51
|
Stoiber P, Ekladious I, Zhao Q, Colson YL, Schaus SE, Hansen U, Grinstaff MW. Expansile Nanoparticles Encapsulate Factor Quinolinone Inhibitor 1 and Accumulate in Murine Liver upon Intravenous Administration. Biomacromolecules 2020; 21:1499-1506. [PMID: 32101401 DOI: 10.1021/acs.biomac.0c00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Expansile nanoparticles (eNPs) are a promising pH-responsive polymeric drug delivery vehicle, as demonstrated in multiple intraperitoneal cancer models. However, previous delivery routes were limited to intraperitoneal injection and to a single agent, paclitaxel. In this study, we preliminarily evaluate the biodistribution and in vivo toxicity of eNPs in mice after intravenous injection. The eNPs localize predominantly to the liver, without detectable acute toxicity in the liver or other key organs. On the basis of these results, we encapsulated FQI1, a promising lead compound for treatment of hepatocellular carcinoma, in eNPs. eNPs are taken up by cancerous and noncancerous human liver cells in vitro, although at different rates. FQI1-loaded eNPs release FQI1 in a pH-dependent manner and limit proliferation equivalently to unencapsulated FQI1 in immortalized hepatocytes in vitro. eNPs are a versatile platform delivery system for therapeutic compounds and have potential utility in the treatment of liver disease.
Collapse
Affiliation(s)
- Patrick Stoiber
- MCBB Graduate Program and Department of Biology, Boston University, Boston, Massachusetts 02215, United States
| | - Iriny Ekladious
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Qing Zhao
- Department of Pathology and Laboratory Medicine, Boston University Medical Center, Boston, Massachusetts 02118, United States
| | - Yolonda L Colson
- Division of Thoracic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02215, United States
| | - Scott E Schaus
- Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States.,Center for Molecular Discovery, Boston University, Boston, Massachusetts 02215, United States
| | - Ulla Hansen
- MCBB Graduate Program and Department of Biology, Boston University, Boston, Massachusetts 02215, United States
| | - Mark W Grinstaff
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States.,Department of Chemistry, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|
52
|
Ozturk K, Arslan FB, Tavukcuoglu E, Esendagli G, Calis S. Aggregation of chitosan nanoparticles in cell culture: Reasons and resolutions. Int J Pharm 2020; 578:119119. [DOI: 10.1016/j.ijpharm.2020.119119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
|
53
|
Öztürk AA, Namlı İ, Güleç K, Kıyan HT. Diclofenac sodium loaded PLGA nanoparticles for inflammatory diseases with high anti-inflammatory properties at low dose: Formulation, characterization and in vivo HET-CAM analysis. Microvasc Res 2020; 130:103991. [PMID: 32105668 DOI: 10.1016/j.mvr.2020.103991] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 02/20/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022]
Abstract
The development of a new drug active substance is not only time-consuming and expensive, but also a chain of operations that often fails. However, increasing the bioavailability, effectiveness, safety, or targeting the drugs used in clinic by various methods, such as nanoparticles (NPs), may be a more effective way of using them in clinic. In addition, NP formulations are becoming increasingly popular in modern medical treatments. Angiogenesis, formation of new capillaries from a pre-existing one, fundamentally occurs in physiological processes such as wound healing, embryogenesis and menstrual cycle, also has a vital role in pathology of cancer, psoriasis, diabetic retinopathy and chronic inflammation. The Hen's Egg Test on the Chorioallantoic Membrane (HET-CAM) assay is a useful, well established and animal alternative in vivo procedure for evaluation of anti-inflammatory potentials and anti-irritant properties of nano drug delivery systems. In this study, diclofenac sodium (DS) loaded PLGA NPs were prepared and characterized. The particle size (PS) of DS-loaded PLGA NPs was between 114.7 and 124.8 nm and all NPs were monodisperse with negative zeta potential values. The encapsulation efficiency was in range of 41.4-77.8%. In vitro dissolution studies of NPs showed up to 24 h of DS release after the first 3 h of burst effect. The 3 h burst effect and 24 h release kinetics studied with DDSolver were found to be predominantly driven not only by one mechanism, by a combined mechanism of Fickian and non-Fickian. Solid state structures of formulations were clarified by DSC and FT-IR analysis. PS, EE% and release rates were found to be affected by the amount of DS added to the formulations. Increasing the amount of DS added to the formulations increased PS, while the EE% decreased. The release rates were affected by PS and the formulation with the lowest PS value showed slower release. The anti-inflammatory activity of optimum formulation (NP-1) was examined using in vivo HET-CAM assay. The anti-inflammatory activity results indicated that NP-1 coded NP formulation showed significantly good anti-inflammatory potential at low dose. As a result, a low dose high anti-inflammatory effect was achieved with the NP structure of DS. To the best of our knowledge this is the first study on in vivo anti-inflammatory activities of DS loaded PLGA NPs by HET-CAM.
