51
|
Schwefel D, Arasu BS, Marino SF, Lamprecht B, Köchert K, Rosenbaum E, Eichhorst J, Wiesner B, Behlke J, Rocks O, Mathas S, Daumke O. Structural insights into the mechanism of GTPase activation in the GIMAP family. Structure 2013; 21:550-9. [PMID: 23454188 DOI: 10.1016/j.str.2013.01.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 01/17/2013] [Accepted: 01/19/2013] [Indexed: 10/27/2022]
Abstract
GTPases of immunity-associated proteins (GIMAPs) are regulators of lymphocyte survival and homeostasis. We previously determined the structural basis of GTP-dependent GIMAP2 scaffold formation on lipid droplets. To understand how its GTP hydrolysis is activated, we screened for other GIMAPs on lipid droplets and identified GIMAP7. In contrast to GIMAP2, GIMAP7 displayed dimerization-stimulated GTP hydrolysis. The crystal structure of GTP-bound GIMAP7 showed a homodimer that assembled via the G domains, with the helical extensions protruding in opposite directions. We identified a catalytic arginine that is supplied to the opposing monomer to stimulate GTP hydrolysis. GIMAP7 also stimulated GTP hydrolysis by GIMAP2 via an analogous mechanism. Finally, we found GIMAP2 and GIMAP7 expression differentially regulated in several human T cell lymphoma lines. Our findings suggest that GTPase activity in the GIMAP family is controlled by homo- and heterodimerization. This may have implications for the differential roles of some GIMAPs in lymphocyte survival.
Collapse
Affiliation(s)
- David Schwefel
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wu H, Haag D, Muley T, Warth A, Zapatka M, Toedt G, Pscherer A, Hahn M, Rieker RJ, Wachter DL, Meister M, Schnabel P, Müller-Decker K, Rogers MA, Hoffmann H, Lichter P. Tumor-microenvironment interactions studied by zonal transcriptional profiling of squamous cell lung carcinoma. Genes Chromosomes Cancer 2012; 52:250-64. [PMID: 23074073 DOI: 10.1002/gcc.22025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 09/24/2012] [Accepted: 09/25/2012] [Indexed: 01/07/2023] Open
Abstract
Invasion is a critical step in lung tumor progression. The interaction between tumor cells and their surroundings may play an important role in tumor invasion and metastasis. To better understand the mechanisms of tumor invasion and tumor-microenvironment interactions in lung tumors, total RNA was isolated from the inner tumor, tumor invasion front, adjacent lung, and distant normal lung tissue from 17 patients with primary squamous cell lung carcinoma using punch-aided laser capture microdissection. Messenger RNA expression profiles were obtained by microarray analysis, and microRNA profiles were generated from eight of these samples using TaqMan Low Density Arrays. Statistical analysis of the expression data showed extensive changes in gene expression in the inner tumor and tumor front compared with the normal lung and adjacent lung tissue. Only a few genes were differentially expressed between tumor front and the inner tumor. Several genes were validated by immunohistochemistry. Evaluation of the microRNA data revealed zonal expression differences in nearly a fourth of the microRNAs analyzed. Validation of selected microRNAs by in situ hybridization demonstrated strong expression of hsa-miR-196a in the inner tumor; moderate expression of hsa-miR-224 in the inner tumor and tumor front, and strong expression of hsa-miR-650 in the adjacent lung tissue. Pathway analysis placed the majority of genes differentially expressed between tumor and nontumor cells in intrinsic processes associated with inflammation and extrinsic processes related to lymphocyte physiology. Genes differentially expressed between the inner tumor and the adjacent lung/normal lung tissue affected pathways of arachidonic acid metabolism and eicosanoid signaling.
Collapse
Affiliation(s)
- Hui Wu
- Division of Molecular Genetics, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Bergerson RJ, Collier LS, Sarver AL, Been RA, Lugthart S, Diers MD, Zuber J, Rappaport AR, Nixon MJ, Silverstein KAT, Fan D, Lamblin AFJ, Wolff L, Kersey JH, Delwel R, Lowe SW, O'Sullivan MG, Kogan SC, Adams DJ, Largaespada DA. An insertional mutagenesis screen identifies genes that cooperate with Mll-AF9 in a murine leukemogenesis model. Blood 2012; 119:4512-23. [PMID: 22427200 PMCID: PMC3362364 DOI: 10.1182/blood-2010-04-281428] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 03/03/2012] [Indexed: 11/20/2022] Open
Abstract
Patients with a t(9;11) translocation (MLL-AF9) develop acute myeloid leukemia (AML), and while in mice the expression of this fusion oncogene also results in the development of myeloid leukemia, it is with long latency. To identify mutations that cooperate with Mll-AF9, we infected neonatal wild-type (WT) or Mll-AF9 mice with a murine leukemia virus (MuLV). MuLV-infected Mll-AF9 mice succumbed to disease significantly faster than controls presenting predominantly with myeloid leukemia while infected WT animals developed predominantly lymphoid leukemia. We identified 88 candidate cancer genes near common sites of proviral insertion. Analysis of transcript levels revealed significantly elevated expression of Mn1, and a trend toward increased expression of Bcl11a and Fosb in Mll-AF9 murine leukemia samples with proviral insertions proximal to these genes. Accordingly, FOSB and BCL11A were also overexpressed in human AML harboring MLL gene translocations. FOSB was revealed to be essential for growth in mouse and human myeloid leukemia cells using shRNA lentiviral vectors in vitro. Importantly, MN1 cooperated with Mll-AF9 in leukemogenesis in an in vivo BM viral transduction and transplantation assay. Together, our data identified genes that define transcription factor networks and important genetic pathways acting during progression of leukemia induced by MLL fusion oncogenes.
