51
|
Hu X, Wang L, Shang B, Wang J, Sun J, Liang B, Su L, You W, Jiang S. Immune checkpoint inhibitor-associated toxicity in advanced non-small cell lung cancer: An updated understanding of risk factors. Front Immunol 2023; 14:1094414. [PMID: 36949956 PMCID: PMC10025397 DOI: 10.3389/fimmu.2023.1094414] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs), such as programmed death-1 (PD-1), programmed death-ligand 1 (PD-L1), cytotoxic T lymphocyte antigen 4 (CTLA-4) antibodies, etc, have revolutionized cancer treatment strategies, including non-small cell lung cancer (NSCLC). While these immunotherapy agents have achieved durable clinical benefits in a subset of NSCLC patients, they bring in a variety of immune-related adverse events (irAEs), which involve cardiac, pulmonary, gastrointestinal, endocrine and dermatologic system damage, ranging from mild to life-threatening. Thus, there is an urgent need to better understand the occurrence of irAEs and predict patients who are susceptible to those toxicities. Herein, we provide a comprehensive review of what is updated about the clinical manifestations, mechanisms, predictive biomarkers and management of ICI-associated toxicity in NSCLC. In addition, this review also provides perspective directions for future research of NSCLC-related irAEs.
Collapse
Affiliation(s)
- Xiangxiao Hu
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lina Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Respiratory and Critical Care Medicine, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Shang
- Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Junren Wang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Jian Sun
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Bin Liang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Lili Su
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie You
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- Department of Thoracic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- *Correspondence: Wenjie You, ; Shujuan Jiang,
| | - Shujuan Jiang
- Department of Respiratory and Critical Care Medicine, Shandong Provincial Hospital affiliated to Shandong First Medical University, Jinan, China
- Shandong Key Laboratory of Infectious Respiratory Disease, Jinan, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Wenjie You, ; Shujuan Jiang,
| |
Collapse
|
52
|
Liu BW, Shang QX, Yang YS, Chen LQ. Efficacy and safety of PD-1/PD-L1 inhibitor combined with chemotherapy versus chemotherapy alone in the treatment of advanced gastric or gastroesophageal junction adenocarcinoma: a systematic review and meta-analysis. Front Oncol 2023; 13:1077675. [PMID: 37114136 PMCID: PMC10129365 DOI: 10.3389/fonc.2023.1077675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Background There is increasing evidence that immunotherapy (programmed cell death-1 (PD-1) inhibitor) combined with chemotherapy is superior to chemotherapy alone in neoadjuvant therapy for patients with previously untreated, unresectable advanced, or metastatic esophageal adenocarcinoma (EAC)/gastric/gastroesophageal junction adenocarcinoma (GEA). However, the results of recent studies have been contradictory. Therefore, the aim of this article is to evaluate the efficacy and safety of PD-1 inhibitors combined with chemotherapy in neoadjuvant therapy through meta-analysis. Method We comprehensively reviewed the literature and clinical randomized controlled trials (RCTs) by February 2022 by searching Medical Subject Headings (MeSH) and keywords such as "esophageal adenocarcinoma" or "immunotherapy" in several databases, including the Embase, Cochrane, PubMed, and ClinicalTrials.gov websites. Two authors independently selected studies, extracted data, and assessed the risk of bias and quality of evidence by using standardized Cochrane Methods procedures. The primary outcomes were 1-year overall survival (OS) and 1-year progression-free survival (PFS), estimated by calculating the 95% confidence interval (CI) for the combined odds ratio (OR) and hazard ratio (HR). Secondary outcomes estimated using OR were disease objective response rate (DORR) and incidence of adverse events. Results Four RCTs with a total of 3,013 patients researching the efficacy of immunotherapy plus chemotherapy versus chemotherapy alone on gastrointestinal cancer were included in this meta-analysis. The results showed that immune checkpoint inhibitor plus chemotherapy treatment was associated with an increased risk of PFS (HR = 0.76 [95% CI: 0.70-0.83]; p < 0.001), OS (HR = 0.81 [95% CI: 0.74-0.89]; p < 0.001), and DORR (relative ratio (RR) = 1.31 [95% CI: 1.19-1.44]; p < 0.0001) when compared with chemotherapy alone in advanced, unresectable, and metastatic EAC/GEA. However, immunotherapy combined with chemotherapy increased the incidence of adverse reactions such as alanine aminotransferase elevation (OR = 1.55 [95% CI: 1.17-2.07]; p = 0.003) and palmar-plantar erythrodysesthesia (PPE) syndrome (OR = 1.30 [95% CI: 1.05-1.63]; p = 0.02). Nausea (OR = 1.24 [95% CI: 1.07-1.44]; p = 0.005) and white blood cell count decreased (OR = 1.40 [95% CI: 1.13-1.73]; p = 0.002), and so on. Fortunately, toxicities were within acceptable limits. Meanwhile, for patients with a combined positive score (CPS) ≥1, compared with chemotherapy alone, immunotherapy combined with chemotherapy had a better overall survival rate (HR = 0.81 [95% CI: 0.73-0.90]; p = 0.0001). Conclusion Our study shows that immunotherapy plus chemotherapy has an obvious benefit for patients with previously untreated, unresectable advanced, or metastatic EAC/GEA when compared with chemotherapy alone. However, a high risk of adverse reactions may occur during immunotherapy plus chemotherapy, and more studies focusing on the treatment strategies of untreated, unresectable advanced, or metastatic EAC/GEA are warranted. Systematic review registration www.crd.york.ac.uk, identifier CRD42022319434.