Collapse
Affiliation(s)
- A Alper Öztürk
- Anadolu University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 26470 Eskişehir, Turkey.
| | - İrem Namlı
- Anadolu University, Graduate School of Health Sciences, Department of Pharmaceutical Technology, 26470 Eskişehir, Turkey
| | - Kadri Güleç
- Anadolu University, Graduate School of Health Sciences, Department of Analytical Chemistry, 26470 Eskişehir, Turkey
| | - H Tuba Kıyan
- Anadolu University, Faculty of Pharmacy, Department of Pharmacognosy, 26470 Eskişehir, Turkey
| |
Collapse
|
54
|
Caparica R, Júlio A, Araújo MEM, Baby AR, Fonte P, Costa JG, Santos de Almeida T. Anticancer Activity of Rutin and Its Combination with Ionic Liquids on Renal Cells. Biomolecules 2020; 10:biom10020233. [PMID: 32033222 PMCID: PMC7072522 DOI: 10.3390/biom10020233] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/24/2020] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
The renal cell carcinoma (RCC) is the most common type of kidney cancer. Identifying novel and more effective therapies, while minimizing toxicity, continues to be fundamental in curtailing RCC. Rutin, a bioflavonoid widely found in nature, has shown promising anticancer properties, but with limited applicability due to its poor water solubility and pharmacokinetics. Thus, the potential anticancer effects of rutin toward a human renal cancer cell line (786-O), while considering its safety in Vero kidney cells, was assessed, as well as the applicability of ionic liquids (ILs) to improve drug delivery. Rutin (up to 50 µM) did not show relevant cytotoxic effects in Vero cells. However, in 786-O cells, a significant decrease in cell viability was already observed at 50 µM. Moreover, exposure to rutin caused a significant increase in the sub-G1 population of 786-O cells, reinforcing the possible anticancer activity of this biomolecule. Two choline-amino acid ILs, at non-toxic concentrations, enhanced rutin’s solubility/loading while allowing the maintenance of rutin’s anticancer effects. Globally, our findings suggest that rutin may have a beneficial impact against RCC and that its combination with ILs ensures that this poorly soluble drug is successfully incorporated into ILs–nanoparticles hybrid systems, allowing controlled drug delivery.
Collapse
Affiliation(s)
- Rita Caparica
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.); (P.F.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Ana Júlio
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.); (P.F.)
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, Alcalá de Henares, 28871 Madrid, Spain
| | - Maria Eduarda Machado Araújo
- CQE, and Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande 1749-016 Lisboa, Portugal;
| | - André Rolim Baby
- Department of Pharmacy, School of Pharmaceutical Sciences, University of São Paulo, 580 Prof. Lineu Prestes Av., Bl. 15, São Paulo, SP 05508-900, Brazil;
| | - Pedro Fonte
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.); (P.F.)
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
- Center for Marine Sciences (CCMar), University of Algarve and Department of Chemistry and Pharmacy, 8005-139 Faro, Portugal
| | - João Guilherme Costa
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.); (P.F.)
- Correspondence: (J.G.C.); (T.S.d.A.); Tel.: +351-217515500 (T.S.d.A.)
| | - Tânia Santos de Almeida
- CBIOS—Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal; (R.C.); (A.J.); (P.F.)