Collapse
Affiliation(s)
- Rachel J Bergerson
- Department of Genetics, Cell Biology and Development, Masonic Cancer Center, University of Minnesota Twin Cities, Minneapolis, MN 55455, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Bauersachs S, Ulbrich SE, Reichenbach HD, Reichenbach M, Büttner M, Meyer HH, Spencer TE, Minten M, Sax G, Winter G, Wolf E. Comparison of the Effects of Early Pregnancy with Human Interferon, Alpha 2 (IFNA2), on Gene Expression in Bovine Endometrium1. Biol Reprod 2012; 86:46. [DOI: 10.1095/biolreprod.111.094771] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
|
55
|
Kato G, Kondo H, Aoki T, Hirono I. A novel immune-related gene, microtubule aggregate protein homologue, is up-regulated during IFN-γ-related immune responses in Japanese flounder, Paralichthys olivaceus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2012; 36:349-358. [PMID: 21824491 DOI: 10.1016/j.dci.2011.06.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Revised: 06/02/2011] [Accepted: 06/02/2011] [Indexed: 05/31/2023]
Abstract
Delayed-type hypersensitivity (DTH) response mediated by antigen-specific Th1 cells is used as a test to detect exposure to tuberculosis in humans. Japanese flounder (Paralichthys olivaceus) microtubule aggregate protein homologue (PoMTAP) was identified as a gene strongly induced during fish DTH response. In this study, PoMTAP gene was cloned and its expression profile was analyzed. The PoMTAP gene has a transcriptional regulatory region that includes two interferon-stimulated response elements and two IFN-γ activated sites. Expressions of PoMTAP and IFN-γ genes were up-regulated at the same time points during the DTH response, Edwardsiella tarda infection and VHSV infection. Furthermore, PoMTAP gene expressing cells also expressed CD3ε, confirming that PoMTAP is expressed by T lymphocytes. These results suggest that PoMTAP is a novel immune-related gene expressed by T lymphocytes that is preferentially induced by IFN-γ and has a role in Th1-mediated immune responses in Japanese flounder.
Collapse
Affiliation(s)
- Goshi Kato
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Tokyo, Japan
| | | | | | | |
Collapse
|
56
|
White SJ, Hayes EM, Lehoux S, Jeremy JY, Horrevoets AJG, Newby AC. Characterization of the differential response of endothelial cells exposed to normal and elevated laminar shear stress. J Cell Physiol 2011; 226:2841-8. [PMID: 21302282 PMCID: PMC3412226 DOI: 10.1002/jcp.22629] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Accepted: 12/29/2010] [Indexed: 11/11/2022]
Abstract
Most acute coronary events occur in the upstream region of stenotic atherosclerotic plaques that experience laminar shear stress (LSS) elevated above normal physiological levels. Many studies have described the atheroprotective effect on endothelial behavior of normal physiological LSS (approximately 15 dynes/cm(2)) compared to static or oscillatory shear stress (OSS), but it is unknown whether the levels of elevated shear stress imposed by a stenotic plaque would preserve, enhance or reverse this effect. Therefore we used transcriptomics and related functional analyses to compare human endothelial cells exposed to laminar shear stress of 15 (LSS15-normal) or 75 dynes/cm(2) (LSS75-elevated). LSS75 upregulated expression of 145 and downregulated expression of 158 genes more than twofold relative to LSS15. Modulation of the metallothioneins (MT1-G, -M, -X) and NADPH oxidase subunits (NOX2, NOX4, NOX5, and p67phox) accompanied suppression of reactive oxygen species production at LSS75. Shear induced changes in dual specificity phosphatases (DUSPs 1, 5, 8, and 16 increasing and DUSPs 6 and 23 decreasing) were observed as well as reduced ERK1/2 but increased p38 MAP kinase phosphorylation. Amongst vasoactive substances, endothelin-1 expression decreased whereas vasoactive intestinal peptide (VIP) and prostacyclin expression increased, despite which intracellular cAMP levels were reduced. Promoter analysis by rVISTA identified a significant over representation of ATF and Nrf2 transcription factor binding sites in genes upregulated by LSS75 compared to LSS15. In summary, LSS75 induced a specific change in behavior, modifying gene expression, reducing ROS levels, altering MAP kinase signaling and reducing cAMP levels, opening multiple avenues for future study.
Collapse
Affiliation(s)
- Stephen J White
- Bristol Heart Institute, University of Bristol (Clinical Sciences South Bristol), Bristol, UK.
| | | | | | | | | | | |
Collapse
|
57
|
Moralejo DH, Fuller JM, Rutledge EA, Van Yserloo B, Ettinger RA, Jensen R, Osborne W, Kwitek A, Lernmark A. BB rat Gimap gene expression in sorted lymphoid T and B cells. Life Sci 2011; 89:748-54. [PMID: 21925515 DOI: 10.1016/j.lfs.2011.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Revised: 08/15/2011] [Accepted: 08/28/2011] [Indexed: 11/15/2022]
Abstract
AIMS The Gimap gene family has been shown to be integral to T cell survival and development. A frameshift mutation in Gimap5, one of seven members of the Gimap family, results in lymphopenia and is a prerequisite for spontaneous type 1 diabetes (T1D) in the BioBreeding (BB) rat. While not contributing to lymphopenia, the Gimap family members proximal to Gimap5, encompassed within the Iddm39 quantitative trait locus (QTL), have been implicated in T1D. We hypothesized that expression of the Gimap family members within the Iddm39 QTL, during thymocyte development as well as in peripheral T and B cells contribute to T1D. MAIN METHODS Cell sorted subpopulations were analyzed by quantitative real time (qRT) PCR. KEY FINDINGS Gimap4 expression was reduced in DR.(lyp/lyp) rat double negative, double positive and CD8 single positive (SP) thymocytes while expression of Gimap8, Gimap6, and Gimap7 was reduced only in CD8 SP thymocytes. Interestingly, expression of the entire Gimap gene family was reduced in DR.(lyp/lyp) rat peripheral T cells compared to non-lymphopenic, non-diabetic DR.(+/+) rats. With the exception of Gimap6, the Gimap family genes were not expressed in B cells from spleen and mesenteric lymph node (MLN). Expression of Gimap9 was only detected in hematopoietic cells of non B cell lineage such as macrophage, dendritic or NK cells. SIGNIFICANCE These results suggest that lack of the Gimap5 protein in the DR.(lyp/lyp) congenic rat was associated with impaired expression of the entire family of Gimap genes and may regulate T cell homeostasis in the peripheral lymphoid organs.