Collapse
|
53
|
Haanen J, Obeid M, Spain L, Carbonnel F, Wang Y, Robert C, Lyon AR, Wick W, Kostine M, Peters S, Jordan K, Larkin J. Management of toxicities from immunotherapy: ESMO Clinical Practice Guideline for diagnosis, treatment and follow-up. Ann Oncol 2022; 33:1217-1238. [PMID: 36270461 DOI: 10.1016/j.annonc.2022.10.001] [Citation(s) in RCA: 485] [Impact Index Per Article: 161.7] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- J Haanen
- Division of Medical Oncology, Netherlands Cancer Institute (NKI), Amsterdam, The Netherlands
| | - M Obeid
- Immunology and Allergy Service, CHUV, Lausanne; Lausanne Center for Immuno-oncology Toxicities (LCIT), CHUV, Lausanne; Department of Oncology, CHUV, Lausanne, Switzerland
| | - L Spain
- Medical Oncology Department, Peter MacCallum Cancer Centre, Melbourne; Department of Medical Oncology, Eastern Health, Melbourne; Monash University Eastern Health Clinical School, Box Hill, Australia
| | - F Carbonnel
- Gastroenterology Department, Assistance Publique-Hôpitaux de Paris, Hôpital Universitaire Bicêtre, Le Kremlin Bicêtre, France; Université Paris Saclay 11, Le Kremlin-Bicêtre, France
| | - Y Wang
- Department of Gastroenterology, Hepatology & Nutrition, The University of Texas MD Anderson Cancer Center, Houston, USA
| | - C Robert
- Department of Medicine, Gustave Roussy Cancer Centre, Villejuif; Paris-Saclay University, Villejuif, France
| | - A R Lyon
- Cardio-Oncology Service, Royal Brompton Hospital, London; National Heart and Lung Institute, Imperial College London, London, UK
| | - W Wick
- Neurology Clinic and National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg; DKTK and Clinical Cooperation Unit NeuroOncology, DKFZ, Heidelberg, Germany
| | - M Kostine
- Department of Rheumatology, Hôpital Pellegrin, CHU de Bordeaux, Bordeaux, France
| | - S Peters
- Department of Oncology, CHUV, Lausanne, Switzerland
| | - K Jordan
- Department of Haematology, Oncology and Palliative Medicine, Ernst von Bergmann Hospital Potsdam, Potsdam; Department of Haematology, Oncology and Rheumatology, University Hospital Heidelberg, Heidelberg, Germany
| | - J Larkin
- Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
54
|
VanDyke D, Iglesias M, Tomala J, Young A, Smith J, Perry JA, Gebara E, Cross AR, Cheung LS, Dykema AG, Orcutt-Jahns BT, Henclová T, Golias J, Balolong J, Tomasovic LM, Funda D, Meyer AS, Pardoll DM, Hester J, Issa F, Hunter CA, Anderson MS, Bluestone JA, Raimondi G, Spangler JB. Engineered human cytokine/antibody fusion proteins expand regulatory T cells and confer autoimmune disease protection. Cell Rep 2022; 41:111478. [PMID: 36261022 PMCID: PMC9631798 DOI: 10.1016/j.celrep.2022.111478] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/02/2022] [Accepted: 09/20/2022] [Indexed: 11/12/2022] Open
Abstract
Low-dose human interleukin-2 (hIL-2) treatment is used clinically to treat autoimmune disorders due to the cytokine's preferential expansion of immunosuppressive regulatory T cells (Tregs). However, off-target immune cell activation and short serum half-life limit the clinical potential of IL-2 treatment. Recent work showed that complexes comprising hIL-2 and the anti-hIL-2 antibody F5111 overcome these limitations by preferentially stimulating Tregs over immune effector cells. Although promising, therapeutic translation of this approach is complicated by the need to optimize dosing ratios and by the instability of the cytokine/antibody complex. We leverage structural insights to engineer a single-chain hIL-2/F5111 antibody fusion protein, termed F5111 immunocytokine (IC), which potently and selectively activates and expands Tregs. F5111 IC confers protection in mouse models of colitis and checkpoint inhibitor-induced diabetes mellitus. These results provide a roadmap for IC design and establish a Treg-biased immunotherapy that could be clinically translated for autoimmune disease treatment.
Collapse
Affiliation(s)
- Derek VanDyke
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marcos Iglesias
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jakub Tomala
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec 252 50, Czech Republic
| | - Arabella Young
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, CA 94143, USA; Huntsman Cancer Institute, University of Utah Health Sciences Center, Salt Lake City, UT 84112, USA; Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Jennifer Smith
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph A Perry
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward Gebara
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Amy R Cross
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Laurene S Cheung
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Arbor G Dykema
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Brian T Orcutt-Jahns
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tereza Henclová
- Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Vestec 252 50, Czech Republic
| | - Jaroslav Golias
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Jared Balolong
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Luke M Tomasovic
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - David Funda
- Institute of Microbiology of the Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | - Aaron S Meyer
- Department of Bioengineering, Jonsson Comprehensive Cancer Center, Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Drew M Pardoll
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA
| | - Joanna Hester
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Fadi Issa
- Translational Research Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford OX3 9DU, UK
| | - Christopher A Hunter
- Department of Pathobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark S Anderson
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California San Francisco, San Francisco, CA 94143, USA; Sean N. Parker Autoimmune Research Laboratory, University of California San Francisco, San Francisco, CA 94143, USA; Sonoma Biotherapeutics, South San Francisco, CA 94080, USA
| | - Giorgio Raimondi
- Vascularized Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD 21231, USA; Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD 21231, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|
55
|
Liu Z, Lin G, Yan Z, Li L, Wu X, Shi J, He J, Zhao L, Liang H, Wang W. Predictive mutation signature of immunotherapy benefits in NSCLC based on machine learning algorithms. Front Immunol 2022; 13:989275. [PMID: 36238300 PMCID: PMC9552174 DOI: 10.3389/fimmu.2022.989275] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
Background Developing prediction tools for immunotherapy approaches is a clinically important and rapidly emerging field. The routinely used prediction biomarker is inaccurate and may not adequately utilize large amounts of medical data. Machine learning is a promising way to predict the benefit of immunotherapy from individual data by individuating the most important features from genomic data and clinical characteristics. Methods Machine learning was applied to identify a list of candidate genes that may predict immunotherapy benefits using data from the published cohort of 853 patients with NSCLC. We used XGBoost to capture nonlinear relations among many mutation genes and ICI benefits. The value of the derived machine learning-based mutation signature (ML-signature) on immunotherapy efficacy was evaluated and compared with the tumor mutational burden (TMB) and other clinical characteristics. The predictive power of ML-signature was also evaluated in independent cohorts of patients with NSCLC treated with ICI. Results We constructed the ML-signature based on 429 (training/validation = 8/2) patients who received immunotherapy and extracted 88 eligible predictive genes. Additionally, we conducted internal and external validation with the utility of the OAK+POPLAR dataset and independent cohorts, respectively. This ML-signature showed the enrichment in immune-related signaling pathways and compared to TMB, ML-signature was equipped with favorable predictive value and stratification. Conclusion Previous studies proposed no predictive difference between original TMB and modified TMB, and original TMB contains some genes with no predictive value. To demonstrate that fewer genetic tests are sufficient to predict immunotherapy efficacy, we used machine learning to screen out gene panels, which are used to calculate TMB. Therefore, we obtained the 88-gene panel, which showed the favorable prediction performance and stratification effect compared to the original TMB.
