51
|
Abstract
Phagocytosis refers to the active process that allows cells to take up large particulate material upon binding to surface receptors. The discovery of phagocytosis in 1883 by Elie Metchnikoff, leading to the concept that specialized cells are implicated in the defense against microbes, was one of the starting points of the field of immunology. After more than a century of research, phagocytosis is now appreciated to be a widely used process that enables the cellular uptake of a remarkable variety of particles, including bacteria, fungi, parasites, viruses, dead cells, and assorted debris and solid materials. Uptake of foreign particles is performed almost exclusively by specialized myeloid cells, commonly termed "professional phagocytes": neutrophils, monocytes, macrophages, and dendritic cells. Phagocytosis of microbes not only stops or at least restricts the spread of infection but also plays an important role in regulating the innate and adaptive immune responses. Activation of the myeloid cells upon phagocytosis leads to the secretion of cytokines and chemokines that convey signals to a variety of immune cells. Moreover, foreign antigens generated by the degradation of microbes following phagocytosis are loaded onto the major histocompatibility complex for presentation to specific T lymphocytes. However, phagocytosis is not restricted to professional myeloid phagocytes; an expanding diversity of cell types appear capable of engulfing apoptotic bodies and debris, playing a critical role in tissue remodeling and in the clearance of billions of effete cells every day.
Collapse
|
52
|
Rac1 signaling regulates cigarette smoke-induced inflammation in the lung via the Erk1/2 MAPK and STAT3 pathways. Biochim Biophys Acta Mol Basis Dis 2017; 1863:1778-1788. [DOI: 10.1016/j.bbadis.2017.04.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 03/24/2017] [Accepted: 04/16/2017] [Indexed: 02/06/2023]
|
53
|
Phagocytosis: A Fundamental Process in Immunity. BIOMED RESEARCH INTERNATIONAL 2017; 2017:9042851. [PMID: 28691037 PMCID: PMC5485277 DOI: 10.1155/2017/9042851] [Citation(s) in RCA: 316] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/18/2017] [Indexed: 01/12/2023]
Abstract
One hundred years have passed since the death of Élie Metchnikoff (1845-1916). He was the first to observe the uptake of particles by cells and realized the importance of this process for the host response to injury and infection. He also was a strong advocate of the role of phagocytosis in cellular immunity, and with this he gave us the basis for our modern understanding of inflammation and the innate and acquired immune responses. Phagocytosis is an elegant but complex process for the ingestion and elimination of pathogens, but it is also important for the elimination of apoptotic cells and hence fundamental for tissue homeostasis. Phagocytosis can be divided into four main steps: (i) recognition of the target particle, (ii) signaling to activate the internalization machinery, (iii) phagosome formation, and (iv) phagolysosome maturation. In recent years, the use of new tools of molecular biology and microscopy has provided new insights into the cellular mechanisms of phagocytosis. In this review, we present a general view of our current knowledge on phagocytosis. We emphasize novel molecular findings, particularly on phagosome formation and maturation, and discuss aspects that remain incompletely understood.
Collapse
|
54
|
Abstract
Most functions of eukaryotic cells are controlled by cellular membranes, which are not static entities but undergo frequent budding, fission, fusion, and sculpting reactions collectively referred to as membrane dynamics. Consequently, regulation of membrane dynamics is crucial for cellular functions. A key mechanism in such regulation is the reversible recruitment of cytosolic proteins or protein complexes to specific membranes at specific time points. To a large extent this recruitment is orchestrated by phosphorylated derivatives of the membrane lipid phosphatidylinositol, known as phosphoinositides. The seven phosphoinositides found in nature localize to distinct membrane domains and recruit distinct effectors, thereby contributing strongly to the maintenance of membrane identity. Many of the phosphoinositide effectors are proteins that control membrane dynamics, and in this review we discuss the functions of phosphoinositides in membrane dynamics during exocytosis, endocytosis, autophagy, cell division, cell migration, and epithelial cell polarity, with emphasis on protein effectors that are recruited by specific phosphoinositides during these processes.
Collapse
Affiliation(s)
- Kay O Schink
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Kia-Wee Tan
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Biomedicine, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway; , .,Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Montebello, N-0379 Oslo, Norway.,Centre of Molecular Inflammation Research, Faculty of Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
55
|
Vav1: A Dr. Jekyll and Mr. Hyde protein--good for the hematopoietic system, bad for cancer. Oncotarget 2016; 6:28731-42. [PMID: 26353933 PMCID: PMC4745688 DOI: 10.18632/oncotarget.5086] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Accepted: 08/07/2015] [Indexed: 01/10/2023] Open
Abstract
Many deregulated signal transducer proteins are involved in various cancers at numerous stages of tumor development. One of these, Vav1, is normally expressed exclusively in the hematopoietic system, where it functions as a specific GDP/GTP nucleotide exchange factor (GEF), strictly regulated by tyrosine phosphorylation. Vav was first identified in an NIH3T3 screen for oncogenes. Although the oncogenic form of Vav1 identified in the screen has not been detected in clinical human tumors, its wild-type form has recently been implicated in mammalian malignancies, including neuroblastoma, melanoma, pancreatic, lung and breast cancers, and B-cell chronic lymphocytic leukemia. In addition, it was recently identified as a mutated gene in human cancers of various origins. However, the activity and contribution to cancer of these Vav1 mutants is still unclear. This review addresses the physiological function of wild-type Vav1 and its activity as an oncogene in human cancer. It also discusses the novel mutations identified in Vav1 in various cancers and their potential contribution to cancer development as oncogenes or tumor suppressor genes.
Collapse
|
56
|
Biochemical and Functional Insights into the Integrated Regulation of Innate Immune Cell Responses by Teleost Leukocyte Immune-Type Receptors. BIOLOGY 2016; 5:biology5010013. [PMID: 27005670 PMCID: PMC4810170 DOI: 10.3390/biology5010013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 03/01/2016] [Accepted: 03/01/2016] [Indexed: 12/22/2022]
Abstract
Across vertebrates, innate immunity consists of a complex assortment of highly specialized cells capable of unleashing potent effector responses designed to destroy or mitigate foreign pathogens. The execution of various innate cellular behaviors such as phagocytosis, degranulation, or cell-mediated cytotoxicity are functionally indistinguishable when being performed by immune cells isolated from humans or teleost fishes; vertebrates that diverged from one another more than 450 million years ago. This suggests that vital components of the vertebrate innate defense machinery are conserved and investigating such processes in a range of model systems provides an important opportunity to identify fundamental features of vertebrate immunity. One characteristic that is highly conserved across vertebrate systems is that cellular immune responses are dependent on specialized immunoregulatory receptors that sense environmental stimuli and initiate intracellular cascades that can elicit appropriate effector responses. A wide variety of immunoregulatory receptor families have been extensively studied in mammals, and many have been identified as cell- and function-specific regulators of a range of innate responses. Although much less is known in fish, the growing database of genomic information has recently allowed for the identification of several immunoregulatory receptor gene families in teleosts. Many of these putative immunoregulatory receptors have yet to be assigned any specific role(s), and much of what is known has been based solely on structural and/or phylogenetic relationships with mammalian receptor families. As an attempt to address some of these shortcomings, this review will focus on our growing understanding of the functional roles played by specific members of the channel catfish (Ictalurus punctatus) leukocyte immune-type receptors (IpLITRs), which appear to be important regulators of several innate cellular responses via classical as well as unique biochemical signaling networks.
Collapse
|
57
|
Paone C, Rodrigues N, Ittner E, Santos C, Buntru A, Hauck CR. The Tyrosine Kinase Pyk2 Contributes to Complement-Mediated Phagocytosis in Murine Macrophages. J Innate Immun 2016; 8:437-51. [PMID: 26848986 PMCID: PMC6738876 DOI: 10.1159/000442944] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 12/01/2015] [Accepted: 12/01/2015] [Indexed: 01/30/2023] Open
Abstract
Proline-rich tyrosine kinase 2 (Pyk2) is a member of the focal adhesion kinase (FAK) family and is mainly expressed in neuronal and hematopoietic cells. As FAK family members are involved in signaling connections downstream of integrins, we studied the role of Pyk2 in complement-receptor 3 (CR3, also known as Mac-1, integrin αMβ2, CD11b/CD18)-mediated phagocytosis, a key process in innate immunity. Using 3 independent approaches, we observed that Pyk2 contributes to CR3-dependent phagocytosis by RAW 264.7 macrophages, but is dispensable for Fcγ receptor (FcγR)-mediated uptake. Reduction of Pyk2 expression levels via siRNA, the pharmacological inhibition of Pyk2 kinase activity as well as macrophage treatment with a cell permeable TAT fusion protein containing the C-terminus of Pyk2 (TAT-PRNK) significantly impaired CR3-mediated phagocytosis without affecting FcγR-mediated uptake. In addition, Pyk2 was strongly recruited to complement opsonized Escherichia coli and the pharmacological inhibition of Pyk2 significantly decreased uptake of the bacteria. Finally, CRISPR/Cas-mediated disruption of the pyk2 gene in RAW 264.7 macrophages confirmed the role of this protein tyrosine kinase in CR3-mediated phagocytosis. Together, our data demonstrate that Pyk2 selectively contributes to the coordination of phagocytosis-promoting signals downstream of CR3, but is dispensable for FcγR-mediated phagocytosis.
