tape stripping studies exhibited ten times stripping off the skin quantified 85.6 ± 0.21 μg/cm2. The confocal analysis justified the permeation potential of the prepared hydrogel. The mean erythemal score was 0.0, confirming that the prepared hydrogel did not cause erythema or oedema. Therefore, based on results obtained, nanosponge hydrogel formulation is a potential carrier for efficient topical delivery of terbinafine hydrochloride.
Collapse
Affiliation(s)
- Aditee Ghose
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Bushra Nabi
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Saleha Rehman
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Shadab Md
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (O.A.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (O.A.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmad
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (S.M.); (N.A.A.); (O.A.A.A.)
- Center of Excellence for Drug Research & Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sanjula Baboota
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India; (A.G.); (B.N.); (S.R.); (S.B.)
- Correspondence: or ; Tel.: +91-9811312247; Fax: +91-11-2605-9663
| |
Collapse
|
78
|
Sahu SK, Raj R, Raj PM, Alpana R. Topical Lipid Based Drug Delivery Systems for Skin Diseases: A Review. CURRENT DRUG THERAPY 2020. [DOI: 10.2174/1574885513666181112153213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Treatment of skin ailments through systemic administration is limited due to toxicity and
patients discomfort. Hence, lower risk of systemic side effects from topical dosage forms like ointments,
creams, emulsions and gels is more preferred for the treatment of skin disease. Application
of lipid based carriers in drug delivery in topical formulations has recently become one of the major
approaches to improve drug permeation, safety, and effectiveness. These delivery systems include
liposomes, ethosomes, transfersomes, Nanoemulsions (NEs), Solid Lipid Nanoparticles (SLNs)
Nanostructured Lipid Carriers (NLCs) and micelles. Most of the liposomes and SLNs based products
are in the market while some are under investigation. Transcutaneous delivery of therapeutics
to the skin layer by novel lipid based carriers has enhanced topical therapy for the treatment of skin
ailments. This article covers an overview of the lipid-based carriers for topical uses to alleviate skin
diseases.
Collapse
Affiliation(s)
- Suresh Kumar Sahu
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Rakesh Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Pooja Mongia Raj
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| | - Ram Alpana
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur (CG)-495009, India
| |
Collapse
|
79
|
Mohsen AM, Salama A, Kassem AA. Development of acetazolamide loaded bilosomes for improved ocular delivery: Preparation, characterization and in vivo evaluation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101910] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
80
|
Al-Maghrabi PM, Khafagy ES, Ghorab MM, Gad S. Influence of formulation variables on miconazole nitrate-loaded lipid based nanocarrier for topical delivery. Colloids Surf B Biointerfaces 2020; 193:111046. [PMID: 32416518 DOI: 10.1016/j.colsurfb.2020.111046] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/24/2020] [Accepted: 04/10/2020] [Indexed: 12/11/2022]
Abstract
The purpose of this study was to develop miconazole nitrate (MN) based solid lipid nano-carrier formulae for topical delivery to enhance its antifungal effectiveness. Miconazole nitrate loaded Solid lipid nanoparticles (MN-SLNs) were formulated using a high shear homogenization technique characterized by particle size, polydispersity index (PI), trapping efficiency (EE percent), drug loading (DL percent) and zeta potential (ZP) characteristics. Furthermore, the optimized formulae were investigated for in-vitro release, ex-vivo study, skin toxicity test, and antifungal activity. With a particle size range of 244.2 ± 27.2 nm to 493.6 ± 35.3 nm, the selected MN-SLNs were spherical shaped. A high EE product percentage ranging from 79.38 ± 2.35 percent to 95.92 ± 6.12 percent and Zeta potential ZP values ranging from-21.6 ± 7.05 mV to-31.4 ± 6.84 mV suggesting strong stability was achieved. A controlled release of MN from the SLNs up to 48 h was shown in-vitro release study. The ex-vivo study showed that the selected MN-SLN (F4) mixture exhibited higher MN flux in the skin than a 1% MN solution. Moreover, selected MN-SLN (F4) has demonstrated a higher zone of inhibition against Candida albicans than a simple drug solution. MN-SLN (F4) had the lowest toxicity value for the skin. Besides, the MN-SLNs (F4) substantially reported antifungal activity with the least histopathological improvements compared to MN-solution utilizing immune-suppressing albino rats with induced candidiasis fungal infection. It can be fulfilled that SLNs can be acquired as a promising carrier for topical delivery of poorly soluble MN.