Collapse
Affiliation(s)
- Zhichao Liu
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo Lin
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- Department of Thoracic Oncology, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Zeping Yan
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Linduo Li
- College of Engineering, Northeastern University, Boston, MA, United States
| | - Xingchen Wu
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | | | - Jianxing He
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
| | - Lei Zhao
- Department of Physiology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Lei Zhao, ; Hengrui Liang, ; Wei Wang,
| | - Hengrui Liang
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- *Correspondence: Lei Zhao, ; Hengrui Liang, ; Wei Wang,
| | - Wei Wang
- Department of Thoracic Oncology, The First Affiliated Hospital of Guangzhou Medical University, State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou, China
- *Correspondence: Lei Zhao, ; Hengrui Liang, ; Wei Wang,
| |
Collapse
|
56
|
Zhao N, Yi Y, Cao W, Fu X, Mei N, Li C. Serum cytokine levels for predicting immune-related adverse events and the clinical response in lung cancer treated with immunotherapy. Front Oncol 2022; 12:923531. [PMID: 36091125 PMCID: PMC9449836 DOI: 10.3389/fonc.2022.923531] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/25/2022] [Indexed: 12/31/2022] Open
Abstract
Background At present, immunotherapy has become an important treatment for lung cancer. With the widespread use of immune checkpoint inhibitors (ICIs), we must be strict with the emergence of immune related adverse events (irAEs). There are also some patients who do not respond to immunotherapy. However, there was no biomarkers to predict the safety and efficacy of immunotherapy. The selection of immunotherapy beneficiaries contributes to improving the efficacy and safety of lung cancer treatment. Method The electronic medical records of 221 lung cancer patients with complete clinical data who received immunotherapy from the First Affiliated Hospital of Xi 'an Jiaotong University from November 2020 to October 2021 were collected and followed up. IBM SPSS Statistic 26.0 and R 4.1.2 software were used for statistical analysis and mapping. Results 1. A total of 221 lung cancer patients receiving immunotherapy were included in the study. Higher baseline levels of IL-1β (7.88 vs 16.16pg/mL, P=0.041) and IL-2 (1.28 vs 2.48pg/mL, P=0.001) were significantly associated with irAEs. Higher levels of IL-5 (2.64 vs 5.68pg/mL, P=0.013), IFN-α (1.70 vs 3.56pg/mL, P=0.004) and IFN-γ (6.14 vs 21.31pg/mL, P=0.022) after the first cycle therapy were associated with irAEs. There was no statistical significance between cytokines and irAEs after the second cycle therapy. Higher IL-5 levels in peripheral blood (9.50 vs 3.57pg/mL, P=0.032) were associated with the occurrence of irAEs after the third cycle therapy. 2.The efficacy of immunotherapy was assessed in 142 lung cancer patients. There was no statistical significance between baseline cytokine levels and clinical benefit. After the first cycle therapy, the level of serum cytokines had no statistical significance with the occurrence of immunotherapy clinical benefit. Lower serum levels of IL-10 (2.66 vs 1.26pg/mL, P=0.016) and IL-17 (8.47 vs 2.81pg/mL, P=0.015) were associated with clinical benefit after the second cycle therapy. Lower serum levels of IL-6 (10.19 vs 41.07pg/mL, P=0.013) and IL-8 (8.01 vs 17.22pg/mL, P=0.039) were associated with clinical benefit of immunotherapy after the third cycle therapy. Conclusion 1. Baseline IL-1β and IL-2 levels in peripheral blood were associated with the occurrence of irAEs in lung cancer patients. The levels of IL-5, IFN-α and IFN-γ during treatment were associated with irAEs. 2. Baseline cytokine levels in peripheral blood were not associated with immunotherapy efficacy. The levels of IL-6, IL-8, IL-10, and IL-17 levels during treatment were associated with immunotherapy efficacy.
Collapse
Affiliation(s)
- Ni Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China
| | - Ye Yi
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China
| | - Wen Cao
- Department of Respiratory Medicine, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiao Fu
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China
| | - Nan Mei
- Department of Hematology. The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Chunli Li
- Department of Medical Oncology, The First Affiliated Hospital of Xi’’an Jiaotong University, Xi’an, China,*Correspondence: Chunli Li,
| |
Collapse
|
57
|
Lechner MG, Cheng MI, Patel AY, Hoang AT, Yakobian N, Astourian M, Pioso MS, Rodriguez ED, McCarthy EC, Hugo W, Angell TE, Drakaki A, Ribas A, Su MA. Inhibition of IL-17A Protects against Thyroid Immune-Related Adverse Events while Preserving Checkpoint Inhibitor Antitumor Efficacy. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:696-709. [PMID: 35817515 PMCID: PMC9378719 DOI: 10.4049/jimmunol.2200244] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/20/2022] [Indexed: 11/19/2022]
Abstract
Immune checkpoint inhibitor (ICI) immunotherapy leverages the body's own immune system to attack cancer cells but leads to unwanted autoimmune side effects in up to 60% of patients. Such immune-related adverse events (IrAEs) may lead to treatment interruption, permanent organ dysfunction, hospitalization, and premature death. Thyroiditis is one of the most common IrAEs, but the cause of thyroid IrAEs remains unknown. In this study, we use a new, physiologically relevant mouse model of ICI-associated autoimmunity to identify a key role for type 3 immune cells in the development of thyroid IrAEs. Multiple lineages of IL-17A-producing T cells expand in thyroid tissue with ICI treatment. Intrathyroidal IL-17A-producing innate-like γδT17 cells were increased in tumor-free mice, whereas adaptive Th17 cells were also prominent in tumor-bearing mice, following ICI treatment. Furthermore, Ab-based inhibition of IL-17A, a clinically available therapy, significantly reduced thyroid IrAE development in ICI-treated mice with and without tumor challenge. Finally, combination of IL-17A neutralization with ICI treatment in multiple tumor models did not reduce ICI antitumor efficacy. These studies suggest that targeting Th17 and γδT17 cell function via the IL-17A axis may reduce IrAEs without impairing ICI antitumor efficacy and may be a generalizable strategy to address type 3 immune-mediated IrAEs.
Collapse
Affiliation(s)
- Melissa G Lechner
- Division of Endocrinology, Diabetes, and Metabolism, UCLA David Geffen School of Medicine, Los Angeles, CA;
| | - Mandy I Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Anushi Y Patel
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Aline T Hoang
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | | | - Michael Astourian
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Marissa S Pioso
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Eduardo D Rodriguez
- Department of Pathology, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Ethan C McCarthy
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Willy Hugo
- Division of Dermatology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, CA
| | - Trevor E Angell
- Division of Endocrinology and Diabetes, USC Keck School of Medicine, Los Angeles, CA
| | - Alexandra Drakaki
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA; and
| | - Antoni Ribas
- Division of Hematology and Oncology, UCLA David Geffen School of Medicine, Los Angeles, CA; and
| | - Maureen A Su
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA David Geffen School of Medicine, Los Angeles, CA
- Division of Pediatric Endocrinology, UCLA David Geffen School of Medicine, Los Angeles, CA
| |
Collapse
|
58
|
Gao J, Miao J, Sun H, Fu X, Zhang P, Chen Z, Zhu P. TNF-α inhibitor ameliorates immune-related arthritis and pneumonitis in humanized mice. Front Immunol 2022; 13:955812. [PMID: 36016934 PMCID: PMC9396351 DOI: 10.3389/fimmu.2022.955812] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesThis study aimed at establishing a mouse model of immune-related adverse in humanized BALB/c-hPD1/hCTLA4 mice to investigate their potential pathogenesis and explore therapeutic targets for immune-related arthritis and pneumonitis.MethodsHumanized BALB/c-hPD1/hCTLA4 mice were injected with vehicle or collagen-specific antibodies (CA) and immune checkpoint inhibitors (ICI, ipilimumab, anti-human CTLA-4; and nivolumab, anti-human PD-1), and some mice were treated with anti-TNF-α antibody, leading to the control, collagen antibody-induced arthritis (CAIA), CAIA+ICI and treatment groups. The severity of clinical arthritis and pneumonitis in mice was monitored longitudinally and the pathological changes in the joints and lungs were histologically analyzed and the contents of lung hydroxyproline were measured. The frequency of different subsets of T cells was analyzed by flow cytometry and multiplex immunofluorescency.ResultsCompared with the control, the ICI group of mice developed the delayed onset of moderate degrees of arthritis while the CAIA+ICI group of mice exhibited the early onset of severe arthritis. Treatment with ICI caused severe pneumonitis, especially in the mice with CA. Flow cytometry analysis indicated a significantly higher frequency of splenic TNF-α+CD4+ and TNF-α+CD8+ T cells, but not other subsets of T cells tested, in the CAIA+ICI group of mice, relative to that in other groups of mice. Treatment with anti-TNF-α significantly mitigated the severity of arthritis and pneumonitis as well as deposition of collagen in lung of mice. The treatment also decreased the frequency of TNF-α+CD4+ and TNF-α+CD8+ T cells as well as effector memory T cells in the periphery lymph orangs and lungs of mice.ConclusionsWe successfully established a humanized mouse model of ICI-related severe arthritis and pneumonitis with a higher frequency of TNF-α+ T cells, which were significantly mitigated by anti-TNF-α treatment. Conceptually, ICI treatment can induce multiple autoimmune-like diseases in autoimmune-prone individuals and TNF-α+ T cells may be therapeutic targets for intervention of immune-related arthritis and pneumonitis.