Collapse
Affiliation(s)
- Christoph Paone
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| | | | - Ella Ittner
- Lehrstuhl für Zellbiologie, Konstanz, Germany
| | | | - Alexander Buntru
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| | - Christof R. Hauck
- Lehrstuhl für Zellbiologie, Konstanz, Germany
- Konstanz Research School, Chemical Biology, Universität Konstanz, Konstanz, Germany
| |
Collapse
|
58
|
Salinas RP, Ortiz Flores RM, Distel JS, Aguilera MO, Colombo MI, Berón W. Coxiella burnetii Phagocytosis Is Regulated by GTPases of the Rho Family and the RhoA Effectors mDia1 and ROCK. PLoS One 2015; 10:e0145211. [PMID: 26674774 PMCID: PMC4682630 DOI: 10.1371/journal.pone.0145211] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 12/01/2015] [Indexed: 01/09/2023] Open
Abstract
The GTPases belonging to the Rho family control the actin cytoskeleton rearrangements needed for particle internalization during phagocytosis. ROCK and mDia1 are downstream effectors of RhoA, a GTPase involved in that process. Coxiella burnetii, the etiologic agent of Q fever, is internalized by the host´s cells in an actin-dependent manner. Nevertheless, the molecular mechanism involved in this process has been poorly characterized. This work analyzes the role of different GTPases of the Rho family and some downstream effectors in the internalization of C. burnetii by phagocytic and non-phagocytic cells. The internalization of C. burnetii into HeLa and RAW cells was significantly inhibited when the cells were treated with Clostridium difficile Toxin B which irreversibly inactivates members of the Rho family. In addition, the internalization was reduced in HeLa cells that overexpressed the dominant negative mutants of RhoA, Rac1 or Cdc42 or that were knocked down for the Rho GTPases. The pharmacological inhibition or the knocking down of ROCK diminished bacterium internalization. Moreover, C. burnetii was less efficiently internalized in HeLa cells overexpressing mDia1-N1, a dominant negative mutant of mDia1, while the overexpression of the constitutively active mutant mDia1-ΔN3 increased bacteria uptake. Interestingly, when HeLa and RAW cells were infected, RhoA, Rac1 and mDia1 were recruited to membrane cell fractions. Our results suggest that the GTPases of the Rho family play an important role in C. burnetii phagocytosis in both HeLa and RAW cells. Additionally, we present evidence that ROCK and mDia1, which are downstream effectors of RhoA, are involved in that process.
Collapse
Affiliation(s)
- Romina P. Salinas
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Rodolfo M. Ortiz Flores
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Jesús S. Distel
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Milton O. Aguilera
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - María I. Colombo
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
| | - Walter Berón
- Instituto de Histología y Embriología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo—CONICET, Mendoza, 5500, Argentina
- * E-mail:
| |
Collapse
|
59
|
Yong CSM, Westwood JA, Schröder J, Papenfuss AT, von Scheidt B, Moeller M, Devaud C, Darcy PK, Kershaw MH. Expression of a Chimeric Antigen Receptor in Multiple Leukocyte Lineages in Transgenic Mice. PLoS One 2015; 10:e0140543. [PMID: 26505904 PMCID: PMC4624721 DOI: 10.1371/journal.pone.0140543] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/24/2015] [Indexed: 12/25/2022] Open
Abstract
Genetically modified CD8+ T lymphocytes have shown significant anti-tumor effects in the adoptive immunotherapy of cancer, with recent studies highlighting a potential role for a combination of other immune subsets to enhance these results. However, limitations in present genetic modification techniques impose difficulties in our ability to fully explore the potential of various T cell subsets and assess the potential of other leukocytes armed with chimeric antigen receptors (CARs). To address this issue, we generated a transgenic mouse model using a pan-hematopoietic promoter (vav) to drive the expression of a CAR specific for a tumor antigen. Here we present a characterization of the immune cell compartment in two unique vav-CAR transgenic mice models, Founder 9 (F9) and Founder 38 (F38). We demonstrate the vav promoter is indeed capable of driving the expression of a CAR in cells from both myeloid and lymphoid lineage, however the highest level of expression was observed in T lymphocytes from F38 mice. Lymphoid organs in vav-CAR mice were smaller and had reduced cell numbers compared to the wild type (WT) controls. Furthermore, the immune composition of F9 mice differed greatly with a significant reduction in lymphocytes found in the thymus, lymph node and spleen of these mice. To gain insight into the altered immune phenotype of F9 mice, we determined the chromosomal integration site of the transgene in both mouse strains using whole genome sequencing (WGS). We demonstrated that compared to the 7 copies found in F38 mice, F9 mice harbored almost 270 copies. These novel vav-CAR models provide a ready source of CAR expressing myeloid and lymphoid cells and will aid in facilitating future experiments to delineate the role for other leukocytes for adoptive immunotherapy against cancer.
Collapse
Affiliation(s)
- Carmen S. M. Yong
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jennifer A. Westwood
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Jan Schröder
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Anthony T. Papenfuss
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Bioinformatics Division, The Walter & Eliza Hall Institute of Medical Research, Parkville, Victoria, 3052, Australia
- Bioinformatics and Cancer Genomics, Peter MacCallum Cancer Centre, East Melbourne, Victoria, 3002, Australia
- Department of Computing and Information Systems, The University of Melbourne, Parkville, Victoria, 3010, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Bianca von Scheidt
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Maria Moeller
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Christel Devaud
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- INSERM U1043 Centre de Physiopathologie Toulouse Purpan (CPTP), Toulouse, France
- * E-mail: (MK); (PD); (CD)
| | - Phillip K. Darcy
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Immunology, Monash University, Prahran Victoria 3181 Australia
- * E-mail: (MK); (PD); (CD)
| | - Michael H. Kershaw
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Immunology, Monash University, Prahran Victoria 3181 Australia
- * E-mail: (MK); (PD); (CD)
| |
Collapse
|
60
|
Schlam D, Bagshaw RD, Freeman SA, Collins RF, Pawson T, Fairn GD, Grinstein S. Phosphoinositide 3-kinase enables phagocytosis of large particles by terminating actin assembly through Rac/Cdc42 GTPase-activating proteins. Nat Commun 2015; 6:8623. [PMID: 26465210 PMCID: PMC4634337 DOI: 10.1038/ncomms9623] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 09/11/2015] [Indexed: 02/06/2023] Open
Abstract
Phagocytosis is responsible for the elimination of particles of widely disparate sizes, from large fungi or effete cells to small bacteria. Though superficially similar, the molecular mechanisms involved differ: engulfment of large targets requires phosphoinositide 3-kinase (PI3K), while that of small ones does not. Here, we report that inactivation of Rac and Cdc42 at phagocytic cups is essential to complete internalization of large particles. Through a screen of 62 RhoGAP-family members, we demonstrate that ARHGAP12, ARHGAP25 and SH3BP1 are responsible for GTPase inactivation. Silencing these RhoGAPs impairs phagocytosis of large targets. The GAPs are recruited to large—but not small—phagocytic cups by products of PI3K, where they synergistically inactivate Rac and Cdc42. Remarkably, the prominent accumulation of phosphatidylinositol 3,4,5-trisphosphate characteristic of large-phagosome formation is less evident during phagocytosis of small targets, accounting for the contrasting RhoGAP distribution and the differential requirement for PI3K during phagocytosis of dissimilarly sized particles. Phagocytosis of large (but not small) particles requires PI 3-kinase activity. Here, Schlam et al. show that Rho GTPase-activating proteins are recruited to the phagocytic cup by products of PI 3-kinase, resulting in the local inactivation of Rac and Cdc42 and allowing for the completion of internalization of large particles.