- CQE, and Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, Campo Grande 1749-016 Lisboa, Portugal;
- Correspondence: (J.G.C.); (T.S.d.A.); Tel.: +351-217515500 (T.S.d.A.)
| |
Collapse
|
55
|
Hernández-Giottonini KY, Rodríguez-Córdova RJ, Gutiérrez-Valenzuela CA, Peñuñuri-Miranda O, Zavala-Rivera P, Guerrero-Germán P, Lucero-Acuña A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: effects of formulation parameters. RSC Adv 2020; 10:4218-4231. [PMID: 35495261 PMCID: PMC9049000 DOI: 10.1039/c9ra10857b] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/13/2020] [Indexed: 12/19/2022] Open
Abstract
This study presents the influence of the primary formulation parameters on the formation of poly-dl-lactic-co-glycolic nanoparticles by the emulsification-solvent evaporation, and the nanoprecipitation techniques. In the emulsification-solvent evaporation technique, the polymer and tensoactive concentrations, the organic solvent fraction, and the sonication amplitude effects were analyzed. Similarly, in the nanoprecipitation technique the polymer and tensoactive concentrations, the organic solvent fraction and the injection speed were varied. Additionally, the agitation speed during solvent evaporation, the centrifugation speeds and the use of cryoprotectants in the freeze-drying process were analyzed. Nanoparticles were characterized by dynamic light scattering, laser Doppler electrophoresis, and scanning electron microscopy, and the results were evaluated by statistical analysis. Nanoparticle physicochemical characteristics can be adjusted by varying the formulation parameters to obtain specific sizes and stable nanoparticles. Also, by adjusting these parameters, the nanoparticle preparation processes have the potential to be tuned to yield nanoparticles with specific characteristics while maintaining reproducible results.
Collapse
Affiliation(s)
| | | | | | - Omar Peñuñuri-Miranda
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Paul Zavala-Rivera
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Patricia Guerrero-Germán
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| | - Armando Lucero-Acuña
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo Mexico +52-662-259-2105
| |
Collapse
|
56
|
Jun Y, Xu J, Kim H, Park JE, Jeong YS, Min JS, Yoon N, Choi JY, Yoo J, Bae SK, Chung SJ, Yeo Y, Lee W. Carfilzomib Delivery by Quinic Acid-Conjugated Nanoparticles: Discrepancy Between Tumoral Drug Accumulation and Anticancer Efficacy in a Murine 4T1 Orthotopic Breast Cancer Model. J Pharm Sci 2020; 109:1615-1622. [PMID: 31945310 DOI: 10.1016/j.xphs.2020.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 11/07/2019] [Accepted: 01/07/2020] [Indexed: 12/26/2022]
Abstract
Despite being a major breakthrough in multiple myeloma therapy, carfilzomib (CFZ, a second-generation proteasome inhibitor drug) has been largely ineffective against solid cancer, possibly due to its pharmacokinetic drawbacks including metabolic instability. Recently, quinic acid (QA, a low-affinity ligand of selectins upregulated in peritumoral vasculature) was successfully utilized as a surface modifier for nanoparticles containing paclitaxel. Here, we designed QA-conjugated nanoparticles containing CFZ (CFZ@QANP; the surface of poly(lactic-co-glycolic acid) nanoparticles modified by conjugation with a QA derivative). Compared to the clinically used cyclodextrin-based formulation (CFZ-CD), CFZ@QANP enhanced the metabolic stability and in vivo exposure of CFZ in mice. CFZ@QANP, however, showed little improvement in suppressing tumor growth over CFZ-CD against the murine 4T1 orthotopic breast cancer model. CFZ@QANP yielded no enhancement in proteasomal inhibition in excised tumors despite having a higher level of remaining CFZ than CFZ-CD. These results likely arise from delayed, incomplete CFZ release from CFZ@QANP as observed using biorelevant media in vitro. These results suggest that the applicability of QANP may not be predicted by physicochemical parameters commonly used for formulation design. Our current results highlight the importance of considering drug release kinetics in designing effective CFZ formulations for solid cancer therapy.