Collapse
Affiliation(s)
- Jian Gao
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
| | - Jinlin Miao
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ping Zhu, ; Zhinan Chen, ; Jinlin Miao,
| | - Haoyang Sun
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Xianghui Fu
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Peiyan Zhang
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
| | - Zhinan Chen
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Talent Highland of Bio-targeting Theranostics, Guangxi Medical University, Nanning, China
- *Correspondence: Ping Zhu, ; Zhinan Chen, ; Jinlin Miao,
| | - Ping Zhu
- Department of Clinical Immunology, National Translational Science Center for Molecular Medicine & Department of Cell Biology, PLA Specialized Research Institute of Rheumatoid & Immunology, Xijing Hospital, The Fourth Military Medical University, Xi’an, China
- *Correspondence: Ping Zhu, ; Zhinan Chen, ; Jinlin Miao,
| |
Collapse
|
59
|
Abstract
OPINION STATEMENT Immune checkpoint inhibitors (ICIs) have become an essential part of treatment for many cancer types. These monoclonal antibodies remove a critical negative regulatory signal that allows the immune system to recognize and destroy malignant cells that were previously undetectable. Unfortunately, their use has ushered in a whole new form of drug toxicity whereby the immune system attacks normal tissues in the body, referred to hereafter as immune-related adverse events (irAEs). irAEs are common and can result in treatment discontinuation, hospitalization, and death. When alternative modes of treatment are limited, or considered less efficacious, there may be a desire to resume treatment with ICIs after an irAE. Rechallenge with ICIs carries with it a heightened risk of subsequent toxicity, but with careful consideration and appropriate patient selection, this can be considered a reasonable approach.
Collapse
|
60
|
Guzzeloni V, Veschini L, Pedica F, Ferrero E, Ferrarini M. 3D Models as a Tool to Assess the Anti-Tumor Efficacy of Therapeutic Antibodies: Advantages and Limitations. Antibodies (Basel) 2022; 11:antib11030046. [PMID: 35892706 PMCID: PMC9326665 DOI: 10.3390/antib11030046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/30/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023] Open
Abstract
Therapeutic monoclonal antibodies (mAbs) are an emerging and very active frontier in clinical oncology, with hundred molecules currently in use or being tested. These treatments have already revolutionized clinical outcomes in both solid and hematological malignancies. However, identifying patients who are most likely to benefit from mAbs treatment is currently challenging and limiting the impact of such therapies. To overcome this issue, and to fulfill the expectations of mAbs therapies, it is urgently required to develop proper culture models capable of faithfully reproducing the interactions between tumor and its surrounding native microenvironment (TME). Three-dimensional (3D) models which allow the assessment of the impact of drugs on tumors within its TME in a patient-specific context are promising avenues to progressively fill the gap between conventional 2D cultures and animal models, substantially contributing to the achievement of personalized medicine. This review aims to give a brief overview of the currently available 3D models, together with their specific exploitation for therapeutic mAbs testing, underlying advantages and current limitations to a broader use in preclinical oncology.
Collapse
Affiliation(s)
- Virginia Guzzeloni
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Lorenzo Veschini
- Academic Centre of Reconstructive Science, Faculty of Dentistry Oral & Craniofacial Sciences, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Federica Pedica
- Pathology Unit, IRCCS Ospedale San Raffaele, 20132 Milan, Italy;
| | - Elisabetta Ferrero
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
| | - Marina Ferrarini
- B-Cell Neoplasia Unit, Division of Experimental Oncology, IRCCS Ospedale San Raffaele, 20132 Milan, Italy; (V.G.); (E.F.)
- Correspondence:
| |
Collapse
|
61
|
Robles-Alonso V, Martínez-Valle F, Borruel N. Co Treatment With Biologic Agents and Immunotherapy in the Setting of irAEs of Difficult Management. Front Med (Lausanne) 2022; 9:906098. [PMID: 35847803 PMCID: PMC9279607 DOI: 10.3389/fmed.2022.906098] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/27/2022] [Indexed: 12/19/2022] Open
Abstract
In recent years, immunotherapy has become an important pillar of cancer treatment, with high response rates regardless of tumor histology or baseline mutations, sometime in patients without any alternative of treatment. Moreover, these treatments are moving from later line therapies to front-line therapies in the metastasic setting. However, immune activation associated with immune check-point inhibitors (ICI) is not selective and a large variety of immune-related adverse events, with an increasing frequency, have been associated with anti-PD1, anti-PD-1/L-1 and anti-CTLA-4 agents. In clinical trials, and sometimes also in real life practice, patients who develop severe toxicities on ICI-based therapies are usually not allowed to resume ICI once their disease progresses, because of the chance of developing severe irAEs on rechallenge with immunotherapies. Moreover, patients with irAEs suffer important side effects due to the high dose corticosteroids that are used to treat them. Therapy with ICI is sometimes the only alternative for certain patients, and for this reason co treatment with classic (DMARDS) or biologic immunosuppression therapy and ICI must be considered. Co-treatment with this type of immunosuppressant drugs, apart from allowing the maintenance of ICI therapy, drive to a lesser use of corticosteroids, with an improvement of the safety and quality of life of the patients. Such a tailored scheme of treatment is mostly an expert opinion based on recommendation and currently there is scarce evidence supporting it. Herein we present comprehensive, current recommendations and real-world data on the use of co-treatment with ICI and DMARDS and biologic immunosuppression.
