51
|
Zhu Y, Chen P, Hu B, Zhong S, Yan K, Wu Y, Li S, Yang Y, Xu Z, Lu Y, Ouyang Y, Bao H, Gu W, Wen L, Zhang Y. MDSC-targeting gold nanoparticles enhance PD-1 tumor immunotherapy by inhibiting NLRP3 inflammasomes. Biomaterials 2024; 307:122533. [PMID: 38493671 DOI: 10.1016/j.biomaterials.2024.122533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/20/2024] [Accepted: 03/09/2024] [Indexed: 03/19/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in the immune escape mechanisms that limit the efficacy of immunotherapeutic strategies. In the tumor microenvironment, NLRP3 inflammasome-driven Interleukin-1β (IL-1β) production serves to dampen antitumor immune responses, promoting tumor growth, progression, and immunosuppression. In this study, we revealed that gold nanoparticles (Au NPs) with a size of 30 nm disrupted NLRP3 inflammasome, but not other inflammasomes, in bone marrow-derived macrophages through abrogating NLRP3-NEK7 interactions mediated by reactive oxygen species (ROS). Density functional theory (DFT) calculations provided insights into the mechanism underlying the exceptional ROS scavenging capabilities of Au NPs. Additionally, when coupled with H6, a small peptide targeting MDSCs, Au NPs demonstrated the capacity to effectively reduce IL-1β levels and diminish the MDSCs population in tumor microenvironment, leading to enhanced T cell activation and increased immunotherapeutic efficacy in mouse tumor models that are sensitive and resistant to PD-1 inhibition. Our findings unraveled a novel approach wherein peptide-modified Au NPs relieved the suppressive impact of the tumor microenvironment by inhibiting MDSCs-mediated IL-1β release, which is the first time reported the employing a nanostrategy at modulating MDSCs to reverse the immunosuppressive microenvironment and may hold promise as a potential therapeutic agent for cancer immunotherapy.
Collapse
Affiliation(s)
- Yangyang Zhu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Pin Chen
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Senedi University, 132 East Circle at University City, Guangzhou, 510006, China
| | - Bochuan Hu
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Suqin Zhong
- School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Kai Yan
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yu Wu
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Shanshan Li
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yinyin Yang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zexin Xu
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Senedi University, 132 East Circle at University City, Guangzhou, 510006, China
| | - Yutong Lu
- National Supercomputer Center in Guangzhou, School of Data and Computer Science, Sun Yat-Senedi University, 132 East Circle at University City, Guangzhou, 510006, China
| | - Ying Ouyang
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China; China-Singapore International Joint Research Institute, Guangzhou, 510700, China
| | - Hui Bao
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Weiguang Gu
- Department of Oncology, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Longping Wen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Yunjiao Zhang
- School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
52
|
Tang Y, Cui G, Liu H, Han Y, Cai C, Feng Z, Shen H, Zeng S. Converting "cold" to "hot": epigenetics strategies to improve immune therapy effect by regulating tumor-associated immune suppressive cells. Cancer Commun (Lond) 2024; 44:601-636. [PMID: 38715348 PMCID: PMC11194457 DOI: 10.1002/cac2.12546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/18/2024] [Indexed: 06/26/2024] Open
Abstract
Significant developments in cancer treatment have been made since the advent of immune therapies. However, there are still some patients with malignant tumors who do not benefit from immunotherapy. Tumors without immunogenicity are called "cold" tumors which are unresponsive to immunotherapy, and the opposite are "hot" tumors. Immune suppressive cells (ISCs) refer to cells which can inhibit the immune response such as tumor-associated macrophages (TAMs), myeloid-derived suppressor cells (MDSCs), regulatory T (Treg) cells and so on. The more ISCs infiltrated, the weaker the immunogenicity of the tumor, showing the characteristics of "cold" tumor. The dysfunction of ISCs in the tumor microenvironment (TME) may play essential roles in insensitive therapeutic reaction. Previous studies have found that epigenetic mechanisms play an important role in the regulation of ISCs. Regulating ISCs may be a new approach to transforming "cold" tumors into "hot" tumors. Here, we focused on the function of ISCs in the TME and discussed how epigenetics is involved in regulating ISCs. In addition, we summarized the mechanisms by which the epigenetic drugs convert immunotherapy-insensitive tumors into immunotherapy-sensitive tumors which would be an innovative tendency for future immunotherapy in "cold" tumor.
Collapse
Affiliation(s)
- Yijia Tang
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Guangzu Cui
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Haicong Liu
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ying Han
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Changjing Cai
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Ziyang Feng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| | - Hong Shen
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
- National Clinical Resaerch Center for Geriatric Disorders, Xiangya Hospital, Central South UniversityChangshaHunanChina
| | - Shan Zeng
- Department of OncologyXiangya HospitalCentral South UniversityChangshaHunanP. R. China
| |
Collapse
|
53
|
Neo SY, Tong L, Chong J, Liu Y, Jing X, Oliveira MMS, Chen Y, Chen Z, Lee K, Burduli N, Chen X, Gao J, Ma R, Lim JP, Huo J, Xu S, Alici E, Wickström SL, Haglund F, Hartman J, Wagner AK, Cao Y, Kiessling R, Lam KP, Westerberg LS, Lundqvist A. Tumor-associated NK cells drive MDSC-mediated tumor immune tolerance through the IL-6/STAT3 axis. Sci Transl Med 2024; 16:eadi2952. [PMID: 38748775 DOI: 10.1126/scitranslmed.adi2952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 04/19/2024] [Indexed: 08/03/2024]
Abstract
Apart from their killer identity, natural killer (NK) cells have integral roles in shaping the tumor microenvironment. Through immune gene deconvolution, the present study revealed an interplay between NK cells and myeloid-derived suppressor cells (MDSCs) in nonresponders of immune checkpoint therapy. Given that the mechanisms governing the outcome of NK cell-to-myeloid cell interactions remain largely unknown, we sought to investigate the cross-talk between NK cells and suppressive myeloid cells. Upon contact with tumor-experienced NK cells, monocytes and neutrophils displayed increased expression of MDSC-related suppressive factors along with increased capacities to suppress T cells. These changes were accompanied by impaired antigen presentation by monocytes and increased ER stress response by neutrophils. In a cohort of patients with sarcoma and breast cancer, the production of interleukin-6 (IL-6) by tumor-infiltrating NK cells correlated with S100A8/9 and arginase-1 expression by MDSCs. At the same time, NK cell-derived IL-6 was associated with tumors with higher major histocompatibility complex class I expression, which we further validated with b2m-knockout (KO) tumor mice models. Similarly in syngeneic wild-type and IL-6 KO mouse models, we then demonstrated that the accumulation of MDSCs was influenced by the presence of such regulatory NK cells. Inhibition of the IL-6/signal transducer and activator of transcription 3 (STAT3) axis alleviated suppression of T cell responses, resulting in reduced tumor growth and metastatic dissemination. Together, these results characterize a critical NK cell-mediated mechanism that drives the development of MDSCs during tumor immune escape.
Collapse
Affiliation(s)
- Shi Yong Neo
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Le Tong
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Joni Chong
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Yaxuan Liu
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Xu Jing
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Mariana M S Oliveira
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Medicine, Division of Hematology and Oncology, Columbia University Irving Medical Centre, New York, NY 10032, USA
| | - Ziqing Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, NJ 08540, USA
| | - Keene Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Nutsa Burduli
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Xinsong Chen
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Juan Gao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
- Department of Infectious Diseases, Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510631, China
| | - Ran Ma
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Technical Operations, Cepheid AB, 17154 Stockholm, Sweden
| | - Jia Pei Lim
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Jianxin Huo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
| | - Shengli Xu
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
| | - Evren Alici
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Stina L Wickström
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Johan Hartman
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Department of Clinical Pathology and Cancer Diagnostics, Karolinska University Hospital, 17176 Stockholm, Sweden
| | - Arnika K Wagner
- Department of Medicine Huddinge, Karolinska Institutet, 14152 Stockholm, Sweden
| | - Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
- Theme Cancer, Patient Area Head and Neck, Lung and Skin Cancer, Karolinska University Hospital, 17177 Stockholm, Sweden
| | - Kong Peng Lam
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore 138648, Republic of Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Republic of Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Lisa S Westerberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17165 Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology-Pathology, Karolinska Institutet, 17164 Stockholm, Sweden
| |
Collapse
|
54
|
Xie H, Deng H, Yang X, Gao X, Yang S, Chen W, Wang Y, Yang N, Yong L, Hou X. Mesencephalic Astrocyte-derived Neurotrophic Factor Supports Hepatitis B Virus-induced Immunotolerance. Cell Mol Gastroenterol Hepatol 2024; 18:101360. [PMID: 38759839 PMCID: PMC11255368 DOI: 10.1016/j.jcmgh.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 05/10/2024] [Accepted: 05/10/2024] [Indexed: 05/19/2024]
Abstract
BACKGROUND & AIMS The immune tolerance induced by hepatitis B virus (HBV) is a major challenge for achieving effective viral clearance, and the mechanisms involved are not well-understood. One potential factor involved in modulating immune responses is mesencephalic astrocyte-derived neurotrophic factor (MANF), which has been reported to be increased in patients with chronic hepatitis B. In this study, our objective is to examine the role of MANF in regulating immune responses to HBV. METHODS We utilized a commonly used HBV-harboring mouse model, where mice were hydrodynamically injected with the pAAV/HBV1.2 plasmid. We assessed the HBV load by measuring the levels of various markers including hepatitis B surface antigen, hepatitis B envelope antigen, hepatitis B core antigen, HBV DNA, and HBV RNA. RESULTS Our study revealed that following HBV infection, both myeloid cells and hepatocytes exhibited increased expression of MANF. Moreover, we observed that mice with myeloid-specific MANF knockout (ManfMye-/-) displayed reduced HBV load and improved HBV-specific T cell responses. The decreased HBV-induced tolerance in ManfMye-/- mice was associated with reduced accumulation of myeloid-derived suppressor cells (MDSCs) in the liver. Restoring MDSC levels in ManfMye-/- mice through MDSC adoptive transfer reinstated HBV-induced tolerance. Mechanistically, we found that MANF promoted MDSC expansion by activating the IL-6/STAT3 pathway. Importantly, our study demonstrated the effectiveness of a combination therapy involving an hepatitis B surface antigen vaccine and nanoparticle-encapsulated MANF siRNA in effectively clearing HBV in HBV-carrier mice. CONCLUSION The current study reveals that MANF plays a previously unrecognized regulatory role in liver tolerance by expanding MDSCs in the liver through IL-6/STAT3 signaling, leading to MDSC-mediated CD8+ T cell exhaustion.
Collapse
Affiliation(s)
- Huiyuan Xie
- Department of Laboratory Medicine, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Haiyan Deng
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xiaoping Yang
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xianxian Gao
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Shanru Yang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Weiyi Chen
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Yixuan Wang
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Naibin Yang
- Department of Infection, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Liang Yong
- Laboratory of Stem Cell, the First Affiliated Hospital of Ningbo University, Ningbo, Zhejiang, P. R. China
| | - Xin Hou
- Health Science Center, Ningbo University, Ningbo, Zhejiang, P. R. China.
| |
Collapse
|
55
|
Han J, Qin R, Zheng S, Hou X, Wang X, An H, Li Z, Li Y, Zhang H, Zhai D, Liu H, Meng J, Sun T. MSC microvesicles loaded G-quadruplex-enhanced circular single-stranded DNA-9 inhibits tumor growth by targeting MDSCs. J Nanobiotechnology 2024; 22:237. [PMID: 38735920 PMCID: PMC11089713 DOI: 10.1186/s12951-024-02504-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 04/29/2024] [Indexed: 05/14/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) promote tumor growth, metastasis, and lead to immunotherapy resistance. Studies revealed that miRNAs are also expressed in MDSCs and promote the immunosuppressive function of MDSCs. Currently, few studies have been reported on inducible cellular microvesicle delivery of nucleic acid drugs targeting miRNA in MDSCs for the treatment of malignant tumors. RESULTS AND CONCLUSION In this study, we designed an artificial DNA named G-quadruplex-enhanced circular single-stranded DNA-9 (G4-CSSD9), that specifically adsorbs the miR-9 sequence. Its advanced DNA folding structure, rich in tandem repeat guanine (G-quadruplex), also provides good stability. Mesenchymal stem cells (MSCs) were prepared into nanostructured vesicles by membrane extrusion. The MSC microvesicles-encapsulated G4-CSSD9 (MVs@G4-CSSD9) was delivered into MDSCs, which affected the downstream transcription and translation process, and reduced the immunosuppressive function of MDSCs, so as to achieve the purpose of treating melanoma. In particular, it provides an idea for the malignant tumor treatment.