Collapse
Affiliation(s)
- Passant M Al-Maghrabi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - El-Sayed Khafagy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt; Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Mamdouh M Ghorab
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Shadeed Gad
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt.
| |
Collapse
|
81
|
Suri R, Neupane YR, Kohli K, Jain GK. Polyoliposomes: novel polyol-modified lipidic nanovesicles for dermal and transdermal delivery of drugs. NANOTECHNOLOGY 2020; 31:355103. [PMID: 32380490 DOI: 10.1088/1361-6528/ab912d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Various lipid nanovesicular systems have been developed with the aim to enhance the delivery of drugs via transdermal route. However, their clinical applications are often limited due to the barrier nature of skin and lack of flexibility. Herein, we have modified the conventional nanoliposomes (CLs) prepared by a thin-film hydration method by the addition of a polyol (glycerol) to form novel lipid nanovesicular structures termed 'POLYOLIPOSOMES' (PLs). They were further named as PL-B (before film formation) and PL-A (after film formation), depending on the stage of glycerol addition during production. Optimized CLs, PL-B and PL-A showed spherical nanovesicles and hydrodynamic diameter of 181.3 ± 4.11 nm, 114.2 ± 7.21 nm and 170.2 ± 6.51 nm, respectively. PLs showed significantly higher % entrapment efficiency and deformability index in comparison to CLs, indicating their higher flexibility. Furthermore, DSC and attenuated total relection (ATR)-Fourier transform infrared (FTIR) studies revealed the intercalation of glycerol into the lipid bilayer of PLs and interaction between nanovesicles and skin. Moreover, ex vivo and in vivo skin permeation studies confirmed the enhanced drug delivery of PLs via the transdermal route. Taken together, these results illustrate the potential of PLs as a novel lipid nanovesicular system for drug delivery via the transdermal route for both systematic (PL-B) as well as cutaneous diseases (PL-A).
Collapse
Affiliation(s)
- Reshal Suri
- Department of Pharmaceutics, School of Pharmaceutical Education & Research, Jamia Hamdard, New Delhi 110062, India
| | | | | | | |
Collapse
|
82
|
Abdellatif MM, Khalil IA, Elakkad YE, Eliwa HA, Samir TM, Al-Mokaddem AK. Formulation and Characterization of Sertaconazole Nitrate Mucoadhesive Liposomes for Vaginal Candidiasis. Int J Nanomedicine 2020; 15:4079-4090. [PMID: 32606665 PMCID: PMC7295534 DOI: 10.2147/ijn.s250960] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/11/2020] [Indexed: 12/22/2022] Open
Abstract
Purpose The aim of this study is to develop efficient localized therapy of sertaconazole nitrate for the treatment of vaginal candidiasis. Methods Sertaconazole nitrate-loaded cationic liposomes were prepared by thin-film hydration method and coated with different concentrations of pectin (0.05%, 0.1% and 0.2%) to develop mucoadhesive liposomes. The formulated mucoadhesive vesicles were characterized in terms of morphology, entrapment efficiency, particle size, zeta value, mucoadhesive properties and drug release. The selected formula was incorporated into a gel base and further characterized by an ex vivo permeation study in comparison with conventional sertaconazole gel. Also, the in vivo study was performed to assess the efficacy of sertaconazole mucoadhesive liposomal gel in treating rats with vaginal candidiasis. Results The mucoadhesive liposomes were spherical. Coating liposomes with pectin results in increased entrapment efficiency and particle size compared with uncoated vesicles. On the contrary, zeta values were reduced upon coating liposomes with pectin indicating efficient coating of liposomes with pectin. Mucoadhesive liposomes showed a more prolonged and sustained drug release compared with uncoated liposomes. Ex vivo study results showed that mucoadhesive liposomal gel increased sertaconazole tissue retention and reduced drug tissue penetration. In the invivo study, the mucoadhesive liposomal gel showed a significant reduction in the microbial count with a subsequent reduction in inflammatory responses with the lowest histopathological change compared with conventional gel. Conclusion The study confirmed the potentiality of employing mucoadhesive liposomes as a successful carrier for the vaginal delivery of antifungal drugs.