Collapse
Affiliation(s)
- Virginia Robles-Alonso
- Crohn's and Colitis Attention Unit, Digestive System Service, Hospital Vall d'Hebron, Barcelona, Spain
| | - Fernando Martínez-Valle
- Systemic Autoimmune Diseases Unit, Internal Medicine Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- *Correspondence: Fernando Martínez-Valle
| | - Natalia Borruel
- Crohn's and Colitis Attention Unit, Digestive System Service, Hospital Vall d'Hebron, Barcelona, Spain
- Centro de Investigaciones Biomédicas en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
62
|
Chen M, Liu M, Li C, Peng S, Li Y, Xu X, Sun M, Sun X. Fecal Microbiota Transplantation Effectively Cures a Patient With Severe Bleeding Immune Checkpoint Inhibitor-Associated Colitis and a Short Review. Front Oncol 2022; 12:913217. [PMID: 35756645 PMCID: PMC9229182 DOI: 10.3389/fonc.2022.913217] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have opened up a new way for tumor therapy but simultaneously led to the occurrence of immune-related adverse events. We report a case of successful treatment of PD-1 inhibitor-associated colitis with fecal microbiota transplantation (FMT). The patient was a palatal malignant melanoma who developed diarrhea and hematochezia accompanied by fever, gastrointestinal bleeding, and infection after the third treatment with PD-1 (Toripalimab). The patient received general treatment unsuccessful, corticosteroid therapy after initial success but rapid loss of response, and finally successful treatment after fecal microbiota transplantation.
Collapse
Affiliation(s)
- Minmin Chen
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mengyuan Liu
- Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Chenyan Li
- Department of Endocrinology and Metabolism, First Hospital of China Medical University, Shenyang, China
| | - Shiqiao Peng
- Department of Endocrinology and Metabolism, First Hospital of China Medical University, Shenyang, China
| | - Yiling Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xiuying Xu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Mingjun Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China.,Department of Gastrointestinal Endoscopy, First Affiliated Hospital of China Medical University, Shenyang, China
| | - Xuren Sun
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
63
|
Cardeña-Gutiérrez A, López Barahona M. Predictive Biomarkers of Severe Immune-Related Adverse Events With Immune Checkpoint Inhibitors: Prevention, Underlying Causes, Intensity, and Consequences. Front Med (Lausanne) 2022; 9:908752. [PMID: 35774996 PMCID: PMC9237384 DOI: 10.3389/fmed.2022.908752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have dramatically transformed oncology by prolonging overall survival and yielding better patient tolerance compared to other chemotherapeutic agents. However, numerous questions remain unanswered about the toxicity profile of ICIs, its relationship with the treatment response, and causes underlying the excellent treatment response in some patients, while recalcitrance in others. Research groups have continued to seek biomarkers that may permit the identification of treatment responders and predict toxicity to facilitate cessation of immunotherapy before the development of severe toxicity. However, some studies have found associations between serious adverse events and longer survivorship. The research question entailed determining whether a biomarker is needed to predict severe immune-related adverse events prior to their development or whether providing early treatment for toxicity would inhibit the immune system from attaining a long-lasting anti-tumor effect. Therefore, this review conducted an in-depth analysis into the molecular basis of these observations.
Collapse
Affiliation(s)
- Ana Cardeña-Gutiérrez
- MedicalOncologyDepartment, Hospital Universitario Nuestra Señora de Candelaria, Santa Cruz de Tenerife, Spain
| | | |
Collapse
|
64
|
Principe N, Aston WJ, Hope DE, Tilsed CM, Fisher SA, Boon L, Dick IM, Chin WL, McDonnell AM, Nowak AK, Lake RA, Chee J, Lesterhuis WJ. Comprehensive Testing of Chemotherapy and Immune Checkpoint Blockade in Preclinical Cancer Models Identifies Additive Combinations. Front Immunol 2022; 13:872295. [PMID: 35634282 PMCID: PMC9132586 DOI: 10.3389/fimmu.2022.872295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Antibodies that target immune checkpoints such as cytotoxic T lymphocyte antigen 4 (CTLA‐4) and the programmed cell death protein 1/ligand 1 (PD-1/PD-L1) are now a treatment option for multiple cancer types. However, as a monotherapy, objective responses only occur in a minority of patients. Chemotherapy is widely used in combination with immune checkpoint blockade (ICB). Although a variety of isolated immunostimulatory effects have been reported for several classes of chemotherapeutics, it is unclear which chemotherapeutics provide the most benefit when combined with ICB. We investigated 10 chemotherapies from the main canonical classes dosed at the clinically relevant maximum tolerated dose in combination with anti‐CTLA-4/anti-PD-L1 ICB. We screened these chemo-immunotherapy combinations in two murine mesothelioma models from two different genetic backgrounds, and identified chemotherapies that produced additive, neutral or antagonistic effects when combined with ICB. Using flow cytometry and bulk RNAseq, we characterized the tumor immune milieu in additive chemo-immunotherapy combinations. 5-fluorouracil (5-FU) or cisplatin were additive when combined with ICB while vinorelbine and etoposide provided no additional benefit when combined with ICB. The combination of 5-FU with ICB augmented an inflammatory tumor microenvironment with markedly increased CD8+ T cell activation and upregulation of IFNγ, TNFα and IL-1β signaling. The effective anti‐tumor immune response of 5-FU chemo-immunotherapy was dependent on CD8+ T cells but was unaffected when TNFα or IL-1β cytokine signaling pathways were blocked. Our study identified additive and non-additive chemotherapy/ICB combinations and suggests a possible role for increased inflammation in the tumor microenvironment as a basis for effective combination therapy.
Collapse
Affiliation(s)
- Nicola Principe
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia
| | - Wayne J Aston
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
| | - Danika E Hope
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia
| | - Caitlin M Tilsed
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia
| | - Scott A Fisher
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia
| | | | - Ian M Dick
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia
| | - Wee Loong Chin
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia
| | | | - Anna K Nowak
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia.,Medical School, University of Western Australia, Crawley, WA, Australia
| | - Richard A Lake
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia
| | - Willem Joost Lesterhuis
- National Centre for Asbestos Related Diseases, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Crawley, WA, Australia.,Institute for Respiratory Health, Perth, WA, Australia.,Telethon Kids Institute, Perth, WA, Australia
| |
Collapse
|
65
|
Chen X, Jiang A, Zhang R, Fu X, Liu N, Shi C, Wang J, Zheng X, Tian T, Liang X, Ruan Z, Yao Y. Immune Checkpoint Inhibitor-Associated Cardiotoxicity in Solid Tumors: Real-World Incidence, Risk Factors, and Prognostic Analysis. Front Cardiovasc Med 2022; 9:882167. [PMID: 35669482 PMCID: PMC9163804 DOI: 10.3389/fcvm.2022.882167] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundImmune checkpoint inhibitors (ICIs) have achieved acknowledged progress in cancer therapy. However, ICI-associated cardiotoxicity as one of the most severe adverse events is potentially life-threatening, with limited real-world studies reporting its predictive factors and prognosis. This study aimed to investigate the real-world incidence, risk factors, and prognosis of ICI-related cardiotoxicity in patients with advanced solid tumors.MethodsElectronic medical records from patients with advanced solid tumors receiving ICIs in the First Affiliated Hospital of Xi’an Jiaotong University were retrospectively reviewed. All patients were divided into the cardiotoxicity group and control group, with logistic regression analysis being implemented to identify potential risk factors of ICI-related cardiotoxicity. Furthermore, survival analysis was also performed to investigate the prognosis of patients with ICI-related cardiotoxicity.ResultsA total of 1,047 participants were enrolled in this retrospective study. The incidence of ICI-related cardiotoxicity in our hospital is 7.0%, while grade 3 and above cardiotoxicity was 2.4%. The logistic regression analysis revealed that diabetes mellitus [odds ratio (OR):1.96, 95% confidence Interval (CI): 1.05–3.65, p = 0.034] was an independent risk factor, whereas baseline lymphocyte/monocyte ratio (LMR) (OR: 0.59, 95% CI: 0.36–0.97, p = 0.037) was the protective factor of ICI-related cardiotoxicity. Survival analysis indicated that severe cardiotoxicity (≥grade 3) was significantly correlated with bleak overall survival (OS) than mild cardiotoxicity (≤grade 2) (8.3 months vs. not reached, p = 0.001). Patients with ICI-related overlap syndrome had poorer overall survival than patients with mere cardiotoxicity (9.4 vs. 24.7 months, p = 0.033). However, the occurrence of ICI-related cardiotoxicity was not significantly associated with the OS of overall population with solid tumors. Subgroup analysis showed that lung cancer and PD-L1 usage were significantly correlated with a higher incidence of severe cases.ConclusionImmune checkpoint inhibitor-related cardiotoxicity is more common in the real-world setting than the previously published studies. Diabetes mellitus and baseline LMR are the potential predictive biomarkers of ICI-related cardiotoxicity. Although ICI-related cardiotoxicity is not correlated with the prognosis of these patients in our cohort, a systematic and comprehensive baseline examination and evaluation should be performed to avoid its occurrence.