Collapse
Affiliation(s)
- Jingxia Han
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Rong Qin
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Shaoting Zheng
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaohui Hou
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Huihui An
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Zhongwei Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yinan Li
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Heng Zhang
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Denghui Zhai
- College of Life Sciences, Nankai University, Tianjin, China
| | - Huijuan Liu
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| | - Jing Meng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, China.
| | - Tao Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
56
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
57
|
Tamuli B, Sharma S, Patkar M, Biswas S. Key players of immunosuppression in epithelial malignancies: Tumor-infiltrating myeloid cells and γδ T cells. Cancer Rep (Hoboken) 2024; 7:e2066. [PMID: 38703051 PMCID: PMC11069128 DOI: 10.1002/cnr2.2066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND The tumor microenvironment of solid tumors governs the differentiation of otherwise non-immunosuppressive macrophages and gamma delta (γδ) T cells into strong immunosuppressors while promoting suppressive abilities of known immunosuppressors such as myeloid-derived suppressor cells (MDSCs) upon infiltration into the tumor beds. RECENT FINDINGS In epithelial malignancies, tumor-associated macrophages (TAMs), precursor monocytic MDSCs (M-MDSCs), and gamma delta (γδ) T cells often acquire strong immunosuppressive abilities that dampen spontaneous immune responses by tumor-infiltrating T cells and B lymphocytes against cancer. Both M-MDSCs and γδ T cells have been associated with worse prognosis for multiple epithelial cancers. CONCLUSION Here we discuss recent discoveries on how tumor-associated macrophages and precursor M-MDSCs as well as tumor associated-γδ T cells acquire immunosuppressive abilities in the tumor beds, promote cancer metastasis, and perspectives on how possible novel interventions could restore the effective adaptive immune responses in epithelial cancers.
Collapse
Affiliation(s)
- Baishali Tamuli
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Sakshi Sharma
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Meena Patkar
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
| | - Subir Biswas
- Tumor Immunology and Immunotherapy, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC)Tata Memorial CentreKharghar, Navi MumbaiIndia
- Homi Bhabha National InstituteMumbaiIndia
| |
Collapse
|
58
|
Barrios EL, Leary JR, Darden DB, Rincon JC, Willis M, Polcz VE, Gillies GS, Munley JA, Dirain ML, Ungaro R, Nacionales DC, Gauthier MPL, Larson SD, Morel L, Loftus TJ, Mohr AM, Maile R, Kladde MP, Mathews CE, Brusko MA, Brusko TM, Moldawer LL, Bacher R, Efron PA. The post-septic peripheral myeloid compartment reveals unexpected diversity in myeloid-derived suppressor cells. Front Immunol 2024; 15:1355405. [PMID: 38720891 PMCID: PMC11076668 DOI: 10.3389/fimmu.2024.1355405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/09/2024] [Indexed: 05/12/2024] Open
Abstract
Introduction Sepsis engenders distinct host immunologic changes that include the expansion of myeloid-derived suppressor cells (MDSCs). These cells play a physiologic role in tempering acute inflammatory responses but can persist in patients who develop chronic critical illness. Methods Cellular Indexing of Transcriptomes and Epitopes by Sequencing and transcriptomic analysis are used to describe MDSC subpopulations based on differential gene expression, RNA velocities, and biologic process clustering. Results We identify a unique lineage and differentiation pathway for MDSCs after sepsis and describe a novel MDSC subpopulation. Additionally, we report that the heterogeneous response of the myeloid compartment of blood to sepsis is dependent on clinical outcome. Discussion The origins and lineage of these MDSC subpopulations were previously assumed to be discrete and unidirectional; however, these cells exhibit a dynamic phenotype with considerable plasticity.
Collapse
Affiliation(s)
- Evan L. Barrios
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jack R. Leary
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Dijoia B. Darden
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jaimar C. Rincon
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Micah Willis
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Valerie E. Polcz
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Gwendolyn S. Gillies
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Jennifer A. Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marvin L. Dirain
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Ricardo Ungaro
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Dina C. Nacionales
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Marie-Pierre L. Gauthier
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Shawn D. Larson
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Laurence Morel
- Department of Microbiology and Immunology, University of Texas San Antonio School of Medicine, San Antonio, TX, United States
| | - Tyler J. Loftus
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Alicia M. Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Robert Maile
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Michael P. Kladde
- Department of Biochemistry and Molecular Biology, University of Florida College of Medicine, Gainesville, FL, United States
| | - Clayton E. Mathews
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Maigan A. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Todd M. Brusko
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL, United States
| | - Lyle L. Moldawer
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rhonda Bacher
- Department of Biostatistics, University of Florida College of Medicine and Public Health and Health Sciences, Gainesville, FL, United States
| | - Philip A. Efron
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
59
|
Yang EL, Sun ZJ. Nanomedicine Targeting Myeloid-Derived Suppressor Cells Enhances Anti-Tumor Immunity. Adv Healthc Mater 2024; 13:e2303294. [PMID: 38288864 DOI: 10.1002/adhm.202303294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/27/2023] [Indexed: 02/13/2024]
Abstract
Cancer immunotherapy, a field within immunology that aims to enhance the host's anti-cancer immune response, frequently encounters challenges associated with suboptimal response rates. The presence of myeloid-derived suppressor cells (MDSCs), crucial constituents of the tumor microenvironment (TME), exacerbates this issue by fostering immunosuppression and impeding T cell differentiation and maturation. Consequently, targeting MDSCs has emerged as crucial for immunotherapy aimed at enhancing anti-tumor responses. The development of nanomedicines specifically designed to target MDSCs aims to improve the effectiveness of immunotherapy by transforming immunosuppressive tumors into ones more responsive to immune intervention. This review provides a detailed overview of MDSCs in the TME and current strategies targeting these cells. Also the benefits of nanoparticle-assisted drug delivery systems, including design flexibility, efficient drug loading, and protection against enzymatic degradation, are highlighted. It summarizes advances in nanomedicine targeting MDSCs, covering enhanced treatment efficacy, safety, and modulation of the TME, laying the groundwork for more potent cancer immunotherapy.
Collapse
Affiliation(s)
- En-Li Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Wuhan University, Wuhan, Hubei, 430079, China
| |
Collapse
|
60
|
Nie J, Ai J, Hong W, Bai Z, Wang B, Yang J, Zhang Z, Mo F, Yang J, Sun Q, Wei X. Cisplatin-induced oxPAPC release enhances MDSCs infiltration into LL2 tumour tissues through MCP-1/CCL2 and LTB4/LTB4R pathways. Cell Prolif 2024; 57:e13570. [PMID: 37905494 PMCID: PMC10984104 DOI: 10.1111/cpr.13570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/09/2023] [Accepted: 10/15/2023] [Indexed: 11/02/2023] Open
Abstract
Lung cancer is the leading global cause of cancer-related death, however, resistance to chemotherapy drugs remains a huge barrier to effective treatment. The elevated recruitment of myeloid derived suppressor cells (MDSCs) to tumour after chemotherapy has been linked to resistance of chemotherapy drugs. Nevertheless, the specific mechanism remains unclear. oxPAPC is a bioactive principal component of minimally modified low-density lipoproteins and regulates inflammatory response. In this work, we found that cisplatin, oxaliplatin and ADM all increased oxPAPC release in tumour. Treating macrophages with oxPAPC in vitro stimulated the secretion of MCP-1 and LTB4, which strongly induced monocytes and neutrophils chemotaxis, respectively. Injection of oxPAPC in vivo significantly upregulated the percentage of MDSCs in tumour microenvironment (TME) of wild-type LL2 tumour-bearing mice, but not CCL2-/- mice and LTB4R-/- mice. Critically, oxPAPC acted as a pro-tumor factor in LL2 tumour model. Indeed, cisplatin increased oxPAPC level in tumour tissues of WT mice, CCL2-/- and LTB4R-/- mice, but caused increased infiltration of Ly6Chigh monocytes and neutrophils only in WT LL2-bearing mice. Collectively, our work demonstrates cisplatin treatment induces an overproduction of oxPAPC and thus recruits MDSCs infiltration to promote the tumour growth through the MCP-1/CCL2 and LTB4/LTB4R pathways, which may restrict the effect of multiple chemotherapy. This provides evidence for a potential strategy to enhance the efficacy of multiple chemotherapeutic drugs in the treatment of lung cancer by targeting oxPAPC.
Collapse
Affiliation(s)
- Ji Nie
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- Department of Pulmonary and Critical Care Medicine, The First People's Hospital of Yunnan ProvinceThe Affiliated Hospital of Kunming University of Science and TechnologyKunmingYunnanChina
| | - Jiayuan Ai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Weiqi Hong
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziyi Bai
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Binhan Wang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jingyun Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Ziqi Zhang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Fei Mo
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Jing Yang
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Qiu Sun
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
- West China Medical Publishers, West China Hospital, Sichuan UniversityChengduSichuanChina
| | - Xiawei Wei
- Department of Biotherapy, Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, National Clinical Research Center for GeriatricsWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
61
|
Wan Y, Mu X, Zhao J, Li L, Xu W, Zhang M. Myeloid‑derived suppressor cell accumulation induces Treg expansion and modulates lung malignancy progression. Biomed Rep 2024; 20:68. [PMID: 38533389 PMCID: PMC10963946 DOI: 10.3892/br.2024.1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/01/2023] [Indexed: 03/28/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous family of myeloid cells that suppress T cell immunity in tumor-bearing hosts. The present study aimed to examine roles of T and MDSC subsets in lung malignancy. The study analyzed 102 cases with lung malignancy and 34 healthy individuals. Flow cytometry was performed for identification of T cell and MDSC subsets and their phenotypic characteristics in peripheral blood. The lung malignancy cases exhibited lower frequencies of granulocyte-like MDSCs (G-MDSCs) expressing PD-L2 and PD-L1 than healthy controls (P=0.013 and P<0.001, respectively). Additionally, there was a higher frequency of monocyte-like MDSCs (M-MDSCs) expressing PD-L1 in the peripheral blood of patients with lung malignancy than healthy controls (P<0.001). The frequencies of G-MDSCs and M-MDSCs were positively correlated with proportions of PD-1+ and CTLA-4+ regulatory T cells (Tregs). In vitro co-culture assay demonstrated M-MDSCs of lung malignancy enhanced naive T cell apoptosis and promoted Treg subset differentiation compared with M-MDSCs of healthy controls. The findings suggested accumulation of MDSC subsets in lung malignancy and MDSCs expressing PD-L2 and PD-L1 induced Treg expansion by binding to PD-1 on the surface of Tregs.
Collapse
Affiliation(s)
- Yinghua Wan
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Xiangdong Mu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Jingquan Zhao
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Li Li
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Wenshuai Xu
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| | - Mingqiang Zhang
- Department of Respiratory and Critical Care Medicine, Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing 102218, P.R. China
| |
Collapse
|
62
|
Bertrand BP, Heim CE, Koepsell SA, Kielian T. Elucidating granulocytic myeloid-derived suppressor cell heterogeneity during Staphylococcus aureus biofilm infection. J Leukoc Biol 2024; 115:620-632. [PMID: 38095415 DOI: 10.1093/jleuko/qiad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/27/2023] [Accepted: 11/30/2023] [Indexed: 03/02/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated immature myeloid cells with immunosuppressive activity that expand during chronic inflammation, such as cancer and prosthetic joint infection (PJI). Myeloid-derived suppressor cells can be broadly separated into 2 populations based on surface marker expression and function: monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs). Granulocytic myeloid-derived suppressor cells are the most abundant leukocyte infiltrate during PJI; however, how this population is maintained in vivo and cellular heterogeneity is currently unknown. In this study, we identified a previously unknown population of Ly6G+Ly6C+F4/80+MHCII+ MDSCs during PJI that displayed immunosuppressive properties ex vivo. We leveraged F4/80 and MHCII expression by these cells for further characterization using cellular indexing of transcriptomes and epitopes by sequencing, which revealed a distinct transcriptomic signature of this population. F4/80+MHCII+ MDSCs displayed gene signatures resembling G-MDSCs, neutrophils, and monocytes but had significantly increased expression of pathways involved in cytokine response/production, inflammatory cell death, and mononuclear cell differentiation. To determine whether F4/80+MHCII+ MDSCs represented an alternate phenotypic state of G-MDSCs, Ly6G+Ly6C+F4/80-MHCII- G-MDSCs from CD45.1 mice were adoptively transferred into CD45.2 recipients using a mouse model of PJI. A small percentage of transferred G-MDSCs acquired F4/80 and MHCII expression in vivo, suggesting some degree of plasticity in this population. Collectively, these results demonstrate a previously unappreciated phenotype of F4/80+MHCII+ MDSCs during PJI, revealing that a granulocytic-to-monocytic transition can occur during biofilm infection.
