51
|
Vergoossen DLE, Augustinus R, Huijbers MG. MuSK antibodies, lessons learned from poly- and monoclonality. J Autoimmun 2020; 112:102488. [PMID: 32505442 DOI: 10.1016/j.jaut.2020.102488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/28/2020] [Accepted: 05/06/2020] [Indexed: 11/25/2022]
Abstract
Muscle-specific kinase (MuSK) plays a critical role in establishing and maintaining neuromuscular synapses. Antibodies derived from immunizing animals with MuSK were important tools to help detect MuSK and its activity. The role of antibodies in MuSK-related research got an extra dimension when autoantibodies to MuSK were found to cause myasthenia gravis (MG) in 2001. Active immunization with MuSK or passive transfer of polyclonal purified IgG(4) fractions from patients reproduced myasthenic muscle weakness in a range of animal models. Polyclonal patient-purified autoantibodies were furthermore found to block agrin-Lrp4-MuSK signaling, explaining the synaptic disassembly, failure of neuromuscular transmission and ultimately muscle fatigue observed in vivo. MuSK autoantibodies are predominantly of the IgG4 subclass. Low levels of other subclass MuSK antibodies coexist, but their role in the pathogenesis is unclear. Patient-derived monoclonal antibodies revealed that MuSK antibody subclass and valency alters their functional effects and possibly their pathogenicity. Interestingly, recombinant functional bivalent MuSK antibodies might even have therapeutic potential for a variety of neuromuscular disorders, due to their agonistic nature on the MuSK signaling cascade. Thus, MuSK antibodies have proven to be helpful tools to study neuromuscular junction physiology, contributed to our understanding of the pathophysiology of MuSK MG and might be used to treat neuromuscular disorders. The source of MuSK antibodies and consequently their (mixed) polyclonal or monoclonal nature were important confounding factors in these experiments. Here we review the variety of MuSK antibodies described thus far, the insights they have given us and their potential for the future.
Collapse
Affiliation(s)
- Dana L E Vergoossen
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Roy Augustinus
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands
| | - Maartje G Huijbers
- Department of Human Genetics, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, the Netherlands; Department of Neurology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, the Netherlands.
| |
Collapse
|
52
|
Fichtner ML, Jiang R, Bourke A, Nowak RJ, O'Connor KC. Autoimmune Pathology in Myasthenia Gravis Disease Subtypes Is Governed by Divergent Mechanisms of Immunopathology. Front Immunol 2020; 11:776. [PMID: 32547535 PMCID: PMC7274207 DOI: 10.3389/fimmu.2020.00776] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is a prototypical autoantibody mediated disease. The autoantibodies in MG target structures within the neuromuscular junction (NMJ), thus affecting neuromuscular transmission. The major disease subtypes of autoimmune MG are defined by their antigenic target. The most common target of pathogenic autoantibodies in MG is the nicotinic acetylcholine receptor (AChR), followed by muscle-specific kinase (MuSK) and lipoprotein receptor-related protein 4 (LRP4). MG patients present with similar symptoms independent of the underlying subtype of disease, while the immunopathology is remarkably distinct. Here we highlight these distinct immune mechanisms that describe both the B cell- and autoantibody-mediated pathogenesis by comparing AChR and MuSK MG subtypes. In our discussion of the AChR subtype, we focus on the role of long-lived plasma cells in the production of pathogenic autoantibodies, the IgG1 subclass mediated pathology, and contributions of complement. The similarities underlying the immunopathology of AChR MG and neuromyelitis optica (NMO) are highlighted. In contrast, MuSK MG is caused by autoantibody production by short-lived plasmablasts. MuSK MG autoantibodies are mainly of the IgG4 subclass which can undergo Fab-arm exchange (FAE), a process unique to this subclass. In FAE IgG4, molecules can dissociate into two halves and recombine with other half IgG4 molecules resulting in bispecific antibodies. Similarities between MuSK MG and other IgG4-mediated autoimmune diseases, including pemphigus vulgaris (PV) and chronic inflammatory demyelinating polyneuropathy (CIDP), are highlighted. Finally, the immunological distinctions are emphasized through presentation of biological therapeutics that provide clinical benefit depending on the MG disease subtype.
Collapse
Affiliation(s)
- Miriam L Fichtner
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Ruoyi Jiang
- Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| | - Aoibh Bourke
- Trinity Hall, University of Cambridge, Cambridge, United Kingdom
| | - Richard J Nowak
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States
| | - Kevin C O'Connor
- Department of Neurology, School of Medicine, Yale University, New Haven, CT, United States.,Department of Immunobiology, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
53
|
Abstract
Thirty to fifty percent of patients with acetylcholine receptor (AChR) antibody (Ab)-negative myasthenia gravis (MG) have Abs to muscle specific kinase (MuSK) and are referred to as having MuSK-MG. MuSK is a 100 kD single-pass post-synaptic transmembrane receptor tyrosine kinase crucial to the development and maintenance of the neuromuscular junction. The Abs in MuSK-MG are predominantly of the IgG4 immunoglobulin subclass. MuSK-MG differs from AChR-MG, in exhibiting more focal muscle involvement, including neck, shoulder, facial and bulbar-innervated muscles, as well as wasting of the involved muscles. MuSK-MG is highly associated with the HLA DR14-DQ5 haplotype and occurs predominantly in females with onset in the fourth decade of life. Some of the standard treatments of AChR-MG have been found to have limited effectiveness in MuSK-MG, including thymectomy and cholinesterase inhibitors. Therefore, current treatment involves immunosuppression, primarily by corticosteroids. In addition, patients respond especially well to B cell depletion agents, e.g., rituximab, with long-term remissions. Future treatments will likely derive from the ongoing analysis of the pathogenic mechanisms underlying this disease, including histologic and physiologic studies of the neuromuscular junction in patients as well as information derived from the development and study of animal models of the disease.
Collapse
Affiliation(s)
| | - David P. Richman
- Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
54
|
Marino M, Basile U, Spagni G, Napodano C, Iorio R, Gulli F, Todi L, Provenzano C, Bartoccioni E, Evoli A. Long-Lasting Rituximab-Induced Reduction of Specific-But Not Total-IgG4 in MuSK-Positive Myasthenia Gravis. Front Immunol 2020; 11:613. [PMID: 32431692 PMCID: PMC7214629 DOI: 10.3389/fimmu.2020.00613] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 03/17/2020] [Indexed: 12/17/2022] Open
Abstract
The use of rituximab (RTX), an anti-CD20 monoclonal antibody (Ab), in refractory myasthenia gravis (MG) is associated with a better response in patients with Abs to the muscle-specific tyrosine kinase (MuSK) than in other MG subgroups. Anti-MuSK Abs are mostly IgG4 with proven pathogenicity and positive correlation with clinical severity. The rapid and sustained response to RTX may be related to MuSK Ab production by short-lived Ab-secreting cells derived from specific CD20+ B cells. Here, we investigated the long-term effects of RTX in nine refractory MuSK-MG patients with a follow-up ranging from 17 months to 13 years. In patients' sera, we titrated MuSK-specific IgG (MuSK-IgG) and MuSK-IgG4, along with total IgG and IgG4 levels. Optimal response to RTX was defined as the achievement and maintenance of the status of minimal manifestations (MM)-or-better together with a ≥ 50% steroid reduction, withdrawal of immunosuppressants, and no need for plasma-exchange or intravenous immunoglobulin. After a course of RTX, eight patients improved, with optimal response in six, while only one patient did not respond. At baseline, MuSK-IgG and MuSK-IgG4 serum titers were positive in all patients, ranging from 2.15 to 49.5 nmol/L and from 0.33 to 46.2 nmol/L, respectively. MuSK Abs mostly consisted of IgG4 (range 63.80-98.86%). RTX administration was followed by a marked reduction of MuSK Abs at 2-7 months and at 12-30 months (p < 0.02 for MuSK-IgG and p < 0.01 for MuSK-IgG4). In patients with a longer follow-up, MuSK Ab titers remained suppressed, paralleling clinical response. In the patient who achieved long-term complete remission, MuSK-IgG4 was no longer detectable within 2 years, while MuSK-IgG remained positive at very low titers up to 10 years after RTX. In the patient who did not respond, MuSK-IgG and MuSK-IgG4 remained unchanged. In this patient series, total IgG and IgG4 transiently decreased (p < 0.05) at 2-7 months after RTX. The different trends of reduction between MuSK-IgG4 and total IgG4 after RTX support the view that short-lived Ab-secreting cells are the main producers of MuSK Abs. The ratio between short-lived Ab-secreting cells and long-lived plasma cells may influence the response to RTX, and B-cell severe depletion may reduce self-maintaining autoimmune reactivity.
