51
|
Eom HJ, Lee D, Lee S, Noh HJ, Hyun JW, Yi PH, Kang KS, Kim KH. Flavonoids and a Limonoid from the Fruits of Citrus unshiu and Their Biological Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7171-7178. [PMID: 27608132 DOI: 10.1021/acs.jafc.6b03465] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The fruits of Citrus unshiu are one of the most popular and most enjoyed fruits in Korea. As we continue to seek for bioactive metabolites from Korean natural resources, our study on the chemical constituents of the fruits of C. unshiu resulted in the isolation of a new flavonoid glycoside, limocitrunshin 1, along with seven other flavonoids 2-8 and a limonoid 9. All structures were identified by spectroscopic methods, namely 1D and 2D NMR, including HSQC, HMBC, and (1)H-(1)H COSY experiments, HRMS, and other chemical methods. Compounds 3, 5, and 9 are reported to be isolated from this fruit for the first time. The isolated compounds were applied to activity tests to verify their inhibitory effects on inflammation and nephrotoxicity. Compounds 6 and 9 showed the most potent inhibitory activity on renal cell damage and nitric oxide production, respectively. Thus, the fruits of C. unshiu could serve as a valuable natural source of bioactive components with health benefits for potential application in functional foods.
Collapse
Affiliation(s)
- Hee Jeong Eom
- School of Pharmacy, Sungkyunkwan University , Suwon 440-746, Republic of Korea
| | - Dahae Lee
- School of Pharmacy, Sungkyunkwan University , Suwon 440-746, Republic of Korea
- College of Korean Medicine, Gachon University , Seongnam 461-701, Republic of Korea
| | - Seulah Lee
- School of Pharmacy, Sungkyunkwan University , Suwon 440-746, Republic of Korea
| | - Hyung Jun Noh
- Department of Herbal Crop Research, National Institute of Horticultural & Herbal Science, Rural Development Administration , Eumseoung 369-873, Republic of Korea
| | - Jae Wook Hyun
- Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration , Jeju 697-943, Republic of Korea
| | - Pyoung Ho Yi
- Citrus Research Station, National Institute of Horticultural & Herbal Science, Rural Development Administration , Jeju 697-943, Republic of Korea
| | - Ki Sung Kang
- College of Korean Medicine, Gachon University , Seongnam 461-701, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University , Suwon 440-746, Republic of Korea
| |
Collapse
|
52
|
Yu JS, Baek J, Park HB, Moon E, Kim SY, Choi SU, Kim KH. A new rearranged eudesmane sesquiterpene and bioactive sesquiterpenes from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. Arch Pharm Res 2016; 39:1628-1634. [PMID: 27620498 DOI: 10.1007/s12272-016-0838-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 09/06/2016] [Indexed: 10/21/2022]
Abstract
A new rearranged eudesmane sesquiterpene, named eudeglaucone (1), and five known sesquiterpenes including (+)-faurinone (2) and four eudesmane-type sesquiterpenes (3-6), were isolated from the twigs of Lindera glauca (Sieb. et Zucc.) Blume. The structure of 1 was elucidated by a combination of extensive spectroscopic analyses, including extensive 2D NMR (1H-1H COSY, HMQC, HMBC, and NOESY) and HR-MS. Compound 1 was a relatively rare rearranged eudesmane sesquiterpene in terpenoids. All isolates were evaluated for their antiproliferative activities against four human tumor cell lines (A549, SK-OV-3, SK-MEL-2, and HCT-15). Compounds 3 and 6 showed significant cytotoxicity against SK-MEL-2 and HCT-15 cell lines with IC50 values ranging from 9.98 to 12.20 μM. We also investigated the anti-neuroinflammatory activities of the isolates (1-6) in the lipopolysaccharide (LPS)-stimulated murine microglia BV-2 cell line by measuring nitric oxide (NO) levels. All isolates significantly inhibited NO production with IC50 values of 3.67-26.48 μM without inducing cell toxicity.