Collapse
Affiliation(s)
- Yearin Jun
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jun Xu
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Hyungjun Kim
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Ji Eun Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoo-Seong Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jee Sun Min
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, South Korea
| | - Naeun Yoon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Ji Yoon Choi
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Jisu Yoo
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Soo Kyung Bae
- College of Pharmacy and Integrated Research Institute of Pharmaceutical Sciences, Catholic University of Korea, Bucheon, South Korea
| | - Suk-Jae Chung
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, West Lafayette, Indiana 47907
| | - Wooin Lee
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
57
|
|
58
|
Chen L, Ahmed AMQ, Deng Y, Cao D, Du H, Cui J, Lee BJ, Cao Q. Novel triptorelin acetate-loaded microspheres prepared by a liquid/oil/oil method with high encapsulation efficiency and low initial burst release. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
59
|
Influence of glyceryl behenate, tripalmitin and stearic acid on the properties of clarithromycin incorporated solid lipid nanoparticles (SLNs): Formulation, characterization, antibacterial activity and cytotoxicity. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101240] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
60
|
Öztürk AA, Yenilmez E, Özarda MG. Clarithromycin-Loaded Poly (Lactic- co-glycolic Acid) (PLGA) Nanoparticles for Oral Administration: Effect of Polymer Molecular Weight and Surface Modification with Chitosan on Formulation, Nanoparticle Characterization and Antibacterial Effects. Polymers (Basel) 2019; 11:E1632. [PMID: 31600969 PMCID: PMC6835525 DOI: 10.3390/polym11101632] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/26/2019] [Accepted: 09/26/2019] [Indexed: 01/26/2023] Open
Abstract
Clarithromycin (CLR) is a member of the macrolide antibiotic group. CLR has low systemic oral bioavailability and is a drug of class II of the Biopharmaceutical Classification System. In many studies, using nanoparticles (NPs) as a drug delivery system has been shown to increase the effectiveness and bioavailability of active drug substances. This study describes the development and evaluation of poly (lactic-co-glycolic acid) (PLGA) NPs and chitosan (CS)-coated PLGA NPs for oral delivery of CLR. NPs were obtained by nanoprecipitation technique and characterized in detail, and the effect of three molecular weights (Mw1: 7.000-17.000, Mw2: 38.000-54.000, Mw3: 50.000-190.000) of PLGA and CS coating on particle size (PS), zeta potential (ZP), entrapment efficiency (EE%), and release properties etc. were elucidated. Gastrointestinal stability and cryoprotectant effect tests were performed on the NPs. The PS of the prepared NPs were in the range of 178 to 578 nm and they were affected by the Mw and CS coating. In surface-modified formulations with CS, the ZP of the NPs increased significantly to positive values. EE% varied from 62% to 85%, depending upon the Mw and CS coating. In vitro release studies of CLR-loaded NPs showed an extended release up to 144 h. Peppas-Sahlin and Weibull kinetic model was found to fit best for CLR release from NPs. By the broth microdilution test method, the antibacterial activity of the formulations was determined on Staphylococcus aureus (ATCC 25923), Listeria monocytogenes (ATCC 1911), and Klebsiella pneumoniae (ATCC 700603). The structures of the formulations were clarified by thermal (DSC), FT-IR, and 1H-NMR analysis. The results showed that PS, ZP, EE%, and dissolution rates of NPs were directly related to the Mw of PLGA and CS coating.
Collapse
Affiliation(s)
- A Alper Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Evrim Yenilmez
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| | - Mustafa Güçlü Özarda
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470 Eskişehir, Turkey.