Collapse
Affiliation(s)
- Blake P Bertrand
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Cortney E Heim
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Scott A Koepsell
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| | - Tammy Kielian
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, 985900 Nebraska Medical Center, Omaha, NE 68198-5900, United States
| |
Collapse
|
63
|
Tyrinova T, Batorov E, Aristova T, Ushakova G, Sizikova S, Denisova V, Chernykh E. Decreased circulating myeloid-derived suppressor cell count at the engraftment is one of the risk factors for multiple myeloma relapse after autologous hematopoietic stem cell transplantation. Heliyon 2024; 10:e26362. [PMID: 38434301 PMCID: PMC10907647 DOI: 10.1016/j.heliyon.2024.e26362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
Recent studies demonstrated that myeloid-derived suppressor cells (MDSCs) are involved in the pathogenesis and progression of multiple myeloma (MM). Nevertheless, data on the quantitative and functional changes in MDSCs during standard MM treatment remain poorly understood. Here, we determined that monocytic MDSCs (M-MDSC; CD14+HLA-DRlow/-) and granulocytic MDSCs (PMN-MDSC; Lin-HLA-DR-CD33+CD66b+) in MM patients in remission following induction therapy (IT) were significantly increased, while early MDSCs (E-MDSCs; Lin-HLA-DR-CD33+CD66b-) were decreased compared to the donor group. In progression, MM patients had the most pronounced decrease in E-MDSCs and enhanced levels of PMN-MDSCs. IT was accompanied with a decrease in the expression of arginase-1 (Arg-1). In MM patients with relapse or resistance to IT, Arg-1+ cell frequency in M-MDSCs and E-MDSCs, as well as PD-L1+ M-MDSCs, was increased, which may facilitate tumor immunosuppression. G-CSF administration led to a significant increment in the MDSC subsets. At the engraftment, circulating M-MDSC and PMN-MDSCs were temporarily increased, with a gradual decline to the pre-transplant levels in 12 months. The percentage of E-MDSCs was decreased at the leukocyte recovery. Patients with a higher (>Me) M-MDSC count at the engraftment had a shorter post-transplant leukopenia duration (Me 11 vs. 13 days; pU = 0.0086). The advanced MM stage, depth of response, and lower relative count of circulating E-MDSCs at the engraftment were independent risk factors associated with a lower progression-free survival. The obtained data allow us to hypothesize that MDSCs may play a positive role at the stage of leukocyte recovery by ameliorating the long-term anti-tumor response in MM.
Collapse
Affiliation(s)
- Tamara Tyrinova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| | - Egor Batorov
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| | - Tatyana Aristova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| | - Galina Ushakova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| | - Svetlana Sizikova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| | - Vera Denisova
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| | - Elena Chernykh
- Research Institute of Fundamental and Clinical Immunology, 14 Yadrintscevskaya str., Novosibirsk, 630099, Russian Federation
| |
Collapse
|
64
|
Barisas DAG, Choi K. Extramedullary hematopoiesis in cancer. Exp Mol Med 2024; 56:549-558. [PMID: 38443597 PMCID: PMC10985111 DOI: 10.1038/s12276-024-01192-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
Hematopoiesis can occur outside of the bone marrow during inflammatory stress to increase the production of primarily myeloid cells at extramedullary sites; this process is known as extramedullary hematopoiesis (EMH). As observed in a broad range of hematologic and nonhematologic diseases, EMH is now recognized for its important contributions to solid tumor pathology and prognosis. To initiate EMH, hematopoietic stem cells (HSCs) are mobilized from the bone marrow into the circulation and to extramedullary sites such as the spleen and liver. At these sites, HSCs primarily produce a pathological subset of myeloid cells that contributes to tumor pathology. The EMH HSC niche, which is distinct from the bone marrow HSC niche, is beginning to be characterized. The important cytokines that likely contribute to initiating and maintaining the EMH niche are KIT ligands, CXCL12, G-CSF, IL-1 family members, LIF, TNFα, and CXCR2. Further study of the role of EMH may offer valuable insights into emergency hematopoiesis and therapeutic approaches against cancer. Exciting future directions for the study of EMH include identifying common and distinct EMH mechanisms in cancer, infectious diseases, and chronic autoimmune diseases to control these conditions.
Collapse
Affiliation(s)
- Derek A G Barisas
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyunghee Choi
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
65
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
66
|
Lazar K, Pawelec G, Goelz R, Hamprecht K, Wistuba-Hamprecht K. Frequencies of activated T cell populations increase in breast milk of HCMV-seropositive mothers during local HCMV reactivation. Front Immunol 2024; 14:1258844. [PMID: 38235135 PMCID: PMC10792025 DOI: 10.3389/fimmu.2023.1258844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/01/2023] [Indexed: 01/19/2024] Open
Abstract
Background Human cytomegalovirus (HCMV) can reactivate in the mammary gland during lactation and is shed into breast milk of nearly every HCMV-IgG-seropositive mother of a preterm infant. Dynamics of breast milk leukocytes during lactation, as well as blood leukocytes and the comparison between both in the context of HCMV reactivation is not well understood. Methods Here, we present the BlooMil study that aimed at comparing changes of immune cells in blood and breast milk from HCMV-seropositive- vs -seronegative mothers, collected at four time ranges up to two months post-partum. Viral load was monitored by qPCR and nested PCR. Multiparameter flow cytometry was used to identify leukocyte subsets. Results CD3+ T cell frequencies were found to increase rapidly in HCMV-seropositive mothers' milk, while they remained unchanged in matched blood samples, and in both blood and breast milk of HCMV-seronegatives. The activation marker HLA-DR was more strongly expressed on CD4+ and CD8+ T cells in all breast milk samples than matched blood samples, but HCMV-seropositive mothers displayed a significant increase of HLA-DR+ CD4+ and HLA-DR+ CD8+ T cells during lactation. The CD4+/CD8+ T cell ratio was lower in breast milk of HCMV-seropositive mothers than in the blood. HCMV-specific CD8+ T cell frequencies (recognizing pp65 or IE1) were elevated in breast milk relative to blood, which might be due to clonal expansion of these cells during local HCMV reactivation. Breast milk contained very low frequencies of naïve T cells with no significant differences depending on serostatus. Conclusion Taken together, we conclude that the distribution of breast milk leukocyte populations is different from blood leukocytes and may contribute to the decrease of breast milk viral load in the late phase of HCMV reactivation in the mammary gland.
Collapse
Affiliation(s)
- Katrin Lazar
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Graham Pawelec
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Cancer Solutions Program, Health Sciences North Research Institute, Sudbury, ON, Canada
| | - Rangmar Goelz
- Department of Neonatology, University Children’s Hospital Tübingen, Tübingen, Germany
| | - Klaus Hamprecht
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, Tübingen, Germany
| | - Kilian Wistuba-Hamprecht
- Department of Immunology, Interfaculty Institute for Cell Biology, University of Tübingen, Tübingen, Germany
- Section for Clinical Bioinformatics, Internal Medicine I, University Medical Center, Tübingen, Germany
- M3 Research Center, University Medical Center, Tübingen, Germany
| |
Collapse
|
67
|
Li L, Huang X, Chen H. Unveiling the hidden players: exploring the role of gut mycobiome in cancer development and treatment dynamics. Gut Microbes 2024; 16:2328868. [PMID: 38485702 PMCID: PMC10950292 DOI: 10.1080/19490976.2024.2328868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024] Open
Abstract
The role of gut fungal species in tumor-related processes remains largely unexplored, with most studies still focusing on fungal infections. This review examines the accumulating evidence suggesting the involvement of commensal and pathogenic fungi in cancer biological process, including oncogenesis, progression, and treatment response. Mechanisms explored include fungal influence on host immunity, secretion of bioactive toxins/metabolites, interaction with bacterial commensals, and migration to other tissues in certain types of cancers. Attempts to utilize fungal molecular signatures for cancer diagnosis and fungal-derived products for treatment are discussed. A few studies highlight fungi's impact on the responsiveness and sensitivity to chemotherapy, radiotherapy, immunotherapy, and fecal microbiota transplant. Given the limited understanding and techniques in fungal research, the studies on gut fungi are still facing great challenges, despite having great potentials.
Collapse
Affiliation(s)
- Lingxi Li
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Division of Gastroenterology and Hepatology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, Shanghai Cancer Institute, Shanghai, China
| |
Collapse
|
68
|
Len JS, Koh CWT, Chan KR. The Functional Roles of MDSCs in Severe COVID-19 Pathogenesis. Viruses 2023; 16:27. [PMID: 38257728 PMCID: PMC10821470 DOI: 10.3390/v16010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/14/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
Severe COVID-19 is a major cause of morbidity and mortality worldwide, especially among those with co-morbidities, the elderly, and the immunocompromised. However, the molecular determinants critical for severe COVID-19 progression remain to be fully elucidated. Meta-analyses of transcriptomic RNAseq and single-cell sequencing datasets comparing severe and mild COVID-19 patients have demonstrated that the early expansion of myeloid-derived suppressor cells (MDSCs) could be a key feature of severe COVID-19 progression. Besides serving as potential early prognostic biomarkers for severe COVID-19 progression, several studies have also indicated the functional roles of MDSCs in severe COVID-19 pathogenesis and possibly even long COVID. Given the potential links between MDSCs and severe COVID-19, we examine the existing literature summarizing the characteristics of MDSCs, provide evidence of MDSCs in facilitating severe COVID-19 pathogenesis, and discuss the potential therapeutic avenues that can be explored to reduce the risk and burden of severe COVID-19. We also provide a web app where users can visualize the temporal changes in specific genes or MDSC-related gene sets during severe COVID-19 progression and disease resolution, based on our previous study.
Collapse
Affiliation(s)
- Jia Soon Len
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore;
| | - Clara W. T. Koh
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| | - Kuan Rong Chan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore;
| |
Collapse
|
69
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. J Math Biol 2023; 88:10. [PMID: 38099947 PMCID: PMC10724342 DOI: 10.1007/s00285-023-02027-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 08/30/2023] [Accepted: 11/05/2023] [Indexed: 12/18/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the approximate Bayesian computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended fourier amplitude sensitivity test. Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
Affiliation(s)
- Hannah G Anderson
- Department of Mathematics, University of Florida, Gainesville, FL, USA
| | - Gregory P Takacs
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Duane C Harris
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Yang Kuang
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, USA
| | - Jeffrey K Harrison
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, FL, USA
| | - Tracy L Stepien
- Department of Mathematics, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
70
|
Wu L, Liu X, Lei J, Zhang N, Zhao H, Zhang J, Deng H, Li Y. Fibrinogen-like protein 2 promotes tumor immune suppression by regulating cholesterol metabolism in myeloid-derived suppressor cells. J Immunother Cancer 2023; 11:e008081. [PMID: 38056898 PMCID: PMC10711877 DOI: 10.1136/jitc-2023-008081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are crucial mediators of tumor-associated immune suppression. Targeting the accumulation and activation of MDSCs has been recognized as a promising approach to enhance the effectiveness of immunotherapies for different types of cancer. METHODS The MC38 and B16 tumor-bearing mouse models were established to investigate the role of Fgl2 during tumor progression. Fgl2 and FcγRIIB-deficient mice, adoptive cell transfer, RNA-sequencing and flow cytometry analysis were used to assess the role of Fgl2 on immunosuppressive activity and differentiation of MDSCs. RESULTS Here, we show that fibrinogen-like protein 2 (Fgl2) regulates the differentiation and immunosuppressive functions of MDSCs. The absence of Fgl2 leads to an increase in antitumor CD8+ T-cell responses and a decrease in granulocytic MDSC accumulation. The regulation mechanism involves Fgl2 modulating cholesterol metabolism, which promotes the accumulation of MDSCs and immunosuppression through the production of reactive oxygen species and activation of XBP1 signaling. Inhibition of Fgl2 or cholesterol metabolism in MDSCs reduces their immunosuppressive activity and enhances differentiation. Targeting Fgl2 could potentially enhance the therapeutic efficacy of anti-PD-1 antibody in immunotherapy. CONCLUSION These results suggest that Fgl2 plays a role in promoting immune suppression by modulating cholesterol metabolism and targeting Fgl2 combined with PD-1 checkpoint blockade provides a promising therapeutic strategy for antitumor therapy.