Collapse
Affiliation(s)
- Jae Sik Yu
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Jiwon Baek
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT, 06520, USA
| | - Eunjung Moon
- Charmzone R&D Center, Charmzone Co. LTD., 318 Yeongdong-daero, Gangnam-gu, Seoul, 06177, Republic of Korea
| | - Sun Yeou Kim
- College of Pharmacy, Gachon University, #191 Hambakmoero, Yeonsu-gu, Incheon, 406-799, Republic of Korea
| | - Sang Un Choi
- Korea Research Institute of Chemical Technology, Deajeon, 305-600, Republic of Korea
| | - Ki Hyun Kim
- School of Pharmacy, Sungkyunkwan University, Suwon, 440-746, Republic of Korea.
| |
Collapse
|
53
|
Baek KS, Yi YS, Son YJ, Yoo S, Sung NY, Kim Y, Hong S, Aravinthan A, Kim JH, Cho JY. In vitro and in vivo anti-inflammatory activities of Korean Red Ginseng-derived components. J Ginseng Res 2016; 40:437-444. [PMID: 27746698 PMCID: PMC5052440 DOI: 10.1016/j.jgr.2016.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/07/2016] [Accepted: 08/09/2016] [Indexed: 11/05/2022] Open
Abstract
Background Although Korean Red Ginseng (KRG) has been traditionally used for a long time, its anti-inflammatory role and underlying molecular and cellular mechanisms have been poorly understood. In this study, the anti-inflammatory roles of KRG-derived components, namely, water extract (KRG-WE), saponin fraction (KRG-SF), and nonsaponin fraction (KRG-NSF), were investigated. Methods To check saponin levels in the test fractions, KRG-WE, KRG-NSF, and KRG-SF were analyzed using high-performance liquid chromatography. The anti-inflammatory roles and underlying cellular and molecular mechanisms of these components were investigated using a macrophage-like cell line (RAW264.7 cells) and an acute gastritis model in mice. Results Of the tested fractions, KGR-SF (but not KRG-NSF and KRG-WE) markedly inhibited the viability of RAW264.7 cells, and splenocytes at more than 500 μg/mL significantly suppressed NO production at 100 μg/mL, diminished mRNA expression of inflammatory genes such as inducible nitric oxide synthase, cyclooxygenase-2, tumor necrosis factor-α, and interferon-β at 200 μg/mL, and completely blocked phagocytic uptake by RAW264.7 cells. All three fractions suppressed luciferase activity triggered by interferon regulatory factor 3 (IRF3), but not that triggered by activator protein-1 and nuclear factor-kappa B. Phospho-IRF3 and phospho-TBK1 were simultaneously decreased in KRG-SF. Interestingly, all these fractions, when orally administered, clearly ameliorated the symptoms of gastric ulcer in HCl/ethanol-induced gastritis mice. Conclusion These results suggest that KRG-WE, KRG-NSF, and KRG-SF might have anti-inflammatory properties, mostly because of the suppression of the IRF3 pathway.