Collapse
Affiliation(s)
- Daniel Schlam
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8.,Institute of Medical Science, University of Toronto, Faculty of Medicine, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8
| | - Richard D Bagshaw
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G1X5
| | - Spencer A Freeman
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| | - Richard F Collins
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8
| | - Tony Pawson
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G1X5
| | - Gregory D Fairn
- Institute of Medical Science, University of Toronto, Faculty of Medicine, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, Canada M5B1T8
| | - Sergio Grinstein
- Division of Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto, Ontario, Canada M5G1X8.,Institute of Medical Science, University of Toronto, Faculty of Medicine, 1 King's College Circle, Toronto, Ontario, Canada M5S1A8.,Keenan Research Centre for Biomedical Science, St. Michael's Hospital, 209 Victoria Street, Toronto, Ontario, Canada M5B1T8
| |
Collapse
|
61
|
Freeman SA, Grinstein S. Phagocytosis: receptors, signal integration, and the cytoskeleton. Immunol Rev 2015; 262:193-215. [PMID: 25319336 DOI: 10.1111/imr.12212] [Citation(s) in RCA: 387] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Phagocytosis is a remarkably complex and versatile process: it contributes to innate immunity through the ingestion and elimination of pathogens, while also being central to tissue homeostasis and remodeling by clearing effete cells. The ability of phagocytes to perform such diverse functions rests, in large part, on their vast repertoire of receptors. In this review, we address the various receptor types, their mobility in the plane of the membrane, and two modes of receptor crosstalk: priming and synergy. A major section is devoted to the actin cytoskeleton, which not only governs receptor mobility and clustering but also is instrumental in particle engulfment. Four stages of the actin remodeling process are identified and discussed: (i) the 'resting' stage that precedes receptor engagement, (ii) the disruption of the cortical actin prior to formation of the phagocytic cup, (iii) the actin polymerization that propels pseudopod extension, and (iv) the termination of polymerization and removal of preassembled actin that are required for focal delivery of endomembranes and phagosomal sealing. These topics are viewed in the larger context of the differentiation and polarization of the phagocytic cells.
Collapse
Affiliation(s)
- Spencer A Freeman
- Program in Cell Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | | |
Collapse
|
62
|
Lillico DME, Zwozdesky MA, Pemberton JG, Deutscher JM, Jones LO, Chang JP, Stafford JL. Teleost leukocyte immune-type receptors activate distinct phagocytic modes for target acquisition and engulfment. J Leukoc Biol 2015; 98:235-48. [DOI: 10.1189/jlb.2a0215-039rr] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 04/15/2015] [Indexed: 12/22/2022] Open
|
63
|
Abstract
Phagocytosis is defined as a cellular uptake pathway for particles of greater than 0.5 μm in diameter. Particle clearance by phagocytosis is of critical importance for tissue health and homeostasis. The ultimate goal of anti-pathogen phagocytosis is to destroy engulfed bacteria or fungi and to stimulate cell-cell signaling that mount an efficient immune defense. In contrast, clearance phagocytosis of apoptotic cells and cell debris is anti-inflammatory. High capacity clearance phagocytosis pathways are available to professional phagocytes of the immune system and the retina. Additionally, a low capacity, so-called bystander phagocytic pathway is available to most other cell types. Different phagocytic pathways are stimulated by particle ligation of distinct surface receptors but all forms of phagocytosis require F-actin recruitment beneath tethered particles and F-actin re-arrangement promoting engulfment, which are controlled by Rho family GTPases. The specificity of Rho GTPase activity during the different forms of phagocytosis by mammalian cells is the subject of this review.
Collapse
Affiliation(s)
- Yingyu Mao
- a Department of Biological Sciences; Center for Cancer, Genetic Diseases, and Gene Regulation; Fordham University ; Bronx , NY , USA
| | | |
Collapse
|
64
|
Wang X, Hills LB, Huang YH. Lipid and Protein Co-Regulation of PI3K Effectors Akt and Itk in Lymphocytes. Front Immunol 2015; 6:117. [PMID: 25821452 PMCID: PMC4358224 DOI: 10.3389/fimmu.2015.00117] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 03/02/2015] [Indexed: 12/21/2022] Open
Abstract
The phosphoinositide 3-kinase (PI 3-kinase, PI3K) pathway transduces signals critical for lymphocyte function. PI3K generates the phospholipid PIP3 at the plasma membrane to recruit proteins that contain pleckstrin homology (PH) domains – a conserved domain found in hundreds of mammalian proteins. PH domain–PIP3 interactions allow for rapid signal propagation and confer a spatial component to these signals. The kinases Akt and Itk are key PI3K effectors that bind PIP3 via their PH domains and mediate vital processes – such as survival, activation, and differentiation – in lymphocytes. Here, we review the roles and regulation of PI3K signaling in lymphocytes with a specific emphasis on Akt and Itk. We also discuss these and other PH domain-containing proteins as they relate more broadly to immune cell function. Finally, we highlight the emerging view of PH domains as multifunctional protein domains that often bind both lipid and protein substrates to exert their effects.
Collapse
Affiliation(s)
- Xinxin Wang
- California Institute for Biomedical Research , La Jolla, CA , USA
| | - Leonard Benjamin Hills
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| | - Yina Hsing Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA ; Department of Pathology, Geisel School of Medicine at Dartmouth , Lebanon, NH , USA
| |
Collapse
|
65
|
Klein D, Groh J, Weishaupt A, Martini R. Endogenous antibodies contribute to macrophage-mediated demyelination in a mouse model for CMT1B. J Neuroinflammation 2015; 12:49. [PMID: 25879857 PMCID: PMC4364634 DOI: 10.1186/s12974-015-0267-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Background We could previously identify components of both the innate and the adaptive immune system as disease modifiers in the pathogenesis of models for Charcot-Marie-Tooth (CMT) neuropathies type 1B and 1X. As part of the adaptive immune system, here we investigated the role of antibodies in a model for CMT1B. Methods Antibodies were localized and characterized in peripheral nerves of the CMT1B model by immunohistochemistry and Western blot analysis. Experimental ablation of antibodies was performed by cross breeding the CMT1B models with mutants deficient in B-lymphocytes (JHD−/− mutants). Ameliorated demyelination by antibody deficiency was reverted by intravenous injection of mouse IgG fractions. Histopathological analysis was performed by immunocytochemistry and light and quantitative electron microscopy. Results We demonstrate that in peripheral nerves of a mouse model for CMT1B, endogenous antibodies strongly decorate endoneurial tubes of peripheral nerves. These antibodies comprise IgG and IgM subtypes and are preferentially, but not exclusively, associated with nerve fiber aspects nearby the nodes of Ranvier. In the absence of antibodies, the early demyelinating phenotype is substantially ameliorated. Reverting the neuropathy by reconstitution with murine IgG fractions identified accumulating antibodies as potentially pathogenic at this early stage of disease. Conclusions Our study demonstrates that in a mouse model for CMT1B, endogenous antibodies contribute to early macrophage-mediated demyelination and disease progression. Thus, both the innate and adaptive immune system are mutually interconnected in a genetic model for demyelination. Since in Wallerian degeneration antibodies have also been shown to be involved in myelin phagocytosis, our study supports our view that inherited demyelination and Wallerian degeneration share common mechanisms, which are detrimental when activated under nonlesion conditions.
Collapse
Affiliation(s)
- Dennis Klein
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Janos Groh
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Andreas Weishaupt
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| | - Rudolf Martini
- Department of Neurology, Developmental Neurobiology, University Hospital Würzburg, Josef-Schneider-Str 11, D-97080, Würzburg, Germany.
| |
Collapse
|
66
|
Elvers M. RhoGAPs and Rho GTPases in platelets. Hamostaseologie 2015; 36:168-77. [PMID: 25639730 DOI: 10.5482/hamo-14-09-0046] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/13/2015] [Indexed: 01/03/2023] Open
Abstract
Platelet cytoskeletal reorganization is essential for platelet adhesion and thrombus formation in hemostasis and thrombosis. The Rho GTPases RhoA, Rac1 and Cdc42 are the main players in cytoskeletal dynamics of platelets responsible for the formation of filopodia and lamellipodia to strongly increase the platelet surface upon activation. They are involved in platelet activation and aggregate formation including platelet secretion, integrin activation and arterial thrombus formation. The activity of Rho GTPases is tightly controlled by different proteins such as GTPase-activating proteins (GAPs). GAPs stimulate GTP hydrolysis to terminate Rho signaling. The role and impact of GAPs in platelets is not well-defined and many of the RhoGAPs identified are not known to be present in platelets or to have any function in platelets. The recently identified RhoGAPs Oligophrenin1 (OPHN1) and Nadrin regulate the activity of RhoA, Rac1 and Cdc42 and subsequent platelet cytoskeletal reorganization, platelet activation and thrombus formation. In the last years, the analysis of genetically modified mice helped to gain the understanding of Rho GTPases and their regulators in cytoskeletal rearrangements and other Rho mediated cellular processes in platelets.
