51
|
Wu X, Wan T, Gao X, Fu M, Duan Y, Shen X, Guo W. Microglia Pyroptosis: A Candidate Target for Neurological Diseases Treatment. Front Neurosci 2022; 16:922331. [PMID: 35937897 PMCID: PMC9354884 DOI: 10.3389/fnins.2022.922331] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
In addition to its profound implications in the fight against cancer, pyroptosis have important role in the regulation of neuronal injury. Microglia are not only central members of the immune regulation of the central nervous system (CNS), but are also involved in the development and homeostatic maintenance of the nervous system. Under various pathological overstimulation, microglia pyroptosis contributes to the massive release of intracellular inflammatory mediators leading to neuroinflammation and ultimately to neuronal damages. In addition, microglia pyroptosis lead to further neurological damage by decreasing the ability to cleanse harmful substances. The pathogenic roles of microglia in a variety of CNS diseases such as neurodegenerative diseases, stroke, multiple sclerosis and depression, and many other neurological disorders have been gradually unveiled. In the context of different neurological disorders, inhibition of microglia pyroptosis by targeting NOD-like receptor family pyrin domain containing (NLRP) 3, caspase-1 and gasdermins (GSDMs) by various chemical agents as well as natural products significantly improve the symptoms or outcome in animal models. This study will provide new ideas for immunomodulatory treatment of CNS diseases.
Collapse
Affiliation(s)
- Xian Wu
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Teng Wan
- Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Yunfeng Duan
- The First Affiliated Hospital of Hunan College of Traditional Chinese Medicine, Hunan Province Directly Affiliated TCM Hospital, Zhuzhou, China
| | - Xiangru Shen
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Xiangru Shen
| | - Weiming Guo
- Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
52
|
Hua T, Yang M, Song H, Kong E, Deng M, Li Y, Li J, Liu Z, Fu H, Wang Y, Yuan H. Huc-MSCs-derived exosomes attenuate inflammatory pain by regulating microglia pyroptosis and autophagy via the miR-146a-5p/TRAF6 axis. J Nanobiotechnology 2022; 20:324. [PMID: 35836229 PMCID: PMC9281091 DOI: 10.1186/s12951-022-01522-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/21/2022] [Indexed: 12/19/2022] Open
Abstract
Background Chronic inflammatory pain significantly reduces the quality of life and lacks effective interventions. In recent years, human umbilical cord mesenchymal stem cells (huc-MSCs)-derived exosomes have been used to relieve neuropathic pain and other inflammatory diseases as a promising cell-free therapeutic strategy. However, the therapeutic value of huc-MSCs-derived exosomes in complete Freund's adjuvant (CFA)-induced inflammatory pain remains to be confirmed. In this study, we investigated the therapeutic effect and related mechanisms of huc-MSCs-derived exosomes in a chronic inflammatory pain model. Methods C57BL/6J male mice were used to establish a CFA-induced inflammatory pain model, and huc-MSCs-derived exosomes were intrathecally injected for 4 consecutive days. BV2 microglia cells were stimulated with lipopolysaccharide (LPS) plus adenosine triphosphate (ATP) to investigate the effect of huc-MSCs-derived exosomes on pyroptosis and autophagy. Bioinformatic analysis and rescue experiments were used to demonstrate the role of miR-146a-5p/ TRAF6 in regulating pyroptosis and autophagy. Western blotting, RT-qPCR, small interfering RNA and Yo-Pro-1 dye staining were performed to investigate the related mechanisms. Results Huc-MSCs-derived exosomes alleviated mechanical allodynia and thermal hyperalgesia in CFA-induced inflammatory pain. Furthermore, huc-MSCs-derived exosomes attenuated neuroinflammation by increasing the expression of autophagy-related proteins (LC3-II and beclin1) and inhibiting the activation of NLRP3 inflammasomes in the spinal cord dorsal horn. In vitro, NLRP3 inflammasome components (NLRP3, caspase1-p20, ASC) and gasdermin D (GSDMD-F, GSDMD-N) were inhibited in BV2 cells pretreated with huc-MSCs-derived exosomes. Western blot and Yo-Pro-1 dye staining demonstrated that 3-MA, an autophagy inhibitor, weakened the protective effect of huc-MSCs-derived exosomes on BV2 cell pyroptosis. Importantly, huc-MSCs-derived exosomes transfected with miR-146a-5p mimic promoted autophagy and inhibited BV2 cell pyroptosis. TRAF6, as a target gene of miR-146a-5p, was knocked down via small-interfering RNA, which increased pyroptosis and inhibited autophagy. Conclusion Huc-MSCs-derived exosomes attenuated inflammatory pain via miR-146a-5p/TRAF6, which increased the level of autophagy and inhibited pyroptosis. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01522-6.
Collapse
Affiliation(s)
- Tong Hua
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mei Yang
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Honghao Song
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Erliang Kong
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Mengqiu Deng
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Yongchang Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Jian Li
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China
| | - Zhixiao Liu
- Research Center of Developmental Biology, Department of Histology and Embryology, College of Basic Medicine, Naval Medical University, Shanghai, 200433, China
| | - Hailong Fu
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| | - Yue Wang
- Stem Cell and Regeneration Medicine Institute, Research Center of Translational Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Hongbin Yuan
- Department of Anesthesiology, Changzheng Hospital, Naval Medical University, Shanghai, 200003, China.
| |
Collapse
|
53
|
Guo L, Wang D, Alexander HY, Ren X, Ma H. Long non-coding RNA H19 contributes to spinal cord ischemia/reperfusion injury through increasing neuronal pyroptosis by miR-181a-5p/HMGB1 axis. Aging (Albany NY) 2022; 14:5449-5463. [PMID: 35793244 PMCID: PMC9320554 DOI: 10.18632/aging.204160] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 06/18/2022] [Indexed: 12/23/2022]
Abstract
Pyroptosis, a programmed inflammatory necrotizing cell death, is likely involved in spinal cord ischemia-reperfusion (SCI/R) injury, but the mechanisms initiating driving neuronal pyroptosis must be further revealed. The aim of this study is to unravel the mechanism of long non-coding RNA (lncRNA) H19 during SCI/R. SCI/R model was induced in C57BL/6 mice by blocking the aortic arch in vivo, and oxygen-glucose deprivation/reperfusion (OGD/R) injury model of PC12 cells was established in vitro. Our results showed that H19 and HMGB1 expression was upregulated, while miR-181a-5p was downregulated in the SCI/R mice and OGD/R-treated PC12 cells. SCI/R induced pathological damage, pyroptosis and inflammation compared with the sham group. H19 acted as a molecular sponge to suppress miR-181a-5p, and HMGB1 was identified as a direct target of miR-181a-5p. MiR-181a-5p overexpression inhibited the increase of IL-1β, IL-18 and TNF-α production and NLRP3, ASC, and Cleaved-caspase-1 expression in OGD/R-treated PC12 cells; while miR-181a-5p silencing exerted opposite effects. HMGB1 overexpression reversed H19 knockdown-mediated the inhibition of pyroptosis and inflammation in OGD/R-treated PC12 cells. In vivo, H19 knockdown promoted the hind limb motor function recovery and alleviated the pathological damage, pyroptosis and inflammation induced by SCI/R. LncRNA H19/miR-181a-5p/HMGB1 pathway contributes to pyroptosis via activating caspase1 signaling during SCI/R, suggesting that this axis may be a potent therapeutic target in SCI/R.
Collapse
Affiliation(s)
- Lili Guo
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Dan Wang
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hildrich Yasmal Alexander
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Xiaoyan Ren
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| | - Hong Ma
- Department of Anesthesiology, First Hospital of China Medical University, Shenyang 110001, Liaoning Province, China
| |
Collapse
|
54
|
Gao X, Cao Z, Tan H, Li P, Su W, Wan T, Guo W. LncRNA, an Emerging Approach for Neurological Diseases Treatment by Regulating Microglia Polarization. Front Neurosci 2022; 16:903472. [PMID: 35860297 PMCID: PMC9289270 DOI: 10.3389/fnins.2022.903472] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/06/2022] [Indexed: 12/12/2022] Open
Abstract
Neurological disorders cause untold human disability and death each year. For most neurological disorders, the efficacy of their primary treatment strategies remains suboptimal. Microglia are associated with the development and progression of multiple neurological disorders. Targeting the regulation of microglia polarization has emerged as an important therapeutic strategy for neurological disorders. Their pro-inflammatory (M1)/anti-inflammatory (M2) phenotype microglia are closely associated with neuronal apoptosis, synaptic plasticity, blood-brain barrier integrity, resistance to iron death, and astrocyte regulation. LncRNA, a recently extensively studied non-coding transcript of over 200 nucleotides, has shown great value to intervene in microglia polarization. It can often participate in gene regulation of microglia by directly regulating transcription or sponging downstream miRNAs, for example. Through proper regulation, microglia can exert neuroprotective effects, reduce neurological damage and improve the prognosis of many neurological diseases. This paper reviews the progress of research linking lncRNAs to microglia polarization and neurological diseases.
Collapse
Affiliation(s)
- Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Zilong Cao
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Haifeng Tan
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Wenen Su
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
| | - Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, Hunan, China
- Teng Wan,
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- *Correspondence: Weiming Guo,
| |
Collapse
|
55
|
Abbas F, Eladl MA, El-Sherbiny M, Abozied N, Nabil A, Mahmoud SM, Mokhtar HI, Zaitone SA, Ibrahim D. Celastrol and thymoquinone alleviate aluminum chloride-induced neurotoxicity: Behavioral psychomotor performance, neurotransmitter level, oxidative-inflammatory markers, and BDNF expression in rat brain. Biomed Pharmacother 2022; 151:113072. [PMID: 35576663 DOI: 10.1016/j.biopha.2022.113072] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/27/2022] [Accepted: 04/29/2022] [Indexed: 11/02/2022] Open
Abstract
Exposure to aluminum chloride (AlCl3) induces progressive multiregional neurodegeneration in animal models by promoting oxidative stress and neuroinflammation. The current study was designed to assess the potential efficacy of the natural antioxidants celastrol and thymoquinone (TQ) for alleviating AlCl3-induced psychomotor abnormalities and oxidative-inflammatory burden in male albino rats. Four treatment groups were compared: (i) a vehicle control group, (ii) a AlCL3 group receiving daily intraperitoneal (i.p.) injection of AlCl3 (10 mg/kg) for 6 weeks, (iii) a AlCl3 plus TQ (10 mg/kg, i.p.) cotreatment group, and (iv) a AlCl3 plus celastrol (1 mg/kg, i.p.) cotreatment group. Open-field, rotarod, and forced swimming tests were conducted to assess locomotor activity, motor coordination, anxiety-like behavior, and depressive-like behavior. Acetylcholine (ACh), dopamine, and serotonin levels were measured in brain homogenates. Malondialdehyde (MDA), total antioxidant capacity (TAC), and catalase activity were measured as oxidative stress markers, while tumor necrosis factor-α (TNF-α) and interlukin-6 (IL-6) expression levels were measured as inflammatory markers. Brain derived neurotrophic factor (BDNF) mRNA was measured as an index for the endogenous neuroprotective response. Daily AlCl3 injection reduced free ambulation, impaired motor coordination, promoted anxiety- and depression-like behaviors, reduced whole-brain ACh, dopamine, and serotonin concentrations, increased MDA accumulation, reduced TAC, elevated TNF-α and IL-6, and suppressed BDNF mRNA expression. All of these effects were significantly reversed by TQ or celastrol cotreatment. Thus, TQ and celastrol may be promising treatments for AlCl3-induced neurotoxicity as well as neurodegenerative diseases involving oxidative stress and neuroinflammation.
Collapse
Affiliation(s)
- Faten Abbas
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Ahmed Eladl
- Department of Basic Medical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates.
| | - Mohamed El-Sherbiny
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh 71666, Saudi Arabia; Department of Anatomy, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nadia Abozied
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Amaal Nabil
- Pharmacology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Shereen M Mahmoud
- Forensic Medicine & Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hatem I Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University, Kantara branch, Ismailia 41636, Egypt
| | - Sawsan A Zaitone
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia.
| | - Dalia Ibrahim
- Physiology Department, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
56
|
Li F, Wang H, Chen H, Guo J, Dang X, Ru Y, Wang H. Mechanism of Ferroptosis and Its Role in Spinal Cord Injury. Front Neurol 2022; 13:926780. [PMID: 35756929 PMCID: PMC9218271 DOI: 10.3389/fneur.2022.926780] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/05/2022] [Indexed: 12/11/2022] Open
Abstract
Ferroptosis is a non-necrotic form of regulated cell death (RCD) that is primarily characterized by iron-dependent membrane lipid peroxidation and is regulated by cysteine transport, glutathione synthesis, and glutathione peroxidase 4 function as well as other proteins including ferroptosis suppressor protein 1. It has been found that ferroptosis played an important role in many diseases, such as neurodegenerative diseases and ischemia-reperfusion injury. Spinal cord injury (SCI), especially traumatic SCI, is an urgent problem worldwide due to its high morbidity and mortality, as well as the destruction of functions of the human body. Various RCDs, including ferroptosis, are found in SCI. Different from necrosis, since RCD is a form of cell death regulated by various molecular mechanisms in cells, the study of the role played by RCD in SCI will contribute to a deeper understanding of the pathophysiological process, as well as the treatment and functional recovery. The present review mainly introduces the main mechanism of ferroptosis and its role in SCI, so as to provide a new idea for further exploration.