Collapse
Affiliation(s)
- Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Young-Su Yi
- Department of Pharmaceutical Engineering, Cheongju University, Cheongju, Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon, Korea
| | - Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sungyoul Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Adithan Aravinthan
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jong-Hoon Kim
- Department of Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
54
|
Kim SH, Park JG, Hong YD, Kim E, Baik KS, Yoon DH, Kim S, Lee MN, Rho HS, Shin SS, Cho JY. Src/Syk/IRAK1-targeted anti-inflammatory action of Torreya nucifera butanol fraction in lipopolysaccharide-activated RAW264.7 cells. JOURNAL OF ETHNOPHARMACOLOGY 2016; 188:167-176. [PMID: 27178629 DOI: 10.1016/j.jep.2016.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 04/28/2016] [Accepted: 05/04/2016] [Indexed: 06/05/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Seed of Torreya nucifera (L.) Siebold & Zucc is used to treat several diseases in Asia. Reports document that T. nucifera has anti-cancer, anti-inflammatory, anti-oxidative activities. In spite of numerous findings on its pharmacological effects, the understanding of the molecular inhibitory mechanisms of the plant remains to be studied. Therefore, we aimed to explore in vitro anti-inflammatory mechanisms of ethyl acetate fraction (Tn-EE-BF) prepared from the seed of T. nucifera in LPS-stimulated macrophage inflammatory responses. MATERIALS AND METHODS For this purpose, we measured nitric oxide (NO) and prostaglandin E2 (PGE2) in LPS-stimulated macrophages. Additionally, using RT-PCR, luciferase reporter gene assay, immunoblotting analysis, and kinase assay, the levels of inflammatory genes, transcription factors, and inflammatory signal-regulatory proteins were investigated. Finally, the constituent of Tn-EE-BF was identified using HPLC. RESULTS Tn-EE-BF inhibits NO and PGE2 production and also blocks mRNA levels of inducible NO synthase (iNOS), tumor necrosis factor (TNF)-α, and cyclooxygenase (COX)-2 in a dose dependent manner. Tn-EE-BF reduces nuclear levels of the transcriptional factors NF-κB (p65) and AP-1 (c-Jun and FRA-1). Surprisingly, we found that Tn-EE-BF inhibits phosphorylation levels of Src and Syk in the NF-κB pathway, as well as, IRAK1 at the protein level, part of the AP-1 pathway. By kinase assay, we confirmed that Src, Syk, and IRAK1 are suppressed directly. HPLC analysis indicates that arctigenin, amentoflavone, and quercetin may be active components with anti-inflammatory activities. CONCLUSION Tn-EE-BF exhibits anti-inflammatory activities by direct inhibition of Src/Syk/NF-κB and IRAK1/AP-1.
Collapse
Affiliation(s)
- Shi Hyoung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Deog Hong
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kwang-Soo Baik
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Deok Hyo Yoon
- Department of Biochemistry, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Sunggyu Kim
- Research and Business Foundation, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Mi-Nam Lee
- Department of Food and Nutrition, School of Foodservice Industry, Chungkang College of Cultural industries, Icheon 17390, Republic of Korea
| | - Ho Sik Rho
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea
| | - Song Seok Shin
- Longevity Science Research Team, AmorePacific R&D Unit, Yongin 17074, Republic of Korea.
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
55
|
Lin Y, Li Y, Song ZG, Zhu H, Jin YH. The interaction of serum albumin with ginsenoside Rh2 resulted in the downregulation of ginsenoside Rh2 cytotoxicity. J Ginseng Res 2016; 41:330-338. [PMID: 28701874 PMCID: PMC5489766 DOI: 10.1016/j.jgr.2016.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 06/21/2016] [Accepted: 06/23/2016] [Indexed: 12/22/2022] Open
Abstract
Background Ginsenoside Rh2 (G-Rh2) is a ginseng saponin that is widely investigated because of its remarkable antitumor activity. However, the molecular mechanism by which (20S) G-Rh2 triggers its functions and how target animals avoid its cytotoxic action remains largely unknown. Methods Phage display was used to screen the human targets of (20S) G-Rh2. Fluorescence spectroscopy and UV-visible absorption spectroscopy were used to confirm the interaction of candidate target proteins and (20S) G-Rh2. Molecular docking was utilized to calculate the estimated free energy of binding and to structurally visualize their interactions. MTT assay and immunoblotting were used to assess whether human serum albumin (HSA), bovine serum albumin (BSA), and bovine serum can reduce the cytotoxic activity of (20S) G-Rh2 in HepG2 cells. Results In phage display, (20S) G-Rh2-beads and (20R) G-Rh2-beads were combined with numerous kinds of phages, and a total of 111 different human complementary DNAs (cDNA) were identified, including HSA which had the highest rate. The binding constant and number of binding site in the interaction between (20S)-Rh2 and HSA were 3.5 × 105 M−1 and 1, and those in the interaction between (20S) G-Rh2 and BSA were 1.4 × 105 M−1 and 1. The quenching mechanism is static quenching. HSA, BSA and bovine serum significantly reduced the proapoptotic effect of (20S) G-Rh2. Conclusion HSA and BSA interact with (20S) G-Rh2. Serum inhibited the activity of (20S) G-Rh2 mainly due to the interaction between (20S) G-Rh2 and serum albumin (SA). This study proposes that HSA may enhance (20S) G-Rh2 water solubility, and thus might be used as nanoparticles in the (20S) G-Rh2 delivery process.