Collapse
Affiliation(s)
- Mariapaola Marino
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Umberto Basile
- Area Diagnostica di Laboratorio, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Gregorio Spagni
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Neuroscienze, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Cecilia Napodano
- Istituto di Medicina Interna, Università Cattolica del Sacro Cuore, Rome, Italy.,Area di Gastroenterologia e Oncologia Medica, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Raffaele Iorio
- Dipartimento di Neuroscienze, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Francesca Gulli
- Dipartimento di Medicina di Laboratorio, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Laura Todi
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Carlo Provenzano
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Emanuela Bartoccioni
- Istituto di Patologia Generale, Università Cattolica del Sacro Cuore, Rome, Italy.,Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| | - Amelia Evoli
- Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy.,Dipartimento di Neuroscienze, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Rome, Italy
| |
Collapse
|
55
|
R409K mutation prevents acid-induced aggregation of human IgG4. PLoS One 2020; 15:e0229027. [PMID: 32182240 PMCID: PMC7077836 DOI: 10.1371/journal.pone.0229027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/28/2020] [Indexed: 11/20/2022] Open
Abstract
Human immunoglobulin G isotype 4 (IgG4) antibodies are suitable for use in either the antagonist or agonist format because their low effector functions prevent target cytotoxicity or unwanted cytokine secretion. However, while manufacturing therapeutic antibodies, they are exposed to low pH during purification, and IgG4 is more susceptible to low-pH-induced aggregation than IgG1. Therefore, we investigated the underlying mechanisms of IgG4 aggregation at low pH and engineered an IgG4 with enhanced stability. By swapping the constant regions of IgG1 and IgG4, we determined that the constant heavy chain (CH3) domain is critical for aggregate formation, but a core-hinge-stabilizing S228P mutation in IgG4 is insufficient for preventing aggregation. To identify the aggregation-prone amino acid, we substituted the CH3 domain of IgG4 with that of IgG1, changing IgG4 Arg409 to a Lys, thereby preventing the aggregation of the IgG4 variant as effectively as in IgG1. A stabilizing effect was also recorded with other variable-region variants. Analysis of thermal stability using differential scanning calorimetry revealed that the R409K substitution increased the Tm value of CH3, suggesting that the R409K mutation contributed to the structural strengthening of the CH3-CH3 interaction. The R409K mutation did not influence the binding to antigens/human Fcγ receptors; whereas, the concurrent S228P and R409K mutations in IgG4 suppressed Fab-arm exchange drastically and as effectively as in IgG1, in both in vitro and in vivo in mice models. Our findings suggest that the IgG4 R409K variant represents a potential therapeutic IgG for use in low-effector-activity format that exhibits increased stability.
Collapse
|
56
|
Vincent A. ANTIBODIES AND RECEPTORS: From Neuromuscular Junction to Central Nervous System. Neuroscience 2020; 439:48-61. [PMID: 32194225 DOI: 10.1016/j.neuroscience.2020.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/04/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
Myasthenia gravis (MG) is a relatively rare neurological disease that is usually associated with antibodies to the acetylcholine receptor (AChR). These antibodies (Abs) cause loss of the AChRs from the neuromuscular junction (NMJ), resulting in muscle weakness that can be life-threatening. Another form of the disease is caused by antibodies to muscle specific kinase (MuSK) that result in impaired AChR clustering and numbers at the NMJ, and may also interfere with presynaptic adaptive mechanisms. Other autoimmune disorders, Lambert Eaton myasthenic syndrome and acquired neuromyotonia, are associated with antibodies to presynaptic voltage-gated calcium and potassium channels respectively. All four conditions can be diagnosed by specific clinical features, electromyography and serum antibody tests, and can be treated effectively by a combination of pharmacological approaches and procedures that reduce the levels of the IgG antibodies. They form the first of a spectrum of diseases in which serum autoantibodies bind to extracellular domains of neuronal proteins throughout the nervous system and lead to constellations of clinical features including paralysis, sensory disturbance and pain, memory loss, seizures, psychiatric disturbance and movement disorders. This review will briefly summarize the ways in which this field has developed, since the 1970s when considerable contributions were made in Ricardo Miledi's laboratory at UCL.
Collapse
Affiliation(s)
- Angela Vincent
- Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, OX3 9DU, UK.
| |
Collapse
|
57
|
Lazaridis K, Tzartos SJ. Autoantibody Specificities in Myasthenia Gravis; Implications for Improved Diagnostics and Therapeutics. Front Immunol 2020; 11:212. [PMID: 32117321 PMCID: PMC7033452 DOI: 10.3389/fimmu.2020.00212] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/27/2020] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease characterized by muscle weakness and fatiguability of skeletal muscles. It is an antibody-mediated disease, caused by autoantibodies targeting neuromuscular junction proteins. In the majority of patients (~85%) antibodies against the muscle acetylcholine receptor (AChR) are detected, while in 6% antibodies against the muscle-specific kinase (MuSK) are detected. In ~10% of MG patients no autoantibodies can be found with the classical diagnostics for AChR and MuSK antibodies (seronegative MG, SN-MG), making the improvement of methods for the detection of known autoantibodies or the discovery of novel antigenic targets imperative. Over the past years, using cell-based assays or improved highly sensitive immunoprecipitation assays, it has been possible to detect autoantibodies in previously SN-MG patients, including the identification of the low-density lipoprotein receptor-related protein 4 (LRP4) as a third MG autoantigen, as well as AChR and MuSK antibodies undetectable by conventional methods. Furthermore, antibodies against other extracellular or intracellular targets, such as titin, the ryanodine receptor, agrin, collagen Q, Kv1.4 potassium channels and cortactin have been found in some MG patients, which can be useful biomarkers. In addition to the improvement of diagnosis, the identification of the patients' autoantibody specificity is important for their stratification into respective subgroups, which can differ in terms of clinical manifestations, prognosis and most importantly their response to therapies. The knowledge of the autoantibody profile of MG patients would allow for a therapeutic strategy tailored to their MG subgroup. This is becoming especially relevant as there is increasing progress toward the development of antigen-specific therapies, targeting only the specific autoantibodies or immune cells involved in the autoimmune response, such as antigen-specific immunoadsorption, which have shown promising results. We will herein review the advances made by us and others toward development of more sensitive detection methods and the identification of new antibody targets in MG, and discuss their significance in MG diagnosis and therapy. Overall, the development of novel autoantibody assays is aiding in the more accurate diagnosis and classification of MG patients, supporting the development of advanced therapeutics and ultimately the improvement of disease management and patient quality of life.
Collapse
Affiliation(s)
| | - Socrates J Tzartos
- Department of Neurobiology, Hellenic Pasteur Institute, Athens, Greece.,Tzartos NeuroDiagnostics, Athens, Greece
| |
Collapse
|
58
|
Evaluation of Antibody Properties and Clinically Relevant Immunogenicity, Anaphylaxis, and Hypersensitivity Reactions in Two Phase III Trials of Tralokinumab in Severe, Uncontrolled Asthma. Drug Saf 2020; 42:769-784. [PMID: 30649752 PMCID: PMC6520328 DOI: 10.1007/s40264-018-00788-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Introduction Tralokinumab is a monoclonal antibody (mAb) that neutralizes interleukin (IL)-13, a cytokine involved in the pathogenesis of asthma. Objective The objectives of this study were to characterize the potential immunogenic properties of tralokinumab and report data for anti-drug antibodies (ADAs) and hypersensitivity reactions from two phase III clinical trials. Methods The oligosaccharide structure of tralokinumab, Fab-arm exchange, and ADAs were characterized by standard techniques. Hypersensitivity adverse events (AEs) were evaluated in two pivotal clinical trials of tralokinumab in severe, uncontrolled asthma: STRATOS 1 and 2 (NCT02161757 and NCT02194699). Results No galactose-α-1,3-galactose (α-Gal) epitopes were found in the Fab region of tralokinumab and only 4.5% of glycoforms contained α-Gal in the Fc region. Under non-reducing conditions, Fab-arm exchange did not take place with another immunoglobulin (Ig) G4 mAb (mavrilimumab). However, following glutathione reduction, a hybrid antibody with monovalent bioactivity was detected. ADA incidences (titers) were as follows: STRATOS 1—every 2 weeks (Q2 W) 0.8% (26.0), every 4 weeks (Q4 W) 0.5% (26.0), placebo 0.8% (52.0); STRATOS 2—Q2 W 1.2% (39.0), placebo 0.8% (13.0). Participant-reported hypersensitivity AE rates were as follows: STRATOS 1—Q2 W 25.9%, Q4 W 25.0%, placebo 25.5%; STRATOS 2—Q2 W 13.2%, placebo 9.0%. External evaluation for anaphylaxis by Sampson criteria found no tralokinumab-related severe hypersensitivity or anaphylaxis reactions. Conclusion Preclinical assessments suggested a low likelihood of immunogenicity for tralokinumab. In STRATOS 1 and 2, ADA incidence was low, no differences were found between tralokinumab-treated and placebo groups in reporting of hypersensitivity reactions, and there were no Sampson criteria-evaluated anaphylaxis events with tralokinumab treatment. Together, the results suggest that tralokinumab treatment would not increase the risk for severe hypersensitivity or anaphylactic reactions. Electronic supplementary material The online version of this article (10.1007/s40264-018-00788-w) contains supplementary material, which is available to authorized users.