Collapse
Affiliation(s)
- Daniel H Moralejo
- Department of Comparative Medicine, University of Washington 1959 N.E. Pacific St., Box 357710, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Gentles AJ, Plevritis SK, Majeti R, Alizadeh AA. Association of a leukemic stem cell gene expression signature with clinical outcomes in acute myeloid leukemia. JAMA 2010; 304:2706-15. [PMID: 21177505 PMCID: PMC4089862 DOI: 10.1001/jama.2010.1862] [Citation(s) in RCA: 302] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
CONTEXT In many cancers, specific subpopulations of cells appear to be uniquely capable of initiating and maintaining tumors. The strongest support for this cancer stem cell model comes from transplantation assays in immunodeficient mice, which indicate that human acute myeloid leukemia (AML) is driven by self-renewing leukemic stem cells (LSCs). This model has significant implications for the development of novel therapies, but its clinical relevance has yet to be determined. OBJECTIVE To identify an LSC gene expression signature and test its association with clinical outcomes in AML. DESIGN, SETTING, AND PATIENTS Retrospective study of global gene expression (microarray) profiles of LSC-enriched subpopulations from primary AML and normal patient samples, which were obtained at a US medical center between April 2005 and July 2007, and validation data sets of global transcriptional profiles of AML tumors from 4 independent cohorts (n = 1047). MAIN OUTCOME MEASURES Identification of genes discriminating LSC-enriched populations from other subpopulations in AML tumors; and association of LSC-specific genes with overall, event-free, and relapse-free survival and with therapeutic response. RESULTS Expression levels of 52 genes distinguished LSC-enriched populations from other subpopulations in cell-sorted AML samples. An LSC score summarizing expression of these genes in bulk primary AML tumor samples was associated with clinical outcomes in the 4 independent patient cohorts. High LSC scores were associated with worse overall, event-free, and relapse-free survival among patients with either normal karyotypes or chromosomal abnormalities. For the largest cohort of patients with normal karyotypes (n = 163), the LSC score was significantly associated with overall survival as a continuous variable (hazard ratio [HR], 1.15; 95% confidence interval [CI], 1.08-1.22; log-likelihood P <.001). The absolute risk of death by 3 years was 57% (95% CI, 43%-67%) for the low LSC score group compared with 78% (95% CI, 66%-86%) for the high LSC score group (HR, 1.9 [95% CI, 1.3-2.7]; log-rank P = .002). In another cohort with available data on event-free survival for 70 patients with normal karyotypes, the risk of an event by 3 years was 48% (95% CI, 27%-63%) in the low LSC score group vs 81% (95% CI, 60%-91%) in the high LSC score group (HR, 2.4 [95% CI, 1.3-4.5]; log-rank P = .006). In multivariate Cox regression including age, mutations in FLT3 and NPM1, and cytogenetic abnormalities, the HRs for LSC score in the 3 cohorts with data on all variables were 1.07 (95% CI, 1.01-1.13; P = .02), 1.10 (95% CI, 1.03-1.17; P = .005), and 1.17 (95% CI, 1.05-1.30; P = .005). CONCLUSION High expression of an LSC gene signature is independently associated with adverse outcomes in patients with AML.
Collapse
Affiliation(s)
- Andrew J Gentles
- Department of Radiology, Lucas Center for MR Spectroscopy and Imaging, School of Medicine, Stanford University, Palo Alto, CA 94305, USA
| | | | | | | |
Collapse
|
59
|
Jokinen R, Marttinen P, Sandell HK, Manninen T, Teerenhovi H, Wai T, Teoli D, Loredo-Osti JC, Shoubridge EA, Battersby BJ. Gimap3 regulates tissue-specific mitochondrial DNA segregation. PLoS Genet 2010; 6:e1001161. [PMID: 20976251 PMCID: PMC2954831 DOI: 10.1371/journal.pgen.1001161] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 09/15/2010] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial DNA (mtDNA) sequence variants segregate in mutation and tissue-specific manners, but the mechanisms remain unknown. The segregation pattern of pathogenic mtDNA mutations is a major determinant of the onset and severity of disease. Using a heteroplasmic mouse model, we demonstrate that Gimap3, an outer mitochondrial membrane GTPase, is a critical regulator of this process in leukocytes. Gimap3 is important for T cell development and survival, suggesting that leukocyte survival may be a key factor in the genetic regulation of mtDNA sequence variants and in modulating human mitochondrial diseases.
Collapse
Affiliation(s)
- Riikka Jokinen
- Research Program of Molecular Neurology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Paula Marttinen
- Research Program of Molecular Neurology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Helen Katarin Sandell
- Research Program of Molecular Neurology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Tuula Manninen
- Research Program of Molecular Neurology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Heli Teerenhovi
- Research Program of Molecular Neurology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Timothy Wai
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Daniella Teoli
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - J. C. Loredo-Osti
- Department of Mathematics and Statistics, Memorial University, St. John's, Newfoundland, Canada
| | - Eric A. Shoubridge
- Montreal Neurological Institute and Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Brendan J. Battersby
- Research Program of Molecular Neurology and Institute of Biomedicine, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
60
|
GIMAP Proteins in T-Lymphocytes. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2010:268589. [PMID: 21637352 PMCID: PMC3100574 DOI: 10.1155/2010/268589] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2010] [Accepted: 06/16/2010] [Indexed: 12/21/2022]
Abstract
(GIMAPs) GTPase of the immunity associated protein family are a novel protein family of putative small GTPases. GIMAPs are mainly expressed in the cells of the immune system and have been associated with immunological functions, such as thymocyte development, apoptosis of peripheral lymphocytes and T helper cell differentiation. GIMAPs have also been linked to immunological diseases, such as T cell lymphopenia, leukemia and autoimmune diseases. In this review we examine the role of GIMAP proteins in T-lymphocyte biology.
Collapse
|
61
|
Schwefel D, Fröhlich C, Daumke O. Purification, crystallization and preliminary X-ray analysis of human GIMAP2. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:725-9. [PMID: 20516611 PMCID: PMC2882781 DOI: 10.1107/s174430911001537x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 04/26/2010] [Indexed: 11/10/2022]
Abstract
GTPases of immunity-associated proteins (GIMAPs) are important regulators of T-cell death and survival. Here, the crystallization and data collection of three GIMAP2 constructs in various nucleotide-loaded states is described. Selenomethionine-substituted carboxy-terminally truncated GIMAP2 (amino-acid residues 1-260; GIMAP2(1-260)) in the nucleotide-free form crystallized in space group P2(1)2(1)2(1) and the crystals diffracted X-rays to 1.5 A resolution. The phase problem was solved using the single anomalous dispersion (SAD) protocol. GDP-bound GIMAP2(21-260) and GDP-bound GIMAP2(1-234) crystallized in space group P2(1)2(1)2(1) and the crystals diffracted X-rays to 2.9 and 1.7 A resolution, respectively. GTP-bound GIMAP2(1-234) crystallized in space group C222(1) and the crystals diffracted to 1.9 A resolution. These results will allow a detailed structural analysis of GIMAP2, which will provide insight into the architecture and function of the GIMAP family.