Collapse
Affiliation(s)
- Menna M Abdellatif
- Department of Industrial Pharmacy, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Islam A Khalil
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Yara E Elakkad
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Tamer M Samir
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Asmaa K Al-Mokaddem
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
83
|
Potential treatment of arthritis with an optimized Mometasone Furoate loaded-ethosomal gel in carrageenan-induced rat joint arthritis. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
84
|
Lai F, Caddeo C, Manca ML, Manconi M, Sinico C, Fadda AM. What's new in the field of phospholipid vesicular nanocarriers for skin drug delivery. Int J Pharm 2020; 583:119398. [DOI: 10.1016/j.ijpharm.2020.119398] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/29/2020] [Accepted: 04/30/2020] [Indexed: 01/24/2023]
|
85
|
Nayak D, Tawale RM, Aranjani JM, Tippavajhala VK. Formulation, Optimization and Evaluation of Novel Ultra-deformable Vesicular Drug Delivery System for an Anti-fungal Drug. AAPS PharmSciTech 2020; 21:140. [PMID: 32419032 DOI: 10.1208/s12249-020-01681-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/09/2020] [Indexed: 01/08/2023] Open
Abstract
The present study is aimed at enhancing the skin penetration of ketoconazole by formulating it as transethosome. Ketoconazole-loaded transethosome formulations were prepared by conventional thin film evaporation and hydration method and were optimized using concentration of edge activator (span 80), ethanol and sonication time as factors and particle size, polydispersity index and entrapment efficiency as responses. The optimized formulation was further evaluated for in vitro diffusion, anti-fungal activity, ex vivo penetration and in vivo pharmacodynamic activity. The results of in vitro drug diffusion and ex vivo skin penetration studies demonstrated that the amount of drug diffused and penetrated through the skin was increased. Optimized transethosomes showed enhanced in vitro antifungal and in vivo pharmacodynamic activities against Candida albicans in Wistar albino rats when compared to conventional liposomes. Therefore, the developed ketoconazole encapsulated transethosome formulation is capable of enhancing the skin penetration of the drug by overcoming the stratum corneum barrier function and acting as an effective drug delivery system for ketoconazole through the skin for its anti-fungal activity.
Collapse
|
86
|
Efficient biosynthesis of (R)-2-chloro-1-(2, 4-dichlorophenyl) ethanol using a mutant short-chain dehydrogenase from Novosphingobium aromaticivorans. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
87
|
Naguib MJ, Salah S, Abdel Halim SA, Badr-Eldin SM. Investigating the potential of utilizing glycerosomes as a novel vesicular platform for enhancing intranasal delivery of lacidipine. Int J Pharm 2020; 582:119302. [PMID: 32276091 DOI: 10.1016/j.ijpharm.2020.119302] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
Lacidipine is a potent dihydropyridine calcium channel blocker used for management of hypertension and atherosclerosis. The drug has low and fluctuating oral bioavailability owing to its extensive hepatic first-pass metabolism and reduced water solubility. Accordingly, this work aimed at overcoming the aforementioned challenges through the formulation of intranasal nano-sized lacidipine glycerosomes. Box-Behnken was successfully employed for the formulation and in vitro optimization of the glycerosomes. Statistical analysis revealed that cholesterol concentration exhibited a significant effect on the vesicle size, while Phospholipon® 90G and glycerol concentrations exhibited significant effects on both entrapment efficiency and deformability index. The optimized formulation showed spherical shape, good deformability, vesicular size of 220.25 nm, entrapment efficiency of 61.97%, and enhanced ex vivo permeation by 3.65 fold compared to lacidipine suspension. Confocal laser scattering microscope revealed higher penetration depth via nasal mucosa for rhodamine labelled glycerosomes (up to 60 µm) in comparison to rhoadamine dye solution (26 µm). In addition, the optimized lacidipine glycerosomes caused significant reduction in methylprednisolone acetate-induced hypertension in rats for up to 24 h in comparison to oral drug suspension. Histopathological assessment showed intact nasal mucosal epithelial lining with no signs of inflammation or necrosis confirming the safety and tolerability of the proposed glycerosomes. The declared results highlights the potential of utilizing the proposed glycerosomes as safe and effective platform for intranasal delivery of lacidipine.