Collapse
|
59
|
Vilquin JT, Bayer AC, Le Panse R, Berrih-Aknin S. The Muscle Is Not a Passive Target in Myasthenia Gravis. Front Neurol 2020; 10:1343. [PMID: 31920954 PMCID: PMC6930907 DOI: 10.3389/fneur.2019.01343] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 12/05/2019] [Indexed: 12/22/2022] Open
Abstract
Myasthenia gravis (MG) is a rare autoimmune disease mediated by pathogenic antibodies (Ab) directed against components of the neuromuscular junction (NMJ), mainly the acetylcholine receptor (AChR). The etiological mechanisms are not totally elucidated, but they include a combination of genetic predisposition, triggering event(s), and hormonal components. MG disease is associated with defective immune regulation, chronic cell activation, inflammation, and the thymus is frequently abnormal. MG is characterized by muscle fatigability that is very invalidating and can be life-threatening when respiratory muscles are affected. MG is not cured, and symptomatic treatments with acetylcholinesterase inhibitors and immunosuppressors are life-long medications associated with severe side effects (especially glucocorticoids). While the muscle is the ultimate target of the autoimmune attack, its place and role are not thoroughly described, and this mini-review will focus on the cascade of pathophysiologic mechanisms taking place at the NMJ and its consequences on the muscle biology, function, and regeneration in myasthenic patients, at the histological, cellular, and molecular levels. The fine structure of the synaptic cleft is damaged by the Ab binding that is coupled to focal complement-dependent lysis in the case of MG with anti-AChR antibodies. Cellular and molecular reactions taking place in the muscle involve several cell types as well as soluble factors. Finally, the regenerative capacities of the MG muscle tissue may be altered. Altogether, the studies reported in this review demonstrate that the muscle is not a passive target in MG, but interacts dynamically with its environment in several ways, activating mechanisms of compensation that limit the pathogenic mechanisms of the autoantibodies.
Collapse
Affiliation(s)
- Jean-Thomas Vilquin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | | | - Rozen Le Panse
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| | - Sonia Berrih-Aknin
- Sorbonne Université, INSERM, Association Institut de Myologie (AIM), Paris, France
| |
Collapse
|
60
|
Hiew FL. Grave Prognosis of the MuscleSpecific Kinase (MuSK)-positive Myasthenia Gravis (MG): A False Prejudice. Ann Indian Acad Neurol 2020; 23:6. [PMID: 32055112 PMCID: PMC7001436 DOI: 10.4103/aian.aian_579_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 11/06/2019] [Indexed: 11/06/2022] Open
Affiliation(s)
- Fu Liong Hiew
- Department of Neurology, Kuala Lumpur Hospital, Kuala Lumpur, Malaysia
| |
Collapse
|
61
|
Lazaridis K, Baltatzidou V, Tektonidis N, Tzartos SJ. Antigen-specific immunoadsorption of MuSK autoantibodies as a treatment of MuSK-induced experimental autoimmune myasthenia gravis. J Neuroimmunol 2019; 339:577136. [PMID: 31855721 DOI: 10.1016/j.jneuroim.2019.577136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 11/16/2022]
Abstract
Myasthenia gravis (MG) is an autoimmune disease affecting the neuromuscular junction. Approximately 9% of MG patients have autoantibodies targeting the muscle specific kinase (MuSK), and are challenging therapeutically, since they often present with more severe symptoms. A useful therapy is plasmapheresis, but it is highly non-specific. Antigen-specific immunoadsorption would only remove the pathogenic autoantibodies, minimizing the possible side effects and maximizing the benefit. We used rats with human MuSK-induced experimental autoimmune MG to perform antigen-specific immunoadsorptions, and found it very effective, resulting in a dramatic autoantibody titer decrease, while immunoadsorbed, but not mock-treated, animals showed an significant improvement of their clinical symptoms. Overall, the procedure was efficient, supporting its application for MG treatment.
Collapse
Affiliation(s)
| | | | | | - Socrates J Tzartos
- Hellenic Pasteur Institute, Athens, Greece; Tzartos NeuroDiagnostics, Athens, Greece.
| |
Collapse
|
62
|
Huda S, Cao M, De Rosa A, Woodhall M, Rodriguez Cruz PM, Cossins J, Maestri M, Ricciardi R, Evoli A, Beeson D, Vincent A. SHP2 inhibitor protects AChRs from effects of myasthenia gravis MuSK antibody. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/1/e645. [PMID: 31831571 PMCID: PMC6935836 DOI: 10.1212/nxi.0000000000000645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022]
Abstract
Objective To determine whether an SRC homology 2 domain-containing phosphotyrosine phosphatase 2 (SHP2) inhibitor would increase muscle-specific kinase (MuSK) phosphorylation and override the inhibitory effect of MuSK-antibodies (Abs). Methods The effect of the SHP2 inhibitor NSC-87877 on MuSK phosphorylation and AChR clustering was tested in C2C12 myotubes with 31 MuSK-myasthenia gravis (MG) sera and purified MuSK-MG IgG4 preparations. Results In the absence of MuSK-MG Abs, NSC-87877 increased MuSK phosphorylation and the number of AChR clusters in C2C12 myotubes in vitro and in DOK7-overexpressing C2C12 myotubes that form spontaneous AChR clusters. In the presence of MuSK-MG sera, the AChR clusters were reduced, as expected, but NSC-87877 was able to protect or restore the clusters. Two purified MuSK-MG IgG4 preparations inhibited both MuSK phosphorylation and AChR cluster formation, and in both, clusters were restored with NSC-87877. Conclusions Stimulating the agrin-LRP4-MuSK-DOK7 AChR clustering pathway with NSC-87877, or other drugs, could represent a novel therapeutic approach for MuSK-MG and could potentially improve other NMJ disorders with reduced AChR numbers or disrupted NMJs.
Collapse
Affiliation(s)
- Saif Huda
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Michelangelo Cao
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Anna De Rosa
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Mark Woodhall
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Pedro M Rodriguez Cruz
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Judith Cossins
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Michelangelo Maestri
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Roberta Ricciardi
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Amelia Evoli
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - David Beeson
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Angela Vincent
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy.
| |
Collapse
|
63
|
Herbst R. MuSk function during health and disease. Neurosci Lett 2019; 716:134676. [PMID: 31811897 DOI: 10.1016/j.neulet.2019.134676] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/06/2023]
Abstract
The receptor tyrosine kinase MuSK (muscle-specific kinase) is the key signaling molecule during the formation of a mature and functional neuromuscular junction (NMJ). Signal transduction events downstream of MuSK activation induce both pre- and postsynaptic differentiation, which, most prominently, includes the clustering of acetylcholine receptors (AChRs) at synaptic sites. MuSK activation requires a complex interplay between its co-receptor Lrp4 (low-density lipoprotein receptor-related protein-4), the motor neuron-derived heparan-sulfate proteoglycan Agrin and the intracellular adaptor protein Dok-7. A tight regulation of MuSK kinase activity is crucial for proper NMJ development. Defects in MuSK signaling are the cause of muscle weakness as reported in congenital myasthenic syndromes and myasthenia gravis. This review focuses on recent structure-based analyses of MuSK, Agrin, Lrp4 and Dok-7 interactions and their function during MuSK activation. Conclusions about the regulation of the MuSK kinase that were derived from molecular structures will be highlighted. In addition, the role of MuSK during development and disease will be discussed.
Collapse
Affiliation(s)
- Ruth Herbst
- Medical University of Vienna, Center for Pathophysiology, Infectiology and Immunology, Kinderspitalgasse 15, 1090 Vienna, Austria.
| |
Collapse
|
64
|
Souto EB, Lima B, Campos JR, Martins-Gomes C, Souto SB, Silva AM. Myasthenia gravis: State of the art and new therapeutic strategies. J Neuroimmunol 2019; 337:577080. [PMID: 31670062 DOI: 10.1016/j.jneuroim.2019.577080] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/04/2019] [Indexed: 12/11/2022]
Abstract
Myasthenia Gravis (MG) - an autoimmune neuromuscular disease - is known by the production of autoantibodies against components of the neuromuscular junction mainly to the acetylcholine receptor, which cause the destruction and compromises the synaptic transmission. This disease is characterized by fluctuating and fatigable muscle weakness, becoming more intensive with activity, but with an improvement under resting. There are many therapeutic strategies used to alleviate MG symptoms, either by improving the transmission of the nerve impulse or by ameliorating autoimmune reactions with e.g. steroids, immunosuppressant drugs, or monoclonal antibodies (rituximab and eculizumab). Many breakthroughs in the discovery of new therapeutic targets have been reported, but MG remains to be a chronic disease where the symptoms are kept in the majority of patients. In this review, we discuss the different therapeutic strategies that have been used over the years to alleviate MG symptoms, as well as innovative therapeutic approaches currently under study.