Collapse
Affiliation(s)
- Fei Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Haifan Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hao Chen
- Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Jianing Guo
- Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yi Ru
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Basic Medical Science Academy, The Air Force Medical University, Xi'an, China
| | - Haoyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
57
|
Liu D, Zhang Q, Luo P, Gu L, Shen S, Tang H, Zhang Y, Lyu M, Shi Q, Yang C, Wang J. Neuroprotective Effects of Celastrol in Neurodegenerative Diseases-Unscramble Its Major Mechanisms of Action and Targets. Aging Dis 2022; 13:815-836. [PMID: 35656110 PMCID: PMC9116906 DOI: 10.14336/ad.2021.1115] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
There are rarely new therapeutic breakthroughs present for neurodegenerative diseases in the last decades. Thus, new effective drugs are urgently needed for millions of patients with neurodegenerative diseases. Celastrol, a pentacyclic triterpenoid compound, is one of the main active ingredients isolated from Tripterygium wilfordii Hook. f. that has multiple biological activities. Recently, amount evidence indicates that celastrol exerts neuroprotective effects and holds therapeutic potential to serve as a novel agent for neurodegenerative diseases. This review focuses on the therapeutic efficacy and major regulatory mechanisms of celastrol to rescue damaged neurons, restore normal cognitive and sensory motor functions in neurodegenerative diseases. Importantly, we highlight recent progress regarding identification of the drug targets of celastrol by using advanced quantitative chemical proteomics technology. Overall, this review provides novel insights into the pharmacological activities and therapeutic potential of celastrol for incurable neurodegenerative diseases.
Collapse
Affiliation(s)
- Dandan Liu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Qian Zhang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Piao Luo
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | - Liwei Gu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shengnan Shen
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huan Tang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ying Zhang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ming Lyu
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qiaoli Shi
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chuanbin Yang
- 3Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Jigang Wang
- 1Artemisinin research center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,2Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,3Department of Geriatrics, Shenzhen People's Hospital, Shenzhen, China.,4Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
58
|
Wan T, Li X, Fu M, Gao X, Li P, Guo W. NLRP3-Dependent Pyroptosis: A Candidate Therapeutic Target for Depression. Front Cell Neurosci 2022; 16:863426. [PMID: 35722622 PMCID: PMC9204297 DOI: 10.3389/fncel.2022.863426] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/20/2023] Open
Abstract
Depression, a major public health problem, imposes a significant economic burden on society. Recent studies have gradually unveiled the important role of neuroinflammation in the pathogenesis of depression. Pyroptosis, a programmed cell death mediated by Gasdermins (GSDMs), is also considered to be an inflammatory cell death with links to inflammation. Pyroptosis has emerged as an important pathological mechanism in several neurological diseases and has been found to be involved in several neuroinflammatory-related diseases. A variety of chemical agents and natural products have been found to be capable of exerting therapeutic effects by modulating pyroptosis. Studies have shown that depression is closely associated with pyroptosis and the induced neuroinflammation of relevant brain regions, such as the hippocampus, amygdala, prefrontal cortex neurons, etc., in which the nucleotide-binding oligomerization domain-like receptor protein 3 inflammasome plays a crucial role. This article provides a timely review of recent findings on the activation and regulation of pyroptosis in relation to depression.
Collapse
Affiliation(s)
- Teng Wan
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Hengyang Medical College, University of South China, Hengyang, China
- *Correspondence: Teng Wan
| | - Xiaoyu Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Mingyuan Fu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Xiaoyu Gao
- Hengyang Medical College, University of South China, Hengyang, China
| | - Peiling Li
- Hengyang Medical College, University of South China, Hengyang, China
| | - Weiming Guo
- Sports Medicine Department, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, China
- The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
- Weiming Guo
| |
Collapse
|
59
|
Luteolin Induced Hippocampal Neuronal Pyroptosis Inhibition by Regulation of miR-124-3p/TNF- α/TRAF6 Axis in Mice Affected by Breast-Cancer-Related Depression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2715325. [PMID: 35571739 PMCID: PMC9106465 DOI: 10.1155/2022/2715325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/23/2022] [Indexed: 11/18/2022]
Abstract
Background Breast-cancer-related depression (BCRD) is associated with an increased mortality rate among breast cancer (BC) survivors. Luteolin has many pharmacological effects, particularly in the treatment of BC. In this study, we aimed to explore the anti-BCRD activity of luteolin and its underlying functional mechanism. Methods A BCRD mouse model was induced by injecting 4T1 cells and corticosterone (COR). Behavioral test, terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, Nissl staining, immunofluorescence, reverse-transcription quantitative PCR (RT-qPCR), and western blotting were used to study the effect of luteolin in mice with BCRD in vivo. A COR-induced neuron injury model was established in HT-22 cells in vitro. The role of miR-124-3p in the anti-BCRD effects of luteolin was studied using a miR-124-3p inhibitor. Results Luteolin significantly reduced the size and weight of the tumor, increased the mice entry frequency in the symmetrical sector, and reduced the duration of immobility in the tail suspension and forced swimming tests of mice affected by BCRD. Simultaneously, apoptosis of hippocampal neurons was inhibited, and the number of Nissl bodies increased with luteolin treatment. In addition, luteolin resulted in the upregulation of miR-124-3p expression in the hippocampus and downregulated the expression of tumor necrosis factor-α (TNF-α) and TNF receptor-associated factor 6 (TRAF6), as well as lowered the phosphorylation levels of nuclear factor-kappa B (NF-κB) and IkappaB (IκB). Luteolin also inhibited pyroptosis of hippocampal neurons in mice affected by BCRD, as revealed by the low protein levels of NOD-like receptor protein 3 (NLRP3), caspase-1, gasdermin D-N (GSDMD-N), interleukin (IL)-1β, and IL-18. However, the miR-124-3p inhibitor significantly reversed the therapeutic effect of luteolin on COR-induced HT-22 cells. Conclusion Our study demonstrated that the anti-BCRD function of luteolin was mediated by regulating the miR-124-3p/TNF-α/TRAF6-related pathway and inhibiting neuronal cell pyroptosis and subsequent inflammation. Therefore, luteolin may be a potential drug candidate in the treatments of BCRD.
Collapse
|
60
|
Yang B, Zhong W, Gu Y, Li Y. Emerging Mechanisms and Targeted Therapy of Pyroptosis in Central Nervous System Trauma. Front Cell Dev Biol 2022; 10:832114. [PMID: 35399534 PMCID: PMC8990238 DOI: 10.3389/fcell.2022.832114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/14/2022] [Indexed: 01/31/2023] Open
Abstract
Cell death can occur in different modes, ferroptosis, pyroptosis, apoptosis, and necroptosis. Recent studies have shown that pyroptosis can be effectively regulated and that like necroptosis, pyroptosis has been regarded as a type of programmed cell death. The mechanism of its occurrence can be divided into canonical inflammasome-induced pyroptosis and noncanonical inflammasome-induced pyroptosis. In the past research, pyroptosis has been shown to be closely related to various diseases, such as tumors, neurodegenerative diseases, and central nervous system trauma, and studies have pointed out that in central nervous system trauma, pyroptosis is activated. Furthermore, these studies have shown that the inhibition of pyroptosis can play a role in protecting nerve function. In this review, we summarized the mechanisms of pyroptosis, introduce treatment strategies for targeted pyroptosis in central nervous system trauma, and proposed some issues of targeted pyroptosis in the treatment of central nervous system injury.
Collapse
Affiliation(s)
- Biao Yang
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Weijie Zhong
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ying Gu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yi Li
- Department of Neurosurgery, Ninth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Yi Li,
| |
Collapse
|
61
|
Zhao H, Wang X, Liu S, Zhang Q. Paeonol regulates NLRP3 inflammasomes and pyroptosis to alleviate spinal cord injury of rat. BMC Neurosci 2022; 23:16. [PMID: 35303801 PMCID: PMC8932340 DOI: 10.1186/s12868-022-00698-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/07/2022] [Indexed: 11/16/2022] Open
Abstract
Background Spinal cord injury (SCI) is a life-threatening traumatic disorder. Paeonol has been confirmed to be involved in a variety of diseases. The purpose of this study is to investigate the role of paeonol on SCI progression. Methods Sprague Dawley (SD) rat was used for the establishment of SCI model to explore the anti-inflammation, anti-oxidation, and neuroprotective effects of paeonol (60 mg/kg) on SCI in vivo. For in vitro study, mouse primary microglial cells (BV-2) were induced by lipopolysaccharide (LPS)/adenosine triphosphate (ATP) treatment. The effect of paeonol on the polarization of LPS/ATP-induced BV-2 cells was determined by detection the expression inducible nitric oxide synthase (iNOS), tumour necrosis factor alpha (TNF-α), arginase-1 (Arg-1), and interleukin (IL)-10 using qRT-PCR. ELISA was used to assess the levels of IL-1β, IL-18, TNF-α, malondialdehyde (MDA), and glutathione (GSH). Western blotting was conducted to determine the levels of NLRP3 inflammasomes and TLR4/MyD88/NF-κB (p65) pathway proteins. Results Paeonol promoted the recovery of locomotion function and spinal cord structure, and decreased spinal cord water content in rats following SCI. Meanwhile, paeonol reduced the levels of apoptosis-associated speck-like protein (ASC), NLRP3, active caspase 1 and N-gasdermin D (N-GSDMD), repressed the contents of IL-1β, IL-18, TNF-α and MDA, and elevated GSH level. In vitro, paeonol exerted similarly inhibiting effects on pyroptosis and inflammation. Meanwhile, paeonol promoted BV-2 cells M2 polarization. In addition, paeonol also inactivated the expression of TLR4/MyD88/NF-κB (p65) pathway. Conclusion Paeonol may regulate NLRP3 inflammasomes and pyroptosis to alleviate SCI, pointing out the potential for treating SCI in clinic.
Collapse
Affiliation(s)
- Houling Zhao
- Department of Orthopaedic Trauma, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China
| | - Xi Wang
- Department of Spinal Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China
| | - Shuheng Liu
- Department of Spinal Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China
| | - Qingguo Zhang
- Department of Spinal Surgery, Central Hospital Affiliated to Shandong First Medical University, No. 105, Jiefang Road, Jinan City, 250000, Shandong Province, China.
| |
Collapse
|
62
|
Tricalcium phosphate particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis in amouse osteolysis model. Int Immunopharmacol 2022; 107:108699. [PMID: 35305384 DOI: 10.1016/j.intimp.2022.108699] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/20/2022] [Accepted: 03/10/2022] [Indexed: 12/18/2022]
Abstract
Wear particles-induced inflammatory osteolysis, a major factor of aseptic loosening affects the long-term survival of orthopedic prostheses. Increasing observations have demonstrated that osteocytes, making up over 95% of all the bone cells, is involved in wear particle-induced periprosthetic osteolysis, but its mechanism remains unclear. In the present study, we embedded micro-sized tricalcium phosphate (TCP) particles (30 mg) under the periosteum around the middle suture of the mouse calvaria to establish a calvarial osteolysis model and investigated the biological effects of the particles on calvaria osteocytes in vivo. Results showed that TCP particles induced pyroptosis and activated the NLRP3 inflammasome in calvaria osteocytes, which was confirmed by obvious increases in empty lacunae, protein expressions of speck-like protein containing CARD (ASC), NOD-like receptor protein 3 (NLRP3), cleaved caspase-1 (Casp-1 p20) and cleaved gasdermin D (GSDMD-N), and resulted in elevated ratios of Casp-1 p20/Casp-1 and interleukin (IL)-1β/pro-IL-1β. Simultaneously, TCP particles enhanced serum levels of lactate dehydrogenase (LDH) and IL-1β. Furthermore, the pyroptotic effect was reversed by the Casp-1 inhibitor VX765 or the NLRP3 inhibitor MCC950. In addition, TCP particles increased the levels of intracellular reactive oxygen species (ROS) and malonaldehyde (MDA), whereas decreased the antioxidant enzyme nuclear factor E2-related factor 2 (Nrf2) level, leading to oxidative stress in calvaria osteocytes; the ROS scavenger N-acetylcysteine (NAC) attenuated these effects of pyroptotic death and the NLPR3 activation triggered by TCP particles. Collectively, our data suggested that TCP particles promote pyroptotic death of calvaria osteocytes through the ROS/NLRP3/Caspase-1 signaling axis, contributing to osteoclastogenesis and periprosthetic osteolysis.