Collapse
Affiliation(s)
- Marianne J Naguib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salwa Salah
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Sally A Abdel Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Shaimaa M Badr-Eldin
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia; Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| |
Collapse
|
88
|
Thakur K, Sharma G, Singh B, Katare OP. Topical Drug Delivery of Anti-infectives Employing Lipid-Based Nanocarriers: Dermatokinetics as an Important Tool. Curr Pharm Des 2019; 24:5108-5128. [PMID: 30657036 DOI: 10.2174/1381612825666190118155843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 01/11/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND The therapeutic approaches for the management of topical infections have always been a difficult approach due to lack of efficacy of conventional topical formulations, high frequency of topical applications and non-patient compliance. The major challenge in the management of topical infections lies in antibiotic resistance which leads to severe complications and hospitalizations resulting in economic burden and high mortality rates. METHODS Topical delivery employing lipid-based carriers has been a promising strategy to overcome the challenges of poor skin permeation and retention along with large doses which need to be administered systemically. The use of lipid-based delivery systems is a promising strategy for the effective topical delivery of antibiotics and overcoming drug-resistant strains in the skin. The major systems include transfersomes, niosomes, ethosomes, solid lipid nanoparticles, nanostructured lipid carriers, microemulsion and nanoemulsion as the most promising drug delivery approaches to treat infectious disorders. The main advantages of these systems include lipid bilayer structure which mimics the cell membrane and can fuse with infectious microbes. The numerous advantages associated with nanocarriers like enhanced efficacy, improvement in bioavailability, controlled drug release and ability to target the desired infectious pathogen have made these carriers successful. CONCLUSION Despite the number of strides taken in the field of topical drug delivery in infectious diseases, it still requires extensive research efforts to have a better perspective of the factors that influence drug permeation along with the mechanism of action with regard to skin penetration and deposition. The final objective of the therapy is to provide a safe and effective therapeutic approach for the management of infectious diseases affecting topical sites leading to enhanced therapeutic efficacy and patient-compliance.
Collapse
Affiliation(s)
- Kanika Thakur
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Gajanand Sharma
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Bhupindar Singh
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| | - Om Prakash Katare
- University Institute of Pharmaceutical Sciences, UGC Centre of Advanced Studies, Panjab University, Chandigarh, 160 014, India
| |
Collapse
|
89
|
Albash R, El-Nabarawi MA, Refai H, Abdelbary AA. Tailoring of PEGylated bilosomes for promoting the transdermal delivery of olmesartan medoxomil: in-vitro characterization, ex-vivo permeation and in-vivo assessment. Int J Nanomedicine 2019; 14:6555-6574. [PMID: 31616143 PMCID: PMC6699521 DOI: 10.2147/ijn.s213613] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/10/2019] [Indexed: 01/02/2023] Open
Abstract
Introduction The intention of this work was to load olmesartan medoxomil (OLM), a sparsely water soluble antihypertensive bioactive with low oral bioavailability (26%), into PEGylated bilosomes (PBs) for augmenting its transdermal delivery. PBs contain PEGylated single chain edge activator besides the components of traditional bilosomes (Span 60, cholesterol and bile salts). The PEG gives further resilience to vesicle membrane and is speculated to augment both permeability and bioavailability of OLM. Methods A 24 factorial experiment was constructed to inspect the impact of diverse variables on vesicles’ features and sort out the optimal formula adopting Design Expert® software utilizing thin film hydration technique. Vesicles’ evaluation was done by finding out entrapment efficiency percent (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP) and amount of drug released after 6 hrs (Q6h). The optimal formula was selected and characterized for further investigations. Results The optimal formula (PB15) showed spherical vesicles with EE% of 72.49±0.38%, PS of 559.30±10.70 nm, PDI of 0.57±0.15, ZP of −38.35±0.65 mV and Q6h of 59.60±0.24%. PB15 showed higher deformability index (28.39±5.71 g) compared to traditional bilosomes (5.88±0.90 g) and transethosomes (14.94±0.63 g). Further, PB15 showed superior skin permeation from rat’s skin relative to the drug suspension. Moreover, confocal laser scanning microscopy examination revealed efficient penetration of the fluoro-labeled PB15 through skin. Histopathological study ensured the safety of PB15. In addition, in-vivo skin deposition studies showed higher OLM deposition in rat’s skin from PB15 compared to transethosomes and OLM suspension. Furthermore, pharmacodynamic and pharmacokinetic studies performed using male Wistar rats and male Albino rabbits, respectively, showed the superiority of PB15 over oral tablets. PB15 was found to have significantly higher AUC0–48 and AUC0–∞ relative to the oral tablets. As well, the relative bioavailability of PB15 was found to be 235.04%. Conclusion Overall, the obtained results confirmed the creditable effect of PB15 for transdermal delivery.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Aly A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| |