Collapse
Affiliation(s)
- Eliana B Souto
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Bernardo Lima
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Joana R Campos
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Coimbra (FFUC), Pólo das Ciências da Saúde, 3000-548 Coimbra, Portugal
| | - Carlos Martins-Gomes
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Selma B Souto
- Department of Endocrinology of S. João Hospital, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Amélia M Silva
- Department of Biology and Environment, School of Life and Environmental Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal; Centre for the Research and Technology of Agro-Environmental and Biological Sciences, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal.
| |
Collapse
|
65
|
Abstract
This article discusses antibodies associated with immune-mediated myasthenia gravis and the pathologic action of these antibodies at the neuromuscular junctions of skeletal muscle. To explain how these antibodies act, we consider the physiology of neuromuscular transmission with emphasis on 4 features: the structure of the neuromuscular junction; the roles of postsynaptic acetylcholine receptors and voltage-gated Na+ channels and in converting the chemical signal from the nerve terminal into a propagated action potential on the muscle fiber that triggers muscle contraction; the safety factor for neuromuscular transmission; and how the safety factor is reduced in different forms of autoimmune myasthenia gravis.
Collapse
Affiliation(s)
- Robert L Ruff
- Department of Neurology, Case Western University School of Medicine, The Metro Health System, 2500 Metro Health Drive, Cleveland, OH 44109, USA; Department of Neurosciences, Case Western Reserve University, Cleveland, OH, USA
| | - Robert P Lisak
- Department of Neurology, Wayne State University School of Medicine, 8D University Health Center, 4201 St Antoine, Detroit, MI 48201, USA; Department of Biochemistry, Microbiology and Immunology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
66
|
Myasthenia Gravis: Pathogenic Effects of Autoantibodies on Neuromuscular Architecture. Cells 2019; 8:cells8070671. [PMID: 31269763 PMCID: PMC6678492 DOI: 10.3390/cells8070671] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 12/13/2022] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease of the neuromuscular junction (NMJ). Autoantibodies target key molecules at the NMJ, such as the nicotinic acetylcholine receptor (AChR), muscle-specific kinase (MuSK), and low-density lipoprotein receptor-related protein 4 (Lrp4), that lead by a range of different pathogenic mechanisms to altered tissue architecture and reduced densities or functionality of AChRs, reduced neuromuscular transmission, and therefore a severe fatigable skeletal muscle weakness. In this review, we give an overview of the history and clinical aspects of MG, with a focus on the structure and function of myasthenic autoantigens at the NMJ and how they are affected by the autoantibodies' pathogenic mechanisms. Furthermore, we give a short overview of the cells that are implicated in the production of the autoantibodies and briefly discuss diagnostic challenges and treatment strategies.
Collapse
|
67
|
Takata K, Stathopoulos P, Cao M, Mané-Damas M, Fichtner ML, Benotti ES, Jacobson L, Waters P, Irani SR, Martinez-Martinez P, Beeson D, Losen M, Vincent A, Nowak RJ, O'Connor KC. Characterization of pathogenic monoclonal autoantibodies derived from muscle-specific kinase myasthenia gravis patients. JCI Insight 2019; 4:127167. [PMID: 31217355 PMCID: PMC6629167 DOI: 10.1172/jci.insight.127167] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 05/10/2019] [Indexed: 12/15/2022] Open
Abstract
Myasthenia gravis (MG) is a chronic autoimmune disorder characterized by muscle weakness and caused by pathogenic autoantibodies that bind to membrane proteins at the neuromuscular junction. Most patients have autoantibodies against the acetylcholine receptor (AChR), but a subset of patients have autoantibodies against muscle-specific tyrosine kinase (MuSK) instead. MuSK is an essential component of the pathway responsible for synaptic differentiation, which is activated by nerve-released agrin. Through binding MuSK, serum-derived autoantibodies inhibit agrin-induced MuSK autophosphorylation, impair clustering of AChRs, and block neuromuscular transmission. We sought to establish individual MuSK autoantibody clones so that the autoimmune mechanisms could be better understood. We isolated MuSK autoantibody-expressing B cells from 6 MuSK MG patients using a fluorescently tagged MuSK antigen multimer, then generated a panel of human monoclonal autoantibodies (mAbs) from these cells. Here we focused on 3 highly specific mAbs that bound quantitatively to MuSK in solution, to MuSK-expressing HEK cells, and at mouse neuromuscular junctions, where they colocalized with AChRs. These 3 IgG isotype mAbs (2 IgG4 and 1 IgG3 subclass) recognized the Ig-like domain 2 of MuSK. The mAbs inhibited AChR clustering, but intriguingly, they enhanced rather than inhibited MuSK phosphorylation, which suggests an alternative mechanism for inhibiting AChR clustering. A fluorescent tetrameric antigen allows isolation of human myasthenia gravis monoclonal antibodies that interrupt acetylcholine receptor signaling.
Collapse
Affiliation(s)
- Kazushiro Takata
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Panos Stathopoulos
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Michelangelo Cao
- Neurosciences Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, Oxford, England
| | - Marina Mané-Damas
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Miriam L Fichtner
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Erik S Benotti
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Leslie Jacobson
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Patrick Waters
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Sarosh R Irani
- Oxford Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, England
| | - Pilar Martinez-Martinez
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David Beeson
- Neurosciences Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, Oxford, England
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Angela Vincent
- Neurosciences Group, Weatherall Institute of Molecular Medicine and Nuffield Department of Clinical Neurosciences, Oxford, England
| | | | - Kevin C O'Connor
- Department of Neurology and.,Department of Immunobiology, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
68
|
Paz ML, Barrantes FJ. Autoimmune Attack of the Neuromuscular Junction in Myasthenia Gravis: Nicotinic Acetylcholine Receptors and Other Targets. ACS Chem Neurosci 2019; 10:2186-2194. [PMID: 30916550 DOI: 10.1021/acschemneuro.9b00041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The nicotinic acetylcholine receptor (nAChR) family, the archetype member of the pentameric ligand-gated ion channels, is ubiquitously distributed in the central and peripheral nervous systems, and its members are the targets for both genetic and acquired forms of neurological disorders. In the central nervous system, nAChRs contribute to the pathological mechanisms of neurodegenerative disorders, such as Alzheimer and Parkinson diseases. In the peripheral nerve-muscle synapse, the vertebrate neuromuscular junction, "classical" myasthenia gravis (MG) and other forms of neuromuscular transmission disorders are antibody-mediated autoimmune diseases. In MG, antibodies to the nAChR bind to the postsynaptic receptors and activate the classical complement pathway culminating in the formation of the membrane attack complex, with the subsequent destruction of the postsynaptic apparatus. Divalent nAChR-antibodies also cause internalization and loss of the nAChRs. Loss of receptors by either mechanism results in the muscle weakness and fatigability that typify the clinical manifestations of the disease. Other targets for antibodies, in a minority of patients, include muscle specific kinase (MuSK) and low-density lipoprotein related protein 4 (LRP4). This brief Review analyzes the current status of muscle-type nAChR in relation to the pathogenesis of autoimmune diseases affecting the peripheral cholinergic synapse.
Collapse
Affiliation(s)
- Mariela L. Paz
- Immunology Department, Faculty of Pharmacy and Biochemistry, IDEHU-CONICET, University of Buenos Aires, Junin 956, C1113AAD Buenos Aires, Argentina
| | - Francisco J. Barrantes
- Laboratory of Molecular Neurobiology, Biomedical Research Institute (BIOMED), UCA-CONICET, Av. Alicia Moreau de Justo 1600, C1107AFF Buenos Aires, Argentina
| |
Collapse
|
69
|
Abstract
Myasthenia gravis (MG) is an autoimmune disease caused by antibodies against the acetylcholine receptor (AChR), muscle-specific kinase (MuSK) or other AChR-related proteins in the postsynaptic muscle membrane. Localized or general muscle weakness is the predominant symptom and is induced by the antibodies. Patients are grouped according to the presence of antibodies, symptoms, age at onset and thymus pathology. Diagnosis is straightforward in most patients with typical symptoms and a positive antibody test, although a detailed clinical and neurophysiological examination is important in antibody-negative patients. MG therapy should be ambitious and aim for clinical remission or only mild symptoms with near-normal function and quality of life. Treatment should be based on MG subgroup and includes symptomatic treatment using acetylcholinesterase inhibitors, thymectomy and immunotherapy. Intravenous immunoglobulin and plasma exchange are fast-acting treatments used for disease exacerbations, and intensive care is necessary during exacerbations with respiratory failure. Comorbidity is frequent, particularly in elderly patients. Active physical training should be encouraged.