Collapse
Affiliation(s)
- David Schwefel
- Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
| | | | | |
Collapse
|
62
|
Rahman N, Stewart G, Jones G. A role for the atopy-associated gene PHF11 in T-cell activation and viability. Immunol Cell Biol 2010; 88:817-24. [PMID: 20421878 DOI: 10.1038/icb.2010.57] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Polymorphisms within plant homeodomain finger protein 11 (PHF11) are associated with total IgE, allergic asthma and eczema. PHF11 is a transcriptional co-activator of the Th1 effector cytokine genes, interleukin-2 (IL2) and interferon-γ (IFNG), co-operating with nuclear factor kappa B (NF-κB). The involvement with NF-κB led us to test whether PHF11 might have a broader function in T-cell activation and viability. We show that PHF11 is abundant in the cytoplasm of T-cells and imported into the nucleus of activated T-cells. Consistent with its presence in the nucleus, PHF11 was recruited to the IFNG promoter and over-expression of PHF11 increased the binding of NF-κB to the IFNG promoter and IFNG gene transcription. Over-expression of PHF11 did not increase IL2 gene transcription, suggesting some specificity in promoter recognition. In contrast, small-interfering RNA knock-down of PHF11 decreased transcription of both IFNG and IL2 and led to decreased CD28 cell-surface expression and reduced NF-κB nuclear import and DNA binding. Knock-down of PHF11 also decreased cell viability and was accompanied by reduced expression of GIMAP4 and 5 genes required for T-cell differentiation, viability and homeostasis. Therefore, in addition to its earlier identified function in regulating Th1 cytokine gene expression, we now show that PHF11 has a broader function in contributing to T-cell activation and viability.
Collapse
Affiliation(s)
- Nusrat Rahman
- Department of Immunology and Allergy Research, Westmead Millennium Institute, Westmead Hospital, The University of Sydney, New South Wales, Australia
| | | | | |
Collapse
|
63
|
Comparative gene expression profiling between human cultured myotubes and skeletal muscle tissue. BMC Genomics 2010; 11:125. [PMID: 20175888 PMCID: PMC2838843 DOI: 10.1186/1471-2164-11-125] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 02/22/2010] [Indexed: 11/10/2022] Open
Abstract
Background A high-sensitivity DNA microarray platform requiring nanograms of RNA input facilitates the application of transcriptome analysis to individual skeletal muscle (SM) tissue samples. Culturing myotubes from SM-biopsies enables investigating transcriptional defects and assaying therapeutic strategies. This study compares the transcriptome of aneurally cultured human SM cells versus that of tissue biopsies. Results We used the Illumina expression BeadChips to determine the transcriptomic differences between tissue and cultured SM samples from five individuals. Changes in the expression of several genes were confirmed by QuantiGene Plex assay or reverse transcription real-time PCR. In cultured myotubes compared to the tissue, 1216 genes were regulated: 583 down and 633 up. Gene ontology analysis showed that downregulated genes were mainly associated with cytoplasm, particularly mitochondria, and involved in metabolism and the muscle-system/contraction process. Upregulated genes were predominantly related to cytoplasm, endoplasmic reticulum, and extracellular matrix. The most significantly regulated pathway was mitochondrial dysfunction. Apoptosis genes were also modulated. Among the most downregulated genes detected in this study were genes encoding metabolic proteins AMPD1, PYGM, CPT1B and UCP3, muscle-system proteins TMOD4, MYBPC1, MYOZ1 and XIRP2, the proteolytic CAPN3 and the myogenic regulator MYF6. Coordinated reduced expression of five members of the GIMAP gene family, which form a cluster on chromosome 7, was shown, and the GIMAP4-reduction was validated. Within the most upregulated group were genes encoding senescence/apoptosis-related proteins CDKN1A and KIAA1199 and potential regulatory factors HIF1A, TOP2A and CCDC80. Conclusions Cultured muscle cells display reductive metabolic and muscle-system transcriptome adaptations as observed in muscle atrophy and they activate tissue-remodeling and senescence/apoptosis processes.
Collapse
|
64
|
Biller L, Davis PH, Tillack M, Matthiesen J, Lotter H, Stanley SL, Tannich E, Bruchhaus I. Differences in the transcriptome signatures of two genetically related Entamoeba histolytica cell lines derived from the same isolate with different pathogenic properties. BMC Genomics 2010; 11:63. [PMID: 20102605 PMCID: PMC2823695 DOI: 10.1186/1471-2164-11-63] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 01/26/2010] [Indexed: 11/29/2022] Open
Abstract
Background The availability of two genetically very similar cell lines (A and B) derived from the laboratory isolate Entamoeba histolytica HM-1:IMSS, which differ in their virulence properties, provides a powerful tool for identifying pathogenicity factors of the causative agent of human amoebiasis. Cell line A is incapable inducing liver abscesses in gerbils, whereas interaction with cell line B leads to considerable abscess formation. Phenotypic characterization of both cell lines revealed that trophozoites from the pathogenic cell line B have a larger cell size, an increased growth rate in vitro, an increased cysteine peptidase activity and higher resistance to nitric oxide stress. To find proteins that may serve as virulence factors, the proteomes of both cell lines were previously studied, resulting in the identification of a limited number of differentially synthesized proteins. This study aims to identify additional genes, serving as virulence factors, or virulence markers. Results To obtain a comprehensive picture of the differences between the cell lines, we compared their transcriptomes using an oligonucleotide-based microarray and confirmed findings with quantitative real-time PCR. Out of 6242 genes represented on the array, 87 are differentially transcribed (≥two-fold) in the two cell lines. Approximately 50% code for hypothetical proteins. Interestingly, only 19 genes show a five-fold or higher differential expression. These include three rab7 GTPases, which were found with a higher abundance in the non-pathogenic cell line A. The aig1-like GTPasesare of special interest because the majority of them show higher levels of transcription in the pathogenic cell line B. Only two molecules were found to be differentially expressed between the two cell lines in both this study and our previous proteomic approach. Conclusions In this study we have identified a defined set of genes that are differentially transcribed between the non-pathogenic cell line A and the pathogenic cell line B of E. histolytica. The identification of transcription profiles unique for amoebic cell lines with pathogenic phenotypes may help to elucidate the transcriptional framework of E. histolytica pathogenicity and serve as a basis for identifying transcriptional markers and virulence factors.