Collapse
|
63
|
Targeting autophagy, oxidative stress, and ER stress for neurodegenerative diseases treatment. J Control Release 2022; 345:147-175. [DOI: 10.1016/j.jconrel.2022.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 12/13/2022]
|
64
|
The Protective Role of Celastrol in Renal Ischemia-Reperfusion Injury by Activating Nrf2/HO-1, PI3K/AKT Signaling Pathways, Modulating NF-κb Signaling Pathways, and Inhibiting ERK Phosphorylation. Cell Biochem Biophys 2022; 80:191-202. [PMID: 35157199 PMCID: PMC8881435 DOI: 10.1007/s12013-022-01064-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/26/2022] [Indexed: 11/03/2022]
Abstract
Celastrol, a natural triterpenoid derived from Tripterygium wilfordii, possesses numerous biological effects. We investigated celastrol's antioxidant potential through nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1) and its effect on phosphoinositide 3-kinase (PI3K)/protein kinase B (AKT) signaling, nuclear factor-kappa B (NF-κB) pathways, and extracellular signal-regulated kinase (ERK) activation in kidney ischemia-reperfusion injury (IRI) rat model. Rats were given celastrol 2 mg/kg orally for 1 week before subjection to renal ischemia-reperfusion surgery. Kidney functions, renal MDA, and reduced glutathione were determined; also, renal levels of ERK1/2, HO-1, PI3K, IL-6, TNF-α, IκBα, NF-κB/p65, and cleaved caspase-3 were measured. In addition, gene expression of kidney injury molecule-1 (KIM-1), Nrf-2, and AKT were determined. Celastrol pretreatment attenuated oxidative stress and increased Nrf2 gene expression and HO-1 level. Also, it activated the PI3K/AKT signaling pathway and decreased the p-ERK:t- ERK ratio and NFκBp65 level, with a remarkable decrease in inflammatory cytokines and cleaved caspase-3 levels compared with those in renal IRI rats. Conclusively, celastrol showed a reno-protective potential against renal IRI by suppressing oxidative stress through enhancing the Nrf2/HO-1 pathway, augmenting cell survival PI3K/AKT signaling pathways, and reducing inflammation by inhibiting NF-κB activation.
Collapse
|
65
|
Shao L, Dong C, Geng D, He Q, Shi Y. Ginkgolide B inactivates the NLRP3 inflammasome by promoting autophagic degradation to improve learning and memory impairment in Alzheimer's disease. Metab Brain Dis 2022; 37:329-341. [PMID: 35050445 DOI: 10.1007/s11011-021-00886-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022]
Abstract
The NLR family, pyrin domain containing 3 (NLRP3) inflammasome drives the progression of Alzheimer's disease (AD). Ginkgolide B (GB) is a potential anti-inflammatory compound that controls neuro-inflammation. The aim of this study was to evaluate the effect of GB on the NLRP3 inflammasome in AD. The effect of GB on the conversion between the M1 and M2 microglial phenotype was examined using quantitative real-time PCR and immunostaining. Western blotting assays and ELISA were used to detect changes in neuro-inflammation following GB treatment, including the NLRP3 inflammasome pathway and autophagy. In order to evaluate the cognitive function of male senescence-accelerated mouse prone 8 (SAMP8) mice, behavioral tests, including the Morris water maze and novel object recognition tests, were performed. GB significantly decreased the intracellular pro-inflammatory cytokine levels in lipopolysaccharide-treated BV2 cells and improved cognitive behavior in SAMP8 mice. Moreover, GB deactivated the NLRP3 inflammasome, and this effect was dependent on autophagy. Ubiquitination was associated with GB-induced autophagic NLRP3 degradation. These results were further validated in the hippocampus of SAMP8 mice. Thus, GB exerted a neuroprotective effect on the cognitive function of SAMP8 mice by suppressing the activation of NLRP3 inflammasome via autophagic degradation.
Collapse
Affiliation(s)
- Li Shao
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China
- Department of Neurology, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Chen Dong
- Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People's Republic of China
| | - Deqin Geng
- The First Clinical Medical College, Nanjing Medical University, Nanjing, Jiangsu, 210029, People's Republic of China.
- Department of Neurology, Affiliated Hospital of Xuzhou Medical University, 99 Huaihai West Road, Xuzhou, Jiangsu, 221002, People's Republic of China.
| | - Qing He
- Department of Neurology, The Municipal Hospital Affiliated to Xuzhou Medical University, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Yu Shi
- Department of Neurology, Xuzhou Hospital Affiliated to Jiangsu University, Xuzhou, Jiangsu, 221005, People's Republic of China
| |
Collapse
|
66
|
Hua F, Shi L, Zhou P. Phenols and terpenoids: natural products as inhibitors of NLRP3 inflammasome in cardiovascular diseases. Inflammopharmacology 2022; 30:137-147. [PMID: 35039992 DOI: 10.1007/s10787-021-00918-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 12/27/2021] [Indexed: 12/27/2022]
Abstract
Inflammatory infiltration has been implicated in the pathogenesis of cardiovascular diseases (CVDs). The NLRP3 inflammasome is involved in the development of several types of CVDs, including myocardial infarction, myocardial ischemia-reperfusion damage, heart failure, atrial fibrillation, and hypertension. Inhibiting the activity of NLRP3 inflammasome can inhibit the progress of CVDs. However, there is no NLRP3 inflammasome inhibitor in clinic, and it is very important to find a safe and effective NLRP3 inhibitor. Phenols and terpenoids are naturally natural products that have many anti-inflammatory effects in CVDs by modulating the NLRP3 inflammatory pathway. Thus, 20 natural products from phenols and terpenoids for the treatment of cardiovascular disease based on the inhibition of NLRP3 inflammasome were summarized and screened. Docking results showed salvianolic acid B and ellagic acid in phenols, and oridonin and triptolide in terpenoids had a better binding activity with NLRP3, which can provide theoretical support for finding novel NLRP3 inflammasome inhibitors or lead compounds in the future.
Collapse
Affiliation(s)
- Fang Hua
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China
| | - Lingli Shi
- Pharmacy School, Anhui Xinhua University, Hefei, 230088, People's Republic of China
| | - Peng Zhou
- School of Integrated Chinese and Western Medicine, Anhui University of Chinese Medicine, Hefei, 230012, People's Republic of China. .,Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, 230012, People's Republic of China.
| |
Collapse
|
67
|
Protective Effect of Mild Hypothermia on Spinal Cord Ischemia-Induced Delayed Paralysis and Spinal Cord Injury. Neurochem Res 2022; 47:1212-1225. [PMID: 34993705 DOI: 10.1007/s11064-021-03515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 11/22/2021] [Accepted: 12/21/2021] [Indexed: 01/09/2023]
Abstract
To explore the mechanism regarding the regulation of spinal cord ischemia (SCI) in rats by mild hypothermia. A SCI rat model was established through aorta occlusion, and in some cases, the rats were intervened with mild hypothermia, after which motor function, microglia activation, and M1/M2 polarization in rats were measured. Also, the expression of inflammatory cytokines (IL-1β, IL-6 and TNF-α) and neuronal apoptosis were examined. Lipopolysaccharide (LPS)-induced M1 microglia and IL-4-induced M2 microglia were intrathecally injected into rats to evaluate the effect of microglial polarization on SCI. In in vitro experiments, primary microglial cells were treated under hypothermic condition, in which M1/M2 polarization and microglia apoptosis, the levels of iNOS, CD86, CD206, Arg-1 and inflammatory cytokines were assessed. Western blot analysis detected the activation of the TLR4/NF-κB pathway to investigate the role of this pathway in M1/M2 polarization. SCI treatment impaired motor function, induced higher M1 microglia proportion, and increased the levels of pro-inflammatory cytokines in rats, and mild hypothermic treatment attenuated these trends. Moreover, injection of M1 microglia increased M1 microglia proportion and increased the levels of pro-inflammatory cytokines, while injection of M2 microglia induced the reverse results, i.e. decreased M1 microglia proportion and reduced pro-inflammatory cytokine levels. In LPS-induced microglial cells, mild hypothermia treatment increased M2 microglia proportion and decreased pro-inflammatory cytokine levels, relative to normothermia. Mild hypothermia inactivated the TLR4/NF-κB pathway in LPS-treated microglia. TLR4 overexpression reversed the function of mild hypothermia in LPS-stimulated microglia, and under normal condition, TLR4/NF-κB pathway suppressed microglial M2 polarization. Mild hypothermia inhibits TLR4/NF-κB pathway and promotes microglial M2 polarization, thus attenuating SCI-induced injury and inflammation.
Collapse
|
68
|
The effect of Iridoids effective fraction of Valeriana jatamansi Jones on movement function in rats after acute cord injury and the related mechanism. Neuroreport 2022; 33:33-42. [PMID: 34874327 DOI: 10.1097/wnr.0000000000001753] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Spinal cord injury (SCI) is a disastrous central nervous system (CNS) disorder, which was intimately associated with oxidative stress. Studies have confirmed that Iridoids Effective Fraction of Valeriana jatamansi Jones (IEFV) can scavenge reactive oxygen species. This study aimed to confirm the efficacy of IEFV in ameliorating SCI. METHODS For establish the SCI model, the Sprague-Dawley rats underwent a T10 laminectomy with transient violent oppression by aneurysm clip. Then, the rats received IEFV intragastrically for 8 consecutive weeks to evaluate the protective effect of IEFV on motor function, oxidative stress, inflammation and neurotrophic factors in SCI rats. RESULTS Basso, Beattie and Bresnahan scores, hematoxylin and eosin (H&E) staining and transmission electron microscopy experiments found IEFV protected motor function and alleviated neuron damage. Meanwhile, IEFV treatment decreased the release of malondialdehyde, interleukin-6 (IL-6), cyclooxygenase-2 and tumor necrosis factor-α. Moreover, IEFV treatment elevated the expression levels of brain-derived neurotrophic factor and nerve growth factor of SCI rats. Finally, administration of IEFV significantly inhibited the expression of p-p65 and toll-like receptor 4 (TLR4). CONCLUSIONS This study suggests that IEFV could attenuate the oxidative stress and inflammatory response of the spinal cord after SCI, which was associated with inhibition of the TLR4/nuclear factor-kappaB signaling pathway.
Collapse
|
69
|
Zhao H, Zhao J. Study on the role of naringin in attenuating Trimethylamine-N-Oxide-Induced human umbilical vein endothelial cell inflammation, oxidative stress, and endothelial dysfunction. CHINESE J PHYSIOL 2022; 65:217-225. [DOI: 10.4103/0304-4920.359796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
70
|
Zhou Y, Wen LL, Li YF, Wu KM, Duan RR, Yao YB, Jing LJ, Gong Z, Teng JF, Jia YJ. Exosomes derived from bone marrow mesenchymal stem cells protect the injured spinal cord by inhibiting pericyte pyroptosis. Neural Regen Res 2022; 17:194-202. [PMID: 34100456 PMCID: PMC8451579 DOI: 10.4103/1673-5374.314323] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Mesenchymal stem cell (MSC) transplantation is a promising treatment strategy for spinal cord injury, but immunological rejection and possible tumor formation limit its application. The therapeutic effects of MSCs mainly depend on their release of soluble paracrine factors. Exosomes are essential for the secretion of these paracrine effectors. Bone marrow mesenchymal stem cell-derived exosomes (BMSC-EXOs) can be substituted for BMSCs in cell transplantation. However, the underlying mechanisms remain unclear. In this study, a rat model of T10 spinal cord injury was established using the impact method. Then, 30 minutes and 1 day after spinal cord injury, the rats were administered 200 μL exosomes via the tail vein (200 μg/mL; approximately 1 × 106 BMSCs). Treatment with BMSC-EXOs greatly reduced neuronal cell death, improved myelin arrangement and reduced myelin loss, increased pericyte/endothelial cell coverage on the vascular wall, decreased blood-spinal cord barrier leakage, reduced caspase 1 expression, inhibited interleukin-1β release, and accelerated locomotor functional recovery in rats with spinal cord injury. In the cell culture experiment, pericytes were treated with interferon-γ and tumor necrosis factor-α. Then, Lipofectamine 3000 was used to deliver lipopolysaccharide into the cells, and the cells were co-incubated with adenosine triphosphate to simulate injury in vitro. Pre-treatment with BMSC-EXOs for 8 hours greatly reduced pericyte pyroptosis and increased pericyte survival rate. These findings suggest that BMSC-EXOs may protect pericytes by inhibiting pyroptosis and by improving blood-spinal cord barrier integrity, thereby promoting the survival of neurons and the extension of nerve fibers, and ultimately improving motor function in rats with spinal cord injury. All protocols were conducted with the approval of the Animal Ethics Committee of Zhengzhou University on March 16, 2019.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Lu-Lu Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Fei Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Kai-Min Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Ran-Ran Duan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yao-Bing Yao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Li-Jun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zhe Gong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Jun-Fang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yan-Jie Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
71
|
Zhang K, Chai B, Ji H, Chen L, Ma Y, Zhu L, Xu J, Wu Y, Lan Y, Li H, Feng Z, Xiao J, Zhang H, Xu K. Bioglass promotes wound healing by inhibiting endothelial cell pyroptosis through regulation of the connexin 43/reactive oxygen species (ROS) signaling pathway. J Transl Med 2022; 102:90-101. [PMID: 34521991 DOI: 10.1038/s41374-021-00675-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/22/2021] [Accepted: 08/30/2021] [Indexed: 11/08/2022] Open
Abstract
Bioactive glass (BG) has recently shown great promise in soft tissue repair, especially in wound healing; however, the underlying mechanism remains unclear. Pyroptosis is a novel type of programmed cell death that is involved in various traumatic injury diseases. Here, we hypothesized that BG may promote wound healing through suppression of pyroptosis. To test this scenario, we investigated the possible effect of BG on pyroptosis in wound healing both in vivo and in vitro. This study showed that BG can accelerate wound closure, granulation formation, collagen deposition, and angiogenesis. Moreover, western blot analysis and immunofluorescence staining revealed that BG inhibited the expression of pyroptosis-related proteins in vivo and in vitro. In addition, while BG regulated the expression of connexin43 (Cx43), it inhibited reactive oxygen species (ROS) production. Cx43 activation and inhibition experiments further indicate that BG inhibited pyroptosis in endothelial cells by decreasing Cx43 expression and ROS levels. Taken together, these studies suggest that BG promotes wound healing by inhibiting pyroptosis via Cx43/ROS signaling pathway.