Collapse
|
90
|
Abd El-Alim SH, Kassem AA, Basha M, Salama A. Comparative study of liposomes, ethosomes and transfersomes as carriers for enhancing the transdermal delivery of diflunisal: In vitro and in vivo evaluation. Int J Pharm 2019; 563:293-303. [DOI: 10.1016/j.ijpharm.2019.04.001] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 03/31/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022]
|
91
|
Albash R, Abdelbary AA, Refai H, El-Nabarawi MA. Use of transethosomes for enhancing the transdermal delivery of olmesartan medoxomil: in vitro, ex vivo, and in vivo evaluation. Int J Nanomedicine 2019; 14:1953-1968. [PMID: 30936696 PMCID: PMC6421897 DOI: 10.2147/ijn.s196771] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Introduction and aim Olmesartan medoxomil (OLM) is an antihypertensive drug with low oral bioavailability due to extensive first-pass metabolism. This study aimed to prepare transetho somes (TEs) for enhancing the transdermal delivery of OLM to avoid its oral problems. Methods TE formulae were prepared utilizing 51.31 full factorial design using various surfactants (SAAs) and different phospholipid-to-SAA ratios. The formulae were characterized regarding their entrapment efficiency percentage (EE%), particle size (PS), polydispersity index (PDI), zeta potential (ZP), and the amount of drug released after 6 hours (Q6h). Design Expert® software was employed to select the optimum formula. Results The optimum formula (TE14) had an EE% of 58.50%±1.30%, PS of 222.60±2.50 nm, PDI of 0.11±0.06, ZP of -20.80±0.30 mV, and Q6h of 67.40%±0.20%. In addition, TE14 was compared to transferosomes (TFs) in terms of elasticity and was found to show higher deformability index. Further, evaluation of ex vivo permeation using both rat and shed snake skin showed higher permeability of TE14 compared to TFs and OLM suspension. Confocal laser scanning microscopy confirmed the capability of the fluorolabeled TE14 to penetrate deep within the skin, while the histopathological study confirmed its safety. TE14 successfully maintained normal blood pressure values of rats up to 24 hours. Moreover, TE14 showed superiority in dermatokinetic study when compared with drug suspension. Conclusion Taken together, the obtained results confirmed the potential of employing TEs as a successful carrier for the transdermal delivery of OLM.
Collapse
Affiliation(s)
- Rofida Albash
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Aly A Abdelbary
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt, .,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza, Egypt
| | - Hanan Refai
- Department of Pharmaceutics, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Giza, Egypt
| | - Mohamed A El-Nabarawi
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, Egypt,
| |
Collapse
|
92
|
El-Feky GS, El-Naa MM, Mahmoud AA. Flexible nano-sized lipid vesicles for the transdermal delivery of colchicine; in vitro/in vivo investigation. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2018.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
93
|
Peram MR, Jalalpure S, Kumbar V, Patil S, Joshi S, Bhat K, Diwan P. Factorial design based curcumin ethosomal nanocarriers for the skin cancer delivery: in vitro evaluation. J Liposome Res 2019; 29:291-311. [PMID: 30526186 DOI: 10.1080/08982104.2018.1556292] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Melanoma is the most deadly and life-threatening form of skin cancer with progressively higher rates of incidence worldwide. The objective of the present investigation is to develop and to statistically optimize and characterize curcumin (CUR) loaded ethosomes for treatment of melanoma. A two factor, three level (32) factorial design approach was employed for the optimization of ethosomes. The prepared ethosomes were evaluated for size, zeta potential, entrapment efficiency, in vitro skin permeation and deposition ability. The optimized ethosomal formulation was evaluated for in vitro cytotoxicity and cellular uptake studies using A375 human melanoma cells. The optimized formulation has imperfect round shaped unilamellar structures with a mean vesicle size of 247 ± 5.25 nm and an entrapment efficiency of 92.24 ± 0.20%. The in vitro skin permeation studies proved the superiority of ethosomes over the traditional liposomes in terms of the amount of drug permeated and deposited in skin layers. Fluorescence microscopy showed the enhanced penetration of ethosomes into the deeper layers of the skin. In vitro cytotoxicity and cellular uptake studies revealed that curcumin ethosomes have significantly improved cytotoxicity and cellular uptake in A375 human melanoma cell lines. The colony formation assay results showed that curcumin ethosomes have a superior antiproliferative effect as they effectively inhibit the clonogenic ability of A375 cells. The flow cytometry results indicate that curcumin ethosomes induce cell death in A375 cells by apoptosis mechanism. The present study provides a strong rationale and motivation for further investigation of newly developed curcumin ethosomes as a potential therapeutic strategy for melanoma treatment.