Collapse
Affiliation(s)
- Yingjia Lin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Yang Li
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Zhi-Guang Song
- College of Chemistry, Jilin University, Changchun, China
| | - Hongyan Zhu
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, Jilin, China
| | - Ying-Hua Jin
- Key Laboratory for Molecular Enzymology and Engineering of the Ministry of Education, College of Life Science, Jilin University, Changchun, Jilin, China
| |
Collapse
|
56
|
Syk and IRAK1 Contribute to Immunopharmacological Activities of Anthraquinone-2-carboxlic Acid. Molecules 2016; 21:molecules21060809. [PMID: 27338330 PMCID: PMC6272897 DOI: 10.3390/molecules21060809] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 06/16/2016] [Accepted: 06/18/2016] [Indexed: 12/12/2022] Open
Abstract
Anthraquinone-2-carboxlic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA) was identified as one of the major anthraquinones in Brazilian taheebo. Since there was no report explaining its immunopharmacological actions, in this study, we aimed to investigate the molecular mechanism of AQCA-mediated anti-inflammatory activity using reporter gene assays, kinase assays, immunoblot analyses, and overexpression strategies with lipopolysaccharide (LPS)-treated macrophages. AQCA was found to suppress the release of nitric oxide (NO) and prostaglandin (PG) E2 from LPS-treated peritoneal macrophages without displaying any toxic side effects. Molecular analysis revealed that AQCA was able to inhibit the activation of the nuclear factor (NF)-κB and activator protein (AP)-1 pathways by direct suppression of upstream signaling enzymes including interleukin-1 receptor-associated kinase 1 (IRAK1) and spleen tyrosine kinase (Syk). Therefore, our data strongly suggest that AQCA-mediated suppression of inflammatory responses could be managed by a direct interference of signaling cascades including IRAK and Syk, linked to the activation of NF-κB and AP-1.
Collapse
|
57
|
Yu T, Rhee MH, Lee J, Kim SH, Yang Y, Kim HG, Kim Y, Kim C, Kwak YS, Kim JH, Cho JY. Ginsenoside Rc from Korean Red Ginseng (Panax ginseng C.A. Meyer) Attenuates Inflammatory Symptoms of Gastritis, Hepatitis and Arthritis. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:595-615. [DOI: 10.1142/s0192415x16500336] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Korean Red Ginseng (KRG) is an herbal medicine prescribed worldwide that is prepared from Panax ginseng C.A. Meyer (Araliaceae). Out of ginseng’s various components, ginsenosides are regarded as the major ingredients, exhibiting anticancer and anti-inflammatory activities. Although recent studies have focused on understanding the anti-inflammatory activities of KRG, compounds that are major anti-inflammatory components, precisely how these can suppress various inflammatory processes has not been fully elucidated yet. In this study, we aimed to identify inhibitory saponins, to evaluate the in vivo efficacy of the saponins, and to understand the inhibitory mechanisms. To do this, we employed in vitro lipopolysaccharide-treated macrophages and in vivo inflammatory mouse conditions, such as collagen (type II)-induced arthritis (CIA), EtOH/HCl-induced gastritis, and lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-triggered hepatitis. Molecular mechanisms were also verified by real-time PCR, immunoblotting analysis, and reporter gene assays. Out of all the ginsenosides, ginsenoside Rc (G-Rc) showed the highest inhibitory activity against the expression of tumor necrosis factor (TNF)-[Formula: see text], interleukin (IL)-1[Formula: see text], and interferons (IFNs). Similarly, this compound attenuated inflammatory symptoms in CIA, EtOH/HCl-mediated gastritis, and LPS/D-galactosamine (D-GalN)-triggered hepatitis without altering toxicological parameters, and without inducing gastric irritation. These anti-inflammatory effects were accompanied by the suppression of TNF-[Formula: see text] and IL-6 production and the induction of anti-inflammatory cytokine IL-10 in mice with CIA. G-Rc also attenuated the increased levels of luciferase activity by IRF-3 and AP-1 but not NF-[Formula: see text]B. In support of this phenomenon, G-Rc reduced TBK1, IRF-3, and ATF2 phosphorylation in the joint and liver tissues of mice with hepatitis. Therefore, our results strongly suggest that G-Rc may be a major component of KRG with useful anti-inflammatory properties due to its suppression of IRF-3 and AP-1 pathways.