Collapse
|
66
|
Poto R, Troiani T, Criscuolo G, Marone G, Ciardiello F, Tocchetti CG, Varricchi G. Holistic Approach to Immune Checkpoint Inhibitor-Related Adverse Events. Front Immunol 2022; 13:804597. [PMID: 35432346 PMCID: PMC9005797 DOI: 10.3389/fimmu.2022.804597] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/07/2022] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) block inhibitory molecules, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4), programmed cell death protein 1 (PD-1), or its ligand, programmed cell death protein ligand 1 (PD-L1) and enhance antitumor T-cell activity. ICIs provide clinical benefits in a percentage of patients with advanced cancers, but they are usually associated with a remarkable spectrum of immune-related adverse events (irAEs) (e.g., rash, colitis, hepatitis, pneumonitis, endocrine, cardiac and musculoskeletal dysfunctions). Particularly patients on combination therapy (e.g., anti-CTLA-4 plus anti-PD-1/PD-L1) experience some form of irAEs. Different mechanisms have been postulated to explain these adverse events. Host factors such as genotype, gut microbiome and pre-existing autoimmune disorders may affect the risk of adverse events. Fatal ICI-related irAEs are due to myocarditis, colitis or pneumonitis. irAEs usually occur within the first months after ICI initiation but can develop as early as after the first dose to years after ICI initiation. Most irAEs resolve pharmacologically, but some appear to be persistent. Glucocorticoids represent the mainstay of management of irAEs, but other immunosuppressive drugs can be used to mitigate refractory irAEs. In the absence of specific trials, several guidelines, based on data from retrospective studies and expert consensus, have been published to guide the management of ICI-related irAEs.
Collapse
Affiliation(s)
- Remo Poto
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Teresa Troiani
- Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | - Gjada Criscuolo
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
| | | | - Fortunato Ciardiello
- Medical Oncology, Department of Precision Medicine, University of Campania Luigi Vanvitelli, Naples, Italy
| | | | - Gilda Varricchi
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
- Center for Basic and Clinical Immunology Research (CISI), University of Naples Federico II, Naples, Italy
- World Allergy Organization (WAO) Center of Excellence, Naples, Italy
- Institute of Experimental Endocrinology and Oncology (IEOS), National Research Council, Naples, Italy
| |
Collapse
|
67
|
Zhang K, Kong X, Li Y, Wang Z, Zhang L, Xuan L. PD-1/PD-L1 Inhibitors in Patients With Preexisting Autoimmune Diseases. Front Pharmacol 2022; 13:854967. [PMID: 35370736 PMCID: PMC8971753 DOI: 10.3389/fphar.2022.854967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Autoimmune diseases and malignant tumors are the two hotspots and difficulties that are currently being studied and concerned by the medical field. The use of PD-1/PD-L1 inhibitors improves the prognosis of advanced tumors, but excessive immune responses can also induce immune-related adverse events (irAEs). Due to this concern, many clinical trials exclude cancer patients with preexisting autoimmune disease (AID). This review outlines the possible mechanisms of irAE, discusses the safety and efficacy of PD-1/PD-L1 inhibitors in cancer patients with preexisting AID, and emphasizes the importance of early recognition, continuous monitoring, and multidisciplinary cooperation in the prevention and management of cancer patients with preexisting AID.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiangyi Kong
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuan Li
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhongzhao Wang
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Lin Zhang, ; Lixue Xuan,
| | - Lin Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Melbourne School of Population and Global Health, the University of Melbourne, Melbourne, VIC, Australia
- Centre of Cancer Research, Victorian Comprehensive Cancer Centre, Melbourne, VIC, Australia
- *Correspondence: Zhongzhao Wang, ; Lin Zhang, ; Lixue Xuan,
| | - Lixue Xuan
- Department of Breast Surgical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Zhongzhao Wang, ; Lin Zhang, ; Lixue Xuan,
| |
Collapse
|
68
|
Zhou J, Lee S, Lakhani I, Yang L, Liu T, Zhang Y, Xia Y, Wong WT, Bao KKH, Wong ICK, Tse G, Zhang Q. Adverse Cardiovascular Complications following prescription of programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) inhibitors: a propensity-score matched Cohort Study with competing risk analysis. CARDIO-ONCOLOGY (LONDON, ENGLAND) 2022; 8:5. [PMID: 35300724 PMCID: PMC8928662 DOI: 10.1186/s40959-021-00128-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/20/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Programmed death-1 (PD-1) and programmed death- ligand 1 (PD-L1) inhibitors, such as pembrolizumab, nivolumab and atezolizumab, are major classes of immune checkpoint inhibitors that are increasingly used for cancer treatment. However, their use is associated with adverse cardiovascular events. We examined the incidence of new-onset cardiac complications in patients receiving PD-1 or PD-L1 inhibitors. METHODS Patients receiving PD-1 or PD-L1 inhibitors since their launch up to 31st December 2019 at publicly funded hospitals of Hong Kong, China, without pre-existing cardiac complications were included. The primary outcome was a composite of incident heart failure, acute myocardial infarction, atrial fibrillation, or atrial flutter with the last follow-up date of 31st December 2020. Propensity score matching between PD-L1 inhibitor use and PD-1 inhibitor use with a 1:2 ratio for patient demographics, past comorbidities and non-PD-1/PD-L1 medications was performed with nearest neighbour search strategy (0.1 caliper). Univariable and multivariable Cox regression analysis models were conducted. Competing risks models and multiple propensity matching approaches were considered for sensitivity analysis. RESULTS A total of 1959 patients were included. Over a median follow-up of 247 days (interquartile range [IQR]: 72-506), 320 (incidence rate [IR]: 16.31%) patients met the primary outcome after PD-1/PD-L1 treatment: 244 (IR: 12.57%) with heart failure, 38 (IR: 1.93%) with acute myocardial infarction, 54 (IR: 2.75%) with atrial fibrillation, 6 (IR: 0.31%) with atrial flutter. Compared with PD-1 inhibitor treatment, PD-L1 inhibitor treatment was significantly associated with lower risks of the composite outcome both before (hazard ratio [HR]: 0.32, 95% CI: [0.18-0.59], P value=0.0002) and after matching (HR: 0.34, 95% CI: [0.18-0.65], P value=0.001), and lower all-cause mortality risks before matching (HR: 0.77, 95% CI: [0.64-0.93], P value=0.0078) and after matching (HR: 0.80, 95% CI: [0.65-1.00], P value=0.0463). Patients who developed cardiac complications had shorter average readmission intervals and a higher number of hospitalizations after treatment with PD-1/PD-L1 inhibitors in both the unmatched and matched cohorts (P value<0.0001). Multivariable Cox regression models, competing risk analysis with cause-specific and subdistribution hazard models, and multiple propensity approaches confirmed these observations. CONCLUSIONS Compared with PD-1 treatment, PD-L1 treatment was significantly associated with lower risk of new onset cardiac complications and all-cause mortality both before and after propensity score matching.