Collapse
Affiliation(s)
- Malleswara Rao Peram
- a Department of Pharmaceutics, Maratha Mandal's College of Pharmacy , Belagavi , India.,b Central Research Laboratory, Maratha Mandal's NGH Institute of Dental Sciences and Research Centre , Belagavi , India
| | - Sunil Jalalpure
- c Department of Pharmacognosy and Phytochemistry, College of Pharmacy, KLE Academy of Higher Education and Research , Belagavi , India.,d Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research , Belagavi , India
| | - Vijay Kumbar
- a Department of Pharmaceutics, Maratha Mandal's College of Pharmacy , Belagavi , India
| | - Sachin Patil
- e Department of Pharmaceutics, College of Pharmacy, KLE Academy of Higher Education and Research , Belagavi , India
| | - Sumit Joshi
- f Department of Pharmacology, KLE Society's College of Pharmacy , Nipani , India
| | - Kishore Bhat
- a Department of Pharmaceutics, Maratha Mandal's College of Pharmacy , Belagavi , India
| | - Prakash Diwan
- a Department of Pharmaceutics, Maratha Mandal's College of Pharmacy , Belagavi , India
| |
Collapse
|
94
|
Khalil IA, Ali IH, El-Sherbiny IM. Noninvasive biodegradable nanoparticles-in-nanofibers single-dose ocular insert: in vitro, ex vivo and in vivo evaluation. Nanomedicine (Lond) 2019; 14:33-55. [DOI: 10.2217/nnm-2018-0297] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Aim: This study involves, for the first time, the development of mucoadhesive biodegradable polymeric-multilayered nanoparticles-in-nanofibers (NPs-in-NFs) matrix as an innovative single-dose noninvasive ocular-insert that could substitute conventional ocular dosage-forms. Materials & methods: Azithromycin-loaded poly(lactic-co-glycolic acid) copolymer/pluronic NPs were developed then incorporated into electrospun polyvinylpyrrolidone NFs, and tested for their efficient treatment of ocular bacterial infection. Results: Release and permeation studies proved the ability of the insert to control drug release over 10 days. Conclusion: The incorporation of NPs into NFs achieved several other benefits like increasing ocular residence and contact time with conjunctival tissue, accurate dose delivery, sustaining drug release with constant rate, reducing frequency of administration, improving bioavailability along with decreasing incidence of visual and systemic side effects.
Collapse
Affiliation(s)
- Islam A Khalil
- Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy & Drug Manufacturing, Misr University of Science & Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Isra H Ali
- Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomaterials Lab, Center of Material Science (CMS), Zewail City of Science & Technology, 6th of October, Giza 12578, Egypt
| |
Collapse
|
95
|
Bubic Pajic N, Nikolic I, Mitsou E, Papadimitriou V, Xenakis A, Randjelovic D, Dobricic V, Smitran A, Cekic N, Calija B, Savic S. Biocompatible microemulsions for improved dermal delivery of sertaconazole nitrate: Phase behavior study and microstructure influence on drug biopharamaceutical properties. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2018.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
96
|
Corneal targeted Sertaconazole nitrate loaded cubosomes: Preparation, statistical optimization, in vitro characterization, ex vivo permeation and in vivo studies. Int J Pharm 2018; 553:386-397. [PMID: 30393167 DOI: 10.1016/j.ijpharm.2018.10.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 10/23/2018] [Accepted: 10/25/2018] [Indexed: 01/19/2023]
Abstract
Sertaconazole nitrate (STZ) is a poorly soluble antifungal drug commonly used for treating fungal skin infections. Introducing it as a new treatment option for the management of fungal keratitis, requires the development of a delivery system capable of targeting the infected cornea with an adequate STZ concentration. Hence, Sertaconazole nitrate loaded cubosomes (STZ-CUBs) were prepared, characterized and optimized based on a 33 central composite face-centred design. Optimized formulation (CUB-opt) showed maximum desirability (0.905), with solubilization efficiency (SE%) of 94.50 ± 0.51%, particle size (PS) of 216.55 ± 2.33 nm, polydispersity index (PDI) of 0.229 ± 0.11 and zeta potential (ZP) of 34.00 ± 6.93 mV. Under the transmission electron microscope, it showed discrete cubic shaped structures. Moreover, it exhibited a promising mucoadhesive behavior, terminal sterilization stability, and storage stability. Ex vivo corneal permeation study revealed its ability to enhance the steady state flux (Jss) and the permeability coefficient (KP) of STZ, compared to STZ-suspension. Finally, CUB-opt formulation was found to be safe on the corneal tissues in the in vivo corneal tolerance study, and demonstrated a superior corneal penetration power in the in vivo corneal uptake study.