| |
Collapse
|
61
|
Narayanan H, Luna MF, Stosch M, Cruz Bournazou MN, Polotti G, Morbidelli M, Butté A, Sokolov M. Bioprocessing in the Digital Age: The Role of Process Models. Biotechnol J 2019; 15:e1900172. [DOI: 10.1002/biot.201900172] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 07/15/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Harini Narayanan
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
| | - Martin F. Luna
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
| | | | - Mariano Nicolas Cruz Bournazou
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Gianmarco Polotti
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Massimo Morbidelli
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Alessandro Butté
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| | - Michael Sokolov
- Institute for Chemical and Bioengineering ETHZ Zurich Switzerland
- DataHow AGc/o ETH ZurichHCI, F137Vladimir‐Prelog‐Weg 1 8093 Zurich Switzerland
| |
Collapse
|
62
|
Júlio A, Caparica R, Costa Lima SA, Fernandes AS, Rosado C, Prazeres DMF, Reis S, Santos de Almeida T, Fonte P. Ionic Liquid-Polymer Nanoparticle Hybrid Systems as New Tools to Deliver Poorly Soluble Drugs. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1148. [PMID: 31405123 PMCID: PMC6723845 DOI: 10.3390/nano9081148] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/10/2023]
Abstract
The use of functional excipients such as ionic liquids (ILs) and the encapsulation of drugs into nanocarriers are useful strategies to overcome poor drug solubility. The aim of this work was to evaluate the potential of IL-polymer nanoparticle hybrid systems as tools to deliver poorly soluble drugs. These systems were obtained using a methodology previously developed by our group and improved herein to produce IL-polymer nanoparticle hybrid systems. Two different choline-based ILs and poly (lactic-co-glycolic acid) (PLGA) 50:50 or PLGA 75:25 were used to load rutin into the delivery system. The resulting rutin-loaded IL-polymer nanoparticle hybrid systems presented a diameter of 250-300 nm, with a low polydispersity index and a zeta potential of about -40 mV. The drug association efficiency ranged from 51% to 76%, which represents a good achievement considering the poor solubility of rutin. No significant particle aggregation was obtained upon freeze-drying. The presence of the IL in the nanosystem does not affect its sustained release properties, achieving about 85% of rutin released after 72 h. The cytotoxicity studies showed that the delivery system was not toxic to HaCat cells. Our findings may open a new paradigm on the therapy improvement of diseases treated with poorly soluble drugs.
Collapse
Affiliation(s)
- Ana Júlio
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Rita Caparica
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
- Department of Biomedical Sciences, University of Alcalá, Ctra. Madrid-Barcelona Km. 33.600, 28871 Alcalá de Henares, Madrid, Spain
| | - Sofia A Costa Lima
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Ana Sofia Fernandes
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Catarina Rosado
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Duarte M F Prazeres
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Salette Reis
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Tânia Santos de Almeida
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Pedro Fonte
- CBIOS-Universidade Lusófona Research Center for Biosciences & Health Technologies, Campo Grande 376, 1749-024 Lisboa, Portugal.
- LAQV, REQUIMTE, Department of Chemical Sciences-Applied Chemistry Lab, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
- iBB-Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal.
| |
Collapse
|
63
|
Shah NK, Wang Z, Gupta SK, Le Campion A, Meenach SA. Sustained release of a model water-soluble compound via dry powder aerosolizable acetalated dextran microparticles. Pharm Dev Technol 2019; 24:1133-1143. [PMID: 31327289 DOI: 10.1080/10837450.2019.1641727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Objective: To design and characterize aerosol microparticles (MP) to provide sustained release of the water-soluble compound sulforhodamine B (SRB) and achieve effective aerosol dispersion. Significance: Modulating the release of water-soluble compounds remains a challenge in pulmonary drug delivery. Methods: SRB and water made up an aqueous solution, while acetalated dextran (Ac-Dex) and isopropyl alcohol made up an organic solution. The two solutions were mixed together, and the solution was spray dried to produce MP. MP were characterized for morphology, size, release kinetics, aerosol dispersion, and cellular interactions. Results: Ac-Dex MP exhibited corrugated morphology and aerodynamic diameters from 2.06 to 2.86 μm. MP deposited in all stages of a Next Generation Impactor, with >90% fine particle fraction. MP exhibited encapsulation efficiencies >129% with SRB loading values up to 16.7 μg SRB/mg MP. MP exhibited sustained release of SRB at pH 7 and fast release at pH 5. In vitro experiments showed minimal cytotoxicity, successful uptake of MP in epithelial cells, and no disruption to the integrity of epithelial monolayers. Conclusions: Ac-Dex MP systems demonstrated the ability to provide sustained the release of a water-soluble therapeutic in addition to effective aerosol dispersion for pulmonary applications.