Collapse
Affiliation(s)
- Laura Biller
- Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str, 74, 20359 Hamburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
65
|
Moralejo DH, Hansen CT, Treuting P, Hessner MJ, Fuller JM, Van Yserloo B, Jensen R, Osborne W, Kwitek AE, Lernmark A. Differential effects of leptin receptor mutation on male and female BBDR Gimap5-/Gimap5- spontaneously diabetic rats. Physiol Genomics 2009; 41:9-20. [PMID: 19996157 DOI: 10.1152/physiolgenomics.00186.2009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Rodents homozygous for autosomal leptin receptor gene mutations not only become obese, insulin resistant, and hyperleptinemic but also develop a dysregulated immune system. Using marker-assisted breeding to introgress the Koletsky rat leptin receptor mutant (lepr-/lepr-), we developed a novel congenic BBDR.(lepr-/lepr-) rat line to study the development of obesity and type 2 diabetes (T2D) in the BioBreeding (BB) diabetes-resistant (DR) rat. While heterozygous lepr (-/+) or homozygous (+/+) BBDR rats remained lean and metabolically normal, at 3 wk of age all BBDR.(lepr-/lepr-) rats were obese without hyperglycemia. Between 45 and 70 days of age, male but not female obese rats developed T2D. We had previously developed congenic BBDR.(Gimap5-/Gimap5-) rats, which carry an autosomal frameshift mutation in the Gimap5 gene linked to lymphopenia and spontaneous development of type 1 diabetes (T1D) without sex differences. Because the autoimmune-mediated destruction of pancreatic islet beta-cells may be affected not only by obesity but also by the absence of leptin receptor signaling, we next generated BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) double congenic rats carrying the mutation for Gimap5 and T1D as well as the Lepr mutation for obesity and T2D. The hyperleptinemia rescued end-stage islets in BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) congenic rats and induced an increase in islet size in both sexes, while T1D development was delayed and reduced only in females. These results demonstrate that obesity and T2D induced by introgression of the Koletsky leptin receptor mutation in the BBDR rat result in islet expansion associated with protection from T1D in female but not male BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) congenic rats. BBDR.(lepr-/lepr-,Gimap5-/Gimap5-) congenic rats should prove valuable to study interactions between lack of leptin receptor signaling, obesity, and sex-specific T2D and T1D.
Collapse
Affiliation(s)
- Daniel H Moralejo
- Departments of Comparative Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Collier FM, Loving A, Baker AJ, McLeod J, Walder K, Kirkland MA. RTKN2 Induces NF-KappaB Dependent Resistance to Intrinsic Apoptosis in HEK Cells and Regulates BCL-2 Genes in Human CD4(+) Lymphocytes. J Cell Death 2009; 2:9-23. [PMID: 26124677 PMCID: PMC4474337 DOI: 10.4137/jcd.s2891] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The gene for Rhotekin 2 (RTKN2) was originally identified in a promyelocytic cell line resistant to oxysterol-induced apoptosis. It is differentially expressed in freshly isolated CD4+ T-cells compared with other hematopoietic cells and is down-regulated following activation of the T-cell receptor. However, very little is known about the function of RTKN2 other than its homology to Rho-GTPase effector, rhotekin, and the possibility that they may have similar roles. Here we show that stable expression of RTKN2 in HEK cells enhanced survival in response to intrinsic apoptotic agents; 25-hydroxy cholesterol and camptothecin, but not the extrinsic agent, TNFα. Inhibitors of NF-KappaB, but not MAPK, reversed the resistance and mitochondrial pro-apoptotic genes, Bax and Bim, were down regulated. In these cells, there was no evidence of RTKN2 binding to the GTPases, RhoA or Rac2. Consistent with the role of RTKN2 in HEK over-expressing cells, suppression of RTKN2 in primary human CD4+ T-cells reduced viability and increased sensitivity to 25-OHC. The expression of the pro-apoptotic genes, Bax and Bim were increased while BCL-2 was decreased. In both cell models RTKN2 played a role in the process of intrinsic apoptosis and this was dependent on either NF-KappaB signaling or expression of downstream BCL-2 genes. As RTKN2 is a highly expressed in CD4+ T-cells it may play a role as a key signaling switch for regulation of genes involved in T-cell survival.
Collapse
Affiliation(s)
- Fiona M Collier
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia. ; Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Andrea Loving
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| | - Adele J Baker
- Department of Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, Victoria, 3181, Australia
| | - Janet McLeod
- School of Medicine, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Ken Walder
- Metabolic Research Unit, School of Medicine and Institute for Technology Research and Innovation, Deakin University, Waurn Ponds, Victoria, 3217, Australia
| | - Mark A Kirkland
- Barwon Biomedical Research, Geelong Hospital, Barwon Health, Ryrie St, Geelong, Victoria, 3227, Australia
| |
Collapse
|
67
|
Jailwala P, Waukau J, Glisic S, Jana S, Ehlenbach S, Hessner M, Alemzadeh R, Matsuyama S, Laud P, Wang X, Ghosh S. Apoptosis of CD4+ CD25(high) T cells in type 1 diabetes may be partially mediated by IL-2 deprivation. PLoS One 2009; 4:e6527. [PMID: 19654878 PMCID: PMC2716541 DOI: 10.1371/journal.pone.0006527] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2009] [Accepted: 07/02/2009] [Indexed: 01/26/2023] Open
Abstract
Background Type 1 diabetes (T1D) is a T-cell mediated autoimmune disease targeting the insulin-producing pancreatic β cells. Naturally occurring FOXP3+CD4+CD25high regulatory T cells (Tregs) play an important role in dominant tolerance, suppressing autoreactive CD4+ effector T cell activity. Previously, in both recent-onset T1D patients and β cell antibody-positive at-risk individuals, we observed increased apoptosis and decreased function of polyclonal Tregs in the periphery. Our objective here was to elucidate the genes and signaling pathways triggering apoptosis in Tregs from T1D subjects. Principal Findings Gene expression profiles of unstimulated Tregs from recent-onset T1D (n = 12) and healthy control subjects (n = 15) were generated. Statistical analysis was performed using a Bayesian approach that is highly efficient in determining differentially expressed genes with low number of replicate samples in each of the two phenotypic groups. Microarray analysis showed that several cytokine/chemokine receptor genes, HLA genes, GIMAP family genes and cell adhesion genes were downregulated in Tregs from T1D subjects, relative to control subjects. Several downstream target genes of the AKT and p53 pathways were also upregulated in T1D subjects, relative to controls. Further, expression signatures and increased apoptosis in Tregs from T1D subjects partially mirrored the response of healthy Tregs under conditions of IL-2 deprivation. CD4+ effector T-cells from T1D subjects showed a marked reduction in IL-2 secretion. This could indicate that prior to and during the onset of disease, Tregs in T1D may be caught up in a relatively deficient cytokine milieu. Conclusions In summary, expression signatures in Tregs from T1D subjects reflect a cellular response that leads to increased sensitivity to apoptosis, partially due to cytokine deprivation. Further characterization of these signaling cascades should enable the detection of genes that can be targeted for restoring Treg function in subjects predisposed to T1D.