Collapse
|
97
|
Sedeky AS, Khalil IA, Hefnawy A, El-Sherbiny IM. Development of core-shell nanocarrier system for augmenting piperine cytotoxic activity against human brain cancer cell line. Eur J Pharm Sci 2018; 118:103-112. [PMID: 29597041 DOI: 10.1016/j.ejps.2018.03.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/27/2018] [Accepted: 03/26/2018] [Indexed: 01/12/2023]
Abstract
Brain tumor has a low prognosis with only 15% survival rate (5 years after diagnosis). Many of the current therapeutics have limited activity due to their inability to cross the blood brain barrier which retards drug accumulation in tumor site and causes drug resistance. Piperine, a phytochemical drug with poor solubility, could be an alternative to current therapeutics after evading its solubility and permeability limitations. Piperine micellization was optimized to improve drug solubility. Positively charged trimethyl-chitosan was synthesized then electrostatically adsorbed onto piperine nanomicelles forming core-shell nanoparticles. Physicochemical and morphological characterizations, and in-vitro release were performed. Cytotoxicity on human brain cancer cell line (Hs683) was evaluated using IC50 determination, cell cycle arrest analysis, apoptosis and enzyme-linked immunosorbent assay. Optimum piperine-loaded core-shell nanoparticles were successfully fabricated with double-phase release model. Significant improvement in cytotoxicity than free drug was noted with increasing in G2/M-phase and pre-GI-phase population, apoptotic/necrotic rates and inhibition of CDK2a.
Collapse
Affiliation(s)
- Abanoub S Sedeky
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Islam A Khalil
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy and Drug Manufacturing, Misr University of Science and Technology (MUST), 6th of October, Giza 12566, Egypt
| | - Amr Hefnawy
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Ibrahim M El-Sherbiny
- Nanomedicine Lab, Center of Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt.
| |
Collapse
|
98
|
Design, Optimization and Characterization of a Transfersomal Gel Using Miconazole Nitrate for the Treatment of Candida Skin Infections. Pharmaceutics 2018; 10:pharmaceutics10010026. [PMID: 29473897 PMCID: PMC5874839 DOI: 10.3390/pharmaceutics10010026] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 11/16/2022] Open
Abstract
Miconazole nitrate (MIC) is an antifungal drug used for treatment of superficial fungal infections. However, it has low skin permeability. Hence, the objective of this study was to prepare miconazole nitrate using Transfersomes to overcome the barrier function of the skin. MIC Transfersomes were prepared using a thin lipid film hydration technique. The prepared Transfersomes were evaluated with respect to entrapment efficiency (EE%), particle size, and quantity of in vitro drug released to obtain an optimized formulation. The optimized formulation of MIC Transfersomes was incorporated into a Carbapol 934 gel base which was evaluated in comparison with a marketed product (Daktarin® cream 2%) for drug content, pH, spreadability, viscosity, in vitro permeation, and in vitro and in vivo antifungal activity. The prepared MIC Transfersomes had a high EE% ranging from (67.98 ± 0.66%) to (91.47 ± 1.85%), with small particle sizes ranging from (63.5 ± 0.604 nm) to (84.5 ± 0.684 nm). The in vitro release study suggested that there was an inverse relationship between EE% and in vitro release. The kinetic analysis of all release profiles was found to follow Higuchi's diffusion model. All independent variables had a significant effect on the dependent variables (p-values < 0.05). The prepared MIC transfersomal gel showed higher antifungal activity than Daktarin® cream 2%. Therefore, miconazole nitrate in the form of Transfersomes has the ability to penetrate the skin, overcoming the stratum corneum barrier.