Collapse
Affiliation(s)
- Nishan K Shah
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island , Kingston , RI , USA
| | - Zimeng Wang
- College of Engineering, Department of Chemical Engineering, University of Rhode Island , Kingston , RI , USA
| | - Sweta K Gupta
- College of Engineering, Department of Chemical Engineering, University of Rhode Island , Kingston , RI , USA
| | - Andrew Le Campion
- College of Engineering, Department of Chemical Engineering, University of Rhode Island , Kingston , RI , USA
| | - Samantha A Meenach
- College of Pharmacy, Department of Biomedical and Pharmaceutical Sciences, University of Rhode Island , Kingston , RI , USA.,College of Engineering, Department of Chemical Engineering, University of Rhode Island , Kingston , RI , USA
| |
Collapse
|
64
|
Nanocarriers for Protein Delivery to the Cytosol: Assessing the Endosomal Escape of Poly(Lactide-co-Glycolide)-Poly(Ethylene Imine) Nanoparticles. NANOMATERIALS 2019; 9:nano9040652. [PMID: 31018628 PMCID: PMC6523739 DOI: 10.3390/nano9040652] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 01/06/2023]
Abstract
Therapeutic proteins and enzymes are a group of interesting candidates for the treatment of numerous diseases, but they often require a carrier to avoid degradation and rapid clearance in vivo. To this end, organic nanoparticles (NPs) represent an excellent choice due to their biocompatibility, and cross-linked enzyme aggregates (CLEAs)-loaded poly (lactide-co-glycolide) (PLGA) NPs have recently attracted attention as versatile tools for targeted enzyme delivery. However, PLGA NPs are taken up by cells via endocytosis and are typically trafficked into lysosomes, while many therapeutic proteins and enzymes should reach the cellular cytosol to perform their activity. Here, we designed a CLEAs-based system implemented with a cationic endosomal escape agent (poly(ethylene imine), PEI) to extend the use of CLEA NPs also to cytosolic enzymes. We demonstrated that our system can deliver protein payloads at cytoplasm level by two different mechanisms: Endosomal escape and direct translocation. Finally, we applied this system to the cytoplasmic delivery of a therapeutically relevant enzyme (superoxide dismutase, SOD) in vitro.
Collapse
|
65
|
Lucero-Acuña A, Gutiérrez-Valenzuela CA, Esquivel R, Guzmán-Zamudio R. Mathematical modeling and parametrical analysis of the temperature dependency of control drug release from biodegradable nanoparticles. RSC Adv 2019; 9:8728-8739. [PMID: 35517657 PMCID: PMC9061865 DOI: 10.1039/c9ra00821g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/11/2019] [Indexed: 11/21/2022] Open
Abstract
In this study we describe a mathematical analysis that considers the temperature effects of the controlled drug release process from biodegradable poly-d,l-lactide-co-glycolide (PLGA) nanoparticles. Temperature effects are incorporated and applied to two drug release models. The first one consists of a two-stage release process that considers only simultaneous contributions of initial burst and nanoparticle degradation-relaxation (BR model). The second one is a three release stage model that considers, additionally, a simultaneous drug diffusion (BRD model) step. In these models, the temperature dependency of the release parameters, initial burst constant, k b, the rate of degradation-relaxation constant, k r, time to achieve 50% of release, t max, and effective diffusion coefficient constant (D e), are determined using mathematical expressions analogous to the Arrhenius equation. The temperature dependent models are used to analyze the release of previously encapsulated Rhodamine 6G dye as a model drug in polyethylene glycol modified PLGA nanoparticles. The experimental data used to develop the mathematical model was obtained from release studies carried out in phosphate buffer pH 7.4 at 37 °C, 47 °C, and 57 °C. Multiphasic release behaviors with an overall increase rate associated with the incubation temperature were observed. The study incorporates a parametrical analysis that can evaluate diverse temperature variation effects of the controlled release parameters for the two models.