Collapse
Affiliation(s)
- Kailun Zhang
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Bo Chai
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Hao Ji
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Liuqing Chen
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yanbing Ma
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Lifei Zhu
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jingyu Xu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yanqing Wu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China
| | - Yinan Lan
- Department of Orthopedic Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Zhejiang, China
| | - Hao Li
- Department of Orthopedics Surgery, Lishui People's Hospital, The sixth affiliated hospital of Wenzhou medical university, Lishui, Zhejiang, China
| | - Zhiguo Feng
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Jian Xiao
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Hongyu Zhang
- School of Pharmaceutical Sciences, Wenzhou Wound Repair and Regeneration Key Laboratory, Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China.
| | - Ke Xu
- Institute of Life Sciences, Engineering Laboratory of Zhejiang province for pharmaceutical development of growth factors, Biomedical Collaborative Innovation Center of Wenzhou, Wenzhou University, Zhejiang, China.
| |
Collapse
|
72
|
Li J, Zhang Z, Huang X. Tripterine and all-trans retinoic acid (ATRA) - loaded lipid-polymer hybrid nanoparticles for synergistic anti-arthritic therapy against inflammatory arthritis. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2021; 49:576-586. [PMID: 34396850 DOI: 10.1080/21691401.2021.1964983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 07/27/2021] [Indexed: 10/20/2022]
Abstract
Arthritis of joints remains a hard-to-treat disease due to the low drug exposure to the articular cavity. Present study was intended to develop a Tripterine (TRI) and all-trans retinoic acid (ATRA)-loaded lipid-polymer hybrid nanoparticles (ATLP) for enhanced antiarthritic efficacy in arthritis conditions. We have showed that two drugs could be loaded with high loading capacity and control the release kinetics in a pH-responsive manner. The ATLP showed strong inhibitory effects on the expressions of TNF-α, IL-6 and IL-1β in lipopolysaccharide (LPS)-stimulated RAW264.7 cells at the in vitro conditions. Compared to individual drugs (TRI and ATRA), ATLP significantly reduced the paw thickness exhibiting potent inhibition of inflammation. Consistently, ATLP resulted in lowest clinical score compared to that of individual drug indicating the remarkable improvement in the recession of inflammation. We have clearly demonstrated that the nanoparticulate based co-delivery of drugs could abolish the adverse effects of free drug as indicated by the body weight changes. Importantly, ATLP resulted in significant reduction of mRNA of TNF-α, IL-6, IFN-ϒ and IL-17 compared to either free drugs or CIA mice. Overall, ATLP represent a promising therapeutic strategy for the treatment of arthritis conditions.
Collapse
Affiliation(s)
- Jichao Li
- The Third Department of Knee Injury, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| | - Zeng Zhang
- Department of Emergency, Zhengzhou Orthopedics Hospital, Zhengzhou, China
| | - Xiaohan Huang
- The Third Department of Knee Injury, Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Luoyang, China
| |
Collapse
|
73
|
Celastrol and Melatonin Modify SIRT1, SIRT6 and SIRT7 Gene Expression and Improve the Response of Human Granulosa-Lutein Cells to Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10121871. [PMID: 34942974 PMCID: PMC8750604 DOI: 10.3390/antiox10121871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 11/16/2022] Open
Abstract
An excess of oxidative stress (OS) may affect several physiological processes fundamental to reproduction. SIRT1, SIRT6 and SIRT7 are involved in protection stress systems caused by OS, and they can be activated by antioxidants such as celastrol or melatonin. In this study, we evaluate SIRT1, SIRT6 and SIRT7 gene expression in cultured human granulosa-lutein (hGL) cells in response to OS inductors (glucose or peroxynitrite) and/or antioxidants. Our results show that celastrol and melatonin improve cell survival in the presence and absence of OS inductors. In addition, melatonin induced SIRT1, SIRT6 and SIRT7 gene expression while celastrol only induced SIRT7 gene expression. This response was not altered by the addition of OS inductors. Our previous data for cultured hGL cells showed a dual role of celastrol as a free radical scavenger and as a protective agent by regulating gene expression. This study shows a direct effect of celastrol on SIRT7 gene expression. Melatonin may protect from OS in a receptor-mediated manner rather than as a scavenger. In conclusion, our results show increased hGL cells survival with melatonin or celastrol treatment under OS conditions, probably through the regulation of nuclear sirtuins' gene expression.
Collapse
|
74
|
Zhao YJ, Qiao H, Liu DF, Li J, Li JX, Chang SE, Lu T, Li FT, Wang D, Li HP, He XJ, Wang F. Lithium promotes recovery after spinal cord injury. Neural Regen Res 2021; 17:1324-1333. [PMID: 34782578 PMCID: PMC8643056 DOI: 10.4103/1673-5374.327348] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Lithium is associated with oxidative stress and apoptosis, but the mechanism by which lithium protects against spinal cord injury remains poorly understood. In this study, we found that intraperitoneal administration of lithium chloride (LiCl) in a rat model of spinal cord injury alleviated pathological spinal cord injury and inhibited expression of tumor necrosis factor α, interleukin-6, and interleukin 1 β. Lithium inhibited pyroptosis and reduced inflammation by inhibiting Caspase-1 expression, reducing the oxidative stress response, and inhibiting activation of the Nod-like receptor protein 3 inflammasome. We also investigated the neuroprotective effects of lithium intervention on oxygen/glucose-deprived PC12 cells. We found that lithium reduced inflammation, oxidative damage, apoptosis, and necrosis and up-regulated nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 in PC12 cells. All-trans retinoic acid, an Nrf2 inhibitor, reversed the effects of lithium. These results suggest that lithium exerts anti-inflammatory, anti-oxidant, and anti-pyroptotic effects through the Nrf2/heme oxygenase-1 pathway to promote recovery after spinal cord injury. This study was approved by the Animal Ethics Committee of Xi’an Jiaotong University (approval No. 2018-2053) on October 23, 2018.
Collapse
Affiliation(s)
- Ying-Jie Zhao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao Qiao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong-Fan Liu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jie Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Jia-Xi Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Su-E Chang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Teng Lu
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Feng-Tao Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Dong Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Hao-Peng Li
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| | - Xi-Jing He
- Department of Orthopedics, the Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine; Department of Orthopedics, Xi'an International Medical Center Hospital, Xi'an, Shaanxi Province, China
| | - Fang Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University School of Medicine, Xi'an, Shaanxi Province, China
| |
Collapse
|
75
|
Li Y, Qiu H, Yao S, Li Q, Ding Y, Cao Y, Chen X, Zhu X. Geniposide exerts protective effects on spinal cord injury in rats by inhibiting the IKKs/NF-κB signaling pathway. Int Immunopharmacol 2021; 100:108158. [PMID: 34555642 DOI: 10.1016/j.intimp.2021.108158] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/05/2021] [Accepted: 09/11/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Spinal cord injury (SCI) is a traumatic condition of the central nervous system , which can cause nerve injury and affect nerve regeneration, thus leading to severe dysfunction of motor and sensory pathways, and unfortunately these effects are irreversible. Inflammatory response constitutes one of the important mechanisms of spinal cord secondary injury. Geniposide (Gen) is reported to possess anti-inflammation and neuronal repair capacities. OBJECTIVES To investigate the effect and mechanism of Gen on motor function and inflammatory response in SCI rats. METHODS Sprague-Dawley (SD) rats were randomly grouped, and the SCI model was established by Allen's method. The motor function of rats was evaluated by the Basso, Beattie, and Bresnahan (BBB) scale. The protective effect of Gen on the injured spinal cord tissues was evaluated by measuring the water content, myeloperoxidase (MPO) activity, and levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6. Moreover, the protein level of the inflammation-related pathway was detected by spectrometry and Western blot assays. RESULTS Gen significantly promoted the recovery of SCI rats, decreased the edema of spinal cord tissues, reduced the area of cavity, increased the number of NF-200-positive neurons, as well as increased the number of horseradish peroxidase (HRP) retrograde tracing-positive neurons and regenerated axons with myelin sheath. Additionally, compared with the control group, the neutrophil infiltration, contents of TNF-α, IL-1β, and IL-6, the activity of inhibitor of nuclear factor κB kinase subunit β (IKKβ) kinase, and protein levels of (nuclear factor κB) NF-κB p65 and phosphorylated inhibitor of NF-κB (p-I-κB) in the Gen experimental group were significantly decreased. CONCLUSION Gen effectively alleviated inflammatory response after SCI by inhibiting the IKKs/NF-κB signaling pathway and promoted the recovery of motor function and axon regeneration in rats. SIGNIFICANCE This study can provide novel insights for the early and effective intervention of SCI and confer basic data for the treatment of spinal cord secondary injury.
Collapse
Affiliation(s)
- Yuying Li
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| | - Huiping Qiu
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| | - Shuihong Yao
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| | - Qunfeng Li
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| | - Yuemin Ding
- School of Medicine, Zhejiang University City College, Hangzhou, 310015, Zhejiang, China.
| | - Yanhui Cao
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| | - Xuming Chen
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| | - Xiaoping Zhu
- Department of Medicine, Quzhou College of Technology, Quzhou, 324000, Zhejiang, China
| |
Collapse
|
76
|
Chen M, Lai X, Wang X, Ying J, Zhang L, Zhou B, Liu X, Zhang J, Wei G, Hua F. Long Non-coding RNAs and Circular RNAs: Insights Into Microglia and Astrocyte Mediated Neurological Diseases. Front Mol Neurosci 2021; 14:745066. [PMID: 34675776 PMCID: PMC8523841 DOI: 10.3389/fnmol.2021.745066] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 02/05/2023] Open
Abstract
Microglia and astrocytes maintain tissue homeostasis in the nervous system. Both microglia and astrocytes have pro-inflammatory phenotype and anti-inflammatory phenotype. Activated microglia and activated astrocytes can contribute to several neurological diseases. Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs), two groups of non-coding RNAs (ncRNAs), can function as competing endogenous RNAs (ceRNAs) to impair the microRNA (miRNA) inhibition on targeted messenger RNAs (mRNAs). LncRNAs and circRNAs are involved in various neurological disorders. In this review, we summarized that lncRNAs and circRNAs participate in microglia dysfunction, astrocyte dysfunction, neuron damage, and inflammation. Thereby, lncRNAs and circRNAs can positively or negatively regulate neurological diseases, including spinal cord injury (SCI), traumatic brain injury (TBI), ischemia-reperfusion injury (IRI), stroke, neuropathic pain, epilepsy, Parkinson’s disease (PD), multiple sclerosis (MS), and Alzheimer’s disease (AD). Besides, we also found a lncRNA/circRNA-miRNA-mRNA regulatory network in microglia and astrocyte mediated neurological diseases. Through this review, we hope to cast light on the regulatory mechanisms of lncRNAs and circRNAs in microglia and astrocyte mediated neurological diseases and provide new insights for neurological disease treatment.