Collapse
Affiliation(s)
- Tao Yu
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medical College, Qingdao University, Qingdao 266021, P. R. China
| | - Man Hee Rhee
- College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jongsung Lee
- Department of Genetic Engineering, Sungkyunkwan University, 2066 Seobu-ro Jangan-gu, Suwon 16419, Republic of Korea
| | - Seung Hyung Kim
- Institute of Traditional Medicine and Bioscience, Daejeon University, Daejeon 34520, Republic of Korea
| | - Yanyan Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Medical College, Qingdao University, Qingdao 266021, P. R. China
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Yong Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Chaekyun Kim
- Department of Pharmacology, Inha University School of Medicine, Incheon 22212, Republic of Korea
| | - Yi-Seong Kwak
- Korean Ginseng Corporation, Central Research Institute, Daejeon 34337, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Chonbuk National University, Iksan 54596, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
58
|
1-(2,3-Dibenzimidazol-2-ylpropyl)-2-methoxybenzene Is a Syk Inhibitor with Anti-Inflammatory Properties. Molecules 2016; 21:508. [PMID: 27096863 PMCID: PMC6274291 DOI: 10.3390/molecules21040508] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 01/15/2023] Open
Abstract
Inflammation is the protective action of our bodies against external pathogens by recognition of pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs). Proper regulation of inflammatory responses is required to maintain our body’s homeostasis, as well as there are demands to develop proper acute or chronic inflammation. In this study, we elucidated the regulatory mechanism of NF-κB-mediated inflammatory responses by a novel compound, 1-(2,3-dibenzimidazol-2-ylpropyl)-2-methoxybenzene (DBMB). We found that DBMB suppressed inflammatory mediators, nitric oxide (NO) and prostaglandin E2 (PGE2), reacted to exposure to a number of toll like receptor (TLR) ligands. Such observations occurred following to decreased mRNA expression of several pro-inflammatory mediators, and such diminished mRNA levels were caused by inhibited transcriptional factor nuclear factor (NF)-κB, as evaluated by luciferase reporter assay and molecular biological approaches. To find the potential targets of DBMB, we screened phosphorylated forms of NF-κB signal molecules: inhibitor of κBα (IκBα), IκB kinase (IKK)α/β, Akt, 3-phosphoinositide dependent protein kinase-1 (PDK1), p85, and spleen tyrosine kinase (Syk). We found that DBMB treatment could suppress signal transduction through these molecules. Additionally, we conducted in vitro kinase assays using immunoprecipitated Syk and its substrate, p85. Consequently, we could say that DBMB clearly suppressed the kinase activity of Syk kinase activity. Together, our results demonstrate that synthetic DBMB has an effect on the inflammatory NF-κB signaling pathway and suggest the potential for clinical use in the treatment of inflammatory diseases.