Collapse
Affiliation(s)
- Armando Lucero-Acuña
- Department of Chemical and Environmental Engineering, University of Arizona Tucson USA +1 520 6216048 +1 520 6216041
- Department of Chemical and Metallurgical Engineering, University of Sonora Hermosillo MEXICO
- Nanotechnology Graduate Program, Department of Physics, University of Sonora Hermosillo MEXICO
| | | | - Reynaldo Esquivel
- Nanotechnology Graduate Program, Department of Physics, University of Sonora Hermosillo MEXICO
| | - Roberto Guzmán-Zamudio
- Department of Chemical and Environmental Engineering, University of Arizona Tucson USA +1 520 6216048 +1 520 6216041
- Nanotechnology Graduate Program, Department of Physics, University of Sonora Hermosillo MEXICO
| |
Collapse
|
66
|
Lu B, Lv X, Le Y. Chitosan-Modified PLGA Nanoparticles for Control-Released Drug Delivery. Polymers (Basel) 2019; 11:E304. [PMID: 30960288 PMCID: PMC6419218 DOI: 10.3390/polym11020304] [Citation(s) in RCA: 195] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/09/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023] Open
Abstract
Poly (lactic-co-glycolic acid) nanoparticles (PLGA NPs) are well recognized as an ideal drug delivery carrier for their biocompatibility and biodegradability. In order to overcome the disadvantage of drug burst release, chitosan (CS) was used to modify the PLGA nanoparticles. In this work, CS-PLGA nanoparticles with different ratio of CS to PLGA were prepared using high-gravity rotating packed bed (RPB). With the increase of amount of CS, the particle size increased from 132.8 ± 1.5 nm to 172.7 ± 3.2 nm, zeta potential increased from -20.8 ± 1.1 mV to 25.6 ± 0.6 mV, and drug encapsulation efficiency increased from 65.8% to 87.1%. The initial burst release of PLGA NPs reduced after being modified by CS, and the cumulative release was 66.9%, 41.9%, 23.8%, and 14.3%, after 2 h, respectively. The drug release of CS-modified PLGA NPs was faster at pH5.5 than that at pH 7.4. The cellular uptake of CS-modified PLGA NPs increased compared with PLGA NPs, while cell viability was reduced. In conclusion, these results indicated that CS-modified, PTX-loaded PLGA NPs have the advantages of sustained drug release and enhanced drug toxicity, suggesting that CS-modified NPs can be used as carriers of anticancer drugs.
Collapse
Affiliation(s)
- Boting Lu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Xikun Lv
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yuan Le
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
67
|
Trofymchuk K, Valanciunaite J, Andreiuk B, Reisch A, Collot M, Klymchenko AS. BODIPY-loaded polymer nanoparticles: chemical structure of cargo defines leakage from nanocarrier in living cells. J Mater Chem B 2019; 7:5199-5210. [DOI: 10.1039/c8tb02781a] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrophobicity of a fluorescent cargo loaded into PLGA nanoparticles is crucial for minimizing its leakage in biological media.
Collapse
Affiliation(s)
- Kateryna Trofymchuk
- Nanochemistry and Bioimaging Group
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 CNRS
- Université de Strasbourg
- Illkirch
| | - Jurga Valanciunaite
- Nanochemistry and Bioimaging Group
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 CNRS
- Université de Strasbourg
- Illkirch
| | - Bohdan Andreiuk
- Nanochemistry and Bioimaging Group
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 CNRS
- Université de Strasbourg
- Illkirch
| | - Andreas Reisch
- Nanochemistry and Bioimaging Group
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 CNRS
- Université de Strasbourg
- Illkirch
| | - Mayeul Collot
- Nanochemistry and Bioimaging Group
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 CNRS
- Université de Strasbourg
- Illkirch
| | - Andrey S. Klymchenko
- Nanochemistry and Bioimaging Group
- Laboratoire de Bioimagerie et Pathologies
- UMR 7021 CNRS
- Université de Strasbourg
- Illkirch
| |
Collapse
|
68
|
Yuan X, Zhang M, Wang Y, Zhao H, Sun D. Using co-axial electrospray deposition to eliminate burst release of simvastatin from microparticles and to enhance induced osteogenesis. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 30:355-375. [PMID: 30572791 DOI: 10.1080/09205063.2018.1559978] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Microparticles (MPs) exhibit fast dissolution, characterized by a burst drug release pattern. In the present work, we prepared core-shell MPs of simvastatin (SIM) and zein with chitosan (CS) and nano-hydroxyapatite (nHA) as a drug carrier using the coaxial electrospray deposition method. The morphology, formation and in vitro osteogenic differentiation of these MPs were studied. The synthetic MPs have a diameter of about 1 μm and they are composed of non-toxic natural materials. They provide an effective way to enable long-term sustained-release activity, which is controlled by their double layer structures. The CS-nHA/zein-SIM MPs presented a low initial burst release (approximately 35-47%) within the first 24 h of application followed by the sustained release for at least 4 weeks. In vitro cell culture experiments were performed and the results revealed that the CS-nHA/zein-SIM core-shell MPs were beneficial to the adhesion, proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). The CS-nHA/zein-SIM MPs with a low SIM concentration were beneficial to cell proliferation and promotion of osteogenic differentiation.