Collapse
Affiliation(s)
- Jiandong Zhou
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, UK Collaboration, Hong Kong, China
| | - Sharen Lee
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, UK Collaboration, Hong Kong, China
| | - Ishan Lakhani
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, UK Collaboration, Hong Kong, China
| | - Lei Yang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China
| | - Yuhui Zhang
- Heart Failure Center, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yunlong Xia
- Department of Cardiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Wing Tak Wong
- School of Life Sciences, Chinese University of Hong Kong, Hong Kong, China
| | | | - Ian Chi Kei Wong
- Department of Pharmacology and Pharmacy, University of Hong Kong, Pokfulam, Hong Kong, China
| | - Gary Tse
- Cardio-Oncology Research Unit, Cardiovascular Analytics Group, UK Collaboration, Hong Kong, China.
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, 300211, Tianjin, China.
- Kent and Medway Medical School, Canterbury, UK.
| | - Qingpeng Zhang
- Nuffield Department of Medicine, University of Oxford, Oxford, UK.
- School of Data Science, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
69
|
Zhang Y, Xie Y, Feng Y, Wang Y, Xu X, Zhu S, Xu F, Feng N. Construction and verification of a prognostic risk model based on immunogenomic landscape analysis of bladder caner. Gene 2022; 808:145966. [PMID: 34530089 DOI: 10.1016/j.gene.2021.145966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/12/2022]
Abstract
This study was designed to construct a prognostic risk model to predict prognosis and immunotherapy response of bladder cancer (BCa) patinets. 350 differential expressed immune-related genes (DEIRGs) were obtained according to the transcriptome profiling and immune-related genes from the Cancer Genome Atlas (TCGA) database and ImmPort database, respectively. A prognostic risk model was constructed based on 15 hub genes through univariate, multivariate, and LASSO Cox regression analyses. The area under the receiver operating characteristic (ROC) curve was 0.743, indicating the superiority of the model. The scatter plot showed that as the risk score increased, the overall survival decreased significantly. In addition, all results were internally verified by the TCGA cohort. The model showed that the higher the grade, clinical stage, and TNM stage of BCa, the higher the risk score of patients. The tumor mutation burden of the low-risk group was generally higher than that of the high-risk group. Immune cell infiltration analysis showed that CD8 T cells, naive CD4 T cells, follicular helper T cells and M0 Macrophage were significantly different between the two groups. Several key immune checkpoint genes were found to be significantly different between the two groups, such as CTLA4, PD-L1, CD47, CD276, CXCL8, and HAVCR2/TIM3. Finally, the analysis of immunotherapy revealed that the efficacy of CTLA4 or PD1 blockers alone was better in the low-risk group than in the high-risk group. Taken together, we developed and validated a prognostic risk model based on 15 hub genes, which performed well in predicting prognosis and immunotherapy response of BCa patients.
Collapse
Affiliation(s)
- Yuwei Zhang
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | | | - Yangkun Feng
- Medical College of Nantong University, Nantong, China
| | - Yang Wang
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | - Xinyu Xu
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | - Sha Zhu
- Department of Oncology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China
| | - Feng Xu
- Department of Urology, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| | - Ninghan Feng
- Department of Urology, Affiliated Wuxi No.2 Hospital of Nanjing Medical University, Wuxi, China; Medical College of Nantong University, Nantong, China.
| |
Collapse
|
70
|
Huppert LA, Green MD, Kim L, Chow C, Leyfman Y, Daud AI, Lee JC. Tissue-specific Tregs in cancer metastasis: opportunities for precision immunotherapy. Cell Mol Immunol 2022; 19:33-45. [PMID: 34417572 PMCID: PMC8752797 DOI: 10.1038/s41423-021-00742-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 06/28/2021] [Indexed: 12/27/2022] Open
Abstract
Decades of advancements in immuno-oncology have enabled the development of current immunotherapies, which provide long-term treatment responses in certain metastatic cancer patients. However, cures remain infrequent, and most patients ultimately succumb to treatment-refractory metastatic disease. Recent insights suggest that tumors at certain organ sites exhibit distinctive response patterns to immunotherapy and can even reduce antitumor immunity within anatomically distant tumors, suggesting the activation of tissue-specific immune tolerogenic mechanisms in some cases of therapy resistance. Specialized immune cells known as regulatory T cells (Tregs) are present within all tissues in the body and coordinate the suppression of excessive immune activation to curb autoimmunity and maintain immune homeostasis. Despite the high volume of research on Tregs, the findings have failed to reconcile tissue-specific Treg functions in organs, such as tolerance, tissue repair, and regeneration, with their suppression of local and systemic tumor immunity in the context of immunotherapy resistance. To improve the understanding of how the tissue-specific functions of Tregs impact cancer immunotherapy, we review the specialized role of Tregs in clinically common and challenging organ sites of cancer metastasis, highlight research that describes Treg impacts on tissue-specific and systemic immune regulation in the context of immunotherapy, and summarize ongoing work reporting clinically feasible strategies that combine the specific targeting of Tregs with systemic cancer immunotherapy. Improved knowledge of Tregs in the framework of their tissue-specific biology and clinical sites of organ metastasis will enable more precise targeting of immunotherapy and have profound implications for treating patients with metastatic cancer.