Collapse
Affiliation(s)
- Margitta Elvers
- Margitta Elvers, Ph.D., Department of Clinical and Experimental Hemostasis, Hemotherapy and Transfusion Medicine, Heinrich-Heine-University Duesseldorf, Moorenstr. 5, 40225 Duesseldorf, Germany, Tel. +49/(0)211/81-08851, Fax -17498., E-mail:
| |
Collapse
|
67
|
Gilberti RM, Knecht DA. Macrophages phagocytose nonopsonized silica particles using a unique microtubule-dependent pathway. Mol Biol Cell 2014; 26:518-29. [PMID: 25428990 PMCID: PMC4310742 DOI: 10.1091/mbc.e14-08-1301] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cells can take up particles by both opsonized and nonopsonized pathways. Silica and latex, but not zymosan, can be taken up by the nonopsonized pathway. Uptake of silica, but not latex, is toxic to macrophages. Nonopsonized phagocytosis is characterized and found to have key differences from the complement- and antibody-opsonized pathways. Silica inhalation leads to the development of the chronic lung disease silicosis. Macrophages are killed by uptake of nonopsonized silica particles, and this is believed to play a critical role in the etiology of silicosis. However, the mechanism of nonopsonized-particle uptake is not well understood. We compared the molecular events associated with nonopsonized- and opsonized-particle phagocytosis. Both Rac and RhoA GTPases are activated upon nonopsonized-particle exposure, whereas opsonized particles activate either Rac or RhoA. All types of particles quickly generate a PI(3,4,5)P3 and F-actin response at the particle attachment site. After formation of a phagosome, the events related to endolysosome-to-phagosome fusion do not significantly differ between the pathways. Inhibitors of tyrosine kinases, actin polymerization, and the phosphatidylinositol cascade prevent opsonized- and nonopsonized-particle uptake similarly. Inhibition of silica particle uptake prevents silica-induced cell death. Microtubule depolymerization abolished uptake of complement-opsonized and nonopsonized particles but not Ab-opsonized particles. Of interest, regrowth of microtubules allowed uptake of new nonopsonized particles but not ones bound to cells in the absence of microtubules. Although complement-mediated uptake requires macrophages to be PMA-primed, untreated cells phagocytose nonopsonized silica and latex. Thus it appears that nonopsonized-particle uptake is accomplished by a pathway with unique characteristics.
Collapse
Affiliation(s)
- Renée M Gilberti
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| | - David A Knecht
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT 06269
| |
Collapse
|
68
|
Wan YJ, Yang Y, Leng QL, Lan B, Jia HY, Liu YH, Zhang CZ, Cao Y. Vav1 increases Bcl-2 expression by selective activation of Rac2-Akt in leukemia T cells. Cell Signal 2014; 26:2202-9. [PMID: 24880064 DOI: 10.1016/j.cellsig.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 01/06/2023]
Abstract
Vav proteins are guanine nucleotide exchange factors (GEFs) that activate a group of small G proteins (GTPases). Vav1 is predominantly expressed in hematopoietic cells, whereas Vav2 and Vav3 are ubiquitously distributed in almost all human tissues. All three Vav proteins contain conserved structural motifs and associate with a variety of cellular activities including proliferation, migration, and survival. Previous observation with Jurkat leukemia T cells showed that Vav1 possessed anti-apoptotic activity by enhancing Bcl-2 transcription. However the mechanism has not been unveiled. Here, we explored the effectors of Vav1 in promoting Bcl-2 expression in Jurkat cells and revealed that Rac2-Akt was specifically evoked by the expression of Vav1, but not Vav2 or Vav3. Although all three Vav isoforms existed in Jurkat cells, Rac2 was distinguishably activated by Vav1 and that led to enhanced Bcl-2 expression and cell survival. Akt was modulated downstream of Vav1-Rac2, and the activation of Akt was indispensable in the enhanced transcription of Bcl-2. Intriguingly, neither Vav2 nor Vav3 was able to activate Rac2-Akt pathway as determined by gene silencing approach. Our data illustrated a unique role of Vav1 in T leukemia survival by selectively triggering Rac2-Akt axis and elevating the expression of anti-apoptotic Bcl-2.
Collapse
Affiliation(s)
- Ya-Juan Wan
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Yin Yang
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Qian-Li Leng
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Bei Lan
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Hui-Yan Jia
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Yao-Hui Liu
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Cui-Zhu Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China
| | - Youjia Cao
- Key Laboratory of Microbial Functional Genomics of Ministry of Education, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China; State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, 94 Weijin Road, Tianjin 300071, PR China.
| |
Collapse
|
69
|
RhoA determines disease progression by controlling neutrophil motility and restricting hyperresponsiveness. Blood 2014; 123:3635-45. [DOI: 10.1182/blood-2014-02-557843] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Key Points
Rho-deficient neutrophils are hyperresponsive. RhoA acts predominantly as a negative regulator of chemotaxis.
Collapse
|
70
|
Rougerie P, Miskolci V, Cox D. Generation of membrane structures during phagocytosis and chemotaxis of macrophages: role and regulation of the actin cytoskeleton. Immunol Rev 2014; 256:222-39. [PMID: 24117824 DOI: 10.1111/imr.12118] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Macrophages are best known for their protective search and destroy functions against invading microorganisms. These processes are commonly known as chemotaxis and phagocytosis. Both of these processes require actin cytoskeletal remodeling to produce distinct F-actin-rich membrane structures called lamellipodia and phagocytic cups. This review will focus on the mechanisms by which macrophages regulate actin polymerization through initial receptor signaling and subsequent Arp2/3 activation by nucleation-promoting factors like the WASP/WAVE family, followed by remodeling of actin networks to produce these very distinct structures.
Collapse
Affiliation(s)
- Pablo Rougerie
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
71
|
Flannagan RS, Canton J, Furuya W, Glogauer M, Grinstein S. The phosphatidylserine receptor TIM4 utilizes integrins as coreceptors to effect phagocytosis. Mol Biol Cell 2014; 25:1511-22. [PMID: 24623723 PMCID: PMC4004599 DOI: 10.1091/mbc.e13-04-0212] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
TIM4 is a receptor for phosphatidylserine that mediates engulfment of apoptotic cells. Remarkably, it does not require its cytosolic or transmembrane domains to mediate phagocytosis. TIM4 associates with integrins that serve as signal-transducing coreceptors. T-cell immunoglobulin mucin protein 4 (TIM4), a phosphatidylserine (PtdSer)-binding receptor, mediates the phagocytosis of apoptotic cells. How TIM4 exerts its function is unclear, and conflicting data have emerged. To define the mode of action of TIM4, we used two distinct but complementary approaches: 1) we compared bone marrow–derived macrophages from wild-type and TIM4−/− mice, and 2) we heterologously expressed TIM4 in epithelioid AD293 cells, which rendered them competent for engulfment of PtdSer-bearing targets. Using these systems, we demonstrate that rather than serving merely as a tether, as proposed earlier by others, TIM4 is an active participant in the phagocytic process. Furthermore, we find that TIM4 operates independently of lactadherin, which had been proposed to act as a bridging molecule. Of interest, TIM4-driven phagocytosis depends on the activation of integrins and involves stimulation of Src-family kinases and focal adhesion kinase, as well as the localized accumulation of phosphatidylinositol 3,4,5-trisphosphate. These mediators promote recruitment of the nucleotide-exchange factor Vav3, which in turn activates small Rho-family GTPases. Gene silencing or ablation experiments demonstrated that RhoA, Rac1, and Rac2 act synergistically to drive the remodeling of actin that underlies phagocytosis. Single-particle detection experiments demonstrated that TIM4 and β1 integrins associate upon receptor clustering. These findings support a model in which TIM4 engages integrins as coreceptors to evoke the signal transduction needed to internalize PtdSer-bearing targets such as apoptotic cells.
Collapse
Affiliation(s)
- Ronald S Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, ON M5G 1X8, Canada Faculty of Dentistry, University of Toronto, Toronto, ON M5G 1G6, Canada Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON M5C 1N8, Canada
| | | | | | | | | |
Collapse
|
72
|
Zenker S, Panteleev-Ivlev J, Wirtz S, Kishimoto T, Waldner MJ, Ksionda O, Tybulewicz VLJ, Neurath MF, Atreya I. A key regulatory role for Vav1 in controlling lipopolysaccharide endotoxemia via macrophage-derived IL-6. THE JOURNAL OF IMMUNOLOGY 2014; 192:2830-2836. [PMID: 24532586 DOI: 10.4049/jimmunol.1300157] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages are centrally involved in the pathogenesis of acute inflammatory diseases, peritonitis, endotoxemia, and septic shock. However, the molecular mechanisms controlling such macrophage activation are incompletely understood. In this article, we provide evidence that Vav1, a member of the RhoGEF family, plays a crucial role in macrophage activation and septic endotoxemia. Vav1-deficient mice demonstrated a significantly increased susceptibility for LPS endotoxemia that could be abrogated by anti-IL-6R Ab treatment. Subsequent studies showed that Vav1-deficient macrophages display augmented production of the proinflammatory cytokine IL-6. Nuclear Vav1 was identified as a key negative regulator of macrophage-derived IL-6 production. In fact, Vav1 formed a nuclear DNA-binding complex with heat shock transcription factor 1 at the HSE2 region of the IL-6 promoter to suppress IL-6 gene transcription in macrophages. These findings provide new insights into the pathogenesis of endotoxemia and suggest new avenues for therapy.