Collapse
|
99
|
Habib BA, Sayed S, Elsayed GM. Enhanced transdermal delivery of ondansetron using nanovesicular systems: Fabrication, characterization, optimization and ex-vivo permeation study-Box-Cox transformation practical example. Eur J Pharm Sci 2018; 115:352-361. [PMID: 29407555 DOI: 10.1016/j.ejps.2018.01.044] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 01/11/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
Abstract
This study aimed to formulate suitable nanovesicles (NVs) for transdermal delivery of Ondansetron. It also illustrated a practical example for the importance of Box-Cox transformation. A 23 full factorial design was used to enable testing transfersomes, ethosomes, and transethosomes of Ondansetron simultaneously. The independent variables (IVs) studied were sodium taurocholate amount, ethanol volume in hydration medium and sonication time. The studied dependent variables (DVs) were: particle size (PS), zeta potential (ZP) and entrapment efficiency (EE). Polynomial equations were used to study the influence of IVs on each DV. Numerical multiple response optimization was applied to select an optimized formula (OF) with the goals of minimizing PS and maximizing ZP absolute value and EE. Box-Cox transformation was adopted to enable modeling PS raised to the power of 1.2 with an excellent prediction R2 of 1.000. ZP and EE were adequately represented directly with prediction R2 of 0.9549 and 0.9892 respectively. Response surface plots helped in explaining the influence of IVs on each DV. Two-sided 95% prediction interval test and percent deviation of actual values from predicted ones proved the validity of the elucidated models. The OF was a transfersomal formula with desirability of 0.866 and showed promising results in ex-vivo permeation study.
Collapse
Affiliation(s)
- Basant A Habib
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Ghada M Elsayed
- Department of Analytical Chemistry, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
100
|
Pajić NZB, Todosijević MN, Vuleta GM, Cekić ND, Dobričić VD, Vučen SR, Čalija BR, Lukić MŽ, Ilić TM, Savić SD. Alkyl polyglucoside vs. ethoxylated surfactant-based microemulsions as vehicles for two poorly water-soluble drugs: physicochemical characterization and in vivo skin performance. ACTA PHARMACEUTICA (ZAGREB, CROATIA) 2017; 67:415-439. [PMID: 29337676 DOI: 10.1515/acph-2017-0036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Two types of biocompatible surfactants were evaluated for their capability to formulate skin-friendly/non-irritant microemulsions as vehicles for two poorly water-soluble model drugs differing in properties and concentrations: alkyl polyglucosides (decyl glucoside and caprylyl/capryl glucoside) and ethoxylated surfactants (glycereth-7-caprylate/ caprate and polysorbate 80). Phase behavior, structural inversion and microemulsion solubilization potential for sertaconazole nitrate and adapalene were found to be highly dependent on the surfactants structure and HLB value. Performed characterization (polarized light microscopy, pH, electrical conductivity, rheological, FTIR and DSC measurements) indicated a formulation containing glycereth- 7-caprylate/caprate as suitable for incorporation of both drugs, whereas alkyl polyglucoside-based systems did not exhibit satisfying solubilization capacity for sertaconazole nitrate. Further, monitored parameters were strongly affected by sertaconazole nitrate incorporation, while they remained almost unchanged in adapalene-loaded vehicles. In addition, results of the in vivo skin performance study supported acceptable tolerability for all investigated formulations, suggesting selected microemulsions as promising carriers worth exploring further for effective skin delivery of model drugs.
Collapse
Affiliation(s)
- Nataša Z. Bubić Pajić
- Department of Pharmaceutical Technology and Cosmetology Faculty of Medicine, University of Banja Luka, 78000 Banja Luka Bosnia and Herzegovina
| | - Marija N. Todosijević
- Department of Pharmaceutical Technology and Cosmetology Faculty of Pharmacy, University of Belgrade, 11221 Belgrade , Serbia
| | - Gordana M. Vuleta
- Department of Pharmaceutical Technology and Cosmetology Faculty of Pharmacy, University of Belgrade, 11221 Belgrade , Serbia
| | - Nebojša D. Cekić
- Faculty of Technology, University of Niš, 16000 Leskovac , Serbia
- DCP Hemigal, 16000 Leskovac , Serbia
| | - Vladimir D. Dobričić
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy University of Belgrade, Belgrade , Serbia
| | - Sonja R. Vučen
- School of Pharmacy, University College Cork, Cork , Ireland
| | - Bojan R. Čalija
- Department of Pharmaceutical Technology and Cosmetology Faculty of Pharmacy, University of Belgrade, 11221 Belgrade , Serbia
| | - Milica Ž. Lukić
- Department of Pharmaceutical Technology and Cosmetology Faculty of Pharmacy, University of Belgrade, 11221 Belgrade , Serbia
| | - Tanja M. Ilić
- Department of Pharmaceutical Technology and Cosmetology Faculty of Pharmacy, University of Belgrade, 11221 Belgrade , Serbia
| | - Snežana D. Savić
- Department of Pharmaceutical Technology and Cosmetology Faculty of Pharmacy, University of Belgrade, 11221 Belgrade , Serbia
| |
Collapse
|