Collapse
Affiliation(s)
- Parthav Jailwala
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Jill Waukau
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sanja Glisic
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Srikanta Jana
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Sarah Ehlenbach
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Martin Hessner
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Ramin Alemzadeh
- Children's Hospital of Wisconsin Diabetes Center, Pediatric Endocrinology and Metabolism, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Shigemi Matsuyama
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Purushottam Laud
- Division of Biostatistics, Medical College of Wisconsin, Milwaukee, Wisconsin, United States of America
| | - Xujing Wang
- Department of Physics & the Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Soumitra Ghosh
- The Max McGee National Research Center for Juvenile Diabetes and The Human and Molecular Genetics Center, Department of Pediatrics at the Medical College of Wisconsin and the Children's Research Institute of the Children's Hospital of Wisconsin, Milwaukee, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
68
|
Pino SC, O'Sullivan-Murphy B, Lidstone EA, Yang C, Lipson KL, Jurczyk A, diIorio P, Brehm MA, Mordes JP, Greiner DL, Rossini AA, Bortell R. CHOP mediates endoplasmic reticulum stress-induced apoptosis in Gimap5-deficient T cells. PLoS One 2009; 4:e5468. [PMID: 19424493 PMCID: PMC2674944 DOI: 10.1371/journal.pone.0005468] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2009] [Accepted: 04/05/2009] [Indexed: 11/25/2022] Open
Abstract
Gimap5 (GTPase of the immunity-associated protein 5) has been linked to the regulation of T cell survival, and polymorphisms in the human GIMAP5 gene associate with autoimmune disorders. The BioBreeding diabetes-prone (BBDP) rat has a mutation in the Gimap5 gene that leads to spontaneous apoptosis of peripheral T cells by an unknown mechanism. Because Gimap5 localizes to the endoplasmic reticulum (ER), we hypothesized that absence of functional Gimap5 protein initiates T cell death through disruptions in ER homeostasis. We observed increases in ER stress-associated chaperones in T cells but not thymocytes or B cells from Gimap5−/− BBDP rats. We then discovered that ER stress-induced apoptotic signaling through C/EBP-homologous protein (CHOP) occurs in Gimap5−/− T cells. Knockdown of CHOP by siRNA protected Gimap5−/− T cells from ER stress-induced apoptosis, thereby identifying a role for this cellular pathway in the T cell lymphopenia of the BBDP rat. These findings indicate a direct relationship between Gimap5 and the maintenance of ER homeostasis in the survival of T cells.
Collapse
Affiliation(s)
- Steven C. Pino
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Bryan O'Sullivan-Murphy
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Erich A. Lidstone
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Chaoxing Yang
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Kathryn L. Lipson
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Agata Jurczyk
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Philip diIorio
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Michael A. Brehm
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - John P. Mordes
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Dale L. Greiner
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Aldo A. Rossini
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Rita Bortell
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
69
|
Saunders A, Lamb T, Pascall J, Hutchings A, Dion C, Carter C, Hepburn L, Langhorne J, Butcher GW. Expression of GIMAP1, a GTPase of the immunity-associated protein family, is not up-regulated in malaria. Malar J 2009; 8:53. [PMID: 19338674 PMCID: PMC2669093 DOI: 10.1186/1475-2875-8-53] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2008] [Accepted: 04/02/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND GIMAP (GTPase of the immunity-associated protein family) proteins are a family of putative GTPases believed to be regulators of cell death in lymphomyeloid cells. GIMAP1 was the first reported member of this gene family, identified as a gene up-regulated at the RNA level in the spleens of mice infected with the malarial parasite, Plasmodium chabaudi. METHODS A monoclonal antibody against mouse GIMAP1 was developed and was used to analyse the expression of the endogenous protein in tissues of normal mice and in defined sub-populations of cells prepared from lymphoid tissues using flow cytometry. It was also used to assess the expression of GIMAP1 protein after infection and/or immunization of mice with P. chabaudi. Real-time PCR analysis was employed to measure the expression of GIMAP1 for comparison with the protein level analysis. RESULTS GIMAP1 protein expression was detected in all lineages of lymphocytes (T, B, NK), in F4/80+ splenic macrophages and in some lymphoid cell lines. Additional evidence is presented suggesting that the strong expression by mature B cells of GIMAP1 and other GIMAP genes and proteins seen in mice may be a species-dependent characteristic. Unexpectedly, no increase was found in the expression of GIMAP1 in P. chabaudi infected mice at either the mRNA or protein level, and this remained so despite applying a number of variations to the protocol. CONCLUSION The model of up-regulation of GIMAP1 in response to infection/immunization with P. chabaudi is not a robustly reproducible experimental system. The GIMAP1 protein is widely expressed in lymphoid cells, with an interesting increase in expression in the later stages of B cell development. Alternative approaches will be required to define the functional role of this GTPase in immune cells.
Collapse
Affiliation(s)
- Amy Saunders
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Tracey Lamb
- The National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - John Pascall
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Amanda Hutchings
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Carine Dion
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Christine Carter
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Lucy Hepburn
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| | - Jean Langhorne
- The National Institute for Medical Research, The Ridgeway, Mill Hill, London, NW7 1AA, UK
| | - Geoffrey W Butcher
- The Babraham Institute, Babraham Research Campus, Cambridge, CB22 3AT, UK
| |
Collapse
|
70
|
Ilangumaran S, Forand-Boulerice M, Bousquet SM, Savard A, Rocheleau P, Chen XL, Dupuis G, Poussier P, Boulay G, Ramanathan S. Loss of GIMAP5 (GTPase of immunity-associated nucleotide binding protein 5) impairs calcium signaling in rat T lymphocytes. Mol Immunol 2009; 46:1256-9. [DOI: 10.1016/j.molimm.2008.09.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 09/25/2008] [Accepted: 09/27/2008] [Indexed: 11/25/2022]
|
71
|
Wang Z, Li X. IAN/GIMAPs are conserved and novel regulators in vertebrates and angiosperm plants. PLANT SIGNALING & BEHAVIOR 2009; 4:165-7. [PMID: 19721741 PMCID: PMC2652520 DOI: 10.4161/psb.4.3.7722] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2008] [Accepted: 12/23/2008] [Indexed: 05/22/2023]
Abstract
The IAN (immune-associated nucleotide-binding protein) family belongs to a family of AIG1-like GTPases. These functionally uncharacterized GTP-binding proteins have unique structures and are differentially expressed in both vertebrate immune cells and plant cells during antibacterial responses. In mammals, the IANs, as a novel family of T cell receptor-responsive proteins, play critical roles in regulation of thymic development and survival of T lymphocytes through the interaction with Bcl-2 family proteins. The Arabidopsis AIG1 and AIG2, which are first identified IAN proteins, are involved in plant resistance to bacteria. Recent analysis of the expression patterns of Arabidopsis IANs suggests that these IAN proteins may play regulatory roles during plant development and response to both biotic and abiotic stress.