Collapse
Affiliation(s)
- Lei Wu
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| | - Xudong Liu
- School of Medicine, Chongqing University, Chongqing, China
| | - Juan Lei
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Nan Zhang
- School of Medicine, Chongqing University, Chongqing, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jiangang Zhang
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huan Deng
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, China
- School of Medicine, Chongqing University, Chongqing, China
| |
Collapse
|
71
|
Wang M, Wang W, You S, Hou Z, Ji M, Xue N, Du T, Chen X, Jin J. ACAT1 deficiency in myeloid cells promotes glioblastoma progression by enhancing the accumulation of myeloid-derived suppressor cells. Acta Pharm Sin B 2023; 13:4733-4747. [PMID: 38045043 PMCID: PMC10692383 DOI: 10.1016/j.apsb.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 08/09/2023] [Indexed: 12/05/2023] Open
Abstract
Glioblastoma (GBM) is a highly aggressive and lethal brain tumor with an immunosuppressive tumor microenvironment (TME). In this environment, myeloid cells, such as myeloid-derived suppressor cells (MDSCs), play a pivotal role in suppressing antitumor immunity. Lipometabolism is closely related to the function of myeloid cells. Here, our study reports that acetyl-CoA acetyltransferase 1 (ACAT1), the key enzyme of fatty acid oxidation (FAO) and ketogenesis, is significantly downregulated in the MDSCs infiltrated in GBM patients. To investigate the effects of ACAT1 on myeloid cells, we generated mice with myeloid-specific (LyzM-cre) depletion of ACAT1. The results show that these mice exhibited a remarkable accumulation of MDSCs and increased tumor progression both ectopically and orthotopically. The mechanism behind this effect is elevated secretion of C-X-C motif ligand 1 (CXCL1) of macrophages (Mφ). Overall, our findings demonstrate that ACAT1 could serve as a promising drug target for GBM by regulating the function of MDSCs in the TME.
Collapse
Affiliation(s)
- Mingjin Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Weida Wang
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Shen You
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Zhenyan Hou
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Ming Ji
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Nina Xue
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Tingting Du
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Xiaoguang Chen
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| | - Jing Jin
- Department of Pharmacology, State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
72
|
Esher Righi S, Harriett AJ, Lilly EA, Fidel PL, Noverr MC. Candida-induced granulocytic myeloid-derived suppressor cells are protective against polymicrobial sepsis. mBio 2023; 14:e0144623. [PMID: 37681975 PMCID: PMC10653853 DOI: 10.1128/mbio.01446-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 09/09/2023] Open
Abstract
IMPORTANCE Polymicrobial intra-abdominal infections are serious clinical infections that can lead to life-threatening sepsis, which is difficult to treat in part due to the complex and dynamic inflammatory responses involved. Our prior studies demonstrated that immunization with low-virulence Candida species can provide strong protection against lethal polymicrobial sepsis challenge in mice. This long-lived protection was found to be mediated by trained Gr-1+ polymorphonuclear leukocytes with features resembling myeloid-derived suppressor cells (MDSCs). Here we definitively characterize these cells as MDSCs and demonstrate that their mechanism of protection involves the abrogation of lethal inflammation, in part through the action of the anti-inflammatory cytokine interleukin (IL)-10. These studies highlight the role of MDSCs and IL-10 in controlling acute lethal inflammation and give support for the utility of trained tolerogenic immune responses in the clinical treatment of sepsis.
Collapse
Affiliation(s)
- Shannon Esher Righi
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Amanda J. Harriett
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Elizabeth A. Lilly
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Paul L. Fidel
- Center of Excellence in Oral and Craniofacial Biology, Louisiana State University Health Sciences Center School of Dentistry, New Orleans, Louisiana, USA
| | - Mairi C. Noverr
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
73
|
Blanco E, Escors D, Kochan G. Assessment of myeloid-derived suppressor cell differentiation ex vivo. Methods Cell Biol 2023; 184:85-96. [PMID: 38555160 DOI: 10.1016/bs.mcb.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are major promoters of progression and metastasis in cancer. MDSCs inhibit the anti-tumor immune response through multiple mechanisms. The main MDSC functions in cancer are related to the inactivation of T cells and the establishment of an immunosuppressive tumor microenvironment (TME) through the production of pro-inflammatory cytokines, among other mechanisms. MDSCs are phenotypically similar to conventional myeloid cells, so their identification is challenging. Moreover, they infiltrate the tumors in limited numbers, and their purification from within the tumors is technically difficult and makes their study a challenge. Therefore, several ex vivo differentiation methods have been established. Our differentiation method leads to MDSCs that closely model tumor-infiltrating counterparts. In this protocol, MDSCs are differentiated from bone marrow precursors by incubation in differentiation medium produced by murine tumor cell lines engineered to constitutively express granulocyte-monocyte colony stimulating factor (GM-CSF). These ex vivo-generated MDSC subsets show high fidelity compared to their natural tumor-infiltrated counterparts. Moreover, the high yields of purification from these ex vivo differentiated MDSC enable their use for validation of new treatments in high-throughput assays. In this chapter we describe the engineering of a stable cell line overexpressing GM-CSF, followed by production and collection of conditioned media supporting MDSC differentiation. Finally, we detail the isolation procedure of bone marrow cells and the specific MDSC differentiation protocol.
Collapse
Affiliation(s)
- Ester Blanco
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain; Division of Gene Therapy and Regulation of Gene Expression, Cima Universidad de Navarra and Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.
| | - David Escors
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Grazyna Kochan
- Oncoimmunology Research Unit, Navarrabiomed-Fundación Miguel Servet, Hospital Universitario de Navarra (HUN), Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
74
|
Sun Q, Dai H, Wang S, Chen Y, Shi H. Progress in research on the role played by myeloid-derived suppressor cells in liver diseases. Scand J Immunol 2023; 98:e13312. [PMID: 38441348 DOI: 10.1111/sji.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/23/2023] [Accepted: 07/02/2023] [Indexed: 03/07/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) refer to a group of immature myeloid cells with potent immunosuppressive capacity upon activation by pathological conditions. Because of their potent immunosuppressive ability, MDSCs have garnered extensive attention in the past few years in the fields of oncology, infection, chronic inflammation and autoimmune diseases. Research on MDSCs in liver diseases has gradually increased, and their potential therapeutic roles will be further explored. This review presents a summary of the involvement and the role played by MDSCs in liver diseases, thus identifying their potential targets for the treatment of liver diseases and providing new directions for liver disease-related research.
Collapse
Affiliation(s)
- Qianqian Sun
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Heng Dai
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Siliang Wang
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Yuanyuan Chen
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Nanjing, China
| | - Huilian Shi
- Department of Infectious Diseases, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
75
|
Allemailem KS, Alsahli MA, Almatroudi A, Alrumaihi F, Al Abdulmonem W, Moawad AA, Alwanian WM, Almansour NM, Rahmani AH, Khan AA. Innovative Strategies of Reprogramming Immune System Cells by Targeting CRISPR/Cas9-Based Genome-Editing Tools: A New Era of Cancer Management. Int J Nanomedicine 2023; 18:5531-5559. [PMID: 37795042 PMCID: PMC10547015 DOI: 10.2147/ijn.s424872] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/16/2023] [Indexed: 10/06/2023] Open
Abstract
The recent developments in the study of clustered regularly interspaced short palindromic repeats/associated protein 9 (CRISPR/Cas9) system have revolutionized the art of genome-editing and its applications for cellular differentiation and immune response behavior. This technology has further helped in understanding the mysteries of cancer progression and possible designing of novel antitumor immunotherapies. CRISPR/Cas9-based genome-editing is now often used to engineer universal T-cells, equipped with recombinant T-cell receptor (TCR) or chimeric antigen receptor (CAR). In addition, this technology is used in cytokine stimulation, antibody designing, natural killer (NK) cell transfer, and to overcome immune checkpoints. The innovative potential of CRISPR/Cas9 in preparing the building blocks of adoptive cell transfer (ACT) immunotherapy has opened a new window of antitumor immunotherapy and some of them have gained FDA approval. The manipulation of immunogenetic regulators has opened a new interface for designing, implementation and interpretation of CRISPR/Cas9-based screening in immuno-oncology. Several cancers like lymphoma, melanoma, lung, and liver malignancies have been treated with this strategy, once thought to be impossible. The safe and efficient delivery of CRISPR/Cas9 system within the immune cells for the genome-editing strategy is a challenging task which needs to be sorted out for efficient immunotherapy. Several targeting approaches like virus-mediated, electroporation, microinjection and nanoformulation-based methods have been used, but each procedure offers some limitations. Here, we elaborate the recent updates of cancer management through immunotherapy in partnership with CRISPR/Cas9 technology. Further, some innovative methods of targeting this genome-editing system within the immune system cells for reprogramming them, as a novel strategy of anticancer immunotherapy is elaborated. In addition, future prospects and clinical trials are also discussed.
Collapse
Affiliation(s)
- Khaled S Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Mohammed A Alsahli
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraydah, Saudi Arabia
| | - Amira A Moawad
- Friedrich-Loeffler-Institut, Institute of Bacterial Infections and Zoonoses, Jena, Germany
| | - Wanian M Alwanian
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Nahlah Makki Almansour
- Department of Biology, College of Science, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Arshad Husain Rahmani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| |
Collapse
|
76
|
Griesinger AM, Riemondy K, Eswaran N, Donson AM, Willard N, Prince EW, Paine SM, Bowes G, Rheaume J, Chapman RJ, Ramage J, Jackson A, Grundy RG, Foreman NK, Ritzmann TA. Multi-omic approach identifies hypoxic tumor-associated myeloid cells that drive immunobiology of high-risk pediatric ependymoma. iScience 2023; 26:107585. [PMID: 37694144 PMCID: PMC10484966 DOI: 10.1016/j.isci.2023.107585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/01/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023] Open
Abstract
Ependymoma (EPN) is a devastating childhood brain tumor. Single-cell analyses have illustrated the cellular heterogeneity of EPN tumors, identifying multiple neoplastic cell states including a mesenchymal-differentiated subpopulation which characterizes the PFA1 subtype. Here, we characterize the EPN immune environment, in the context of both tumor subtypes and tumor cell subpopulations using single-cell sequencing (scRNAseq, n = 27), deconvolution of bulk tumor gene expression (n = 299), spatial proteomics (n = 54), and single-cell cytokine release assays (n = 12). We identify eight distinct myeloid-derived subpopulations from which a group of cells, termed hypoxia myeloid cells, demonstrate features of myeloid-derived suppressor cells, including IL6/STAT3 pathway activation and wound healing ontologies. In PFA tumors, hypoxia myeloid cells colocalize with mesenchymal-differentiated cells in necrotic and perivascular niches and secrete IL-8, which we hypothesize amplifies the EPN immunosuppressive microenvironment. This myeloid cell-driven immunosuppression will need to be targeted for immunotherapy to be effective in this difficult-to-cure childhood brain tumor.
Collapse
Affiliation(s)
- Andrea M. Griesinger
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kent Riemondy
- RNA Bioscience Initiative, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nithyashri Eswaran
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Andrew M. Donson
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
| | - Nicholas Willard
- Department of Pathology, University of Colorado Denver, Aurora, CO 80045, USA
| | - Eric W. Prince
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Simon M.L. Paine
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| | - Georgia Bowes
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
| | | | - Rebecca J. Chapman
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Judith Ramage
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Andrew Jackson
- University of Nottingham Biodiscovery Institute, Nottingham, UK
| | - Richard G. Grundy
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| | - Nicholas K. Foreman
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Children’s Hospital Colorado, Aurora, CO 80045, USA
- Department of Pediatrics, University of Colorado Denver, Aurora, CO 80045, USA
- Colorado Clinical and Translational Sciences Institute, University of Colorado Denver, Aurora, CO 80045, USA
- Department of Neurosurgery, University of Colorado Denver, Aurora, CO 80045, USA
| | - Timothy A. Ritzmann
- Children’s Brain Tumour Research Centre, University of Nottingham Biodiscovery Institute, Nottingham, UK
- Nottingham University Hospitals NHS Trust, Queen’s Medical Centre, Derby Road, Nottingham NG7 2UH, UK
| |
Collapse
|
77
|
Anderson HG, Takacs GP, Harris DC, Kuang Y, Harrison JK, Stepien TL. Global stability and parameter analysis reinforce therapeutic targets of PD-L1-PD-1 and MDSCs for glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.15.540846. [PMID: 37292799 PMCID: PMC10245580 DOI: 10.1101/2023.05.15.540846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the Approximate Bayesian Computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended Fourier Amplitude Sensitivity Test (eFAST). Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.