Collapse
Affiliation(s)
- Xiaowei Yuan
- a Norman Bethune First Hospital, Jilin University , Changchun , China
| | - Mei Zhang
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - Yilong Wang
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - He Zhao
- b Alan G. MacDiarmid Laboratory , College of Chemistry, Jilin University , Changchun , China
| | - Dahui Sun
- a Norman Bethune First Hospital, Jilin University , Changchun , China
| |
Collapse
|
69
|
Karp F, Busatto C, Turino L, Luna J, Estenoz D. PLGA nano- and microparticles for the controlled release of florfenicol: Experimental and theoretical study. J Appl Polym Sci 2018. [DOI: 10.1002/app.47248] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- F. Karp
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - C. Busatto
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - L. Turino
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - J. Luna
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| | - D. Estenoz
- Instituto de Desarrollo Tecnológico para la Industria Química; INTEC (Universidad Nacional del Litoral and CONICET); Güemes 3450, Santa Fe 3000 Argentina
| |
Collapse
|
70
|
Effective sustained release of 5-FU-loaded PLGA implant for improving therapeutic index of 5-FU in colon tumor. Int J Pharm 2018; 550:380-387. [DOI: 10.1016/j.ijpharm.2018.07.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/04/2018] [Accepted: 07/20/2018] [Indexed: 02/06/2023]
|
71
|
Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int J Pharm 2018; 547:593-601. [DOI: 10.1016/j.ijpharm.2018.05.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 05/14/2018] [Accepted: 05/21/2018] [Indexed: 01/19/2023]
|
72
|
Hassanzadeh P, Atyabi F, Dinarvand R. Ignoring the modeling approaches: Towards the shadowy paths in nanomedicine. J Control Release 2018; 280:58-75. [DOI: 10.1016/j.jconrel.2018.04.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/22/2018] [Accepted: 04/23/2018] [Indexed: 12/30/2022]
|
73
|
Desmet CM, Préat V, Gallez B. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing. Adv Drug Deliv Rev 2018; 129:262-284. [PMID: 29448035 DOI: 10.1016/j.addr.2018.02.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 01/25/2018] [Accepted: 02/03/2018] [Indexed: 12/16/2022]
Abstract
Oxygen plays a key role in wound healing, and hypoxia is a major cause of wound healing impairment; therefore, treatments to improve hemodynamics and increase wound oxygenation are of particular interest for the treatment of chronic wounds. This article describes the roles of oxygen and angiogenesis in wound healing as well as the tools used to evaluate tissue oxygenation and perfusion and then presents a review of nanomedicines and gene therapies designed to improve perfusion and oxygenation and accelerate wound healing.
Collapse
|
74
|
Karlberg M, von Stosch M, Glassey J. Exploiting mAb structure characteristics for a directed QbD implementation in early process development. Crit Rev Biotechnol 2018. [DOI: 10.1080/07388551.2017.1421899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Micael Karlberg
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - Moritz von Stosch
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| | - Jarka Glassey
- School of Chemical Engineering and Advanced Materials, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|