Collapse
Affiliation(s)
- Miaomiao Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China.,First Clinical Medical College, Nanchang University, Nanchang, China
| | - Xingning Lai
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Xifeng Wang
- Department of Anesthesiology, the First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Bin Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Xing Liu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Gen Wei
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China.,Key Laboratory of Anesthesiology of Jiangxi Province, Nanchang, China
| |
Collapse
|
77
|
Sheng Y, Zhou X, Wang J, Shen H, Wu S, Guo W, Yang Y. MSC derived EV loaded with miRNA-22 inhibits the inflammatory response and nerve function recovery after spinal cord injury in rats. J Cell Mol Med 2021; 25:10268-10278. [PMID: 34609045 PMCID: PMC8572783 DOI: 10.1111/jcmm.16965] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/08/2021] [Accepted: 09/19/2021] [Indexed: 11/30/2022] Open
Abstract
Our previous research has found that miRNA‐22 can inhibit the occurrence of pyroptosis by targeting GSDMD and decrease the production and release of inflammatory factors. In consideration of the therapeutic effects of mesenchymal stem cells (MSCs), MSCs‐EV were loaded with miRNA‐22 (EV‐miRNA‐22) to investigate the inhibitory effect of EV‐miRNA‐22 on the inflammatory response in SCI in rats in this study. LPS/Nigericin (LPS/NG) was used to induce pyroptosis in rat microglia in vitro. Propidium iodide (PI) staining was performed to observe cell permeability, lactate dehydrogenase (LDH) release assay was adopted to detect cytotoxicity, flow cytometry was conducted to detect pyroptosis level, immunofluorescence (IF) staining was utilized to observe the expression level of GSDMD (a key protein of pyroptosis), Western blot was performed to detect the expression of key proteins. For animal experiments, the T10 spinal cord of rats was clamped by aneurysm clip to construct the SCI model. BBB score, somatosensory evoked potential (SEP) and motor evoked potential (MEP) were performed to detect nerve function. HE staining and Nissl staining were used to detect spinal cord histopathology and nerve cell damage. EV‐miRNA‐22 could inhibit the occurrence of pyroptosis in microglia, suppress the cell membrane pore opening, and inhibit the release of inflammatory factors and the expression of GSDMD. In addition, EV‐miRNA‐22 showed higher pyroptosis‐inhibiting ability than EV. Consequently, EV‐miRNA‐22 could inhibit the nerve function injury after SCI in rats, inhibit the level of inflammatory factors in the tissue and the activation of microglia. In this study, we found that miRNA‐22‐loaded MSCs‐EV (EV‐miRNA‐22) could cooperate with EV to inhibit inflammatory response and nerve function repair after SCI.
Collapse
Affiliation(s)
- Yongjia Sheng
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Xiaohong Zhou
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Jin Wang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Heping Shen
- Department of Ultrasonography, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Shasha Wu
- Department of Ultrasonography, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Weiqun Guo
- Department of Ultrasonography, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Yi Yang
- Department of pharmacy, The Second Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
78
|
Pang Y, Tan G, Yang X, Lin Y, Chen Y, Zhang J, Xie T, Zhou H, Fang J, Zhao Q, Ren X, Li J, Lyu J, Wang Z. Iron-sulphur cluster biogenesis factor LYRM4 is a novel prognostic biomarker associated with immune infiltrates in hepatocellular carcinoma. Cancer Cell Int 2021; 21:463. [PMID: 34488769 PMCID: PMC8419973 DOI: 10.1186/s12935-021-02131-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/31/2021] [Indexed: 12/11/2022] Open
Abstract
Background LYRM4 is necessary to maintain the stability and activity of the human cysteine desulfurase complex NFS1-LYRM4-ACP. The existing experimental results indicate that cancer cells rely on the high expression of NFS1. However, the role of LYRM4 in liver hepatocellular carcinoma (LIHC) remains unclear. Methods In this study, we combined bioinformatics analysis and clinical specimens to evaluate the mRNA, protein expression, and gene regulatory network of LYRM4 in LIHC. Furthermore, we detected the activity of several classical iron-sulphur proteins in LIHC cell lines through UV-vis spectrophotometry. Results The mRNA and protein levels of LYRM4 were upregulated in LIHC. Subsequent analysis revealed that the LYRM4 mRNA expression was related to various clinical stratifications, prognosis, and survival of LIHC patients. In addition, the mRNA expression of LYRM4 was significantly associated with ALT, tumour thrombus, and encapsulation of HBV-related LIHC patients. IHC results confirmed that LYRM4 was highly expressed in LIHC tissues and showed that the expression of LYRM4 protein in LIHC was significantly correlated with age and serum low-density lipoprotein (LDL) and triglyceride (TG) content. In particular, the mRNA expression of key iron- sulphur proteins POLD1 and PRIM2 was significantly overexpressed and correlated with poor prognosis in LIHC patients. Compared with hepatocytes, the activities of mitochondrial complex I and aconitate hydratase (ACO2) in LIHC cell lines were significantly increased. These results indicated that the iron-sulphur cluster (ISC) biosynthesis was significantly elevated in LIHC, leading to ISC-dependent metabolic reprogramming. Changes in the activity of ISC-dependent proteins may also occur in paracancerous tissues. Further analysis of the biological interaction and gene regulation networks of LYRM4 suggested that these genes were mainly involved in the citric acid cycle and oxidative phosphorylation. Finally, LYRM4 expression in LIHC was significantly positively correlated with the infiltrating levels of six immune cell types, and both factors were strongly associated with prognosis. Conclusion LYRM4 could be a novel prognostic biomarker and molecular target for LIHC therapy. In particular, the potential regulatory networks of LYRM4 overexpression in LIHC provide a scientific basis for future research on the role of the ISC assembly mechanism and LYRM4-mediated sulphur transfer routes in carcinogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02131-3.
Collapse
Affiliation(s)
- Yilin Pang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.,Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Guoqiang Tan
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xunjun Yang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.,Department of Laboratory Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, Zhejiang, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Yao Chen
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinping Zhang
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ting Xie
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Huaibin Zhou
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China
| | - Qiongya Zhao
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaojun Ren
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianghui Li
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jianxin Lyu
- Zhejiang Provincial Key Laboratory of Medical Genetics, Key Laboratory of Laboratory Medicine, Ministry of Education, China, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China. .,People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.
| | - Zheng Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, Hunan, China.
| |
Collapse
|
79
|
Tao B, Wang Q, Cao J, Yasen Y, Ma L, Sun C, Shang J, Feng S. The mechanisms of Chuanxiong Rhizoma in treating spinal cord injury based on network pharmacology and experimental verification. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1145. [PMID: 34430586 PMCID: PMC8350674 DOI: 10.21037/atm-21-2529] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/13/2021] [Indexed: 12/12/2022]
Abstract
Background Chuanxiong Rhizoma (CR) is a common traditional Chinese medicine (TCM) that has been widely used in the treatment of spinal cord injury (SCI). However, the underlying molecular mechanism of CR is still largely unknown. This study was designed to explore the bioactive components and the mechanism of CR in treating SCI based on a network pharmacology approach and experimental validation. Methods First, the active compounds and related target genes in CR were screened from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Subsequently, the corresponding target genes of SCI were collected by the Therapeutic Target Database (TTD) and GeneCards database. A protein-protein interaction (PPI) network was constructed using the STRING database. Furthermore, GO function and KEGG enrichment analysis of the targets were analyzed using DAVID tools. Subsequently, the AutoDock software for molecular docking was adopted to verify the above network pharmacology analysis results between the active components and key targets. Finally, an SCI rat model animal validation experiment was assessed to verify the reliability of the network pharmacology results. Results There were 7 active ingredients identified in CR and 246 SCI-related targets were collected. Then, 4 core nodes (ALB, AKT1, MAPK1, and EGFR) were discerned via construction of a PPI network of 111 common targets. The KEGG enrichment analysis results indicated that the Ras signaling pathway, estrogen signaling pathway, and vascular endothelial growth factor (VEGF) signaling pathway were enriched in the development of SCI. The results of molecular docking demonstrated that the effects of CR have a strong affinity with the 4 pivotal targets. Experimental validation in a rat model showed that CR could effectively improve the recovery of motor function and mechanical pain threshold after SCI. Conclusions In summary, it revealed the mechanism of CR treatment for SCI involve active ingredients, targets and signaling pathways, providing a scientific basis for future investigations into the mechanism underlying CR treating for SCI.
Collapse
Affiliation(s)
- Bo Tao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Qi Wang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Jiangang Cao
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Yimingjiang Yasen
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Lei Ma
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Chao Sun
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Jun Shang
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| | - Shiqing Feng
- Department of Orthopedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin, China.,International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| |
Collapse
|
80
|
Jing M, Yang J, Zhang L, Liu J, Xu S, Wang M, Zhang L, Sun Y, Yan W, Hou G, Wang C, Xin W. Celastrol inhibits rheumatoid arthritis through the ROS-NF-κB-NLRP3 inflammasome axis. Int Immunopharmacol 2021; 98:107879. [PMID: 34147915 DOI: 10.1016/j.intimp.2021.107879] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 11/18/2022]
Abstract
Emerging evidence indicates that NOD-like receptor protein 3 (NLRP3) inflammasome-induced inflammation plays a critical role in the pathogenesis of rheumatoid arthritis (RA). Celastrol (Cel) is a quinone-methylated triterpenoid extracted from Tripterygium wilfordii that is used to treat RA. However, researchers have not determined whether Cel exerts anti-RA effects by regulating the activation of the NLRP3 inflammasome. In the present study, complete Freund's adjuvant (CFA)- induced rats and human mononuclear macrophages (THP-1 cells) were used to explore the anti-RA effects of Cel and its underlying mechanism. Joint swelling, the arthritis index score, inflammatory cell infiltration, and synovial hyperplasia in CFA-induced rats were correspondingly reduced after Cel treatment. The secretion of interleukin (IL)-1β and IL-18 in the serum of CFA-induced rats and supernatants of THP-1 cells exposed to Cel was significantly decreased. These inhibitory effects occurred because Cel blocked the nuclear factor-kappa B (NF-κB) signaling pathway and inhibited the activation of the NLRP3 inflammasome. Furthermore, Cel inhibited reactive oxygen species (ROS) production induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). We speculated that Cel relieves RA symptoms and inhibits inflammation by inhibiting the ROS-NF-κB-NLRP3 axis.
Collapse
Affiliation(s)
- Ming Jing
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Junjie Yang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Lirong Zhang
- Qingdao Jimo People's Hospital, Qingdao 266200, Shandong, China
| | - Jing Liu
- Qingdao Jimo People's Hospital, Qingdao 266200, Shandong, China
| | - Sen Xu
- Department of Clinical Medicine, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Meiling Wang
- Department of Clinical Medicine, Jining First People's Hospital, Jining 272011, Shandong, China
| | - Leiming Zhang
- Key Laboratory of Molecular Pharmacology and Drug Evaluation, School of Pharmacy, Ministry of Education, Yantai University, Yantai 264005, Shandong, China
| | - Yue Sun
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Weibin Yan
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China
| | - Guige Hou
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Chunhua Wang
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| | - Wenyu Xin
- Key Laboratory of Prescription Effect and Clinical Evaluation of State Administration of Traditional Chinese Medicine of China, School of Pharmacy, Binzhou Medical University, Yantai 264003, Shandong, China.