Collapse
|
59
|
Comparison of the response using ICR mice derived from three different sources to ethanol/hydrochloric acid-induced gastric injury. Lab Anim Res 2016; 32:56-64. [PMID: 27051443 PMCID: PMC4816997 DOI: 10.5625/lar.2016.32.1.56] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 02/28/2016] [Accepted: 03/03/2016] [Indexed: 01/16/2023] Open
Abstract
Animal models for gastric ulcers produced by physical, pharmacological and surgical methods have been widely employed to evaluate therapeutic drugs and investigate the mechanism of action of this disease. ICR mice were selected to produce this model, even though several mice and rats have been widely used in studies of gastric ulcers. To compare the responses of ICR mice obtained from three different sources to gastric ulcer inducers, alterations in gastric injury, histopathological structure, and inflammation were measured in Korl:ICR (Korea NIFDS source), A:ICR (USA source) and B:ICR (Japan source) treated with three concentrations of ethanol (EtOH) (50, 70, and 90%) in 150 mM hydrochloric acid (HCl) solution. Firstly, the stomach lesion index gradually increased as the EtOH concentration increased in three ICR groups. Moreover, a significant increase in the level of mucosal injury, edema and the number of inflammatory cells was similarly detected in the EtOH/HCl treated group compared with the vehicle treated group in three ICR groups. Furthermore, the number of infiltrated mast cells and IL-1β expression were very similar in the ICR group derived from three different sources, although some differences in IL-1β expression were detected. Especially, the level of IL-1β mRNA in 50 and 90EtOH/HCl treated group was higher in Korl:ICR and A:ICR than B:ICR. Overall, the results of this study suggest that Korl:ICR, A:ICR and B:ICR derived from different sources have an overall similar response to gastric ulcer induced by EtOH/HCl administration, although there were some differences in the magnitude of their responses.
Collapse
|
60
|
Hossen MJ, Hong YD, Baek KS, Yoo S, Hong YH, Kim JH, Lee JO, Kim D, Park J, Cho JY. In vitro antioxidative and anti-inflammatory effects of the compound K-rich fraction BIOGF1K, prepared from Panax ginseng. J Ginseng Res 2016; 41:43-51. [PMID: 28123321 PMCID: PMC5223069 DOI: 10.1016/j.jgr.2015.12.009] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 12/24/2015] [Indexed: 12/24/2022] Open
Abstract
Background BIOGF1K, a compound K-rich fraction prepared from the root of Panax ginseng, is widely used for cosmetic purposes in Korea. We investigated the functional mechanisms of the anti-inflammatory and antioxidative activities of BIOGF1K by discovering target enzymes through various molecular studies. Methods We explored the inhibitory mechanisms of BIOGF1K using lipopolysaccharide-mediated inflammatory responses, reporter gene assays involving overexpression of toll-like receptor adaptor molecules, and immunoblotting analysis. We used the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay to measure the antioxidative activity. We cotransfected adaptor molecules, including the myeloid differentiation primary response gene 88 (MyD88) and Toll/interleukin-receptor domain containing adaptor molecule-inducing interferon-β (TRIF), to measure the activation of nuclear factor (NF)-κB and interferon regulatory factor 3 (IRF3). Results BIOGF1K suppressed lipopolysaccharide-triggered NO release in macrophages as well as DPPH-induced electron-donating activity. It also blocked lipopolysaccharide-induced mRNA levels of interferon-β and inducible nitric oxide synthase. Moreover, BIOGF1K diminished the translocation and activation of IRF3 and NF-κB (p50 and p65). This extract inhibited the upregulation of NF-κB-linked luciferase activity provoked by phorbal-12-myristate-13 acetate as well as MyD88, TRIF, and inhibitor of κB (IκBα) kinase (IKKβ), and IRF3-mediated luciferase activity induced by TRIF and TANK-binding kinase 1 (TBK1). Finally, BIOGF1K downregulated the NF-κB pathway by blocking IKKβ and the IRF3 pathway by inhibiting TBK1, according to reporter gene assays, immunoblotting analysis, and an AKT/IKKβ/TBK1 overexpression strategy. Conclusion Overall, our data suggest that the suppression of IKKβ and TBK1, which mediate transcriptional regulation of NF-κB and IRF3, respectively, may contribute to the broad-spectrum inhibitory activity of BIOGF1K.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea; Department of Animal Science, Patuakhali Science and Technology University, Patuakhali, Bangladesh