Collapse
|
70
|
Huijbers MG, Plomp JJ, van Es IE, Fillié-Grijpma YE, Kamar-Al Majidi S, Ulrichts P, de Haard H, Hofman E, van der Maarel SM, Verschuuren JJ. Efgartigimod improves muscle weakness in a mouse model for muscle-specific kinase myasthenia gravis. Exp Neurol 2019; 317:133-143. [PMID: 30851266 DOI: 10.1016/j.expneurol.2019.03.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/24/2019] [Accepted: 03/04/2019] [Indexed: 12/30/2022]
Abstract
Myasthenia gravis is hallmarked by fatigable muscle weakness resulting from neuromuscular synapse dysfunction caused by IgG autoantibodies. The variant with muscle-specific kinase (MuSK) autoantibodies is characterized by prominent cranial and bulbar weakness and a high frequency of respiratory crises. The majority of MuSK MG patients requires long-term immunosuppressive treatment, but the result of these treatments is considered less satisfactory than in MG with acetylcholine receptor antibodies. Emergency treatments are more frequently needed, and many patients develop permanent facial weakness and nasal speech. Therefore, new treatment options would be welcome. The neonatal Fc receptor protects IgG from lysosomal breakdown, thus prolonging IgG serum half-life. Neonatal Fc receptor antagonism lowers serum IgG levels and thus may act therapeutically in autoantibody-mediated disorders. In MuSK MG, IgG4 anti-MuSK titres closely correlate with disease severity. We therefore tested efgartigimod (ARGX-113), a new neonatal Fc receptor blocker, in a mouse model for MuSK myasthenia gravis. This model involves 11 daily injections of purified IgG4 from MuSK myasthenia gravis patients, resulting in overt myasthenic muscle weakness and, consequently, body weight loss. Daily treatment with 0.5 mg efgartigimod, starting at the fifth passive transfer day, reduced the human IgG4 titres about 8-fold, despite continued daily injection. In muscle strength and fatigability tests, efgartigimod-treated myasthenic mice outperformed control myasthenic mice. Electromyography in calf muscles at endpoint demonstrated less myasthenic decrement of compound muscle action potentials in efgartigimod-treated mice. These substantial in vivo improvements of efgartigimod-treated MuSK MG mice following a limited drug exposure period were paralleled by a tendency of recovery at neuromuscular synaptic level (in various muscles), as demonstrated by ex vivo functional studies. These synaptic improvements may well become more explicit upon longer drug exposure. In conclusion, our study shows that efgartigimod has clear therapeutic potential in MuSK myasthenia gravis and forms an exciting candidate drug for many autoantibody-mediated neurological and other disorders.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands.
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Inge E van Es
- Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Samar Kamar-Al Majidi
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands; Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Peter Ulrichts
- argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Gent, Belgium
| | - Hans de Haard
- argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Gent, Belgium
| | - Erik Hofman
- argenx BVBA, Industriepark Zwijnaarde 7, 9052, Zwijnaarde, Gent, Belgium
| | | | - Jan J Verschuuren
- Department of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
71
|
Huijbers MG, Vergoossen DL, Fillié-Grijpma YE, van Es IE, Koning MT, Slot LM, Veelken H, Plomp JJ, van der Maarel SM, Verschuuren JJ. MuSK myasthenia gravis monoclonal antibodies: Valency dictates pathogenicity. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 6:e547. [PMID: 30882021 PMCID: PMC6410930 DOI: 10.1212/nxi.0000000000000547] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Abstract
Objective To isolate and characterize muscle-specific kinase (MuSK) monoclonal antibodies from patients with MuSK myasthenia gravis (MG) on a genetic and functional level. Methods We generated recombinant MuSK antibodies from patient-derived clonal MuSK-specific B cells and produced monovalent Fab fragments from them. Both the antibodies and Fab fragments were tested for their effects on neural agrin-induced MuSK phosphorylation and acetylcholine receptor (AChR) clustering in myotube cultures. Results The isolated MuSK monoclonal antibody sequences included IgG1, IgG3, and IgG4 that had undergone high levels of affinity maturation, consistent with antigenic selection. We confirmed their specificity for the MuSK Ig-like 1 domain and binding to neuromuscular junctions. Monovalent MuSK Fab, mimicking functionally monovalent MuSK MG patient Fab-arm exchanged serum IgG4, abolished agrin-induced MuSK phosphorylation and AChR clustering. Surprisingly, bivalent monospecific MuSK antibodies instead activated MuSK phosphorylation and partially induced AChR clustering, independent of agrin. Conclusions Patient-derived MuSK antibodies can act either as MuSK agonist or MuSK antagonist, depending on the number of MuSK binding sites. Functional monovalency, induced by Fab-arm exchange in patient serum, makes MuSK IgG4 antibodies pathogenic.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Dana L Vergoossen
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Yvonne E Fillié-Grijpma
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Inge E van Es
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Marvyn T Koning
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Linda M Slot
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Hendrik Veelken
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Jaap J Plomp
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Silvère M van der Maarel
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| | - Jan J Verschuuren
- Department of Neurology (M.G.H., Y.E.F.-G., I.E.v.E., J.J.P., J.J.V.), Department of Human Genetics (M.G.H., D.L.V., Y.F.-G., I.E.v.E., S.M.v.d.M.), Department of Hematology (M.T.K., H.V.), and Department of Rheumatology (L.M.S.), Leiden University Medical Center, The Netherlands
| |
Collapse
|
72
|
Liu M, Hao M. Unique properties of IgG4 antibody and its clinical application in autoimmune pancreatitis. Scand J Gastroenterol 2018; 53:1121-1131. [PMID: 30175675 DOI: 10.1080/00365521.2018.1476915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Autoimmune pancreatitis (AIP) is defined as a unique form of chronic pancreatitis characterized by clinical presentation with obstructive jaundice, a dense lymphoplasmacytic infiltrate and fibrosis histologically, and a dramatic response to steroids therapeutically. The possible role of IgG4 in driving the pathology of AIP is a controversial subject that has not been addressed satisfactorily. Objective: The purpose of this review is to discuss the unique biology of IgG4 that are important for its role and the clinical applications for serologic detection. METHODS Review of current literature about IgG4 antibody in the clinical application in AIP. RESULTS High serum levels of IgG4 are an important biomarker and broadly used for diagnosis, differentiation from diseases especially pancreatic cancer, and as a parameter to indicate disease activity, extra-pancreatic lesions, and treatment monitoring. However, some controversial studies show it has a limited specificity and sensitivity in these conditions. Conclusion: Although increasing studies have promoted our understanding of the structure and function of IgG4, there is still dilemma between the beneficial and the adverse aspect of IgG4 in the pathogenesis of AIP.
Collapse
Affiliation(s)
- Min Liu
- a Department of Clinical Laboratory , Jinan Dermatosis Prevention and Control Hospital , Jinan , People's Republic of China
| | - Mingju Hao
- b Department of Clinical Laboratory , Qianfo Mountain Hospital of Shandong University , Jinan , People's Republic of China
| |
Collapse
|
73
|
Hong Y, Li HF, Romi F, Skeie GO, Gilhus NE. HLA and MuSK-positive myasthenia gravis: A systemic review and meta-analysis. Acta Neurol Scand 2018; 138:219-226. [PMID: 29736936 DOI: 10.1111/ane.12951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2018] [Indexed: 01/06/2023]
Abstract
OBJECTIVES Myasthenia gravis (MG) represents a spectrum of clinical subtypes with differences in disease mechanisms and treatment response. MG with muscle-specific tyrosine kinase (MuSK) antibodies accounts for 1%-10% of all MG patients. We conducted a meta-analysis to evaluate the association between HLA genes and MuSK-MG susceptibility. SUBJECTS AND METHODS Studies were searched in Pubmed, EMBASE database and other sources between 2001 and 2018. Genotype, allele and haplotype frequencies of HLA loci in MuSK-MG patients and healthy controls were extracted from each included study. RESULTS The meta-analysis showed that HLA DQB1*05, DRB1*14 and DRB1*16 were strongly associated with an increased risk of MuSK-MG (P < .0001), whereas HLA DQB*03 was less frequent in MuSK patients compared with healthy controls (P < .05). Haplotype analysis showed that these DQB1 and DRB1 alleles were closely linked, forming both risk (DQ5-DR14, DQ5-DR16, P < .0001) and protective (DQ3-DR4, DQ3-DR11, P < .05) haplotypes. CONCLUSION The distinct genetic patterns of MuSK-MG indicate that variation in HLA class II genes plays an important role in the pathogenesis of MuSK-MG patients.