| |
Collapse
|
81
|
Li X, Zou Y, Fu YY, Xing J, Wang KY, Wan PZ, Wang M, Zhai XY. Ibudilast Attenuates Folic Acid-Induced Acute Kidney Injury by Blocking Pyroptosis Through TLR4-Mediated NF-κB and MAPK Signaling Pathways. Front Pharmacol 2021; 12:650283. [PMID: 34025417 PMCID: PMC8139578 DOI: 10.3389/fphar.2021.650283] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
Folic acid (FA)-induced renal tubule damage, which is characterized by extensive inflammation, is a common model of acute kidney injury (AKI). Pyroptosis, a pro-inflammatory form of cell death due to the activation of inflammatory caspases, is involved in AKI progression. Ibudilast, a TLR4 antagonist, has been used in the clinic to exert an anti-inflammatory effect on asthma. However, researchers have not explored whether ibudilast exerts a protective effect on AKI by inhibiting inflammation. In the present study, ibudilast reversed FA-induced AKI in mice, as indicated by the reduced serum creatinine and urea nitrogen levels, and improved renal pathology, as well as the downregulation of kidney injury marker-1. In addition, ibudilast significantly increased the production of the anti-inflammatory factor IL-10 while suppressing the secretion of the pro-inflammatory cytokine TNF-α and macrophage infiltration. Moreover, in the injured kidney, ibudilast reduced the levels of both inflammasome markers (NLRP3) and pyroptosis-related proteins (caspase-1, IL1-β, IL-18, and GSDMD cleavage), and decreased the number of TUNEL-positive cells. Further mechanistic studies showed that ibudilast administration inhibited the FA-induced upregulation of TLR4, blocked NF-κB nuclear translocation, and reduced the phosphorylation of NF-κB and IκBα, p38, ERK, and JNK. Thus, this study substantiates the protective effect of ibudilast on FA-induced AKI in mice and suggests that protection might be achieved by reducing pyroptosis and inflammation, likely through the inhibition of TLR4-mediated NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Xue Li
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Zou
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Yuan-Yuan Fu
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Jia Xing
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Kai-Yue Wang
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China
| | - Peng-Zhi Wan
- Department of Nephrology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mo Wang
- Department of Surgery, Yale School of Medicine, New Haven, CT, United States
| | - Xiao-Yue Zhai
- Department of Histology and Embryology, Basic Medical College, China Medical University, Shenyang, China.,Institute of Nephropathology, China Medical University, Shenyang, China
| |
Collapse
|
82
|
Bai X, Fu RJ, Zhang S, Yue SJ, Chen YY, Xu DQ, Tang YP. Potential medicinal value of celastrol and its synthesized analogues for central nervous system diseases. Biomed Pharmacother 2021; 139:111551. [PMID: 33865016 DOI: 10.1016/j.biopha.2021.111551] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 02/07/2023] Open
Abstract
The central nervous system (CNS) is a vital part of the human nervous system, and the incidence of CNS disease is increasing year by year, which has become a major public health problem and a prominent social problem. At present, the drugs most commonly used in the clinic are receptor regulators, and neurotransmitter inhibitors, but they are accompanied by serious side effects. Therefore, the identification of new drugs and treatment strategies for CNS disease has been a research hotspot in the medical field. Celastrol, a highly bio-active pentacyclic triterpenoid isolated from Tripterygium wilfordii Hook. F, has been proved to have a wide range of pharmacological effects, such as anti-inflammation, immunosuppression, anti-obesity and anti-tumor activity. However, due to its poor water solubility, low bioavailability and toxicity, the clinical development and trials of celastrol have been postponed. However, in recent years, the extensive medical value of celastrol in the treatment of CNS diseases such as nervous system tumors, Alzheimer's disease, Parkinson's disease, cerebral ischemia, multiple sclerosis, spinal cord injury, and amyotrophic lateral sclerosis has gradually attracted intensive attention worldwide. In particular, celastrol has non-negligible anti-tumor efficacy, and as there are no 100% effective anti-tumor drugs, the study of its structural modification to obtain better leading compounds with higher efficiency and lower toxicity has aroused strong interest in pharmaceutical chemists. In this review, research progress on celastrol in CNS diseases and the synthesis of celastrol-type triterpenoid analogues and their application evaluation in disease models, such as CNS diseases and autotoxicity-related target organ cancers in the past decade are summarized in detail, in order to provide reference for future better application in the treatment of CNS diseases.
Collapse
Affiliation(s)
- Xue Bai
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Shuo Zhang
- School of Clinical Medicine (Guang'anmen Hospital), Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shi-Jun Yue
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yan-Yan Chen
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi Province, China.
| |
Collapse
|
83
|
Wu C, Chen H, Zhuang R, Zhang H, Wang Y, Hu X, Xu Y, Li J, Li Y, Wang X, Xu H, Ni W, Zhou K. Betulinic acid inhibits pyroptosis in spinal cord injury by augmenting autophagy via the AMPK-mTOR-TFEB signaling pathway. Int J Biol Sci 2021; 17:1138-1152. [PMID: 33867836 PMCID: PMC8040310 DOI: 10.7150/ijbs.57825] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
Spinal cord injury (SCI) results in a wide range of disabilities. Its complex pathophysiological process limits the effectiveness of many clinical treatments. Betulinic acid (BA) has been shown to be an effective treatment for some neurological diseases, but it has not been studied in SCI. In this study, we assessed the role of BA in SCI and investigated its underlying mechanism. We used a mouse model of SCI, and functional outcomes following injury were assessed. Western blotting, ELISA, and immunofluorescence techniques were employed to analyze levels of autophagy, mitophagy, pyroptosis, and AMPK-related signaling pathways were also examined. Our results showed that BA significantly improved functional recovery following SCI. Furthermore, autophagy, mitophagy, ROS level and pyroptosis were implicated in the mechanism of BA in the treatment of SCI. Specifically, our results suggest that BA restored autophagy flux following injury, which induced mitophagy to eliminate the accumulation of ROS and inhibits pyroptosis. Further mechanistic studies revealed that BA likely regulates autophagy and mitophagy via the AMPK-mTOR-TFEB signaling pathway. Those results showed that BA can significantly promote the recovery following SCI and that it may be a promising therapy for SCI.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Huanwen Chen
- University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Rong Zhuang
- Department of Anesthesiology, Critical Care and Pain Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yongli Wang
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou 313000, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
| |
Collapse
|
84
|
Al Mamun A, Wu Y, Monalisa I, Jia C, Zhou K, Munir F, Xiao J. Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res 2021; 28:97-109. [PMID: 33364048 PMCID: PMC7753222 DOI: 10.1016/j.jare.2020.08.004] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Currently, spinal cord injury (SCI) is a pathological incident that triggers several neuropathological conditions, leading to the initiation of neuronal damage with several pro-inflammatory mediators' release. However, pyroptosis is recognized as a new programmed cell death mechanism regulated by the stimulation of caspase-1 and/or caspase-11/-4/-5 signaling pathways with a series of inflammatory responses. AIM Our current review concisely summarizes the potential role of pyroptosis-regulated programmed cell death in SCI, according to several molecular and pathophysiological mechanisms. This review also highlights the targeting of pyroptosis signaling pathways and inflammasome components and its therapeutic implications for the treatment of SCI. KEY SCIENTIFIC CONCEPTS Multiple pieces of evidence have illustrated that pyroptosis plays significant roles in cell swelling, plasma membrane lysis, chromatin fragmentation and intracellular pro-inflammatory factors including IL-18 and IL-1β release. In addition, pyroptosis is directly mediated by the recently discovered family of pore-forming protein known as GSDMD. Current investigations have documented that pyroptosis-regulated cell death plays a critical role in the pathogenesis of multiple neurological disorders as well as SCI. Our narrative article suggests that inhibiting the pyroptosis-regulated cell death and inflammasome components could be a promising therapeutic approach for the treatment of SCI in the near future.
Collapse
Key Words
- AIM2, Absent in melanoma 2
- ASC, apoptosis-associated speck-like protein
- ATP, Adenosine triphosphate
- BBG, Brilliant blue G
- CCK-8, Cell Counting Kit-8
- CNS, central nervous system
- CO, Carbon monoxide
- CORM-3, Carbon monoxide releasing molecle-3
- Caspase-1
- Cx43, Connexin 43
- DAMPs, Damage-associated molecular patterns
- DRD1, Dopamine Receptor D1
- ECH, Echinacoside
- GSDMD, Gasdermin D
- Gal-3, Galectin-3
- H2O2, Hydrogen peroxide
- HO-1, Heme oxygenase-1
- IL-18, Interleukin-18
- IL-1β, Interleukin-1 beta
- IRE1, Inositol requiring enzyme 1
- JOA, Japanese orthopedics association
- LPS, Lipopolysaccharide
- NDI, Neck data index
- NF-κB, Nuclear factor-kappa B
- NLRP1, NOD-like receptor protein 1
- NLRP1b, NOD-like receptor protein 1b
- NLRP3
- NLRP3, Nucleotide-binding domain-like receptor protein 3
- Neuroinflammation
- Nrf2, Nuclear factor erythroid 2-related factor 2
- OPCs, Oligodendrocyte progenitor cells
- PAMPs, Pathogen-associated molecular patterns
- PRRs, Pattern recognition receptors
- Pyroptosis
- ROS, Reactive oxygen species
- Spinal cord injury
- TLR4, Toll-like receptor 4
- TXNIP, Thioredoxin-interacting protein
- Therapeutic implications
- double stranded DNAIR, Ischemia reperfusion
- si-RNA, Small interfering RNA
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| | - Yanqing Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, 325035 Zhejiang Province, China
| | - Ilma Monalisa
- Department of Pharmacy, Southeast University, Banani, Dhaka 1213, Bangladesh
| | - Chang Jia
- Pediatric Research Institute, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027 Zhejiang Province, China
| | - Fahad Munir
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000 Zhejiang Province, China
| | - Jian Xiao
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035 Zhejiang Province, China
| |
Collapse
|
85
|
Celastrol alleviates LPS-induced inflammation in BMDMs and acute lung injury in mice via inhibition of p-38 MAPK/MK2 signaling. EUR J INFLAMM 2021. [DOI: 10.1177/20587392211020569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Objective: Celastrol is a compound extracted from a medicinal plant Tripterygium wilfordii which has a broad-spectrum anti-inflammatory effect in traditional medicine. However, the effect of celastrol on acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) is still unknown. Methods: We reported that celastrol alleviated LPS-induced acute lung injury by H&E staining, MPO activity and the expression of cytokines in broncho-alveolar lavage fluid. The effect of celastrol on bone marrow-derived macrophages (BMDMs) after LPS treatment was measured by ELISA and Western blotting. Results: In vivo, celastrol reduced the LPS-induced lung edema and MPO activity of lung tissue. Furthermore, the production of inflammatory cytokines IL-6, TNF-α, and KC in bronchoalveolar lavage was reduced. In vitro, upon treatment of LPS, celastrol dose-dependently inhibited the expression of iNOS in BMDMs. Meanwhile, the expression of IL-6, TNF-α, and KC in BMDMs were also inhibited by celastrol treatment. Furthermore, we found that celastrol attenuated the phosphorylation of p38 MAPK and MK2, and inhibited the interaction between p38 MAPK and MK2. Conclusion: Our data indicate that celastrol has an anti-inflammatory effect on LPS-induced inflammatory response in vivo and in vitro, suggesting celastrol is a promising compound for the treatment of ALI and ARDS.
Collapse
|
86
|
Lu Y, Liu Y, Zhou J, Li D, Gao W. Biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of the quinone-methide triterpenoid celastrol. Med Res Rev 2020; 41:1022-1060. [PMID: 33174200 DOI: 10.1002/med.21751] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/06/2020] [Accepted: 10/28/2020] [Indexed: 12/13/2022]
Abstract
Celastrol, a quinone-methide triterpenoid, was extracted from Tripterygium wilfordii Hook. F. in 1936 for the first time. Almost 70 years later, it is considered one of the molecules most likely to be developed into modern drugs, as it exhibits notable bioactivity, including anticancer and anti-inflammatory activity, and exerts antiobesity effects. In addition, the molecular mechanisms underlying its bioactivity are being widely studied, which offers new avenues for its development as a pharmaceutical reagent. Owing to its potential therapeutic effects and unique chemical structure, celastrol has attracted considerable interest in the fields of organic, biosynthesis, and medicinal chemistry. As several steps in the biosynthesis of celastrol have been revealed, the mechanisms of key enzymes catalyzing the formation and postmodifications of the celastrol scaffold have been gradually elucidated, which lays a good foundation for the future heterogeneous biosynthesis of celastrol. Chemical synthesis is also an effective approach to obtain celastrol. The total synthesis of celastrol was realized for the first time in 2015, which established a new strategy to obtain celastroid natural products. However, owing to the toxic effects and suboptimal pharmacological properties of celastrol, its clinical applications remain limited. To search for drug-like derivatives, several structurally modified compounds were synthesized and tested. This review focuses primarily on the latest research progress in the biosynthesis, total synthesis, structural modifications, bioactivity, and mechanism of action of celastrol. We anticipate that this paper will facilitate a more comprehensive understanding of this promising compound and provide constructive references for future research in this field.