Collapse
Affiliation(s)
- Laura A Huppert
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Michael D Green
- Department of Radiation Oncology, University of Michigan School of Medicine, Ann Arbor, MI, USA
- Veterans Affairs Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Luke Kim
- University of California, San Francisco School of Medicine, San Francisco, CA, USA
| | - Christine Chow
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Yan Leyfman
- Penn State College of Medicine, Hershey, PA, USA
| | - Adil I Daud
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - James C Lee
- Division of Hematology/Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
71
|
How to diagnose and manage neurological toxicities of immune checkpoint inhibitors: an update. J Neurol 2021; 269:1701-1714. [PMID: 34708250 DOI: 10.1007/s00415-021-10870-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 12/19/2022]
Abstract
As the use of cancer immunotherapy with immune checkpoint inhibitors (ICIs) is expanding rapidly for the treatment of many tumor types, it is crucial that both neurologists and oncologists become familiar with the diagnosis and treatment of neurological immune-related adverse events (n-irAEs). These are rare complications, developing in their severe forms in only 1-3% of the patients, but are highly relevant due to their mortality and morbidity burden. The diagnosis of n-irAEs is-however-challenging, as many alternative diagnoses need to be considered in the complex scenario of a patient with advanced cancer developing neurological problems. A tailored diagnostic approach is advisable according to the presentation, clinical history, and known specificities of n-irAEs. Several patterns characterized by distinct clinical, immunological, and prognostic characteristics are beginning to emerge. For example, myasthenia gravis is more likely to develop after anti-programmed cell death protein 1 (PD-1) or anti-programmed cell death ligand 1 (PD-L1) treatment, while meningitis appears more frequently after anti-cytotoxic T lymphocyte antigen-4 (CTLA-4) therapy. Also, peripheral neuropathy and Guillain-Barré syndrome seem to be more common in patients with an underlying melanoma. Central nervous system disorders (CNS) are less frequent and are more often associated with lung cancer, and some of them (especially those with limbic encephalitis and positive onconeural antibodies) have a poor prognosis. Herein, we provide an update of the recent advances in the diagnosis and treatment of neurological toxicities related to ICI use, focusing on the exclusion of alternative diagnoses, diagnostic specificities, and treatment of n-irAEs.
Collapse
|
72
|
Hematologic complications of immune checkpoint inhibitors. Blood 2021; 139:3594-3604. [PMID: 34610113 PMCID: PMC9227102 DOI: 10.1182/blood.2020009016] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Immune checkpoint inhibitors are a class of anti-neoplastic therapies that unleash immune cells to kill malignant cells. There are currently 7 medications FDA-approved for the treatment of 14 solid tumors and 2 hematological malignancies. These medications commonly cause immune-related adverse effects due to overactive T lymphocytes, autoantibody production, and/or cytokine dysregulation. Hematological toxicities are rare and of uncertain mechanism, and therefore management is often based on experiences with familiar conditions involving these perturbed immune responses, such as autoimmune hemolytic anemia, immune thrombocytopenia, and idiopathic aplastic anemia. Management is challenging because one must attend to the hematological toxicity while simultaneously attending to the malignancy, with the imperative that effective cancer therapy be maintained or minimally interrupted if possible. The purpose of this review is to assist clinicians by providing a clinical and pathophysiological framework in which to view these problems.
Collapse
|
73
|
Fuertes MB, Domaica CI, Zwirner NW. Leveraging NKG2D Ligands in Immuno-Oncology. Front Immunol 2021; 12:713158. [PMID: 34394116 PMCID: PMC8358801 DOI: 10.3389/fimmu.2021.713158] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/02/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICI) revolutionized the field of immuno-oncology and opened new avenues towards the development of novel assets to achieve durable immune control of cancer. Yet, the presence of tumor immune evasion mechanisms represents a challenge for the development of efficient treatment options. Therefore, combination therapies are taking the center of the stage in immuno-oncology. Such combination therapies should boost anti-tumor immune responses and/or target tumor immune escape mechanisms, especially those created by major players in the tumor microenvironment (TME) such as tumor-associated macrophages (TAM). Natural killer (NK) cells were recently positioned at the forefront of many immunotherapy strategies, and several new approaches are being designed to fully exploit NK cell antitumor potential. One of the most relevant NK cell-activating receptors is NKG2D, a receptor that recognizes 8 different NKG2D ligands (NKG2DL), including MICA and MICB. MICA and MICB are poorly expressed on normal cells but become upregulated on the surface of damaged, transformed or infected cells as a result of post-transcriptional or post-translational mechanisms and intracellular pathways. Their engagement of NKG2D triggers NK cell effector functions. Also, MICA/B are polymorphic and such polymorphism affects functional responses through regulation of their cell-surface expression, intracellular trafficking, shedding of soluble immunosuppressive isoforms, or the affinity of NKG2D interaction. Although immunotherapeutic approaches that target the NKG2D-NKG2DL axis are under investigation, several tumor immune escape mechanisms account for reduced cell surface expression of NKG2DL and contribute to tumor immune escape. Also, NKG2DL polymorphism determines functional NKG2D-dependent responses, thus representing an additional challenge for leveraging NKG2DL in immuno-oncology. In this review, we discuss strategies to boost MICA/B expression and/or inhibit their shedding and propose that combination strategies that target MICA/B with antibodies and strategies aimed at promoting their upregulation on tumor cells or at reprograming TAM into pro-inflammatory macrophages and remodeling of the TME, emerge as frontrunners in immuno-oncology because they may unleash the antitumor effector functions of NK cells and cytotoxic CD8 T cells (CTL). Pursuing several of these pipelines might lead to innovative modalities of immunotherapy for the treatment of a wide range of cancer patients.
Collapse
Affiliation(s)
- Mercedes Beatriz Fuertes
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Carolina Inés Domaica
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina
| | - Norberto Walter Zwirner
- Laboratorio de Fisiopatología de la Inmunidad Innata, Instituto de Biología y Medicina Experimental (IBYME-CONICET), Buenos Aires, Argentina.,Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
74
|
Ukleja J, Kusaka E, Miyamoto DT. Immunotherapy Combined With Radiation Therapy for Genitourinary Malignancies. Front Oncol 2021; 11:663852. [PMID: 34041029 PMCID: PMC8141854 DOI: 10.3389/fonc.2021.663852] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/22/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy drugs have recently been approved by the Food and Drug Administration for the treatment of several genitourinary malignancies, including bladder cancer, renal cancer, and prostate cancer. Preclinical data and early clinical trial results suggest that immune checkpoint inhibitors can act synergistically with radiation therapy to enhance tumor cell killing at local irradiated sites and in some cases at distant sites through an abscopal effect. Because radiation therapy is commonly used in the treatment of genitourinary malignancies, there is great interest in testing the combination of immunotherapy with radiation therapy in these cancers to further improve treatment efficacy. In this review, we discuss the current evidence and biological rationale for combining immunotherapy with radiation therapy, as well as emerging data from ongoing and planned clinical trials testing the efficacy and tolerability of this combination in the treatment of genitourinary malignancies. We also outline outstanding questions regarding sequencing, dose fractionation, and biomarkers that remain to be addressed for the optimal delivery of this promising treatment approach.
Collapse
Affiliation(s)
- Jacob Ukleja
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Erika Kusaka
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - David T. Miyamoto
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Massachusetts General Hospital Cancer Center, Charlestown, MA, United States
| |
Collapse
|