| | - Yong Deog Hong
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Sulgi Yoo
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Yo Han Hong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Ji Hye Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| | - Jeong-Oog Lee
- Bio-inspired Aerospace Information Laboratory, Department of Aerospace Information Engineering, Konkuk University, Seoul, Korea
| | - Donghyun Kim
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Junseong Park
- Heritage Material Research Team, Amorepacific R&D Unit, Yongin, Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|
61
|
Anti-Inflammatory and Antinociceptive Activities of Anthraquinone-2-Carboxylic Acid. Mediators Inflamm 2016; 2016:1903849. [PMID: 27057092 PMCID: PMC4735930 DOI: 10.1155/2016/1903849] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Revised: 11/10/2015] [Accepted: 11/23/2015] [Indexed: 12/17/2022] Open
Abstract
Anthraquinone compounds are one of the abundant polyphenols found in fruits, vegetables, and herbs. However, the in vivo anti-inflammatory activity and molecular mechanisms of anthraquinones have not been fully elucidated. We investigated the activity of anthraquinones using acute inflammatory and nociceptive experimental conditions. Anthraquinone-2-carboxylic acid (9,10-dihydro-9,10-dioxo-2-anthracenecarboxylic acid, AQCA), one of the major anthraquinones identified from Brazilian taheebo, ameliorated various inflammatory and algesic symptoms in EtOH/HCl- and acetylsalicylic acid- (ASA-) induced gastritis, arachidonic acid-induced edema, and acetic acid-induced abdominal writhing without displaying toxic profiles in body and organ weight, gastric irritation, or serum parameters. In addition, AQCA suppressed the expression of inflammatory genes such as cyclooxygenase- (COX-) 2 in stomach tissues and lipopolysaccharide- (LPS-) treated RAW264.7 cells. According to reporter gene assay and immunoblotting analyses, AQCA inhibited activation of the nuclear factor- (NF-) κB and activator protein- (AP-) 1 pathways by suppression of upstream signaling involving interleukin-1 receptor-associated kinase 4 (IRAK1), p38, Src, and spleen tyrosine kinase (Syk). Our data strongly suggest that anthraquinones such as AQCA act as potent anti-inflammatory and antinociceptive components in vivo, thus contributing to the immune regulatory role of fruits and herbs.
Collapse
|
62
|
Hossen MJ, Kim MY, Cho JY. MAPK/AP-1-Targeted Anti-Inflammatory Activities of Xanthium strumarium. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2016; 44:1111-1125. [DOI: 10.1142/s0192415x16500622] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1[Formula: see text], IL-6, and tumor necrosis factor (TNF)-[Formula: see text]. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
- Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Mi-Yeon Kim
- School of Systems Biomedical Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
63
|
Flavobacterium notoginsengisoli sp. nov., isolated from the rhizosphere of Panax notoginseng. Antonie van Leeuwenhoek 2015; 108:545-52. [PMID: 26111850 DOI: 10.1007/s10482-015-0509-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Abstract
Two novel bacterial strains, designated SYP-B540(T) and SYP-B556, were isolated from rhizospheric soil of Panax notoginseng located at Yunnan Province, China. Both strains were Gram-staining negative, aerobic, non-motile, elongated rod shaped and yellow coloured. They grew optimally at 28 °C and pH 7.0. Analysis of 16S rRNA gene sequences showed that the two strains shared 99.8 % sequence similarity to each other, but lower than 97.6 % to the other known species of the genus Flavobacterium. The predominant respiratory quinone for the two strains was MK-6, and the major fatty acids were iso-C15:0 and summed Feature 3 (comprising 16:1 ω7c and/or 16:1 ω6c). The polar lipids consisted of phosphatidylethanolamine, two unidentified polar lipids and three unidentified amino-phospholipids. The DNA G+C contents of strains SYP-B540(T) and SYP-B556 were 33.3 and 32.7 mol%, respectively. In addition, the DNA-DNA hybridization values of strains SYP-B540(T) and SYP-B556 to their closest phylogenetic neighbors were significantly lower than 70 %. On the basis of the polyphasic taxonomy studies, strains SYP-B540(T) and SYP-B556 represent a novel species of the genus Flavobacterium, for which the name Flavobacterium notoginsengisoli sp. nov. is proposed. The type strain is SYP-B540(T) (=KCTC 32505(T) = NBRC 110012(T) = BCRC 80724(T)).