Collapse
|
78
|
Ren Y, Dong X, Liu Y, Kang H, Guan L, Huang Y, Zhu X, Tian J, Chen B, Jiang B, He Y. Rapamycin antagonizes angiogenesis and lymphangiogenesis through myeloid-derived suppressor cells in corneal transplantation. Am J Transplant 2023; 23:1359-1374. [PMID: 37225089 DOI: 10.1016/j.ajt.2023.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/22/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023]
Abstract
Rapamycin is an immunosuppressive drug that is widely used in the postsurgery management of transplantation. To date, the mechanism by which rapamycin reduces posttransplant neovascularization has not been fully understood. Given the original avascularity and immune privilege of the cornea, corneal transplantation is considered as an ideal model to investigate neovascularization and its effects on allograft rejection. Previously, we found that myeloid-derived suppressor cells (MDSC) prolong corneal allograft survival through suppression of angiogenesis and lymphangiogenesis. Here, we show that depletion of MDSC abolished rapamycin-mediated suppression of neovascularization and elongation of corneal allograft survival. RNA-sequencing analysis revealed that rapamycin dramatically enhanced the expression of arginase 1 (Arg1). Furthermore, an Arg1 inhibitor also completely abolished the rapamycin-mediated beneficial effects after corneal transplantation. Taken together, these findings indicate that MDSC and elevated Arg1 activity are essential for the immunosuppressive and antiangiogenic functions of rapamycin.
Collapse
Affiliation(s)
- Yuerong Ren
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Xiaonan Dong
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yingyi Liu
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Huanmin Kang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Lingling Guan
- State Key Laboratory of Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong 510120, China; Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Yumin Huang
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Xinqi Zhu
- Guangzhou National Laboratory, Guangzhou, Guangdong 510005, China
| | - Jing Tian
- Department of Rheumatology and Immunology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Baihua Chen
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Bing Jiang
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China
| | - Yan He
- Department of Ophthalmology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China; Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, China.
| |
Collapse
|
79
|
Krumm J, Petrova E, Lechner S, Mergner J, Boehm HH, Prestipino A, Steinbrunn D, Deline ML, Koetzner L, Schindler C, Helming L, Fromme T, Klingenspor M, Hahne H, Pieck JC, Kuster B. High-Throughput Screening and Proteomic Characterization of Compounds Targeting Myeloid-Derived Suppressor Cells. Mol Cell Proteomics 2023; 22:100632. [PMID: 37586548 PMCID: PMC10518717 DOI: 10.1016/j.mcpro.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Elissaveta Petrova
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Hans-Henning Boehm
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alessandro Prestipino
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lisa Koetzner
- Global Research & Development, Discovery and Development Technologies, Global Medicinal Chemistry, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christina Schindler
- Global Research & Development, Discovery Technologies, Computational Chemistry & Biologics, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Laura Helming
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Jan-Carsten Pieck
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
80
|
von Wulffen M, Luehrmann V, Robeck S, Russo A, Fischer-Riepe L, van den Bosch M, van Lent P, Loser K, Gabrilovich DI, Hermann S, Roth J, Vogl T. S100A8/A9-alarmin promotes local myeloid-derived suppressor cell activation restricting severe autoimmune arthritis. Cell Rep 2023; 42:113006. [PMID: 37610870 DOI: 10.1016/j.celrep.2023.113006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 06/11/2023] [Accepted: 08/03/2023] [Indexed: 08/25/2023] Open
Abstract
Immune-suppressive effects of myeloid-derived suppressor cells (MDSCs) are well characterized during anti-tumor immunity. The complex mechanisms promoting MDSC development and their regulatory effects during autoimmune diseases are less understood. We demonstrate that the endogenous alarmin S100A8/A9 reprograms myeloid cells to a T cell suppressing phenotype during autoimmune arthritis. Treatment of myeloid precursors with S100-alarmins during differentiation induces MDSCs in a Toll-like receptor 4-dependent manner. Consequently, knockout of S100A8/A9 aggravates disease activity in collagen-induced arthritis due to a deficit of MDSCs in local lymph nodes, which could be corrected by adoptive transfer of S100-induced MDSCs. Blockade of MDSC function in vivo aggravates disease severity in arthritis. Therapeutic application of S100A8 induces MDSCs in vivo and suppresses the inflammatory phenotype of S100A9ko mice. Accordingly, the interplay of T cell-mediated autoimmunity with a defective innate immune regulation is crucial for autoimmune arthritis, which should be considered for future innovative therapeutic options.
Collapse
Affiliation(s)
- Meike von Wulffen
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | | | - Stefanie Robeck
- Institute of Immunology, University of Münster, Münster, Germany
| | - Antonella Russo
- Institute of Immunology, University of Münster, Münster, Germany
| | | | - Martijn van den Bosch
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Peter van Lent
- Department of Rheumatology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Karin Loser
- Department of Human Medicine, University of Oldenburg, Oldenburg, Germany
| | | | - Sven Hermann
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Johannes Roth
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Thomas Vogl
- Institute of Immunology, University of Münster, Münster, Germany; Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany.
| |
Collapse
|
81
|
Yamamoto T, Tsunedomi R, Nakajima M, Suzuki N, Yoshida S, Tomochika S, Xu M, Nakagami Y, Matsui H, Tokumitsu Y, Shindo Y, Watanabe Y, Iida M, Takeda S, Hazama S, Tanabe T, Ioka T, Hoshii Y, Kiyota A, Takizawa H, Kawakami Y, Ueno T, Nagano H. IL-6 Levels Correlate with Prognosis and Immunosuppressive Stromal Cells in Patients with Colorectal Cancer. Ann Surg Oncol 2023; 30:5267-5277. [PMID: 37222942 DOI: 10.1245/s10434-023-13527-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 04/05/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND The prognosis for patients with colorectal cancer (CRC) is determined by tumor characteristics as well as the host immune response. This study investigated the relationship between an immunosuppressive state and patient prognosis by evaluating the systemic and tumor microenvironment (TME) interleukin (IL)-6 levels. METHODS Preoperative serum IL-6 levels were measured using an electrochemiluminescence assay. Expression of IL-6 in tumor and stromal cells was evaluated immunohistochemically in 209 patients with resected CRC. Single-cell analysis of tumor-infiltrating immune cells was performed using mass cytometry in 10 additional cases. RESULTS Elevated serum IL-6 levels were associated with elevated stromal IL-6 levels and a poor prognosis for patients with CRC. High IL-6 expression in stromal cells was associated with low-density subsets of CD3+ and CD4+ T cells as well as FOXP3+ cells. Mass cytometry analysis showed that IL-6+ cells among tumor-infiltrating immune cells were composed primarily of myeloid cells and rarely of lymphoid cells. In the high-IL-6-expression group, the percentages of myeloid-derived suppressor cells (MDSCs) and CD4+FOXP3highCD45RA- effector regulatory T cells (eTreg) were significantly higher than in the low-IL-6-expression group. Furthermore, the proportion of IL-10+ cells in MDSCs and that of IL-10+ or CTLA-4+ cells in eTregs correlated with IL-6 levels. CONCLUSION Elevated serum IL-6 levels were associated with stromal IL-6 levels in CRC. High IL-6 expression in tumor-infiltrating immune cells also was associated with accumulation of immunosuppressive cells in the TME.
Collapse
Affiliation(s)
- Tsunenori Yamamoto
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ryouichi Tsunedomi
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Masao Nakajima
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Nobuaki Suzuki
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shin Yoshida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shinobu Tomochika
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Ming Xu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yuki Nakagami
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Hiroto Matsui
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yukio Tokumitsu
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yoshitaro Shindo
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Yusaku Watanabe
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Michihisa Iida
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shigeru Takeda
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Shoichi Hazama
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Tsuyoshi Tanabe
- Department of Public Health and Preventive Medicine, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan
| | - Tatsuya Ioka
- Oncology Center, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Yoshinobu Hoshii
- Department of Diagnostic Pathology, Yamaguchi University Hospital, Ube, Yamaguchi, Japan
| | - Akifumi Kiyota
- Center for Medical Sciences, Kumamoto University International Research, Kumamoto, Kumamoto, Japan
| | - Hitoshi Takizawa
- Center for Medical Sciences, Kumamoto University International Research, Kumamoto, Kumamoto, Japan
| | - Yutaka Kawakami
- Division of Cellular Signaling, Institute for Advanced Medical Research, Keio University School of Medicine, Shinjuku, Tokyo, Japan
| | - Tomio Ueno
- Department of Digestive Surgery, Kawasaki Medical School, Kurashiki, Okayama, Japan
| | - Hiroaki Nagano
- Department of Gastroenterological, Breast and Endocrine Surgery, Yamaguchi University Graduate School of Medicine, Ube, Yamaguchi, Japan.
| |
Collapse
|
82
|
Ren R, Xiong C, Ma R, Wang Y, Yue T, Yu J, Shao B. The recent progress of myeloid-derived suppressor cell and its targeted therapies in cancers. MedComm (Beijing) 2023; 4:e323. [PMID: 37547175 PMCID: PMC10397484 DOI: 10.1002/mco2.323] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 08/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are an immature group of myeloid-derived cells generated from myeloid cell precursors in the bone marrow. MDSCs appear almost exclusively in pathological conditions, such as tumor progression and various inflammatory diseases. The leading function of MDSCs is their immunosuppressive ability, which plays a crucial role in tumor progression and metastasis through their immunosuppressive effects. Since MDSCs have specific molecular features, and only a tiny amount exists in physiological conditions, MDSC-targeted therapy has become a promising research direction for tumor treatment with minimal side effects. In this review, we briefly introduce the classification, generation and maturation process, and features of MDSCs, and detail their functions under various circumstances. The present review specifically demonstrates the environmental specificity of MDSCs, highlighting the differences between MDSCs from cancer and healthy individuals, as well as tumor-infiltrating MDSCs and circulating MDSCs. Then, we further describe recent advances in MDSC-targeted therapies. The existing and potential targeted drugs are divided into three categories, monoclonal antibodies, small-molecular inhibitors, and peptides. Their targeting mechanisms and characteristics have been summarized respectively. We believe that a comprehensive in-depth understanding of MDSC-targeted therapy could provide more possibilities for the treatment of cancer.
Collapse
Affiliation(s)
- Ruiyang Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesDepartment of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Chenyi Xiong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Runyu Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yixuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Tianyang Yue
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Jiayun Yu
- Department of RadiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
83
|
Muhammad S, Fan T, Hai Y, Gao Y, He J. Reigniting hope in cancer treatment: the promise and pitfalls of IL-2 and IL-2R targeting strategies. Mol Cancer 2023; 22:121. [PMID: 37516849 PMCID: PMC10385932 DOI: 10.1186/s12943-023-01826-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/18/2023] [Indexed: 07/31/2023] Open
Abstract
Interleukin-2 (IL-2) and its receptor (IL-2R) are essential in orchestrating immune responses. Their function and expression in the tumor microenvironment make them attractive targets for immunotherapy, leading to the development of IL-2/IL-2R-targeted therapeutic strategies. However, the dynamic interplay between IL-2/IL-2R and various immune cells and their dual roles in promoting immune activation and tolerance presents a complex landscape for clinical exploitation. This review discusses the pivotal roles of IL-2 and IL-2R in tumorigenesis, shedding light on their potential as diagnostic and prognostic markers and their therapeutic manipulation in cancer. It underlines the necessity to balance the anti-tumor activity with regulatory T-cell expansion and evaluates strategies such as dose optimization and selective targeting for enhanced therapeutic effectiveness. The article explores recent advancements in the field, including developing genetically engineered IL-2 variants, combining IL-2/IL-2R-targeted therapies with other cancer treatments, and the potential benefits of a multidimensional approach integrating molecular profiling, immunological analyses, and clinical data. The review concludes that a deeper understanding of IL-2/IL-2R interactions within the tumor microenvironment is crucial for realizing the full potential of IL-2-based therapies, heralding the promise of improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Shan Muhammad
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, China
- Department of Colorectal Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yang Hai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, 157 Baojian Road, Harbin, 150081, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| | - Jie He
- Department of Thoracic Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Laboratory of Translational Medicine, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Central Laboratory & Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
| |
Collapse
|
84
|
Cheng X, Wang H, Wang Z, Zhu B, Long H. Tumor-associated myeloid cells in cancer immunotherapy. J Hematol Oncol 2023; 16:71. [PMID: 37415162 PMCID: PMC10324139 DOI: 10.1186/s13045-023-01473-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/23/2023] [Indexed: 07/08/2023] Open
Abstract
Tumor-associated myeloid cells (TAMCs) are among the most important immune cell populations in the tumor microenvironment, and play a significant role on the efficacy of immune checkpoint blockade. Understanding the origin of TAMCs was found to be the essential to determining their functional heterogeneity and, developing cancer immunotherapy strategies. While myeloid-biased differentiation in the bone marrow has been traditionally considered as the primary source of TAMCs, the abnormal differentiation of splenic hematopoietic stem and progenitor cells, erythroid progenitor cells, and B precursor cells in the spleen, as well as embryo-derived TAMCs, have been depicted as important origins of TAMCs. This review article provides an overview of the literature with a focus on the recent research progress evaluating the heterogeneity of TAMCs origins. Moreover, this review summarizes the major therapeutic strategies targeting TAMCs with heterogeneous sources, shedding light on their implications for cancer antitumor immunotherapies.