Collapse
Affiliation(s)
- Stefanie Zenker
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Julia Panteleev-Ivlev
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Stefan Wirtz
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | | | - Maximilian J Waldner
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Olga Ksionda
- MRC National Institute for Medical Research, London, United Kingdom
| | | | - Markus F Neurath
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| | - Imke Atreya
- Medical Clinic 1, Friedrich-Alexander University of Erlangen-Nürnberg, University Hospital of Erlangen, Germany
| |
Collapse
|
73
|
Rac1 signaling regulates sepsis-induced pathologic inflammation in the lung via attenuation of Mac-1 expression and CXC chemokine formation. J Surg Res 2013; 183:798-807. [DOI: 10.1016/j.jss.2013.02.045] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/13/2013] [Accepted: 02/20/2013] [Indexed: 11/21/2022]
|
74
|
Strijbis K, Tafesse FG, Fairn GD, Witte MD, Dougan SK, Watson N, Spooner E, Esteban A, Vyas VK, Fink GR, Grinstein S, Ploegh HL. Bruton's Tyrosine Kinase (BTK) and Vav1 contribute to Dectin1-dependent phagocytosis of Candida albicans in macrophages. PLoS Pathog 2013; 9:e1003446. [PMID: 23825946 PMCID: PMC3694848 DOI: 10.1371/journal.ppat.1003446] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/07/2013] [Indexed: 12/28/2022] Open
Abstract
Phagocytosis of the opportunistic fungal pathogen Candida albicans by cells of the innate immune system is vital to prevent infection. Dectin-1 is the major phagocytic receptor involved in anti-fungal immunity. We identify two new interacting proteins of Dectin-1 in macrophages, Bruton's Tyrosine Kinase (BTK) and Vav1. BTK and Vav1 are recruited to phagocytic cups containing C. albicans yeasts or hyphae but are absent from mature phagosomes. BTK and Vav1 localize to cuff regions surrounding the hyphae, while Dectin-1 lines the full length of the phagosome. BTK and Vav1 colocalize with the lipid PI(3,4,5)P3 and F-actin at the phagocytic cup, but not with diacylglycerol (DAG) which marks more mature phagosomal membranes. Using a selective BTK inhibitor, we show that BTK contributes to DAG synthesis at the phagocytic cup and the subsequent recruitment of PKCε. BTK- or Vav1-deficient peritoneal macrophages display a defect in both zymosan and C. albicans phagocytosis. Bone marrow-derived macrophages that lack BTK or Vav1 show reduced uptake of C. albicans, comparable to Dectin1-deficient cells. BTK- or Vav1-deficient mice are more susceptible to systemic C. albicans infection than wild type mice. This work identifies an important role for BTK and Vav1 in immune responses against C. albicans.
Collapse
Affiliation(s)
- Karin Strijbis
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Fikadu G. Tafesse
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gregory D. Fairn
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Martin D. Witte
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Stephanie K. Dougan
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Nicki Watson
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Eric Spooner
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Alexandre Esteban
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Valmik K. Vyas
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Gerald R. Fink
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
| | - Sergio Grinstein
- Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Hidde L. Ploegh
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
75
|
|
76
|
Deschamps C, Echard A, Niedergang F. Phagocytosis and cytokinesis: do cells use common tools to cut and to eat? Highlights on common themes and differences. Traffic 2013; 14:355-64. [PMID: 23331933 DOI: 10.1111/tra.12045] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 01/11/2013] [Accepted: 01/17/2012] [Indexed: 01/22/2023]
Abstract
Eukaryotic cells with specialized functions often use and adapt common molecular machineries. Recent findings have highlighted that actin polymerization, contractile activity and membrane remodelling with exocytosis of internal compartments are required both for successful phagocytosis, the internalization of particulate material and for cytokinesis, the last step of cell division. Phagocytosis is induced by the triggering of specific cell surface receptors, which leads to membrane deformation, pseudopod extension and contraction to engulf particles. Cytokinesis relies on intense contractile activity and eventually leads to the physical scission of sister cells. In this review, shared features of signalling, cytoskeletal reorganization and vesicular trafficking used in both phagocytosis and cytokinesis will be described, but non-common mechanisms and questions that remain open in these dynamic areas of research are also highlighted.
Collapse
|
77
|
Multimolecular signaling complexes enable Syk-mediated signaling of CD36 internalization. Dev Cell 2013; 24:372-83. [PMID: 23395392 DOI: 10.1016/j.devcel.2013.01.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 12/20/2012] [Accepted: 01/10/2013] [Indexed: 12/16/2022]
Abstract
CD36 is a versatile receptor known to play a central role in the development of atherosclerosis, the pathogenesis of malaria, and the removal of apoptotic cells. Remarkably, the short cytosolically exposed regions of CD36 lack identifiable motifs, which has hampered elucidation of its mode of signaling. Using a combination of phosphoprotein isolation, mass spectrometry, superresolution imaging, and gene silencing, we have determined that the receptor induces ligand internalization through a heteromeric complex consisting of CD36, β1 and/or β2 integrins, and the tetraspanins CD9 and/or CD81. This receptor complex serves to link CD36 to the adaptor FcRγ, which bears an immunoreceptor tyrosine activation motif. By coupling to FcRγ, CD36 is able to engage Src-family kinases and Syk, which in turn drives the internalization of CD36 and its bound ligands.
Collapse
|
78
|
Abstract
Spatio-temporal control of RhoA GTPase is critical for regulation of cell migration, attachment to extracellular matrix, and cell-cell adhesions. Activation of RhoA is mediated by guanine nucleotide exchange factors (GEFs), a diverse family of enzymes that are controlled by multiple signaling pathways regulating actin cytoskeleton and cell migration. GEFs can be regulated by different mechanisms. Growing evidence demonstrates that phosphorylation serves as one of the predominant signals controlling activity, interactions, and localization of RhoGEFs. It acts as a positive and a negative regulator, and allows for regulation of RhoGEFs by multiple signaling cascades. Although there are common trends in phosphorylation-mediated regulation of some RhoGEF homologs, the majority of GEFs utilize distinct mechanisms that are dictated by their unique structure and interaction networks. This diversity enables multiple signaling pathways to use different RhoGEFs for regulation of a single central-RhoA. Here, we review current examples of phosphorylation-mediated regulation of GEFs for RhoA and its role in cell migration, discuss mechanisms, and provide insights into potential future directions.
Collapse
Affiliation(s)
- Maulik Patel
- Department of Pharmacology; University of Illinois at Chicago; Chicago, IL USA
| | - Andrei V Karginov
- Department of Pharmacology; University of Illinois at Chicago; Chicago, IL USA
| |
Collapse
|
79
|
Leander R, Dai S, Schlesinger LS, Friedman A. A mathematical model of CR3/TLR2 crosstalk in the context of Francisella tularensis infection. PLoS Comput Biol 2012; 8:e1002757. [PMID: 23133361 PMCID: PMC3486853 DOI: 10.1371/journal.pcbi.1002757] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 09/05/2012] [Indexed: 02/04/2023] Open
Abstract
Complement Receptor 3 (CR3) and Toll-like Receptor 2 (TLR2) are pattern recognition receptors expressed on the surface of human macrophages. Although these receptors are essential components for recognition by the innate immune system, pathogen coordinated crosstalk between them can suppress the production of protective cytokines and promote infection. Recognition of the virulent Schu S4 strain of the intracellular pathogen Francisella tularensis by host macrophages involves CR3/TLR2 crosstalk. Although experimental data provide evidence that Lyn kinase and PI3K are essential components of the CR3 pathway that influences TLR2 activity, additional responsible upstream signaling components remain unknown. In this paper we construct a mathematical model of CR3 and TLR2 signaling in response to F. tularensis. After demonstrating that the model is consistent with experimental results we perform numerical simulations to evaluate the contributions that Akt and Ras-GAP make to ERK inhibition. The model confirms that phagocytosis-associated changes in the composition of the cell membrane can inhibit ERK activity and predicts that Akt and Ras-GAP synergize to inhibit ERK.
Collapse
Affiliation(s)
- Rachel Leander
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| | - Shipan Dai
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Larry S. Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, United States of America
| | - Avner Friedman
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
80
|
|
81
|
Lim J, Hotchin NA. Signalling mechanisms of the leukocyte integrin αMβ2: Current and future perspectives. Biol Cell 2012; 104:631-40. [DOI: 10.1111/boc.201200013] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/09/2012] [Indexed: 01/04/2023]
|
82
|
The leucocyte β2 (CD18) integrins: the structure, functional regulation and signalling properties. Biosci Rep 2012; 32:241-69. [PMID: 22458844 DOI: 10.1042/bsr20110101] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Leucocytes are highly motile cells. Their ability to migrate into tissues and organs is dependent on cell adhesion molecules. The integrins are a family of heterodimeric transmembrane cell adhesion molecules that are also signalling receptors. They are involved in many biological processes, including the development of metazoans, immunity, haemostasis, wound healing and cell survival, proliferation and differentiation. The leucocyte-restricted β2 integrins comprise four members, namely αLβ2, αMβ2, αXβ2 and αDβ2, which are required for a functional immune system. In this paper, the structure, functional regulation and signalling properties of these integrins are reviewed.