Collapse
Affiliation(s)
- Zhijuan Wang
- The State Key Laboratory of Plant Cell & Chromosome Engineering, Center of Agricultural Resources, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, China
| | | |
Collapse
|
72
|
Schulteis RD, Chu H, Dai X, Chen Y, Edwards B, Haribhai D, Williams CB, Malarkannan S, Hessner MJ, Glisic-Milosavljevic S, Jana S, Kerschen EJ, Ghosh S, Wang D, Kwitek AE, Lernmark A, Gorski J, Weiler H. Impaired survival of peripheral T cells, disrupted NK/NKT cell development, and liver failure in mice lacking Gimap5. Blood 2008; 112:4905-14. [PMID: 18796632 PMCID: PMC2597598 DOI: 10.1182/blood-2008-03-146555] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2008] [Accepted: 06/15/2008] [Indexed: 11/20/2022] Open
Abstract
The loss of Gimap5 (GTPase of the immune-associated protein 5) gene function is the underlying cause of lymphopenia and autoimmune diabetes in the BioBreeding (BB) rat. The in vivo function of murine gimap5 is largely unknown. We show that selective gene ablation of the mouse gimap5 gene impairs the final intrathymic maturation of CD8 and CD4 T cells and compromises the survival of postthymic CD4 and CD8 cells, replicating findings in the BB rat model. In addition, gimap5 deficiency imposes a block of natural killer (NK)- and NKT-cell differentiation. Development of NK/NKT cells is restored on transfer of gimap5(-/-) bone marrow into a wild-type environment. Mice lacking gimap5 have a median survival of 15 weeks, exhibit chronic hepatic hematopoiesis, and in later stages show pronounced hepatocyte apoptosis, leading to liver failure. This pathology persists in a Rag2-deficient background in the absence of mature B, T, or NK cells and cannot be adoptively transferred by transplanting gimap5(-/-) bone marrow into wild-type recipients. We conclude that mouse gimap5 is necessary for the survival of peripheral T cells, NK/NKT-cell development, and the maintenance of normal liver function. These functions involve cell-intrinsic as well as cell-extrinsic mechanisms.
Collapse
Affiliation(s)
- Ryan D Schulteis
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Shiao YM, Chang YH, Liu YM, Li JC, Su JS, Liu KJ, Liu YF, Lin MW, Tsai SF. Dysregulation of GIMAP genes in non-small cell lung cancer. Lung Cancer 2008; 62:287-94. [DOI: 10.1016/j.lungcan.2008.03.021] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2007] [Revised: 03/20/2008] [Accepted: 03/24/2008] [Indexed: 11/25/2022]
|
74
|
Koenig P, Oreb M, Rippe K, Muhle-Goll C, Sinning I, Schleiff E, Tews I. On the significance of Toc-GTPase homodimers. J Biol Chem 2008; 283:23104-12. [PMID: 18541539 DOI: 10.1074/jbc.m710576200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Precursor protein translocation across the outer chloroplast membrane depends on the action of the Toc complex, containing GTPases as recognizing receptor components. The G domains of the GTPases are known to dimerize. In the dimeric conformation an arginine contacts the phosphate moieties of bound nucleotide in trans. Kinetic studies suggested that the arginine in itself does not act as an arginine finger of a reciprocal GTPase-activating protein (GAP). Here we investigate the specific function of the residue in two GTPase homologues. Arginine to alanine replacement variants have significantly reduced affinities for dimerization compared with wild-type GTPases. The amino acid exchange does not impact on the overall fold and nucleotide binding, as seen in the monomeric x-ray crystallographic structure of the Arabidopsis Toc33 arginine-alanine replacement variant at 2.0A. We probed the catalytic center with the transition state analogue GDP/AlF(x) using NMR and analytical ultracentrifugation. AlF(x) binding depends on the arginine, suggesting the residue can play a role in catalysis despite the non-GAP nature of the homodimer. Two non-exclusive functional models are discussed: 1) the coGAP hypothesis, in which an additional factor activates the GTPase in homodimeric form; and 2) the switch hypothesis, in which a protein, presumably the large Toc159 GTPase, exchanges with one of the homodimeric subunits, leading to activation.
Collapse
Affiliation(s)
- Patrick Koenig
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
75
|
Liu C, Wang T, Zhang W, Li X. Computational identification and analysis of immune-associated nucleotide gene family in Arabidopsis thaliana. JOURNAL OF PLANT PHYSIOLOGY 2008; 165:777-87. [PMID: 17723251 DOI: 10.1016/j.jplph.2007.06.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2007] [Revised: 06/03/2007] [Accepted: 06/04/2007] [Indexed: 05/16/2023]
Abstract
GTP-binding proteins represent a ubiquitous regulatory mechanism in controlling growth and development in eukaryotes under normal and stress conditions. The IAN/GIMAP proteins belong to a novel family of functionally uncharacterized GTP-binding proteins expressed in both plant and vertebrate cells during anti-pathogenic responses. To gain novel insights into their roles in plants, we did genome-wide analysis of the IAN/GIMAP gene family. We identified 13 Arabidopsis IAN/GIMAP genes, which share similar gene structures and mostly reside in a tandem cluster on chromosomes. Sequence comparison reveals that these genes encode 26-52 kDa proteins with one GTP-binding domain and a conserved box unique to the family. Phylogenetic analysis suggests that the IAN/GIMAP genes of angiosperms and vertebrates may have evolved by independent gene duplication events. GENEVESTIGATOR sources were mined for comprehensive and comparative Arabidopsis IAN/GIMAP gene family expression analysis. These data reveal that IAN/GIMAPs exhibit diverse expression patterns during development and in response to external stimuli, indicating that these paralogous genes are likely involved in complex biological processes in Arabidopsis. Our present findings provide a basis for elucidating the novel GTPase family protein-mediated regulatory mechanisms in the future.
Collapse
Affiliation(s)
- Chuang Liu
- The State Key Laboratory of Plant Cell and Chromosome Engineering, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 286 Huaizhong Road, Shijiazhuang, Hebei 050021, PR China
| | | | | | | |
Collapse
|
76
|
Koenig P, Oreb M, Höfle A, Kaltofen S, Rippe K, Sinning I, Schleiff E, Tews I. The GTPase cycle of the chloroplast import receptors Toc33/Toc34: implications from monomeric and dimeric structures. Structure 2008; 16:585-96. [PMID: 18400179 DOI: 10.1016/j.str.2008.01.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2007] [Revised: 01/18/2008] [Accepted: 01/22/2008] [Indexed: 11/18/2022]
Abstract
Transport of precursor proteins across chloroplast membranes involves the GTPases Toc33/34 and Toc159 at the outer chloroplast envelope. The small GTPase Toc33/34 can homodimerize, but the regulation of this interaction has remained elusive. We show that dimerization is independent of nucleotide loading state, based on crystal structures of dimeric Pisum sativum Toc34 and monomeric Arabidopsis thaliana Toc33. An arginine residue is--in the dimer--positioned to resemble a GAP arginine finger. However, GTPase activation by dimerization is sparse and active site features do not explain catalysis, suggesting that the homodimer requires an additional factor as coGAP. Access to the catalytic center and an unusual switch I movement in the dimeric structure support this finding. Potential binding sites for interactions within the Toc translocon or with precursor proteins can be derived from the structures.