Collapse
Affiliation(s)
- Xinyu Cheng
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Huilan Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Zhongyu Wang
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| | - Haixia Long
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, 400037, China.
- Chongqing Key Laboratory of Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
85
|
Calderon JJ, Prieto K, Lasso P, Fiorentino S, Barreto A. Modulation of Myeloid-Derived Suppressor Cells in the Tumor Microenvironment by Natural Products. Arch Immunol Ther Exp (Warsz) 2023; 71:17. [PMID: 37410164 DOI: 10.1007/s00005-023-00681-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/29/2023] [Indexed: 07/07/2023]
Abstract
During carcinogenesis, the microenvironment plays a fundamental role in tumor progression and resistance. This tumor microenvironment (TME) is characterized by being highly immunosuppressive in most cases, which makes it an important target for the development of new therapies. One of the most important groups of cells that orchestrate immunosuppression in TME is myeloid-derived suppressor cells (MDSCs), which have multiple mechanisms to suppress the immune response mediated by T lymphocytes and thus protect the tumor. In this review, we will discuss the importance of modulating MDSCs as a therapeutic target and how the use of natural products, due to their multiple mechanisms of action, can be a key alternative for modulating these cells and thus improve response to therapy in cancer patients.
Collapse
Affiliation(s)
- Jhon Jairo Calderon
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Karol Prieto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Paola Lasso
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Susana Fiorentino
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alfonso Barreto
- Grupo de Inmunobiología y Biología Celular, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
- Departamento de Microbiología, Pontificia Universidad Javeriana, Carrera 7 # 43-82. Edificio 50 Laboratorio 101, Bogotá, Colombia.
| |
Collapse
|
86
|
Ozbay Kurt FG, Lasser S, Arkhypov I, Utikal J, Umansky V. Enhancing immunotherapy response in melanoma: myeloid-derived suppressor cells as a therapeutic target. J Clin Invest 2023; 133:e170762. [PMID: 37395271 DOI: 10.1172/jci170762] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
Despite the remarkable success of immune checkpoint inhibitors (ICIs) in melanoma treatment, resistance to them remains a substantial clinical challenge. Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of myeloid cells that can suppress antitumor immune responses mediated by T and natural killer cells and promote tumor growth. They are major contributors to ICI resistance and play a crucial role in creating an immunosuppressive tumor microenvironment. Therefore, targeting MDSCs is considered a promising strategy to improve the therapeutic efficacy of ICIs. This Review describes the mechanism of MDSC-mediated immune suppression, preclinical and clinical studies on MDSC targeting, and potential strategies for inhibiting MDSC functions to improve melanoma immunotherapy.
Collapse
Affiliation(s)
- Feyza Gul Ozbay Kurt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Samantha Lasser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Ihor Arkhypov
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
- Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Mannheim, Germany
| |
Collapse
|
87
|
Pierozan P, Källsten L, Theodoropoulou E, Almamoun R, Karlsson O. Persistent immunosuppressive effects of dibutyl phthalate exposure in adult male mice. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:162741. [PMID: 36914131 DOI: 10.1016/j.scitotenv.2023.162741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/28/2023] [Accepted: 03/05/2023] [Indexed: 05/13/2023]
Abstract
Increased exposure to manmade chemicals may be linked to an increase in immune-related diseases in humans and immune system dysfunction in wildlife. Phthalates are a group of endocrine-disrupting chemicals (EDCs) suspected to influence the immune system. The aim of this study was to characterize the persistent effects on leukocytes in the blood and spleen, as well as plasma cytokine and growth factor levels, one week after the end of five weeks of oral treatment with dibutyl phthalate (DBP; 10 or 100 mg/kg/d) in adult male mice. Flow cytometry analysis of the blood revealed that DBP exposure decreased the total leukocyte count, classical monocyte and T helper (Th) populations, whereas it increased the non-classical monocyte population compared to the vehicle control (corn oil). Immunofluorescence analysis of the spleen showed increased CD11b+Ly6G+ (marker of polymorphonuclear myeloid-derived suppressor cells; PMN-MDSCs), and CD43+staining (marker of non-classical monocytes), whereas CD3+ (marker of total T cells) and CD4+ (marker of Th cells) staining decreased. To investigate the mechanisms of action, levels of plasma cytokines and chemokines were measured using multiplexed immunoassays and other key factors were analyzed using western blotting. The observed increase in M-CSF levels and the activation of STAT3 may promote PMN-MDSC expansion and activity. Increased ARG1, NOX2 (gp91phox), and protein nitrotyrosine levels, as well as GCN2 and phosphor-eIRFα, suggest that oxidative stress and lymphocyte arrest drive the lymphocyte suppression caused by PMN-MDSCs. The plasma levels of IL-21 (promotes the differentiation of Th cells) and MCP-1 (regulates migration and infiltration of monocytes/macrophages) also decreased. These findings show that adult DBP exposure can cause persistent immunosuppressive effects, which may increase susceptibility to infections, cancers, and immune diseases, and decrease vaccine efficacy.
Collapse
Affiliation(s)
- Paula Pierozan
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Liselott Källsten
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Eleftheria Theodoropoulou
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Radwa Almamoun
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden
| | - Oskar Karlsson
- Science for Life Laboratory, Department of Environmental Science, Stockholm University, Stockholm 114 18, Sweden.
| |
Collapse
|
88
|
Tsilimigras DI, Ntanasis-Stathopoulos I, Pawlik TM. Molecular Mechanisms of Colorectal Liver Metastases. Cells 2023; 12:1657. [PMID: 37371127 DOI: 10.3390/cells12121657] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
The liver is the most frequently target for metastasis among patients with colorectal cancer mainly because of the portal vein circulation that directly connects the colon and rectum with the liver. The liver tumor microenvironment consists of different cell types each with unique characteristics and functions that modulate the antigen recognition and immune system activation. Primary tumors from other sites "prime" the liver prior to the seeding of cancer cells, creating a pre-metastatic niche. Following invasion into the liver, four different phases are key to the development of liver metastases: a microvascular phase in which cancer cells infiltrate and become trapped in sinusoidal vessels; an extravascular, pre-angiogenic phase; an angiogenic phase that supplies oxygen and nutrients to cancer cells; and a growth phase in which metastatic cells multiply and enlarge to form detectable tumors. Exosomes carry proteins, lipids, as well as genetic information that can create a pre-metastatic niche in distant sites, including the liver. The complexity of angiogenic mechanisms and the exploitation of the vasculature in situ by cancer cells have limited the efficacy of currently available anti-angiogenic therapies. Delineating the molecular mechanisms implicated in colorectal liver metastases is crucial to understand and predict tumor progression; the development of distant metastases; and resistance to chemotherapy, immunotherapy, and targeted treatment.
Collapse
Affiliation(s)
- Diamantis I Tsilimigras
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12th Ave., Columbus, OH 43210, USA
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, Alexandra General Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Timothy M Pawlik
- Department of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical Center and James Comprehensive Cancer Center, 395 W. 12th Ave., Columbus, OH 43210, USA
| |
Collapse
|
89
|
Ramezani-Aliakbari K, Khaki-Bakhtiarvand V, Mahmoudian J, Asgarian-Omran H, Shokri F, Hojjat-Farsangi M, Jeddi-Tehrani M, Shabani M. Evaluation of the anti-tumor effects of an anti-Human Epidermal growth factor receptor 2 (HER2) monoclonal antibody in combination with CD11b +/Gr-1 + myeloid cells depletion using a recombinant peptibody in 4 T1-HER2 tumor model. Int Immunopharmacol 2023; 121:110463. [PMID: 37327513 DOI: 10.1016/j.intimp.2023.110463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Clinical efficacy of Human Epidermal growth factor Receptor 2 (HER2) targeted strategies is limited due to impaired anti-tumor responses negatively regulated by immunosuppressive cells. We thus, investigated the inhibitory effects of an anti-HER2 monoclonal antibody (1 T0 mAb) in combination with CD11b+/Gr-1+ myeloid cells depletion in 4 T1-HER2 tumor model. METHODS BALB/c mice were challenged with human HER2-expressing 4 T1 murine breast cancer cell line. A week post tumor challenge, each mouse received 50 µg of a myeloid cells specific peptibody every other day, or 10 mg/kg of 1 T0 mAb two times a week, and their combination for two weeks. The treatments effect on tumor growth was measured by calculating tumor size. Also, the frequencies of CD11b+/Gr-1+ cells and T lymphocytes were measured by flow cytometry. RESULTS Peptibody treated mice indicated tumor regression and 40 % of the mice eradicated their primary tumors. The peptibody was capable to deplete notably splenic CD11b+/Gr-1+ cells as well as intratumoral CD11b+/Gr-1+ cells (P < 0.0001) and led to an increased number of tumor infiltrating CD8+ T cells (3.3 folds) and also that of resident tumor draining lymph nodes (TDLNs) (3 folds). Combination of peptibody and 1 T0 mAb resulted in enhanced expansion of tumor infiltrating CD4 + and CD8+ T cells which was associated with tumor eradication in 60 % of the mice. CONCLUSIONS Peptibody is able to deplete CD11b+/Gr-1+ cells and increase anti-tumoral effects of the 1 T0 mAb in tumor eradication. Thus, this myeloid population have critical roles in development of tumors and their depletion is associated with induction of anti-tumoral responses.
Collapse
Affiliation(s)
| | - Vahid Khaki-Bakhtiarvand
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Jafar Mahmoudian
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Hossein Asgarian-Omran
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hojjat-Farsangi
- Department of Oncology-Pathology, BioClinicum, Karolinska University Hospital Solna and Karolinska Institute, 17164 Stockholm, Sweden
| | - Mahmood Jeddi-Tehrani
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.
| | - Mahdi Shabani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
90
|
Wyrobnik I, Steinberg M, Gelfand A, Rosenblum R, Eid Mutlak Y, Sulimani L, Procaccia S, Ofran Y, Novak-Kotzer H, Meiri D. Decreased melanoma CSF-1 secretion by Cannabigerol treatment reprograms regulatory myeloid cells and reduces tumor progression. Oncoimmunology 2023; 12:2219164. [PMID: 37325437 PMCID: PMC10262794 DOI: 10.1080/2162402x.2023.2219164] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 05/24/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023] Open
Abstract
During solid tumor progression, the tumor microenvironment (TME) evolves into a highly immunosuppressive milieu. Key players in the immunosuppressive environment are regulatory myeloid cells, including myeloid-derived suppressor cells (MDSCs) and tumor-associated macrophages (TAMs), which are recruited and activated via tumor-secreted cytokines such as colony-stimulating factor 1 (CSF-1). Therefore, the depletion of tumor-secreted cytokines is a leading anticancer strategy. Here, we found that CSF-1 secretion by melanoma cells is decreased following treatment with Cannabis extracts. Cannabigerol (CBG) was identified as the bioactive cannabinoid responsible for the effects. Conditioned media from cells treated with pure CBG or the high-CBG extract reduced the expansion and macrophage transition of the monocytic-MDSC subpopulation. Treated MO-MDSCs also expressed lower levels of iNOS, leading to restored CD8+ T-cell activation. Tumor-bearing mice treated with CBG presented reduced tumor progression, lower TAM frequencies and reduced TAM/M1 ratio. A combination of CBG and αPD-L1 was more effective in reducing tumor progression, enhancing survival and increasing the infiltration of activated cytotoxic T-cells than each treatment separately. We show a novel mechanism for CBG in modulating the TME and enhancing immune checkpoint blockade therapy, underlining its promising therapeutic potential for the treatment of a variety of tumors with elevated CSF-1 expression.