Collapse
|
83
|
Heissler SM, Manstein DJ. Nonmuscle myosin-2: mix and match. Cell Mol Life Sci 2012; 70:1-21. [PMID: 22565821 PMCID: PMC3535348 DOI: 10.1007/s00018-012-1002-9] [Citation(s) in RCA: 169] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2012] [Revised: 04/16/2012] [Accepted: 04/17/2012] [Indexed: 12/31/2022]
Abstract
Members of the nonmuscle myosin-2 (NM-2) family of actin-based molecular motors catalyze the conversion of chemical energy into directed movement and force thereby acting as central regulatory components of the eukaryotic cytoskeleton. By cyclically interacting with adenosine triphosphate and F-actin, NM-2 isoforms promote cytoskeletal force generation in established cellular processes like cell migration, shape changes, adhesion dynamics, endo- and exo-cytosis, and cytokinesis. Novel functions of the NM-2 family members in autophagy and viral infection are emerging, making NM-2 isoforms regulators of nearly all cellular processes that require the spatiotemporal organization of cytoskeletal scaffolding. Here, we assess current views about the role of NM-2 isoforms in these activities including the tight regulation of NM-2 assembly and activation through phosphorylation and how NM-2-mediated changes in cytoskeletal dynamics and mechanics affect cell physiological functions in health and disease.
Collapse
Affiliation(s)
- Sarah M. Heissler
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| | - Dietmar J. Manstein
- Institute for Biophysical Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
84
|
Newton K, Dixit VM. Signaling in innate immunity and inflammation. Cold Spring Harb Perspect Biol 2012; 76:442-6. [PMID: 22296764 DOI: 10.1016/j.humimm.2015.03.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 12/24/2022]
Abstract
Inflammation is triggered when innate immune cells detect infection or tissue injury. Surveillance mechanisms involve pattern recognition receptors (PRRs) on the cell surface and in the cytoplasm. Most PRRs respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) by triggering activation of NF-κB, AP1, CREB, c/EBP, and IRF transcription factors. Induction of genes encoding enzymes, chemokines, cytokines, adhesion molecules, and regulators of the extracellular matrix promotes the recruitment and activation of leukocytes, which are critical for eliminating foreign particles and host debris. A subset of PRRs activates the protease caspase-1, which causes maturation of the cytokines IL1β and IL18. Cell adhesion molecules and chemokines facilitate leukocyte extravasation from the circulation to the affected site, the chemokines stimulating G-protein-coupled receptors (GPCRs). Binding initiates signals that regulate leukocyte motility and effector functions. Other triggers of inflammation include allergens, which form antibody complexes that stimulate Fc receptors on mast cells. Although the role of inflammation is to resolve infection and injury, increasing evidence indicates that chronic inflammation is a risk factor for cancer.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
85
|
Abstract
Inflammation is triggered when innate immune cells detect infection or tissue injury. Surveillance mechanisms involve pattern recognition receptors (PRRs) on the cell surface and in the cytoplasm. Most PRRs respond to pathogen-associated molecular patterns (PAMPs) or host-derived damage-associated molecular patterns (DAMPs) by triggering activation of NF-κB, AP1, CREB, c/EBP, and IRF transcription factors. Induction of genes encoding enzymes, chemokines, cytokines, adhesion molecules, and regulators of the extracellular matrix promotes the recruitment and activation of leukocytes, which are critical for eliminating foreign particles and host debris. A subset of PRRs activates the protease caspase-1, which causes maturation of the cytokines IL1β and IL18. Cell adhesion molecules and chemokines facilitate leukocyte extravasation from the circulation to the affected site, the chemokines stimulating G-protein-coupled receptors (GPCRs). Binding initiates signals that regulate leukocyte motility and effector functions. Other triggers of inflammation include allergens, which form antibody complexes that stimulate Fc receptors on mast cells. Although the role of inflammation is to resolve infection and injury, increasing evidence indicates that chronic inflammation is a risk factor for cancer.
Collapse
Affiliation(s)
- Kim Newton
- Department of Physiological Chemistry, Genentech, Inc., South San Francisco, California 94080, USA
| | | |
Collapse
|
86
|
Flannagan RS, Jaumouillé V, Grinstein S. The Cell Biology of Phagocytosis. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2012; 7:61-98. [PMID: 21910624 DOI: 10.1146/annurev-pathol-011811-132445] [Citation(s) in RCA: 677] [Impact Index Per Article: 52.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ronald S. Flannagan
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Valentin Jaumouillé
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada;
| |
Collapse
|
87
|
Heinrich V, Lee CY. Blurred line between chemotactic chase and phagocytic consumption: an immunophysical single-cell perspective. J Cell Sci 2012; 124:3041-51. [PMID: 21914817 DOI: 10.1242/jcs.086413] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
An innate immune cell can sense a pathogen, either from a distance by recognizing chemoattractant stimuli or by direct physical contact. The pathogen is subsequently neutralized, which usually occurs through its phagocytic internalization. By investigating chemotaxis and phagocytosis from an immunophysical single-cell perspective, it now appears that the demarcation between these two processes is less distinct than originally thought. Several lines of evidence support this notion. First, chemotactic stimulation does not cease at the moment of initial contact between the cell and the pathogenic target. Second, even when classical chemotaxis of neutrophils is suppressed, the early cell response to contact with typical chemoattractant targets, such as zymosan, fungal spores or chemokine-coated particles, can still involve morphological attributes of chemotaxis. Recognizing that the changing morphology of motile cells is inextricably linked to physical cell behavior, this Commentary focuses on the mechanical aspects of the early response of innate immune cells to chemotactic and phagocytic stimuli. On the basis of this perspective, we propose that the combined study of chemotaxis and phagocytosis will, potentially, not only advance our grasp of the mechanisms underlying immune-cell motility but also open new lines of research that will promote a deeper understanding of the innate recognition of pathogens.
Collapse
Affiliation(s)
- Volkmar Heinrich
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA.
| | | |
Collapse
|
88
|
Osborn-Heaford HL, Ryan AJ, Murthy S, Racila AM, He C, Sieren JC, Spitz DR, Carter AB. Mitochondrial Rac1 GTPase import and electron transfer from cytochrome c are required for pulmonary fibrosis. J Biol Chem 2012; 287:3301-12. [PMID: 22157762 PMCID: PMC3270985 DOI: 10.1074/jbc.m111.308387] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 11/21/2011] [Indexed: 12/22/2022] Open
Abstract
The generation of reactive oxygen species, particularly H(2)O(2), from alveolar macrophages is causally related to the development of pulmonary fibrosis. Rac1, a small GTPase, is known to increase mitochondrial H(2)O(2) generation in macrophages; however, the mechanism by which this occurs is not known. This study shows that Rac1 is localized in the mitochondria of alveolar macrophages from asbestosis patients, and mitochondrial import requires the C-terminal cysteine of Rac1 (Cys-189), which is post-translationally modified by geranylgeranylation. Furthermore, H(2)O(2) generation mediated by mitochondrial Rac1 requires electron transfer from cytochrome c to a cysteine residue on Rac1 (Cys-178). Asbestos-exposed mice harboring a conditional deletion of Rac1 in macrophages demonstrated decreased oxidative stress and were significantly protected from developing pulmonary fibrosis. These observations demonstrate that mitochondrial import and direct electron transfer from cytochrome c to Rac1 modulates mitochondrial H(2)O(2) production in alveolar macrophages pulmonary fibrosis.
Collapse
Affiliation(s)
| | | | | | | | - Chao He
- Radiation Oncology, Free Radical and Radiation Biology Program, and
| | - Jessica C. Sieren
- Department of Radiology, University of Iowa Carver College of Medicine, and
| | - Douglas R. Spitz
- Radiation Oncology, Free Radical and Radiation Biology Program, and
| | - A. Brent Carter
- From the Departments of Internal Medicine and
- Radiation Oncology, Free Radical and Radiation Biology Program, and
- Human Toxicology Program, University of Iowa College of Public Health, Iowa City, Iowa 52242
| |
Collapse
|
89
|
Bertagnolo V, Brugnoli F, Grassilli S, Nika E, Capitani S. Vav1 in differentiation of tumoral promyelocytes. Cell Signal 2011; 24:612-20. [PMID: 22133616 DOI: 10.1016/j.cellsig.2011.11.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 11/08/2011] [Indexed: 02/06/2023]
Abstract
The multidomain protein Vav1, in addition to promote the acquisition of maturation related properties by normal hematopoietic cells, is a key player in the ATRA- and PMA-induced completion of the differentiation program of tumoral myeloid precursors derived from APL. This review is focussed on the role of Vav1 in differentiating promyelocytes, as part of interconnected networks of functionally related proteins ended to regulate different aspects of myeloid maturation. The role of Vav1 in determining actin cytoskeleton reorganization alternative to the best known function as a GEF for small G proteins is discussed, as well as the binding of Vav1 with cytoplasmic and nuclear signaling molecules which provides a new perspective in the modulation of nuclear architecture and activity. In particular, new hints are provided on the ability of Vav1 to determine the nuclear amount of proteins implicated in modulating mRNA production and stability and in regulating the ATRA-dependent protein expression also by direct interaction with transcription factors known to drive the ATRA-induced maturation of myeloid cells. The reviewed findings summarize the major advances in the understanding of additional, non conventional functions connected with the vast interactive potential of Vav1.