Collapse
Affiliation(s)
- Y Hong
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - H-F Li
- Department of Neurology, Qilu Hospital of Shandong University, Jinan, China
| | - F Romi
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - G O Skeie
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - N E Gilhus
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
74
|
Xiao X, Lian M, Zhang W, Eric Gershwin M, Ma X. The Immunologic Paradoxes of IgG4-Related Disease. Clin Rev Allergy Immunol 2018; 54:344-351. [PMID: 29460058 DOI: 10.1007/s12016-018-8679-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
IgG4-related disease (IgG4-RD), which usually occurs in middle-aged and elderly men, is a newly recognized fibroinflammatory condition characterized by swelling and sclerosis of involved organs, increased IgG4-positive plasma cell infiltration in lesions, and elevated IgG4 concentration in serum. Despite growing interest in the research, the pathophysiological mechanism remains elusive. Most IgG4-RD patients respond well to steroid therapy initially, but recurrent and refractory cases are common, especially in advanced fibrotic stage. Recent studies have documented the heterogeneity of the B cell lineages, which suggests their multiple functions in IgG4-RD beyond IgG4 production, such as cytokine secretion, antigen presentation, autoantibody production, and modulation of T and B cell interactions. Thus, a critical balance exists between pathogenic and regulatory B subsets to prevent immunopathology. A prompt response to B cell depletion therapy reported in recent cases strongly suggests the imbalance within B cell lineages in IgG4-RD. A more precise understanding of the pathogenesis of IgG4-RD will open up new perspectives for therapeutic strategy. With a particular emphasis on the novel B cell-targeted therapeutic strategies, this review highlights the immunologic features of IgG4-RD and the possible roles of B cell lineages in the pathogenesis of IgG4-RD.
Collapse
Affiliation(s)
- Xiao Xiao
- Division of Gastroenterology and Hepatology, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.,Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.,Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Min Lian
- Division of Gastroenterology and Hepatology, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.,Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.,State Key Laboratory for Oncogenes and Related Genes, Shanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.,Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China
| | - Weici Zhang
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA
| | - M Eric Gershwin
- Department of Internal Medicine, Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, 451 Health Sciences Drive, Suite 6510, Davis, CA, 95616, USA.
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China. .,Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Shanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China. .,State Key Laboratory for Oncogenes and Related Genes, Shanghai JiaoTong University; Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China. .,Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, 200001, China.
| |
Collapse
|
75
|
Abstract
PURPOSE OF REVIEW Myasthenia gravis, a rare disorder of the neuromuscular transmission, is increasingly acknowledged as a syndrome more than as a single disease. This review summarizes recent advances in pathophysiology which confirm the disease heterogeneity, and may help find disease-targeted and patient-targeted therapies. RECENT FINDINGS Antibodies to the acetylcholine receptor, the muscle-specific tyrosine kinase and the lipoprotein receptor protein 4, characterize disease subtypes with distinct clinical traits and immune-pathogenic mechanisms. Genome-wide approaches have identified susceptibility loci within genes that participate in the immune response. Regulatory T and B cells appear to be defective in myasthenia gravis. In patients with acetylcholine receptor antibodies, thymectomy associated with prednisone proved more effective than prednisone alone in a multicenter randomized trial. New therapeutic options target B cells, B-cell growth factors and complement inhibition, and are currently reserved for patients with refractory disease. SUMMARY In the recent past, there has been an active search for new antigens in myasthenia gravis, whereas clinical and experimental studies have provided new insights of crucial pathways in immune regulation, which might become the targets of future therapeutic interventions.
Collapse
Affiliation(s)
- Amelia Evoli
- Institute of Neurology, Catholic University, Fondazione Policlinico Gemelli, Roma, Italy
| |
Collapse
|
76
|
Trampert DC, Hubers LM, van de Graaf SF, Beuers U. On the role of IgG4 in inflammatory conditions: lessons for IgG4-related disease. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1401-1409. [DOI: 10.1016/j.bbadis.2017.07.038] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/28/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
|
77
|
Abstract
The number of peer-reviewed articles published during the 2016 solar year and retrieved using the "autoimmunity" key word remained stable while gaining a minimal edge among the immunology articles. Nonetheless, the quality of the publications has been rising significantly and, importantly, acquisitions have become available through scientific journals dedicated to immunology or autoimmunity. Major discoveries have been made in the fields of systemic lupus erythematosus, rheumatoid arthritis, autoimmunity of the central nervous system, vasculitis, and seronegative spondyloarthrithritides. Selected examples include the role of IL17-related genes and long noncoding RNAs in systemic lupus erythematosus or the effects of anti-pentraxin 3 (PTX3) in the treatment of this paradigmatic autoimmune condition. In the case of rheumatoid arthritis, there have been reports of the role of induced regulatory T cells (iTregs) or fibrocytes and T cell interactions with exciting implications. The large number of studies dealing with neuroimmunology pointed to Th17 cells, CD56(bright) NK cells, and low-level TLR2 ligands as involved in multiple sclerosis, along with a high salt intake or the micriobiome-derived Lipid 654. Lastly, we focused on the rare vasculitides to which numerous studies were devoted and suggested that unsuspected cell populations, including monocytes, mucosal-associated invariant T cells, and innate lymphoid cells, may be crucial to ANCA-associated manifestations. This brief and arbitrary discussion of the findings published in 2016 is representative of a promising background for developments that will enormously impact the work of laboratory scientists and physicians at an exponential rate.
Collapse
Affiliation(s)
- Carlo Selmi
- Division of Rheumatology and Clinical Immunology, Humanitas Research Hospital, via A. Manzoni 56, 20089, Rozzano, Milan, Italy.
- Department of Medical Biotechnologies and Translational Medicine (BIOMETRA), University of Milan, Milan, Italy.
| |
Collapse
|
78
|
Bizzaro N, Bagnasco M, Tozzoli R, Brusca I, Cinquanta L, Tampoia M, Deleonardi G, Antico A, Pesce G, Alessio MG, Liguori M, Bassetti D, Villalta D. Choosing Wisely in autoimmunologia: le 5 Proposte del Gruppo di Studio in Autoimmunologia della SIPMeL. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/s13631-018-0181-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
79
|
Abstract
IgG4 autoimmune diseases are characterized by the presence of antigen-specific autoantibodies of the IgG4 subclass and contain well-characterized diseases such as muscle-specific kinase myasthenia gravis, pemphigus, and thrombotic thrombocytopenic purpura. In recent years, several new diseases were identified, and by now 14 antigens targeted by IgG4 autoantibodies have been described. The IgG4 subclass is considered immunologically inert and functionally monovalent due to structural differences compared to other IgG subclasses. IgG4 usually arises after chronic exposure to antigen and competes with other antibody species, thus "blocking" their pathogenic effector mechanisms. Accordingly, in the context of IgG4 autoimmunity, the pathogenicity of IgG4 is associated with blocking of enzymatic activity or protein-protein interactions of the target antigen. Pathogenicity of IgG4 autoantibodies has not yet been systematically analyzed in IgG4 autoimmune diseases. Here, we establish a modified classification system based on Witebsky's postulates to determine IgG4 pathogenicity in IgG4 autoimmune diseases, review characteristics and pathogenic mechanisms of IgG4 in these disorders, and also investigate the contribution of other antibody entities to pathophysiology by additional mechanisms. As a result, three classes of IgG4 autoimmune diseases emerge: class I where IgG4 pathogenicity is validated by the use of subclass-specific autoantibodies in animal models and/or in vitro models of pathogenicity; class II where IgG4 pathogenicity is highly suspected but lack validation by the use of subclass specific antibodies in in vitro models of pathogenicity or animal models; and class III with insufficient data or a pathogenic mechanism associated with multivalent antigen binding. Five out of the 14 IgG4 antigens were validated as class I, five as class II, and four as class III. Antibodies of other IgG subclasses or immunoglobulin classes were present in several diseases and could contribute additional pathogenic mechanisms.