Collapse
Affiliation(s)
- Iris Wyrobnik
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Miryam Steinberg
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Anat Gelfand
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Ronen Rosenblum
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yara Eid Mutlak
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Liron Sulimani
- The Kleifeld Laboratory, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
- Cannasoul Analytics, Caesarea, Israel
| | - Shiri Procaccia
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yishai Ofran
- Department of Hematology, Shaare Zedek Medical Center and Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Hila Novak-Kotzer
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - David Meiri
- The Laboratory of Cancer Biology and Cannabinoid Research, Department of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
91
|
Du Z, Su J, Lin S, Chen T, Gao W, Wang M, Li Y, Wei D, Hu Z, Gao C, Li Q. Hydroxyphenylpyruvate Dioxygenase Is a Metabolic Immune Checkpoint for UTX-deficient Colorectal Cancer. Gastroenterology 2023; 164:1165-1179.e13. [PMID: 36813208 DOI: 10.1053/j.gastro.2023.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/01/2023] [Accepted: 02/11/2023] [Indexed: 02/24/2023]
Abstract
BACKGROUND & AIMS Aberrant epigenetic events mediated by histone methyltransferases and demethylases contribute to malignant progression of colorectal cancer (CRC). However, the role of the histone demethylase ubiquitously transcribed tetratricopeptide repeat on chromosome X (UTX) in CRC remains poorly understood. METHODS UTX conditional knockout mice and UTX-silenced MC38 cells were used to investigate UTX function in tumorigenesis and development of CRC. We performed time of flight mass cytometry to clarify the functional role of UTX in remodeling immune microenvironment of CRC. To investigate metabolic interaction between myeloid-derived suppressor cells (MDSCs) and CRC, we analyzed metabolomics data to identify metabolites secreted by UTX-deficient cancer cells and taken up by MDSCs. RESULTS We unraveled a tyrosine-mediated metabolic symbiosis between MDSC and UTX-deficient CRC. Loss of UTX in CRC resulted in methylation of phenylalanine hydroxylase, preventing its degradation and subsequently increasing tyrosine synthesis and secretion. Tyrosine taken up by MDSCs was metabolized to homogentisic acid by hydroxyphenylpyruvate dioxygenase. Homogentisic acid modified protein inhibitor of activated STAT3 via carbonylation of Cys 176, and relieved the inhibitory effect of protein inhibitor of activated STAT3 on signal transducer and activator of transcription 5 transcriptional activity. This in turn, promoted MDSC survival and accumulation, enabling CRC cells to acquire invasive and metastatic traits. CONCLUSIONS Collectively, these findings highlight hydroxyphenylpyruvate dioxygenase as a metabolic checkpoint to restrict immunosuppressive MDSCs and to counteract malignant progression of UTX-deficient CRC.
Collapse
Affiliation(s)
- ZunGuo Du
- Department of Pathology, HuaShan Hospital, Fudan University, Shanghai, China; Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - JunHui Su
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - ShengLi Lin
- Endoscopy Center, Endoscopy Research Institute, Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tao Chen
- Endoscopy Center, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - WenChao Gao
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - MengHui Wang
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - YueHeng Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Dong Wei
- Department of Anus and Intestine Surgery, PLA Central Hospital 150, Luoyang, Henan, China
| | - ZhiQian Hu
- Department of General Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - ChunFang Gao
- Department of Anus and Intestine Surgery, PLA Central Hospital 150, Luoyang, Henan, China
| | - QingQuan Li
- Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China.
| |
Collapse
|
92
|
Carlson E, Savardekar H, Hu X, Lapurga G, Johnson C, Sun SH, Carson WE, Peterson BR. Fluorescent Detection of Peroxynitrite Produced by Myeloid-Derived Suppressor Cells in Cancer and Inhibition by Dasatinib. ACS Pharmacol Transl Sci 2023; 6:738-747. [PMID: 37200815 PMCID: PMC10186365 DOI: 10.1021/acsptsci.3c00014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Indexed: 05/20/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature myeloid cells that expand dramatically in many cancer patients. This expansion contributes to immunosuppression in cancer and reduces the efficacy of immune-based cancer therapies. One mechanism of immunosuppression mediated by MDSCs involves production of the reactive nitrogen species peroxynitrite (PNT), where this strong oxidant inactivates immune effector cells through destructive nitration of tyrosine residues in immune signal transduction pathways. As an alternative to analysis of nitrotyrosines indirectly generated by PNT, we used an endoplasmic reticulum (ER)-targeted fluorescent sensor termed PS3 that allows direct detection of PNT produced by MDSCs. When the MDSC-like cell line MSC2 and primary MDSCs from mice and humans were treated with PS3 and antibody-opsonized TentaGel microspheres, phagocytosis of these beads led to production of PNT and generation of a highly fluorescent product. Using this method, we show that splenocytes from a EMT6 mouse model of cancer, but not normal control mice, produce high levels of PNT due to elevated numbers of granulocytic (PMN) MDSCs. Similarly, peripheral blood mononuclear cells (PBMCs) isolated from blood of human melanoma patients produced substantially higher levels of PNT than healthy human volunteers, coincident with higher peripheral MDSC levels. The kinase inhibitor dasatinib was found to potently block the production of PNT both by inhibiting phagocytosis in vitro and by reducing the number of granulocytic MDSCs in mice in vivo, providing a chemical tool to modulate the production of this reactive nitrogen species (RNS) in the tumor microenvironment.
Collapse
Affiliation(s)
- Erick
J. Carlson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Himanshu Savardekar
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Xiaojun Hu
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| | - Gabriella Lapurga
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Courtney Johnson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Steven H. Sun
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - William E. Carson
- Division
of Surgical Oncology, Department of Surgery, The Ohio State University, Columbus, Ohio 43210, United States
| | - Blake R. Peterson
- Division
of Medicinal Chemistry and Pharmacognosy, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
93
|
Qin G, Liu S, Liu J, Hu H, Yang L, Zhao Q, Li C, Zhang B, Zhang Y. Overcoming resistance to immunotherapy by targeting GPR84 in myeloid-derived suppressor cells. Signal Transduct Target Ther 2023; 8:164. [PMID: 37105980 PMCID: PMC10140025 DOI: 10.1038/s41392-023-01388-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 04/29/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) were found to gradually accumulate in the orthotopic esophageal cancer mouse model during tumor progression. Although the roles of MDSCs in promoting tumor growth and inhibiting immune response have been extensively explored, currently, there are still no effective means for targeting MDSCs clinically. The deficiency of specific markers of MDSCs was responsible for the limited strategy to eliminating in clinic. This study identified that GPR84 was exclusively overexpressed on MDSCs. It was further found that GPR84 was prominently expressed on MDSCs in clinical samples and tumor mouse models, which drives the immunosuppression on CD8+T cells by inhibiting PD-L1 degradation in lysosomes. Furthermore, G-CSF and GM-CSF were found to induce GPR84 expression through the STAT3/C/EBPβ signaling pathway. In addition, GPR84+MDSCs and PD-L1+MDSCs were highly accumulated in anti-PD-1 therapy-resistant patients with esophageal cancer, and high GPR84 signature risk was verified as a negative factor for the overall survival of patients with anti-PD-1 treatment. Finally, GPR84 antagonism combined with an anti-PD-1 antibody enhanced the antitumor responses. Therefore, targeting GPR84 enhanced anti-PD-1 efficacy in esophageal cancer and other malignant tumors. This combination therapy has the potential for tumor therapy in clinics.
Collapse
Affiliation(s)
- Guohui Qin
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Shasha Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Jinyan Liu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Hongwei Hu
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Li Yang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Qitai Zhao
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Congcong Li
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Bin Zhang
- Department of Medicine-Division of Hematology/Oncology, Feinberg School of Medicine Northwestern University, Chicago, IL, 60611, USA
| | - Yi Zhang
- Biotherapy Center and Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Henan Key Laboratory for Tumor Immunology and Biotherapy, Zhengzhou, Henan, 450052, China.
- State Key Laboratory of Esophageal Cancer Prevention & Treatment, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
94
|
Sabrina S, Takeda Y, Kato T, Naito S, Ito H, Takai Y, Ushijima M, Narisawa T, Kanno H, Sakurai T, Saitoh S, Araki A, Tsuchiya N, Asao H. Initial Myeloid Cell Status Is Associated with Clinical Outcomes of Renal Cell Carcinoma. Biomedicines 2023; 11:biomedicines11051296. [PMID: 37238964 DOI: 10.3390/biomedicines11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
The therapeutic outcome of immune checkpoint inhibition (ICI) can be improved through combination treatments with ICI therapy. Myeloid-derived suppressor cells (MDSCs) strongly suppress tumor immunity. MDSCs are a heterogeneous cell population, originating from the unusual differentiation of neutrophils/monocytes induced by environmental factors such as inflammation. The myeloid cell population consists of an indistinguishable mixture of various types of MDSCs and activated neutrophils/monocytes. In this study, we investigated whether the clinical outcomes of ICI therapy could be predicted by estimating the status of the myeloid cells, including MDSCs. Several MDSC indexes, such as glycosylphosphatidylinositol-anchored 80 kD protein (GPI-80), CD16, and latency-associated peptide-1 (LAP-1; transforming growth factor-β1 precursor), were analyzed via flow cytometry using peripheral blood derived from patients with advanced renal cell carcinoma (n = 51) immediately before and during the therapy. Elevated CD16 and LAP-1 expressions after the first treatment were associated with a poor response to ICI therapy. Immediately before ICI therapy, GPI-80 expression in neutrophils was significantly higher in patients with a complete response than in those with disease progression. This is the first study to demonstrate a relationship between the status of the myeloid cells during the initial phase of ICI therapy and clinical outcomes.
Collapse
Affiliation(s)
- Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
95
|
Bhardwaj V, Ansell SM. Modulation of T-cell function by myeloid-derived suppressor cells in hematological malignancies. Front Cell Dev Biol 2023; 11:1129343. [PMID: 37091970 PMCID: PMC10113446 DOI: 10.3389/fcell.2023.1129343] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/15/2023] [Indexed: 04/08/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are pathologically activated neutrophils and monocytes that negatively regulate the immune response to cancer and chronic infections. Abnormal myelopoiesis and pathological activation of myeloid cells generate this heterogeneous population of myeloid-derived suppressor cells. They are characterized by their distinct transcription, phenotypic, biochemical, and functional features. In the tumor microenvironment (TME), myeloid-derived suppressor cells represent an important class of immunosuppressive cells that correlate with tumor burden, stage, and a poor prognosis. Myeloid-derived suppressor cells exert a strong immunosuppressive effect on T-cells (and a broad range of other immune cells), by blocking lymphocyte homing, increasing production of reactive oxygen and nitrogen species, promoting secretion of various cytokines, chemokines, and immune regulatory molecules, stimulation of other immunosuppressive cells, depletion of various metabolites, and upregulation of immune checkpoint molecules. Additionally, the heterogeneity of myeloid-derived suppressor cells in cancer makes their identification challenging. Overall, they serve as a major obstacle for many cancer immunotherapies and targeting them could be a favorable strategy to improve the effectiveness of immunotherapeutic interventions. However, in hematological malignancies, particularly B-cell malignancies, the clinical outcomes of targeting these myeloid-derived suppressor cells is a field that is still to be explored. This review summarizes the complex biology of myeloid-derived suppressor cells with an emphasis on the immunosuppressive pathways used by myeloid-derived suppressor cells to modulate T-cell function in hematological malignancies. In addition, we describe the challenges, therapeutic strategies, and clinical relevance of targeting myeloid-derived suppressor cells in these diseases.