Collapse
Affiliation(s)
- Valeria Bertagnolo
- Section of Human Anatomy, Department of Morphology and Embryology, University of Ferrara, Ferrara, Italy.
| | | | | | | | | |
Collapse
|
90
|
Abstract
EHDs [EH (Eps15 homology)-domain-containing proteins] participate in different stages of endocytosis. EHD2 is a plasma-membrane-associated EHD which regulates trafficking from the plasma membrane and recycling. EHD2 has a role in nucleotide-dependent membrane remodelling and its ATP-binding domain is involved in dimerization, which creates a membrane-binding region. Nucleotide binding is important for association of EHD2 with the plasma membrane, since a nucleotide-free mutant (EHD2 T72A) failed to associate. To elucidate the possible function of EHD2 during endocytic trafficking, we attempted to unravel proteins that interact with EHD2, using the yeast two-hybrid system. A novel interaction was found between EHD2 and Nek3 [NIMA (never in mitosis in Aspergillus nidulans)-related kinase 3], a serine/threonine kinase. EHD2 was also found in association with Vav1, a Nek3-regulated GEF (guanine-nucleotide-exchange factor) for Rho GTPases. Since Vav1 regulates Rac1 activity and promotes actin polymerization, the impact of overexpression of EHD2 on Rac1 activity was tested. The results indicated that wt (wild-type) EHD2, but not its P-loop mutants, reduced Rac1 activity. The inhibitory effect of EHD2 overexpression was partially rescued by co-expression of Rac1 as measured using a cholera toxin trafficking assay. The results of the present study strongly indicate that EHD2 regulates trafficking from the plasma membrane by controlling Rac1 activity.
Collapse
|
91
|
The Fc receptor-cytoskeleton complex from human neutrophils. J Proteomics 2011; 75:450-68. [PMID: 21911091 DOI: 10.1016/j.jprot.2011.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 08/12/2011] [Accepted: 08/14/2011] [Indexed: 11/23/2022]
Abstract
The Fc receptor complex and its associated phagocytic cytoskeleton machinery were captured from the surface of live cells by IgG coated microbeads and identified by mass spectrometry. The random and independently sampled intensity values of peptides were similar in the control and IgG samples. After log transformation, the parent and fragment intensity values showed a normal distribution where ≥99.9% of the data was well above the background noise. Some proteins showed significant differences in intensity between the IgG and control samples by ANOVA followed by the Tukey-Kramer honestly significant difference test. However many proteins were specific to the IgG beads or the control beads. The set of detected cytoskeleton proteins, binding proteins and enzymes detected on the IgG beads were used to predict the network of actin-associated regulatory factors. Signaling factors/proteins such as PIK3, PLC, GTPases (such CDC42, Rho GAPs/GEFs), annexins and inositol triphosphate receptors were all identified as being specific to the activated receptor complex by mass spectrometry. In addition, the tyrosine kinase Fak was detected with the IgG coated beads. Hence, an activated receptor cytoskeleton complex and its associated regulatory proteins were captured from the surface of live human primary leukocytes.
Collapse
|
92
|
Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol 2011; 90:1065-78. [PMID: 21878544 DOI: 10.1189/jlb.0311114] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The ability of a pathogen to evade host immunity successfully, in contrast to the host's capacity to defend itself against a foreign invader, is a complex struggle, in which eradication of infection is dictated by a robust immunologic response. Often, there are external factors that can alter the outcome by tipping the scale to benefit pathogen establishment rather than resolution by the host's defense system. These external sources, such a cigarettes, alcohol, or environmental pollutants, can negatively influence the effectiveness of the immune system's response to a pathogen. The observed suppression of immune function can be attributed to dysregulated cytokine and chemokine production, the loss of migratory potential, or the inability to phagocytose pathogens by immune cells. This review will focus on the mechanisms involved during the toxin-induced suppression of phagocytosis. The accumulated data support the importance of studying the mechanisms of phagocytosis following exposure to these factors, in that this effect alone cannot only leave the host susceptible to infection but also promote alterations in many other macrophage functions necessary for pathogen clearance and restoration of homeostasis.
Collapse
Affiliation(s)
- John Karavitis
- Program of Cell Biology, Neurobiology and Anatomy, Loyola University Medical Center, Maywood, Illinois, USA
| | | |
Collapse
|
93
|
Park H, Ishihara D, Cox D. Regulation of tyrosine phosphorylation in macrophage phagocytosis and chemotaxis. Arch Biochem Biophys 2011; 510:101-11. [PMID: 21356194 PMCID: PMC3114168 DOI: 10.1016/j.abb.2011.02.019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/15/2011] [Accepted: 02/18/2011] [Indexed: 12/22/2022]
Abstract
Macrophages display a large variety of surface receptors that are critical for their normal cellular functions in host defense, including finding sites of infection (chemotaxis) and removing foreign particles (phagocytosis). However, inappropriate regulation of these processes can lead to human diseases. Many of these receptors utilize tyrosine phosphorylation cascades to initiate and terminate signals leading to cell migration and clearance of infection. Actin remodeling dominates these processes and many regulators have been identified. This review focuses on how tyrosine kinases and phosphatases regulate actin dynamics leading to macrophage chemotaxis and phagocytosis.
Collapse
Affiliation(s)
- Haein Park
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dan Ishihara
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Dianne Cox
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| |
Collapse
|
94
|
Vav1 is a crucial molecule in monocytic/macrophagic differentiation of myeloid leukemia-derived cells. Cell Tissue Res 2011; 345:163-75. [PMID: 21647562 DOI: 10.1007/s00441-011-1195-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2010] [Accepted: 05/13/2011] [Indexed: 12/25/2022]
Abstract
Vav1 is a critical signal transducer for both the development and function of normal hematopoietic cells, in which it regulates the acquisition of maturation-related properties, including adhesion, motility, and phagocytosis. Vav1 is also important for the agonist-induced maturation of acute promyelocytic leukemia (APL)-derived promyelocytes, in which it promotes the acquisition of a mature phenotype by playing multiple functions at both cytoplasmic and nuclear levels. We investigated the possible role of Vav1 in the differentiation of leukemic precursors to monocytes/macrophages. Tumoral promyelocytes in which Vav1 was negatively modulated were induced to differentiate into monocytes/macrophages with phorbol-12-myristate-13-acetate (PMA) and monitored for their maturation-related properties. We found that Vav1 was crucial for the phenotypical differentiation of tumoral myeloid precursors to monocytes/macrophages, in terms of CD11b expression, adhesion capability and cell morphology. Confocal analysis revealed that Vav1 may synergize with actin in modulating nuclear morphology of PMA-treated adherent cells. Our data indicate that, in tumoral promyelocytes, Vav1 is a component of lineage-specific transduction machineries that can be recruited by various differentiating agents. Since Vav1 plays a central role in the completion of the differentiation program of leukemic promyelocytes along diverse hematopoietic lineages, it can be considered a common target for developing new therapeutic strategies for the various subtypes of myeloid leukemias.
Collapse
|
95
|
Myllymäki SM, Teräväinen TP, Manninen A. Two distinct integrin-mediated mechanisms contribute to apical lumen formation in epithelial cells. PLoS One 2011; 6:e19453. [PMID: 21573123 PMCID: PMC3089628 DOI: 10.1371/journal.pone.0019453] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 03/29/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Formation of apical compartments underlies the morphogenesis of most epithelial organs during development. The extracellular matrix (ECM), particularly the basement membrane (BM), plays an important role in orienting the apico-basal polarity and thereby the positioning of apical lumens. Integrins have been recognized as essential mediators of matrix-derived polarity signals. The importance of β1-integrins in epithelial polarization is well established but the significance of the accompanying α-subunits have not been analyzed in detail. PRINCIPAL FINDINGS Here we demonstrate that two distinct integrin-dependent pathways regulate formation of apical lumens to ensure robust apical membrane biogenesis under different microenvironmental conditions; 1) α2β1- and α6β4-integrins were required to establish a basal cue that depends on Rac1-activity and guides apico-basal cell polarization. 2) α3β1-integrins were implicated in positioning of mitotic spindles in cysts, a process that is essential for Cdc42-driven epithelial hollowing. SIGNIFICANCE Identification of the separate processes driven by particular integrin receptors clarifies the functional hierarchies between the different integrins co-expressed in epithelial cells and provides valuable insight into the complexity of cell-ECM interactions thereby guiding future studies addressing the molecular basis of epithelial morphogenesis during development and disease.