Collapse
Affiliation(s)
- Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Yuan Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Jiawei Zhou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Dan Li
- School of Pharmaceutical Sciences, Capital Medical University, Beijing, China
| | - Wei Gao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,School of Pharmaceutical Sciences, Capital Medical University, Beijing, China.,Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| |
Collapse
|
87
|
Bove M, Tucci P, Dimonte S, Trabace L, Schiavone S, Morgese MG. Postnatal Antioxidant and Anti-inflammatory Treatments Prevent Early Ketamine-Induced Cortical Dysfunctions in Adult Mice. Front Neurosci 2020; 14:590088. [PMID: 33250707 PMCID: PMC7672215 DOI: 10.3389/fnins.2020.590088] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
Early brain insult, interfering with its maturation, may result in psychotic-like disturbances in adult life. Redox dysfunctions and neuroinflammation contribute to long-term psychiatric consequences due to neurodevelopmental abnormalities. Here, we investigated the effects of early pharmacological modulation of the redox and inflammatory states, through celastrol, and indomethacin administration, on reactive oxygen species (ROS) amount, levels of malondialdehyde (MDA) and antioxidant enzymes (superoxide dismutase 1, SOD1, glutathione, GSH, and catalase, CAT), as well as of pro-inflammatory cytokines (tumor necrosis factor-alpha, TNF-α, interleukin-6, IL-6, and interleukin-1 beta, IL-1β), in the prefrontal cortex of adult mice exposed to a neurotoxic insult, i.e. ketamine administration, in postnatal life. Early celastrol or indomethacin prevented ketamine-induced elevations in cortical ROS production. MDA levels in ketamine-treated mice, also administered with celastrol, were comparable with the control ones. Indomethacin also prevented the increase in lipid peroxidation following early ketamine administration. Whereas no significant differences were detected in SOD1, GSH, and CAT levels between ketamine and saline-administered mice, celastrol elevated the cortical amount of these antioxidant enzymes and the same effect was induced by indomethacin per se. Both celastrol and indomethacin prevented ketamine-induced enhancement in TNF-α and IL-1β levels, however, they had no effects on increased IL-6 amount resulting from ketamine exposure in postnatal life. In conclusion, our data suggest that an early increase in cortical ROS scavenging and reduction of lipid peroxidation, via the enhancement of antioxidant defense, together with inhibition of neuroinflammation, may represent a therapeutic opportunity against psychotic-like disturbances resulting, later in life, from the effects of a neurotoxic insult on the developing brain.
Collapse
Affiliation(s)
| | | | | | | | - Stefania Schiavone
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | |
Collapse
|
88
|
Nie Y, Fu C, Zhang H, Zhang M, Xie H, Tong X, Li Y, Hou Z, Fan X, Yan M. Celastrol slows the progression of early diabetic nephropathy in rats via the PI3K/AKT pathway. BMC Complement Med Ther 2020; 20:321. [PMID: 33097050 PMCID: PMC7583204 DOI: 10.1186/s12906-020-03050-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022] Open
Abstract
Background Diabetic nephropathy serves as one of the most regular microvascular complications of diabetes mellitus and is the main factor that causes end-stage renal disease and incident mortality. As the beneficial effect and minute adverse influence of Celastrol on the renal system requires further elucidation, the renoprotective function of Celastrol in early diabetic nephropathy was investigated. Methods In high-fat and high-glucose diet/streptozotocin-induced diabetic rats which is the early diabetic nephropathy model, ALT, AST, 24 h urinary protein, blood urea nitrogen, and serum creatinine content were observed. Periodic acid-Schiff staining, enzyme-linked immunosorbent assay, immunohistochemical analysis, reverse transcription-polymerase chain reaction, and western blot analysis were used to explore the renoprotective effect of Celastrol to diabetic nephropathy rats and the underlying mechanism. Results High dose of Celastrol (1.5 mg/kg/d) not only improved the kidney function of diabetic nephropathy (DN) rats, and decreased the blood glucose and 24 h urinary albumin, but also increased the expression of LC3II and nephrin, and downregulated the expression of PI3K, p-AKT, and the mRNA level of NF-κB and mTOR. Conclusion Celastrol functions as a potential therapeutic substance, acting via the PI3K/AKT pathway to attenuate renal injury, inhibit glomerular basement membrane thickening, and achieve podocyte homeostasis in diabetic nephropathy.
Collapse
Affiliation(s)
- Yusong Nie
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.,Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.,Xianyang Central Hospital, Xianyang, 712000, Shaanxi, China
| | - Chengxiao Fu
- Center of Clinical Pharmacology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Huimin Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Min Zhang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.,First clinical medical college, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Hui Xie
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xiaopei Tong
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Yao Li
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Zhenyan Hou
- Department of Pharmacy, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 264000, Shandong, China
| | - Xinrong Fan
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China. .,First clinical medical college, Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China. .,Institute of Basic Theory for Chinese Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Miao Yan
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
89
|
Li X, Yu Z, Zong W, Chen P, Li J, Wang M, Ding F, Xie M, Wang W, Luo X. Deficiency of the microglial Hv1 proton channel attenuates neuronal pyroptosis and inhibits inflammatory reaction after spinal cord injury. J Neuroinflammation 2020; 17:263. [PMID: 32891159 PMCID: PMC7487532 DOI: 10.1186/s12974-020-01942-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 08/25/2020] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Spinal cord injury (SCI) causes neurological dysfunction with devastating consequences. SCI pathogenesis is accompanied by inflammasome activation and neuronal damage. But the spatial pattern and the time course of neuronal pyroptosis and apoptosis after SCI should be further elucidated. The microglial voltage-gated proton channel (Hv1) is implicated in reactive oxygen species (ROS)-induced neuronal damage following ischemic stroke. However, there is a lack of quantification on the neuronal pyroptosis and apoptosis associated with microglial Hv1 after SCI. METHODS We analyzed spatial and temporal characteristics of neuronal pyroptosis and apoptosis following SCI and investigated the effects of Hv1 deficiency on neuronal pyroptosis and the nod-like receptor 3 (NLRP3) inflammasome pathway by using a mouse model of SCI. We tested the effects of Hv1-deficient microglia on ROS production in vivo and examined the relationship between ROS and neuronal pyroptosis in vitro. RESULTS We observed that apoptosis was detected closer to the injury core than pyroptosis. The incidence of neuronal apoptosis peaked on day 1 after SCI and occurred before pyroptosis. Hv1 deficiency reduced neuronal apoptosis and NLRP3-inflammasome-mediated pyroptosis, improved axonal regeneration, and reduced motor deficits. SCI led to elevated ROS levels, whereas Hv1 deficiency downregulated microglial ROS generation. In vitro, ROS upregulated neuronal pyroptosis and activated the NLRP3 inflammasome pathway, both of which were reversed by addition of a ROS scavenger. Our results suggested that microglial Hv1 regulated neuronal apoptosis and NLRP3-induced neuronal pyroptosis after SCI by mediating ROS production. CONCLUSION Following SCI, neuronal pyroptosis lasted longer and occurred farther away from the injury core compared with that of neuronal apoptosis. Microglial Hv1 deficiency downregulated microglial ROS generation and reduced apoptosis and NLRP3-induced neuronal pyroptosis. Our findings may provide novel insights into Hv1-associated mechanisms underlying neuronal damage after SCI.
Collapse
Affiliation(s)
- Xuefei Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Zhiyuan Yu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weifeng Zong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Peng Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jia Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minghuan Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fengfei Ding
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Minjie Xie
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
90
|
Zhang B, Zhong Q, Chen X, Wu X, Sha R, Song G, Zhang C, Chen X. Neuroprotective Effects of Celastrol on Transient Global Cerebral Ischemia Rats via Regulating HMGB1/NF-κB Signaling Pathway. Front Neurosci 2020; 14:847. [PMID: 32848589 PMCID: PMC7433406 DOI: 10.3389/fnins.2020.00847] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 11/21/2022] Open
Abstract
Cerebral ischemia is a major cause of brain dysfunction, neuroinflammation and oxidative stress have been implicated in the pathophysiological process of cerebral ischemia/reperfusion injury. Celastrol is a potent inhibitor of inflammation and oxidative stress that has little toxicity. The present study was designed to evaluate whether celastrol has neuroprotective effects through anti-inflammatory and antioxidant actions, and to elucidate the possible involved mechanisms in transient global cerebral ischemia reperfusion (tGCI/R) rats. Celastrol (1, 2, or 4 mg/kg) was administrated intraperitoneally immediately after reperfusion and the effect of celastrol on reverting spatial learning and memory impairment was determined by Morris water maze (MWM) task. Inflammatory response and oxidative stress, hippocampal neuronal damage and glial activation, and HMGB1/NF-κB signaling pathway proteins were also examined. Our results indicated that celastrol dose-dependently reduced hippocampal and serum concentration of pro-inflammatory markers (TNF-α, IL-1β, and IL-6) and oxidative stress marker (MDA), whereas the anti-inflammatory marker IL-10 and antioxidant markers (GSH, SOD, and CAT) were increased significantly in celastrol treated tGCI/R rats. Celastrol alleviated apoptotic neuronal death, inhibited reactive glial activation and proliferation and improved ischemia-induced neurological deficits. Simultaneously, we found that mechanisms responsible for the neuroprotective effect of celastrol could be attributed to its anti-inflammatory and antioxidant actions via inhibiting HMGB1/NF-κB signaling pathway. These findings provide a proof of concept for the further validation that celastrol may be a superior candidate for the treatment of severe cerebral ischemic patients in clinical practice in the future.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Zhong
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xuhui Chen
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Wu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Sha
- Department of Rehabilitation Medicine, Enshi Autonomous Prefecture, Hospital of Traditional Chinese Medicine, Enshi, China
| | - Guizhi Song
- Department of Quality Inspection, Wuhan Institute of Biological Products, Wuhan, China
| | - Chuanhan Zhang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
91
|
Wu C, Xu H, Li J, Hu X, Wang X, Huang Y, Li Y, Sheng S, Wang Y, Xu H, Ni W, Zhou K. Baicalein Attenuates Pyroptosis and Endoplasmic Reticulum Stress Following Spinal Cord Ischemia-Reperfusion Injury via Autophagy Enhancement. Front Pharmacol 2020; 11:1076. [PMID: 32903577 PMCID: PMC7438740 DOI: 10.3389/fphar.2020.01076] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/02/2020] [Indexed: 12/20/2022] Open
Abstract
Background Spinal cord ischemia-reperfusion injury (SCIRI) is the main complication after the repair of a complex thoracoabdominal aortic aneurysm. Many clinical treatments are not ideal due to the complex pathophysiological process of this injury. Baicalein (BA), a component derived from the roots of the herb Scutellaria baicalensis, may contribute to the successful treatment of ischemia/reperfusion injury. Purpose In the present study, the effects of BA on spinal cord ischemia-reperfusion injury and the underlying mechanisms were assessed. Materials and Methods Spinal cord ischemia was induced in C57BL/6 mice by blocking the aortic arch. Fifty-five mice were then randomly divided into four groups: Sham, SCIR+Vehicle, SCIR+BA, and SCIR+BA +3MA groups. At 0 and 24 h pre-SCIRI and at 24 h and 7 days post-SCIRI, evaluations with the Basso mouse scale (BMS) were performed. On postoperative 24 h, the spinal cord was harvested to assess pyroptosis, endoplasmic reticulum stress mediated apoptosis and autophagy. Results BA enhanced the functional recovery of spinal cord ischemia-reperfusion injury. In addition, BA attenuated pyroptosis, alleviated endoplasmic reticulum stress-mediated apoptosis, and activated autophagy. However, the effects of BA on the functional recovery of SCIRI, pyroptosis and endoplasmic reticulum stress-mediated apoptosis were reversed by the inhibition of autophagy. Conclusions In general, our findings revealed that BA enhances the functional recovery of spinal cord ischemia-reperfusion injury by dampening pyroptosis and alleviating endoplasmic reticulum stress-mediated apoptosis, which are mediated by the activation of autophagy.
Collapse
Affiliation(s)
- Chenyu Wu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Jiafeng Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yijia Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Yongli Wang
- Department of Orthopaedics, Huzhou Central Hospital, Huzhou, China
| | - Huazi Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, China
| |
Collapse
|
92
|
Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan D, Lu M, Hu Z. Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1α. Aging (Albany NY) 2020; 12:10931-10950. [PMID: 32507769 PMCID: PMC7346036 DOI: 10.18632/aging.103307] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/30/2020] [Indexed: 04/11/2023]
Abstract
Microglial cells are the first line immune cells that initiate inflammatory responses following cerebral ischemia/reperfusion(I/R) injury. Microglial cells are also associated with a novel subtype of pro-inflammatory programmed cell death known as pyroptosis. Research has been directed at developing treatments that modulate inflammatory responses and protect against cell death caused by cerebral I/R. Key among such treatments include mesenchymal stem cell (MSC) therapy. A unique type of MSC termed olfactory mucosa mesenchymal stem cell (OM-MSC) confers neuroprotection by promoting the secretion of paracrine factors, and neuroprotection. This study investigated whether hypoxic OM-MSCs could inhibit microglial cell death upon I/R insult in vitro. A traditional oxygen-glucose deprivation/reperfusion (OGD/R) model, analogous to I/R, was established. Results showed that OGD/R induced apoptosis and pyroptosis in microglial cells while hypoxia in OM-MSCs significantly attenuated these effects. Moreover, the effects of OM-MSCs were mediated by Hypoxia-inducible factor 1-alpha (HIF-1α). Taken together, these findings reveal that hypoxia-preconditioned OM-MSC inhibits pyroptotic and apoptotic death of microglial cell in response to cerebral ischemia/reperfusion insult by activating HIF-1α in vitro.