Collapse
Affiliation(s)
- Patrick Koenig
- Heidelberg University Biochemistry Center, Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Dower K, Ellis DK, Saraf K, Jelinsky SA, Lin LL. Innate Immune Responses to TREM-1 Activation: Overlap, Divergence, and Positive and Negative Cross-Talk with Bacterial Lipopolysaccharide. THE JOURNAL OF IMMUNOLOGY 2008; 180:3520-34. [DOI: 10.4049/jimmunol.180.5.3520] [Citation(s) in RCA: 134] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
78
|
Abstract
It is now apparent that naïve peripheral T cells are a dynamic population where active processes prevent inappropriate activation while supporting survival. The process of thymic education makes naïve peripheral T cells dependent on interactions with self-MHC for survival. However, as these signals can potentially result in inappropriate activation, various non-redundant, intrinsic negative regulatory molecules including Tob, Nfatc2, and Smad3 actively enforce T cell quiescence. Interactions among these pathways are only now coming to light and may include positive or negative crosstalk. In the case of positive crosstalk, self-MHC initiated signals and intrinsic negative regulatory factors may cooperate to dampen T cell activation and sustain peripheral tolerance in a binary fashion (on-off). In the case of negative crosstalk, self-MHC signals may promote survival through partial activation while intrinsic negative regulatory factors act as rheostats to restrain cell cycle entry and prevent T cells from crossing a threshold that would break tolerance.
Collapse
Affiliation(s)
- Jaime F Modiano
- Integrated Department of Immunology, University of Colorado-Denver, Denver, CO, USA.
| | | | | |
Collapse
|
79
|
Keita M, Leblanc C, Andrews D, Ramanathan S. GIMAP5 regulates mitochondrial integrity from a distinct subcellular compartment. Biochem Biophys Res Commun 2007; 361:481-6. [PMID: 17655828 DOI: 10.1016/j.bbrc.2007.07.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Accepted: 07/11/2007] [Indexed: 11/20/2022]
Abstract
Spontaneous apoptosis of T lymphocytes results in marked lymphopenia in the Biobreeding diabetes-prone (BB-DP) rat leading to the development of autoimmune type 1 diabetes. The lymphopenia phenotype in these rats is linked to the lyp locus. The lyp allele harbors a frameshift mutation within the gene encoding 'GTPase of immunity-associated nucleotide binding protein 5' (GIMAP5). Mechanisms underlying the pro-survival function of GIMAP5 in T lymphocytes are unclear. Overexpression studies have shown that GIMAP5 localizes within mitochondria and the endoplasmic reticulum (ER). We have used an antiserum raised against GIMAP5 to define its localization in rat primary T lymphocytes. We present evidence that endogenous GIMAP5 is associated with a sedimentable subcellular fraction that is distinct from mitochondria and the ER. These data are further supported by confocal microscopy using a GIMAP5 construct with an intact C-terminal membrane anchor. Nonetheless, T cells isolated from GIMAP5(lyp/lyp) rats display rapid loss of mitochondrial membrane potential. Our findings suggest that GIMAP5 regulates T lymphocyte survival by mechanisms that operate upstream of mitochondria.
Collapse
Affiliation(s)
- Mamadou Keita
- Immunology Division, Department of Pediatrics, FMSS, University of Sherbrooke, 3001-12th Avenue North, Sherbrooke, Que., Canada J1H5N4
| | | | | | | |
Collapse
|
80
|
Shin JH, Janer M, McNeney B, Blay S, Deutsch K, Sanjeevi CB, Kockum I, Lernmark A, Graham J, Arnqvist H, Björck E, Eriksson J, Nyström L, Ohlson LO, Scherstén B, Ostman J, Aili M, Bååth LE, Carlsson E, Edenwall H, Forsander G, Granström BW, Gustavsson I, Hanås R, Hellenberg L, Hellgren H, Holmberg E, Hörnell H, Ivarsson SA, Johansson C, Jonsell G, Kockum K, Lindblad B, Lindh A, Ludvigsson J, Myrdal U, Neiderud J, Segnestam K, Sjöblad S, Skogsberg L, Strömberg L, Ståhle U, Thalme B, Tullus K, Tuvemo T, Wallensteen M, Westphal O, Aman J. IA-2 autoantibodies in incident type I diabetes patients are associated with a polyadenylation signal polymorphism in GIMAP5. Genes Immun 2007; 8:503-12. [PMID: 17641683 DOI: 10.1038/sj.gene.6364413] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In a large case-control study of Swedish incident type I diabetes patients and controls, 0-34 years of age, we tested the hypothesis that the GIMAP5 gene, a key genetic factor for lymphopenia in spontaneous BioBreeding rat diabetes, is associated with type I diabetes; with islet autoantibodies in incident type I diabetes patients or with age at clinical onset in incident type I diabetes patients. Initial scans of allelic association were followed by more detailed logistic regression modeling that adjusted for known type I diabetes risk factors and potential confounding variables. The single nucleotide polymorphism (SNP) rs6598, located in a polyadenylation signal of GIMAP5, was associated with the presence of significant levels of IA-2 autoantibodies in the type I diabetes patients. Patients with the minor allele A of rs6598 had an increased prevalence of IA-2 autoantibody levels compared to patients without the minor allele (OR=2.2; Bonferroni-corrected P=0.003), after adjusting for age at clinical onset (P=8.0 x 10(-13)) and the numbers of HLA-DQ A1*0501-B1*0201 haplotypes (P=2.4 x 10(-5)) and DQ A1*0301-B1*0302 haplotypes (P=0.002). GIMAP5 polymorphism was not associated with type I diabetes or with GAD65 or insulin autoantibodies, ICA, or age at clinical onset in patients. These data suggest that the GIMAP5 gene is associated with islet autoimmunity in type I diabetes and add to recent findings implicating the same SNP in another autoimmune disease.
Collapse
Affiliation(s)
- J-H Shin
- Department of Statistics and Actuarial Science, Simon Fraser University, Burnaby, British Columbia, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|