Collapse
Affiliation(s)
- Inga Koneczny
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
80
|
Vincent A, Huda S, Cao M, Cetin H, Koneczny I, Rodriguez Cruz PM, Jacobson L, Viegas S, Jacob S, Woodhall M, Nagaishi A, Maniaol A, Damato V, Leite MI, Cossins J, Webster R, Palace J, Beeson D. Serological and experimental studies in different forms of myasthenia gravis. Ann N Y Acad Sci 2018; 1413:143-153. [PMID: 29377162 DOI: 10.1111/nyas.13592] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/11/2022]
Abstract
Antibodies to the acetylcholine receptor (AChR) have been recognized for over 40 years and have been important in the diagnosis of myasthenia gravis (MG), and its recognition in patients of different ages and thymic pathologies. The 10-20% of patients who do not have AChR antibodies are now known to comprise different subgroups, the most commonly reported of which is patients with antibodies to muscle-specific kinase (MuSK). The use of cell-based assays has extended the repertoire of antibody tests to clustered AChRs, low-density lipoprotein receptor-related protein 4, and agrin. Autoantibodies against intracellular targets, namely cortactin, titin, and ryanodine receptor (the latter two being associated with the presence of thymoma), may also be helpful as biomarkers in some patients. IgG4 MuSK antibodies are clearly pathogenic, but the coexisting IgG1, IgG2, and IgG3 antibodies, collectively, have effects that question the dominance of IgG4 as the sole pathologic factor in MuSK MG. After a brief historical review, we define the different subgroups and summarize the antibody characteristics. Experiments to demonstrate the in vitro and in vivo pathogenic roles of MuSK antibodies are discussed.
Collapse
Affiliation(s)
- Angela Vincent
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Saif Huda
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Michelangelo Cao
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Hakan Cetin
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Inga Koneczny
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Pedro M Rodriguez Cruz
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Leslie Jacobson
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Stuart Viegas
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Saiju Jacob
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Mark Woodhall
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Akiko Nagaishi
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Angelina Maniaol
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Valentina Damato
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - M Isabel Leite
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Judith Cossins
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Richard Webster
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Jacqueline Palace
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - David Beeson
- Neuroimmunology Group, Nuffield Department of Clinical Neurosciences, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| |
Collapse
|
81
|
Huijbers MG, Plomp JJ, van der Maarel SM, Verschuuren JJ. IgG4-mediated autoimmune diseases: a niche of antibody-mediated disorders. Ann N Y Acad Sci 2018; 1413:92-103. [PMID: 29377160 DOI: 10.1111/nyas.13561] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/19/2017] [Accepted: 10/30/2017] [Indexed: 12/11/2022]
Abstract
Immunoglobulin 4 (IgG4) is one of four human IgG subclasses and has several unique functional characteristics. It exhibits low affinity for complement and for most Fc receptors. It furthermore has generally high affinity for its antigen, with binding occurring in a monovalent fashion, as IgG4 can exchange Fab-arms with other IgG4 molecules. Because of these characteristics, IgG4 is believed to block its targets and prevent inflammation, which, depending on the setting, can have a protective or pathogenic effect. One example of IgG4 pathogenicity is muscle-specific kinase (MuSK) myasthenia gravis (MG), in which patients develop IgG4 MuSK autoantibodies, resulting in muscle weakness. As a consequence of the distinct IgG4 characteristics, the pathomechanism of MuSK MG is very different from IgG1-and IgG3-mediated autoimmune diseases, such as acetylcholine receptor MG. In recent years, new autoantibodies in a spectrum of autoimmune diseases have been discovered. Interestingly, some were found to be predominantly IgG4. These IgG4-mediated autoimmune diseases share many pathomechanistic aspects with MuSK MG, suggesting that IgG4-mediated autoimmunity forms a separate niche among the antibody-mediated disorders. In this review, we summarize the group of IgG4-mediated autoimmune diseases, discuss the role of IgG4 in MuSK MG, and highlight interesting future research questions for IgG4-mediated autoimmunity.
Collapse
Affiliation(s)
- Maartje G Huijbers
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands.,Department of Human Genetics, Leiden University Medical Centre, Leiden, the Netherlands
| | - Jaap J Plomp
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| | | | - Jan J Verschuuren
- Departments of Neurology, Leiden University Medical Centre, Leiden, the Netherlands
| |
Collapse
|
82
|
Verschuuren JJGM, Plomp JJ, Burden SJ, Zhang W, Fillié-Grijpma YE, Stienstra-van Es IE, Niks EH, Losen M, van der Maarel SM, Huijbers MG. Passive transfer models of myasthenia gravis with muscle-specific kinase antibodies. Ann N Y Acad Sci 2018; 1413:111-118. [PMID: 29356029 DOI: 10.1111/nyas.13543] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/02/2017] [Accepted: 10/05/2017] [Indexed: 12/20/2022]
Abstract
Myasthenia gravis (MG) with antibodies to muscle-specific kinase (MuSK) is characterized by fluctuating fatigable weakness. In MuSK MG, involvement of bulbar muscles, neck, and shoulder and respiratory weakness are more prominent than in acetylcholine receptor (AChR) MG. MuSK autoantibodies are mainly of the IgG4 subclass, and as such are unable to activate complement, have low affinity for Fc receptors, and are functionally monovalent. Therefore, the pathogenicity of IgG4 MuSK autoantibodies was initially questioned. A broad collection of in vitro active immunization and passive transfer models has been developed that have shed light on the pathogenicity of MuSK autoantibodies. Passive transfer studies with purified IgG4 from MuSK MG patients confirmed that IgG4 is sufficient to reproduce clear clinical, electrophysiological, and histological signs of myasthenia. In vitro experiments revealed that MuSK IgG4 autoantibodies preferably bind the first Ig-like domain of MuSK, correlate with disease severity, and interfere with the association between MuSK and low-density lipoprotein receptor-related protein 4 and collagen Q. Some patients have additional IgG1 MuSK autoantibodies, but their role in the disease is unclear. Altogether, this provides a rationale for epitope-specific or IgG4-specific treatment strategies for MuSK MG and emphasizes the importance of the development of different experimental models.
Collapse
Affiliation(s)
| | - Jaap J Plomp
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Steve J Burden
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Medical School, New York, New York
| | - Wei Zhang
- Kimmel Center for Biology and Medicine at the Skirball Institute, New York University Medical School, New York, New York
| | | | | | - Erik H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| | - Mario Losen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | - Maartje G Huijbers
- Department of Neurology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
83
|
Stathopoulos P, Kumar A, Vander Heiden JA, Pascual-Goñi E, Nowak RJ, O’Connor KC. Mechanisms underlying B cell immune dysregulation and autoantibody production in MuSK myasthenia gravis. Ann N Y Acad Sci 2018; 1412:154-165. [PMID: 29381221 PMCID: PMC5793885 DOI: 10.1111/nyas.13535] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/20/2017] [Accepted: 09/26/2017] [Indexed: 12/16/2022]
Abstract
Pathogenic autoantibodies to muscle-specific tyrosine kinase (MuSK) can be found in patients with myasthenia gravis (MG) who do not have detectable antibodies to the acetylcholine receptor. Although the autoantibody-mediated pathology is well understood, much remains to be learned about the cellular immunology that contributes to autoantibody production. To that end, our laboratory has investigated particular components associated with the cellular immunopathology of MuSK MG. First, we found that B cell tolerance defects contribute to the abnormal development of the naive repertoire, which indicates that dysregulation occurs before the production of autoantibodies. Second, both the naive and antigen-experienced memory B cell repertoire, which we examined through the application of high-throughput adaptive immune receptor repertoire sequencing, include abnormalities not found in healthy controls. This highlights a broad immune dysregulation. Third, using complementary approaches, including production of human monoclonal antibodies, we determined that circulating plasmablasts directly contribute to the production of MuSK-specific autoantibodies in patients experiencing relapse following B cell depletion therapy. These collective findings contribute to defining a mechanistic model that describes MuSK MG immunopathogenesis.
Collapse
Affiliation(s)
- Panos Stathopoulos
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Aditya Kumar
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | | | - Elba Pascual-Goñi
- Neurology Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Richard J. Nowak
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| | - Kevin C. O’Connor
- Department of Neurology, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
84
|
Evoli A, Alboini PE, Damato V, Iorio R, Provenzano C, Bartoccioni E, Marino M. Myasthenia gravis with antibodies to MuSK: an update. Ann N Y Acad Sci 2017; 1412:82-89. [PMID: 29266255 DOI: 10.1111/nyas.13518] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 02/06/2023]
Abstract
Myasthenia gravis with antibodies to the muscle-specific tyrosine kinase (MuSK+ MG) is a rare disease with distinctive pathogenic mechanisms and clinical features. An acute onset and predominant bulbar muscle weakness are very common and highly suggestive of the disease. On the other hand, a more indolent course, atypical ocular presentation, and signs of cholinergic hyperactivity may complicate the diagnosis. Though MuSK+ MG is still a severe disease, over the years we have observed a steady reduction in the rate of respiratory crisis and a significant improvement in the clinical outcome, both likely related to earlier diagnosis and timely treatment. Despite the improved management, MuSK+ MG patients tend to remain dependent on long-term immunosuppressive treatment and may develop permanent disabling weakness. In uncontrolled studies, B cell depletion with rituximab proved effective in most patients with refractory disease, inducing prolonged clinical responses associated with a sustained reduction of serum antibody levels. Promising results from experimental studies and case reports suggest that both 3,4-diaminopyridine and albuterol may be effective as symptomatic agents.