Collapse
Affiliation(s)
- Yan Huang
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, P.R. China
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Neurorestoration, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P.R. China
| | - Yi Zhuo
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, P.R. China
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Neurorestoration, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R. China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R. China
| | - Da Duan
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Neurorestoration, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
| | - Ming Lu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha 410081, Hunan, P.R. China
- Department of Neurosurgery, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
- Hunan Provincial Key Laboratory of Neurorestoration, Second Affiliated Hospital of Hunan Normal University, Changsha 410003, Hunan, P.R. China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, P.R. China
| |
Collapse
|
93
|
Kumar S, Fritz Z, Sulakhiya K, Theis T, Berthiaume F. Transcriptional Factors and Protein Biomarkers as Target Therapeutics in Traumatic Spinal Cord and Brain Injury. Curr Neuropharmacol 2020; 18:1092-1105. [PMID: 32442086 PMCID: PMC7709155 DOI: 10.2174/1570159x18666200522203542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/19/2020] [Accepted: 05/07/2020] [Indexed: 12/04/2022] Open
Abstract
Traumatic injury to the spinal cord (SCI) and brain (TBI) are serious health problems and affect many people every year throughout the world. These devastating injuries are affecting not only patients but also their families socially as well as financially. SCI and TBI lead to neurological dysfunction besides continuous inflammation, ischemia, and necrosis followed by progressive neurodegeneration. There are well-established changes in several other processes such as gene expression as well as protein levels that are the important key factors to control the progression of these diseases. We are not yet able to collect enough knowledge on the underlying mechanisms leading to the altered gene expression profiles and protein levels in SCI and TBI. Cell loss is hastened by the induction or imbalance of pro- or anti-inflammatory expression profiles and transcription factors for cell survival after or during trauma. There is a sequence of events of dysregulation of these factors from early to late stages of trauma that opens a therapeutic window for new interventions to prevent/restrict the progression of these diseases. There has been increasing interest in the modulation of these factors for improving the patient’s quality of life by targeting both SCI and TBI. Here, we review some of the recent transcriptional factors and protein biomarkers that have been developed and discovered in the last decade in the context of targeted therapeutics for SCI and TBI patients.
Collapse
Affiliation(s)
- Suneel Kumar
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Zachary Fritz
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| | - Kunjbihari Sulakhiya
- Department of Pharmacy, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Thomas Theis
- W. M. Keck Center for Collaborative Neuroscience and Department of Cell Biology and Neuroscience, Rutgers, The
State University of New Jersey, Piscataway, New Jersey, USA
| | - Francois Berthiaume
- Department of Biomedical Engineering, The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
94
|
Liu DD, Zhang BL, Yang JB, Zhou K. Celastrol ameliorates endoplasmic stress-mediated apoptosis of osteoarthritis via regulating ATF-6/CHOP signalling pathway. J Pharm Pharmacol 2020; 72:826-835. [PMID: 32201950 DOI: 10.1111/jphp.13250] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/09/2020] [Indexed: 12/13/2022]
Abstract
Abstract
Objectives
Osteoarthritis (OA) is a common degenerative joint disease with the pathological features of the reduced cartilage cellularity. Celastrol, a compound from Tripterygium wilfordii, exerted therapeutic effects on arthritis, but the potential mechanism remains unclear.
Methods
Tunicamycin was used to establish a model of OA in vitro, and ACLT surgery model in rats was applied to verify the mechanism. Chondrocytes were isolated from the knee articular cartilage of rabbit. MTT and flow cytometry assay were used to detect cell viability and apoptosis rate. Haematoxylin–eosin staining was used to assess for the histopathological changes. The activity and expression of apoptosis-related factors and ERs (endoplasmic reticulum stress)-related factors were detected by ELISA, WB, PCR and IHC, respectively.
Key findings
Celastrol exhibited significant enhancement on cell viability and reduced the rate of apoptosis in Tm-exposed chondrocytes. Celastrol reduced enzyme activity and protein expression of caspase-3, caspase-6 and caspase-9, decreased Bip, Atf6, Chop and Xbp-1 expression both at protein and mRNA levels. Celastrol showed a more significant effect on cell apoptosis rate and mRNA expression in the combination with 4-PBA.
Conclusions
This study reveals that celastrol may prevent OA by inhibiting the ERs-mediated apoptosis. All these might supply beneficial hints for celastrol on OA treatment.
Collapse
Affiliation(s)
- Da Dong Liu
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Ben Li Zhang
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Ji Bin Yang
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| | - Kunpeng Zhou
- Department of Orthopedic, The Central Hospital of Zhoukou City, Henan, China
| |
Collapse
|
95
|
Zhu S, Luo C, Feng W, Li Y, Zhu M, Sun S, Zhang X. Selenium-deposited tripterine phytosomes ameliorate the antiarthritic efficacy of the phytomedicine via a synergistic sensitization. Int J Pharm 2020; 578:119104. [DOI: 10.1016/j.ijpharm.2020.119104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
|
96
|
Neuroinflammation in CNS diseases: Molecular mechanisms and the therapeutic potential of plant derived bioactive molecules. PHARMANUTRITION 2020. [DOI: 10.1016/j.phanu.2020.100176] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
97
|
Rajkhan AT, Esmat A, Alharthi SE. Protective Effect of Celastrol on Gentamicin-induced Nephrotoxicity in Mice. INT J PHARMACOL 2020. [DOI: 10.3923/ijp.2020.126.135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
98
|
Ungerer G, Cui J, Ndam T, Bekemeier M, Song H, Li R, Siedhoff HR, Yang B, Appenteng MK, Greenlief CM, Miller DK, Sun GY, Folk WR, Gu Z. Harpagophytum procumbens Extract Ameliorates Allodynia and Modulates Oxidative and Antioxidant Stress Pathways in a Rat Model of Spinal Cord Injury. Neuromolecular Med 2020; 22:278-292. [PMID: 31900786 DOI: 10.1007/s12017-019-08585-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 12/19/2019] [Indexed: 02/07/2023]
Abstract
Spinal cord injury (SCI) is a deliberating disorder with impairments in locomotor deficits and incapacitating sensory abnormalities. Harpagophytum procumbens (Hp) is a botanical widely used for treating inflammation and pain related to various inflammatory and musculoskeletal conditions. Using a modified rodent contusion model of SCI, we explored the effects of this botanical on locomotor function and responses to mechanical stimuli, and examined possible neurochemical changes associated with SCI-induced allodynia. Following spinal cord contusion at T10 level, Hp (300 mg/kg, p.o.) or vehicle (water) was administered daily starting 24 h post-surgery, and behavioral measurements made every-other day until sacrifice (Day 21). Hp treatment markedly ameliorated the contusion-induced decrease in locomotor function and increased sensitivity to mechanical stimuli. Determination of Iba1 expression in spinal cord tissues indicated microglial infiltration starting 3 days post-injury. SCI results in increased levels of 4-hydroxynonenal, an oxidative stress product and proalgesic, which was diminished at 7 days by treatment with Hp. SCI also enhanced antioxidant heme oxygenase-1 (HO-1) expression. Concurrent studies of cultured murine BV-2 microglial cells revealed that Hp suppressed oxidative/nitrosative stress and inflammatory responses, including production of nitric oxide and reactive oxygen species, phosphorylation of cytosolic phospholipases A2, and upregulation of the antioxidative stress pathway involving the nuclear factor erythroid 2-related factor 2 and HO-1. These results support the use of Hp for management of allodynia by providing resilience against the neuroinflammation and pain associated with SCI and other neuropathological conditions.
Collapse
Affiliation(s)
- Garrett Ungerer
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Jiankun Cui
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Tina Ndam
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mikeala Bekemeier
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Hailong Song
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Runting Li
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Heather R Siedhoff
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Bo Yang
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Michael K Appenteng
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - C Michael Greenlief
- Department of Chemistry, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Dennis K Miller
- Department of Psychological Sciences, College of Arts & Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Y Sun
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - William R Folk
- Biochemistry Department, School of Medicine and College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO, 65211, USA
| | - Zezong Gu
- Department of Pathology & Anatomical Sciences, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
99
|
Hu J, Wei J, Zeng C, Duan F, Liu S, Tan H. Z-ligustilide protects BV-2 microglial cells against oxygen-glucose deprivation/reoxygenation-induced injury by inhibiting NLRP3 inflammasome activation and pyroptosis. EUR J INFLAMM 2020. [DOI: 10.1177/2058739220934925] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Z-ligustilide (LIG) is the main bioactive compound of Danggui essential oil, which was reported to exert neuroprotective and anti-inflammatory effects. However, the underlying mechanism remains largely elusive. The present study aims to investigate the effect of LIG on oxygen-glucose deprivation/reoxygenation (OGD/R)-induced injury and whether Nod-like receptor protein 3 (NLRP3) inflammasome and related pyroptosis are targets for the treatment of LIG. The OGD/R model was established in BV-2 microglial cells to investigate the protective effect of LIG. Cell viability and the release of lactate dehydrogenase (LDH) were determined by cell counting assay kit 8 and the LDH release assay kit. Western blot and immunofluorescence staining were carried out to detect NLRP3 inflammasome activation and pyroptosis. Active caspase-1 and TdT-mediated dUTP nick end labeling (TUNEL) double positive cells were defined as pyroptosis population. Statistical comparison among multiple groups was carried out by one-way analysis of variance (ANOVA) followed by least significant difference (LSD) test. Compared with control cells, OGD/R impaired cell viability and induced the release of LDH in BV-2 microglial cells, which were associated with the activation of NLRP3 inflammasome as evidenced by increased expression of NLRP3 and the cleavage of caspase-1 and interleukin-1 beta (IL-1β). In parallel with NLRP3 inflammasome activation, OGD/R induced pyroptotic cell death, manifested by the cleavage of gasdermin D (GSDMD) and increased population of active caspase-1+/TUNEL+ cells. All these events were significantly attenuated by treatment with LIG, indicating that LIG significantly inhibited NLRP3 inflammasome activation and pyroptosis, and ameliorated OGD/R-induced cell injury. In conclusion, LIG protects BV-2 microglial cells against OGD/R-induced injury via inhibition of NLRP3 inflammasome and pyroptosis.
Collapse
Affiliation(s)
- Jia Hu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jie Wei
- Department of Pharmacology, Guangxi Institute of Chinese Medicine and Pharmaceutical Science, Nanning, China
| | - Cheng Zeng
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Fengqi Duan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Sijun Liu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Hongmei Tan
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
100
|
Wang Y, Li C, Gu J, Chen C, Duanmu J, Miao J, Yao W, Tao J, Tu M, Xiong B, Zhao L, Liu Z. Celastrol exerts anti-inflammatory effect in liver fibrosis via activation of AMPK-SIRT3 signalling. J Cell Mol Med 2019; 24:941-953. [PMID: 31742890 PMCID: PMC6933398 DOI: 10.1111/jcmm.14805] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/23/2019] [Accepted: 10/19/2019] [Indexed: 12/14/2022] Open
Abstract
Celastrol, a pentacyclic tritepene extracted from Tripterygium Wilfordi plant, showing potent liver protection effects on several liver-related diseases. However, the anti-inflammatory potential of celastrol in liver fibrosis and the detailed mechanisms remain uncovered. This study was to investigate the anti-inflammatory effect of celastrol in liver fibrosis and to further reveal mechanisms of celastrol-induced anti-inflammatory effects with a focus on AMPK-SIRT3 signalling. Celastrol showed potent ameliorative effects on liver fibrosis both in activated hepatic stellate cells (HSCs) and in fibrotic liver. Celastrol remarkably suppressed inflammation in vivo and inhibited the secretion of inflammatory factors in vitro. Interestingly, celastrol increased SIRT3 promoter activity and SIRT3 expression both in fibrotic liver and in activated HSCs. Furthermore, SIRT3 silencing evidently ameliorated the anti-inflammatory potential of celastrol. Besides, we found that celastrol could increase the AMPK phosphorylation. Further investigation showed that SIRT3 siRNA decreased SIRT3 expression but had no obvious effect on phosphorylation of AMPK. In addition, inhibition of AMPK by employing compound C (an AMPK inhibitor) or AMPK1α siRNA significantly suppressed SIRT3 expression, suggesting that AMPK was an up-stream protein of SIRT3 in liver fibrosis. We further found that depletion of AMPK significantly attenuated the inhibitory effect of celastrol on inflammation. Collectively, celastrol attenuated liver fibrosis mainly through inhibition of inflammation by activating AMPK-SIRT3 signalling, which makes celastrol be a potential candidate compound in treating or protecting against liver fibrosis.
Collapse
Affiliation(s)
- Yuqin Wang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chunling Li
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jingya Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Chang Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jiaxin Duanmu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jing Miao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Wenjuan Yao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Jinhua Tao
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Mengjue Tu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Biao Xiong
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| | - Lingling Zhao
- Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Zhaoguo Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong, China
| |
Collapse
|