Collapse
Affiliation(s)
- Satu Marja Myllymäki
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | - Terhi Piritta Teräväinen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Biocenter Oulu, Oulu Center for Cell-Matrix Research, Department of Medical Biochemistry and Molecular Biology, University of Oulu, Oulu, Finland
| |
Collapse
|
96
|
Abstract
Platelet hyperactivity associated with hyperlipidemia contributes to development of a pro-thrombotic state. We previously showed that oxidized LDL (oxLDL) formed in the setting of hyperlipidemia and atherosclerosis initiated a CD36-mediated signaling cascade leading to platelet hyperactivity. We now show that the guanine nucleotide exchange factors Vav1 and Vav3 were tyrosine phosphorylated in platelets exposed to oxLDL. Pharmacologic inhibition of src family kinases abolished Vav1 phosphorylation by oxLDL in vitro. Coimmunoprecipitations revealed the tyrosine phosphorylated form of src kinase Fyn was associated with Vav1 in platelets exposed to oxLDL. Using a platelet aggregation assay, we demonstrated that Vav1 deficiency, Fyn deficiency, or Vav1/Vav3 deficiency protected mice from diet-induced platelet hyperactivity. Furthermore, flow cytometric analysis revealed that Vav1/Vav3 deficiency significantly inhibited oxLDL-mediated integrin αIIbβIII activation of platelets costimulated with ADP. Finally, we showed with an in vivo carotid artery thrombosis model that genetic deletion of Vav1 and Vav3 together may prevent the development of occlusive thrombi in mice fed a high-fat diet. These findings implicate Vav proteins in oxLDL-mediated platelet activation and suggest that Vav family member(s) may act as critical modulators linking a prothrombotic state and hyperlipidemia.
Collapse
|
97
|
Lee CY, Herant M, Heinrich V. Target-specific mechanics of phagocytosis: protrusive neutrophil response to zymosan differs from the uptake of antibody-tagged pathogens. J Cell Sci 2011; 124:1106-14. [PMID: 21385838 DOI: 10.1242/jcs.078592] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The physical mechanisms that control target-specific responses of human neutrophils to distinct immune threats are poorly understood. Using dual-micropipette manipulation, we have quantified and compared the time courses of neutrophil phagocytosis of two different targets: zymosan (a prominent model of fungal infection), and antibody-coated (Fc) particles. Our single-live-cell/single-target approach exposes surprising differences between these two forms of phagocytosis. Unlike the efficient uptake of 3-μm Fc targets (within ~66 seconds), the engulfment of similarly sized zymosan is slow (~167 seconds), mainly due to the formation of a characteristic pedestal that initially pushes the particle outwards by ~1 μm. Despite a roughly twofold difference in maximum cortical tensions, the top 'pull-in' speeds of zymosan and Fc targets are indistinguishable at ~33 nm/second. Drug inhibition shows that both actin as well as myosin II partake in the regulation of neutrophil cortical tension and cytoplasmic viscosity; other than that, myosin II appears to play a minor role in both forms of phagocytosis. Remarkably, an intact actin cytoskeleton is required to suppress, in antibody-mediated phagocytosis, the initially protrusive deformation that distinguishes the neutrophil response to zymosan.
Collapse
Affiliation(s)
- Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California Davis, Davis, CA 95616, USA
| | | | | |
Collapse
|
98
|
Herant M, Lee CY, Dembo M, Heinrich V. Protrusive push versus enveloping embrace: computational model of phagocytosis predicts key regulatory role of cytoskeletal membrane anchors. PLoS Comput Biol 2011; 7:e1001068. [PMID: 21298079 PMCID: PMC3029235 DOI: 10.1371/journal.pcbi.1001068] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2010] [Accepted: 12/22/2010] [Indexed: 01/14/2023] Open
Abstract
Encounters between human neutrophils and zymosan elicit an initially protrusive cell response that is distinct from the thin lamella embracing antibody-coated targets. Recent experiments have led us to hypothesize that this behavior has its mechanistic roots in the modulation of interactions between membrane and cytoskeleton. To test and refine this hypothesis, we confront our experimental results with predictions of a computer model of leukocyte mechanical behavior, and establish the minimum set of mechanistic variations of this computational framework that reproduces the differences between zymosan and antibody phagocytosis. We confirm that the structural linkages between the cytoskeleton and the membrane patch adherent to a target form the “switchboard” that controls the target specificity of a neutrophil's mechanical response. These linkages are presumably actin-binding protein complexes associating with the cytoplasmic domains of cell-surface receptors that are engaged in adhesion to zymosan and Fc-domains. Recent micropipette experiments have provided a unique live view of “one-on-one” interactions between human neutrophils and their phagocytic targets. Our results revealed surprising differences between two prominent immunological pathways: the response to fungal targets (mimicked using zymosan particles), and antibody-mediated phagocytosis. Whereas antibody-coated targets were “pulled” into the cell in a straightforward manner, zymosan particles were internalized only after an initial outward “push”. We hypothesized that structural interactions between the cytoskeleton and the membrane patch adherent to a target play a pivotal role in the control of this target specificity. To verify and refine this hypothesis, we here compare our experimental results with predictions of suitable adaptations of a previously validated computational model of neutrophil mechanical behavior. By optimizing the model to best match our experiments, we corroborate that the primary mechanistic origin of the target-specific cell behavior indeed lies in the strength of cytoskeletal membrane anchors.
Collapse
Affiliation(s)
- Marc Herant
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Cheng-Yuk Lee
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
- Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California, United States of America
| | - Micah Dembo
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Volkmar Heinrich
- Department of Biomedical Engineering, University of California, Davis, Davis, California, United States of America
- * E-mail:
| |
Collapse
|
99
|
Bohdanowicz M, Cosío G, Backer JM, Grinstein S. Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. ACTA ACUST UNITED AC 2011; 191:999-1012. [PMID: 21115805 PMCID: PMC2995177 DOI: 10.1083/jcb.201004005] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Phagosomes formed by engagement of complement receptors (CR3) are moved within macrophages by PI3K-driven formation of actin “comet tails” on the phagosomal membrane. Actin polymerization drives the extension of pseudopods that trap and engulf phagocytic targets. The polymerized actin subsequently dissociates as the phagocytic vacuole seals and detaches from the plasma membrane. We found that phagosomes formed by engagement of integrins that serve as complement receptors (CR3) undergo secondary waves of actin polymerization, leading to the formation of “comet tails” that propel the vacuoles inside the cells. Actin tail formation was accompanied by and required de novo formation of PI(3,4)P2 and PI(3,4,5)P3 on the phagosomal membrane by class I phosphoinositide 3-kinases (PI3Ks). Although the phosphatidylinositide phosphatase Inpp5B was recruited to nascent phagosomes, it rapidly detached from the membrane after phagosomes sealed. Detachment of Inpp5B required the formation of PI(3)P. Thus, class III PI3K activity was also required for the accumulation of PI(4,5)P2 and PI(3,4,5)P3 and for actin tail formation. These experiments reveal a new PI(3)P-sensitive pathway leading to PI(3,4)P2 and PI(3,4,5)P3 formation and signaling in endomembranes.
Collapse
Affiliation(s)
- Michal Bohdanowicz
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada
| | | | | | | |
Collapse
|
100
|
Buntru A, Kopp K, Voges M, Frank R, Bachmann V, Hauck CR. Phosphatidylinositol 3'-kinase activity is critical for initiating the oxidative burst and bacterial destruction during CEACAM3-mediated phagocytosis. J Biol Chem 2011; 286:9555-66. [PMID: 21216968 DOI: 10.1074/jbc.m110.216085] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Carcinoembryonic antigen-related cell adhesion molecule 3 (CEACAM3) is an immunoglobulin-related receptor expressed on human granulocytes. CEACAM3 functions as a single chain phagocytotic receptor recognizing gram-negative bacteria such as Neisseria gonorrhoeae, which possess CEACAM-binding adhesins on their surface. The cytoplasmic domain of CEACAM3 contains an immunoreceptor tyrosine-based activation motif (ITAM)-like sequence that is phosphorylated upon receptor engagement. Here we show that the SH2 domains of the regulatory subunit of phosphatidylinositol 3'-kinase (PI3K) bind to tyrosine residue 230 of CEACAM3 in a phosphorylation-dependent manner. PI3K is rapidly recruited and directly associates with CEACAM3 upon bacterial binding as shown by FRET analysis. Although PI3K activity is not required for efficient uptake of the bacteria by CEACAM3-transfected cells or primary human granulocytes, it is critical for the stimulated production of reactive oxygen species by infected phagocytes and the intracellular degradation of CEACAM-binding bacteria. Together, our results highlight the ability of CEACAM3 to coordinate signaling events that not only mediate bacterial uptake, but also trigger the killing of internalized pathogens.
Collapse
Affiliation(s)
- Alexander Buntru
- Lehrstuhl für Zellbiologie, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|