Collapse
Affiliation(s)
- Amelia Evoli
- Institute of Neurology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| | - Paolo E Alboini
- Institute of Neurology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| | - Valentina Damato
- Institute of Neurology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| | - Raffaele Iorio
- Institute of Neurology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| | - Carlo Provenzano
- Institute of General Pathology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| | - Emanuela Bartoccioni
- Institute of General Pathology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| | - Mariapaola Marino
- Institute of General Pathology, Catholic University, Fondazione Policlinico Gemelli, Rome, Italy
| |
Collapse
|
85
|
Eculizumab: a treatment option for myasthenia gravis? Lancet Neurol 2017; 16:947-948. [DOI: 10.1016/s1474-4422(17)30363-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 11/23/2022]
|
86
|
Ghazanfari N, Trajanovska S, Morsch M, Liang SX, Reddel SW, Phillips WD. The mouse passive-transfer model of MuSK myasthenia gravis: disrupted MuSK signaling causes synapse failure. Ann N Y Acad Sci 2017; 1412:54-61. [DOI: 10.1111/nyas.13513] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/05/2017] [Accepted: 09/09/2017] [Indexed: 12/21/2022]
Affiliation(s)
- Nazanin Ghazanfari
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Sofie Trajanovska
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| | - Marco Morsch
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
- Department of Biomedical Sciences; Macquarie University; Sydney New South Wales Australia
| | - Simon X. Liang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences; Liaoning Medical University; Jinzhou China
| | - Stephen W. Reddel
- Department of Molecular Medicine; Concord Hospital; Sydney New South Wales Australia
| | - William D. Phillips
- Physiology and Bosch Institute; University of Sydney; Sydney New South Wales Australia
| |
Collapse
|
87
|
Characterization of an anti-fetal AChR monoclonal antibody isolated from a myasthenia gravis patient. Sci Rep 2017; 7:14426. [PMID: 29089519 PMCID: PMC5663942 DOI: 10.1038/s41598-017-14350-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 10/10/2017] [Indexed: 11/24/2022] Open
Abstract
We report here the sequence and functional characterization of a recombinantly expressed autoantibody (mAb 131) previously isolated from a myasthenia gravis patient by immortalization of thymic B cells using Epstein-Barr virus and TLR9 activation. The antibody is characterized by a high degree of somatic mutations as well as a 6 amino acid insertion within the VHCDR2. The recombinant mAb 131 is specific for the γ-subunit of the fetal AChR to which it bound with sub-nanomolar apparent affinity, and detected the presence of fetal AChR on a number of rhabdomyosarcoma cell lines. Mab 131 blocked one of the two α-bungarotoxin binding sites on the fetal AChR, and partially blocked the binding of an antibody (mAb 637) to the α-subunit of the AChR, suggesting that both antibodies bind at or near one ACh binding site at the α/γ subunit interface. However, mAb 131 did not reduce fetal AChR ion channel currents in electrophysiological experiments. These results indicate that mAb 131, although generated from an MG patient, is unlikely to be pathogenic and may make it a potentially useful reagent for studies of myasthenia gravis, rhabdomyosarcoma and arthrogryposis multiplex congenita which can be caused by fetal-specific AChR-blocking autoantibodies.
Collapse
|
88
|
Yi JS, Guptill JT, Stathopoulos P, Nowak RJ, O'Connor KC. B cells in the pathophysiology of myasthenia gravis. Muscle Nerve 2017; 57:172-184. [PMID: 28940642 DOI: 10.1002/mus.25973] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2017] [Indexed: 12/21/2022]
Abstract
Myasthenia gravis (MG) is an archetypal autoimmune disease. The pathology is characterized by autoantibodies to the acetylcholine receptor (AChR) in most patients or to muscle-specific tyrosine kinase (MuSK) in others and to a growing number of other postsynaptic proteins in smaller subsets. A decrease in the number of functional AChRs or functional interruption of the AChR within the muscle end plate of the neuromuscular junction is caused by pathogenic autoantibodies. Although the molecular immunology underpinning the pathology is well understood, much remains to be learned about the cellular immunology contributing to the production of autoantibodies. This Review documents research concerning the immunopathology of MG, bringing together evidence principally from human studies with an emphasis on the role of adaptive immunity and B cells in particular. Proposed mechanisms for autoimmunity, which take into account that different types of MG may incorporate divergent immunopathology, are offered. Muscle Nerve 57: 172-184, 2018.
Collapse
Affiliation(s)
- John S Yi
- Division of Surgical Sciences, Department of Surgery, Duke University Medical Center, Durham, North Carolina, USA
| | - Jeffrey T Guptill
- Department of Neurology, Neuromuscular Section, Duke University Medical Center, Durham, North Carolina, USA
| | - Panos Stathopoulos
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Richard J Nowak
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| | - Kevin C O'Connor
- Department of Neurology, Yale School of Medicine, Room 353J, 300 George Street, New Haven, Connecticut, 06511, USA
| |
Collapse
|
89
|
Zong S, Hoffmann C, Mané-Damas M, Molenaar P, Losen M, Martinez-Martinez P. Neuronal Surface Autoantibodies in Neuropsychiatric Disorders: Are There Implications for Depression? Front Immunol 2017; 8:752. [PMID: 28725222 PMCID: PMC5497139 DOI: 10.3389/fimmu.2017.00752] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/13/2017] [Indexed: 12/16/2022] Open
Abstract
Autoimmune diseases are affecting around 7.6-9.4% of the general population. A number of central nervous system disorders, including encephalitis and severe psychiatric disorders, have been demonstrated to associate with specific neuronal surface autoantibodies (NSAbs). It has become clear that specific autoantibodies targeting neuronal surface antigens and ion channels could cause severe mental disturbances. A number of studies have focused or are currently investigating the presence of autoantibodies in specific mental conditions such as schizophrenia and bipolar disorders. However, less is known about other conditions such as depression. Depression is a psychiatric disorder with complex etiology and pathogenesis. The diagnosis criteria of depression are largely based on symptoms but not on the origin of the disease. The question which arises is whether in a subgroup of patients with depression, the symptoms might be caused by autoantibodies targeting membrane-associated antigens. Here, we describe how autoantibodies targeting membrane proteins and ion channels cause pathological effects. We discuss the physiology of these antigens and their role in relation to depression. Finally, we summarize a number of studies detecting NSAbs with a special focus on cohorts that include depression diagnosis and/or show depressive symptoms.
Collapse
Affiliation(s)
- Shenghua Zong
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Carolin Hoffmann
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Marina Mané-Damas
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Peter Molenaar
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Mario Losen
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - Pilar Martinez-Martinez
- Division Neuroscience, School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
| |
Collapse
|
90
|
Takamori M. Synaptic Homeostasis and Its Immunological Disturbance in Neuromuscular Junction Disorders. Int J Mol Sci 2017; 18:ijms18040896. [PMID: 28441759 PMCID: PMC5412475 DOI: 10.3390/ijms18040896] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/04/2017] [Accepted: 04/19/2017] [Indexed: 12/14/2022] Open
Abstract
In the neuromuscular junction, postsynaptic nicotinic acetylcholine receptor (nAChR) clustering, trans-synaptic communication and synaptic stabilization are modulated by the molecular mechanisms underlying synaptic plasticity. The synaptic functions are based presynaptically on the active zone architecture, synaptic vesicle proteins, Ca2+ channels and synaptic vesicle recycling. Postsynaptically, they are based on rapsyn-anchored nAChR clusters, localized sensitivity to ACh, and synaptic stabilization via linkage to the extracellular matrix so as to be precisely opposed to the nerve terminal. Focusing on neural agrin, Wnts, muscle-specific tyrosine kinase (a mediator of agrin and Wnts signalings and regulator of trans-synaptic communication), low-density lipoprotein receptor-related protein 4 (the receptor of agrin and Wnts and participant in retrograde signaling), laminin-network (including muscle-derived agrin), extracellular matrix proteins (participating in the synaptic stabilization) and presynaptic receptors (including muscarinic and adenosine receptors), we review the functional structures of the synapse by making reference to immunological pathogenecities in postsynaptic disease, myasthenia gravis. The synapse-related proteins including cortactin, coronin-6, caveolin-3, doublecortin, R-spondin 2, amyloid precursor family proteins, glia cell-derived neurotrophic factor and neurexins are also discussed in terms of their possible contribution to efficient synaptic transmission at the neuromuscular junction.
Collapse
Affiliation(s)
- Masaharu Takamori
- Neurological Center, Kanazawa-Nishi Hospital, Kanazawa, Ishikawa 920-0025, Japan.
| |
Collapse
|