Collapse
|
96
|
Wang S, Zhao X, Wu S, Cui D, Xu Z. Myeloid-derived suppressor cells: key immunosuppressive regulators and therapeutic targets in hematological malignancies. Biomark Res 2023; 11:34. [PMID: 36978204 PMCID: PMC10049909 DOI: 10.1186/s40364-023-00475-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
The immunosuppressive tumor microenvironment (TME) supports the development of tumors and limits tumor immunotherapy, including hematological malignancies. Hematological malignancies remain a major public health issue with high morbidity and mortality worldwide. As an important component of immunosuppressive regulators, the phenotypic characteristics and prognostic value of myeloid-derived suppressor cells (MDSCs) have received much attention. A variety of MDSC-targeting therapeutic approaches have produced encouraging outcomes. However, the use of various MDSC-targeted treatment strategies in hematologic malignancies is still difficult due to the heterogeneity of hematologic malignancies and the complexity of the immune system. In this review, we summarize the biological functions of MDSCs and further provide a summary of the phenotypes and suppressive mechanisms of MDSC populations expanded in various types of hematological malignancy contexts. Moreover, we discussed the clinical correlation between MDSCs and the diagnosis of malignant hematological disease, as well as the drugs targeting MDSCs, and focused on summarizing the therapeutic strategies in combination with other immunotherapies, such as various immune checkpoint inhibitors (ICIs), that are under active investigation. We highlight the new direction of targeting MDSCs to improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Shifen Wang
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyun Zhao
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siwen Wu
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Dawei Cui
- Department of Blood Transfusion, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Zhenshu Xu
- Department of Hematology, Fujian Institute of Hematology, Fujian Provincial Key Laboratory on Hematology, Fujian Medical University Union Hospital, Fuzhou, China.
| |
Collapse
|
97
|
Han J, Wan M, Ma Z, Yi H. Regulation of DNA-PK activity promotes the progression of TNBC via enhancing the immunosuppressive function of myeloid-derived suppressor cells. Cancer Med 2023; 12:5939-5952. [PMID: 36373232 PMCID: PMC10028116 DOI: 10.1002/cam4.5387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 10/02/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND DNA-dependent protein kinase (DNA-PK) is engaged in DNA damage repair and is significantly expressed in triple negative breast cancer (TNBC). Inhibiting DNA-PK to reduce DNA damage repair provides a possibility of tumor treatment. NU7441, a DNA-PK inhibitor, can regulate the function and differentiation of CD4+ T cells and effectively enhance immunogenicity of monocyte-derived dendritic cells. However, the effect of NU7441 on the tumor progression activity of immunosuppressive myeloid-derived suppressor cells (MDSCs) in TNBC remains unclear. RESULTS In this study, we found that NU7441 alone significantly increased tumor growth in 4 T1 (a mouse TNBC cell line) tumor-bearing mice. Bioinformatics analysis showed that DNA-PK and functional markers of MDSCs (iNOS, Arg1, and IDO) tended to coexist in breast cancer patients. The mutations of these genes were significantly correlated with lower survival in breast cancer patients. Moreover, NU7441 significantly decreased the percentage of MDSCs in peripheral blood mononuclear cells (PBMCs), spleen and tumor, but enhanced the immunosuppressive function of splenic MDSCs. Furthermore, NU7441 increased MDSCs' DNA-PK and pDNA-PK protein levels in PBMCs and in the spleen and increased DNA-PK mRNA expression and expression of MDSCs functional markers in splenic MDSCs from tumor-bearing mice. NU7441 combined with gemcitabine reduced tumor volume, which may be because gemcitabine eliminated the remaining MDSCs with enhanced immunosuppressive ability. CONCLUSIONS These findings highlight that the regulation of DNA-PK activity by NU7441 promotes TNBC progression via enhancing the immunosuppressive function of MDSCs. Moreover, NU7441 combined with gemcitabine offers an efficient therapeutic approach for TNBC and merits deeper investigation.
Collapse
Affiliation(s)
- Jiawen Han
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Minjie Wan
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Department of Hepatology, The First Hospital of Jilin University, Changchun, China
| | - Zhanchuan Ma
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| | - Huanfa Yi
- Central Laboratory, The First Hospital of Jilin University, Changchun, China
- Key Laboratory of Organ Regeneration and Transplantation Ministry of Education, Changchun, China
| |
Collapse
|
98
|
Cao Y, Wang J, Jiang S, Lyu M, Zhao F, Liu J, Wang M, Pei X, Zhai W, Feng X, Feng S, Han M, Xu Y, Jiang E. JAK1/2 inhibitor ruxolitinib promotes the expansion and suppressive action of polymorphonuclear myeloid-derived suppressor cells via the JAK/STAT and ROS-MAPK/NF-κB signalling pathways in acute graft-versus-host disease. Clin Transl Immunology 2023; 12:e1441. [PMID: 36855558 PMCID: PMC9968240 DOI: 10.1002/cti2.1441] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/27/2022] [Accepted: 02/07/2023] [Indexed: 02/27/2023] Open
Abstract
Objectives Ruxolitinib, a Janus kinase (JAK) 1/2 inhibitor, demonstrates efficacy for treating steroid-resistant acute graft-versus-host disease (SR-aGVHD) following allogeneic stem cell transplantation (allo-HSCT). Myeloid-derived suppressor cells (MDSCs) have a protective effect on aGVHD via suppressing T cell function. However, the precise features and mechanism of JAK inhibitor-mediated immune modulation on MDSCs subsets remain poorly understood. Methods A total of 74 SR-aGVHD patients treated with allo-HSCT and ruxolitinib were enrolled in the present study. The alterations of MDSC and regulatory T cell (Treg) populations were monitored during ruxolitinib treatment in responders and nonresponders. A mouse model of aGVHD was used to evaluate the immunosuppressive activity of MDSCs and related signalling pathways in response to ruxolitinib administration in vivo and in vitro. Results Patients with SR-aGVHD who received ruxolitinib treatment achieved satisfactory outcomes. Elevation proportions of MDSCs before treatment, especially polymorphonuclear-MDSCs (PMN-MDSCs) were better to reflect the response to ruxolitinib than those in Tregs. In the mouse model of aGVHD, the administration of ruxolitinib resulted in the expansion and functional enhancement of PMN-MDSCs and the effects could be partially reversed by an anti-Gr-1 antibody in vivo. Ruxolitinib treatment significantly elevated the suppressive function of PMN-MDSCs through reactive oxygen species (ROS) production by Nox2 upregulation as well as bypassing the activated MAPK/NF-κB signalling pathway. Additionally, ex vivo experiments demonstrated that ruxolitinib prevented the differentiation of mature myeloid cells and promoted the accumulation of MDSCs by inhibiting STAT5. Conclusions Ruxolitinib enhances PMN-MDSCs functions through JAK/STAT and ROS-MAPK/NF-κB signalling pathways. Monitoring frequencies and functions of MDSCs can help evaluate treatment responses to ruxolitinib.
Collapse
Affiliation(s)
- Yigeng Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jiali Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Shan Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Mengnan Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Fei Zhao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Jia Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Mingyang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Xiaolei Pei
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Weihua Zhai
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Xiaoming Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Sizhou Feng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Mingzhe Han
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Yuanfu Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina
| | - Erlie Jiang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina,Tianjin Institutes of Health ScienceTianjinChina,Hematopoietic Stem Cell Transplantation Center, Institute of Hematology & Blood Diseases HospitalChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| |
Collapse
|
99
|
Radiotherapy, PARP Inhibition, and Immune-Checkpoint Blockade: A Triad to Overcome the Double-Edged Effects of Each Single Player. Cancers (Basel) 2023; 15:cancers15041093. [PMID: 36831435 PMCID: PMC9954050 DOI: 10.3390/cancers15041093] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Radiotherapy and, more recently, PARP inhibitors (PARPis) and immune-checkpoint inhibitors represent effective tools in cancer therapy. Radiotherapy exerts its effects not only by damaging DNA and inducing tumor cell death, but also stimulating anti-tumor immune responses. PARPis are known to exert their therapeutic effects by inhibiting DNA repair, and they may be used in combination with radiotherapy. Both radiotherapy and PARPis modulate inflammatory signals and stimulate type I IFN (IFN-I)-dependent immune activation. However, they can also support the development of an immunosuppressive tumor environment and upregulate PD-L1 expression on tumor cells. When provided as monotherapy, immune-checkpoint inhibitors (mainly antibodies to CTLA-4 and the PD-1/PD-L1 axis) result particularly effective only in immunogenic tumors. Combinations of immunotherapy with therapies that favor priming of the immune response to tumor-associated antigens are, therefore, suitable strategies. The widely explored association of radiotherapy and immunotherapy has confirmed this benefit for several cancers. Association with PARPis has also been investigated in clinical trials. Immunotherapy counteracts the immunosuppressive effects of radiotherapy and/or PARPis and synergies with their immunological effects, promoting and unleashing immune responses toward primary and metastatic lesions (abscopal effect). Here, we discuss the beneficial and counterproductive effects of each therapy and how they can synergize to overcome single-therapy limitations.
Collapse
|
100
|
Prado CADS, Fonseca DLM, Singh Y, Filgueiras IS, Baiocchi GC, Plaça DR, Marques AHC, Dantas-Komatsu RCS, Usuda JN, Freire PP, Salgado RC, Napoleao SMDS, Ramos RN, Rocha V, Zhou G, Catar R, Moll G, Camara NOS, de Miranda GC, Calich VLG, Giil LM, Mishra N, Tran F, Luchessi AD, Nakaya HI, Ochs HD, Jurisica I, Schimke LF, Cabral-Marques O. Integrative systems immunology uncovers molecular networks of the cell cycle that stratify COVID-19 severity. J Med Virol 2023; 95:e28450. [PMID: 36597912 PMCID: PMC10107240 DOI: 10.1002/jmv.28450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023]
Abstract
Several perturbations in the number of peripheral blood leukocytes, such as neutrophilia and lymphopenia associated with Coronavirus disease 2019 (COVID-19) severity, point to systemic molecular cell cycle alterations during severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, the landscape of cell cycle alterations in COVID-19 remains primarily unexplored. Here, we performed an integrative systems immunology analysis of publicly available proteome and transcriptome data to characterize global changes in the cell cycle signature of COVID-19 patients. We found significantly enriched cell cycle-associated gene co-expression modules and an interconnected network of cell cycle-associated differentially expressed proteins (DEPs) and genes (DEGs) by integrating the molecular data of 1469 individuals (981 SARS-CoV-2 infected patients and 488 controls [either healthy controls or individuals with other respiratory illnesses]). Among these DEPs and DEGs are several cyclins, cell division cycles, cyclin-dependent kinases, and mini-chromosome maintenance proteins. COVID-19 patients partially shared the expression pattern of some cell cycle-associated genes with other respiratory illnesses but exhibited some specific differential features. Notably, the cell cycle signature predominated in the patients' blood leukocytes (B, T, and natural killer cells) and was associated with COVID-19 severity and disease trajectories. These results provide a unique global understanding of distinct alterations in cell cycle-associated molecules in COVID-19 patients, suggesting new putative pathways for therapeutic intervention.
Collapse
Affiliation(s)
- Caroline Aliane de Souza Prado
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Dennyson Leandro M Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil
| | - Youvika Singh
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Igor Salerno Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gabriela Crispim Baiocchi
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Desirée Rodrigues Plaça
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandre H C Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Júlia N Usuda
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Paula Paccielli Freire
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ranieri Coelho Salgado
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Rodrigo Nalio Ramos
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil
| | - Vanderson Rocha
- Laboratory of Medical Investigation in Pathogenesis and Directed Therapy in Onco-Immuno-Hematology (LIM-31), Departament of Hematology and Cell Therapy, Hospital das Clínicas HCFMUSP, Faculdade de Medicina, University of São Paulo, São Paulo, Brazil.,Instituto D'Or de Ensino e Pesquisa, Hospital São Luiz, São Paulo, Brazil.,Fundação Pró-Sangue-Hemocentro de São Paulo, Hospital das Clínicas da Universidade de São Paulo, São Paulo, Brazil.,Department of Hematology, Churchill Hospital, University of Oxford, Oxford, UK
| | - Guangyan Zhou
- Institute of Parasitology, McGill University, Montreal, Quebec, Canada
| | - Rusan Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité University Hospital, Berlin, Germany.,Berlin Institute of Health (BIH) and Berlin Center for Regenerative Therapies (BCRT), Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin-Brandenburg School for Regenerative Therapies (BSRT), all Charité Universitätsmedizin Berlin, Berlin, Germany
| | | | - Gustavo Cabral de Miranda
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lasse M Giil
- Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Neha Mishra
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany.,Department of Internal Medicine I, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andre Ducati Luchessi
- Department of Clinical and Toxicology Analysis, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Helder I Nakaya
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Instituto Israelita de Ensino e Pesquisa Albert Einstein, Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Hans D Ochs
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, Seattle, Washington, USA
| | - Igor Jurisica
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, UHN, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Departments of Medical Biophysics and Computer Science, Faculty of Dentistry, University of Toronto, Toronto, Ontario, Canada.,Krembil Research Institute, UHN, Data Science Discovery Centre, Toronto, Ontario, Canada
| | - Lena F Schimke
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Otavio Cabral-Marques
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.,Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of Sao Paulo (USP), Sao Paulo, Brazil.,Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.,Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil.,Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil.,Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| |
Collapse
|