Collapse
|
64
|
Kim SH, Park JG, Sung GH, Yang S, Yang WS, Kim E, Kim JH, Ha VT, Kim HG, Yi YS, Kim JH, Baek KS, Sung NY, Lee MN, Kim JH, Cho JY. Kaempferol, a dietary flavonoid, ameliorates acute inflammatory and nociceptive symptoms in gastritis, pancreatitis, and abdominal pain. Mol Nutr Food Res 2015; 59:1400-5. [DOI: 10.1002/mnfr.201400820] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 02/10/2015] [Accepted: 04/06/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Shi Hyoung Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Gi-Ho Sung
- Institute for Bio-medical Convergence; College of Medicine; Catholic Kwandong University; Gangneung Republic of Korea
- International St. Mary's Hospital, Catholic Kwandong University; Incheon Republic of Korea
| | - Sungjae Yang
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Jun Ho Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Van Thai Ha
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Han Gyung Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Young-Su Yi
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Ji Hye Kim
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Nak Yoon Sung
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| | - Mi-nam Lee
- Department of Food and Nutrition; School of Foodservice Industry; Chungkang College of Cultural industries; Icheon Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology; College of Veterinary Medicine; Biosafety Research Institute; Chonbuk National University; Jeonju Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering; Sungkyunkwan University; Suwon Republic of Korea
| |
Collapse
|
65
|
Kwon HW, Shin JH, Cho HJ, Rhee MH, Park HJ. Total saponin from Korean Red Ginseng inhibits binding of adhesive proteins to glycoprotein IIb/IIIa via phosphorylation of VASP (Ser(157)) and dephosphorylation of PI3K and Akt. J Ginseng Res 2015; 40:76-85. [PMID: 26843825 PMCID: PMC4703804 DOI: 10.1016/j.jgr.2015.05.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 04/30/2015] [Accepted: 05/08/2015] [Indexed: 11/05/2022] Open
Abstract
Background Binding of adhesive proteins (i.e., fibrinogen, fibronectin, vitronectin) to platelet integrin glycoprotein IIb/IIIa (αIIb/β3) by various agonists (thrombin, collagen, adenosine diphosphate) involve in strength of thrombus. This study was carried out to evaluate the antiplatelet effect of total saponin from Korean Red Ginseng (KRG-TS) by investigating whether KRG-TS inhibits thrombin-induced binding of fibrinogen and fibronectin to αIIb/β3. Methods We investigated the effect of KRG-TS on phosphorylation of vasodilator-stimulated phosphoprotein (VASP) and dephosphorylation of phosphatidylinositol 3-kinase (PI3K) and Akt, affecting binding of fibrinogen and fibronectin to αIIb/β3, and clot retraction. Results KRG-TS had an antiplatelet effect by inhibiting the binding of fibrinogen and fibronectin to αIIb/β3 via phosphorylation of VASP (Ser157), and dephosphorylation of PI3K and Akt on thrombin-induced platelet aggregation. Moreover, A-kinase inhibitor Rp-8-Br-cyclic adenosine monophosphates (cAMPs) reduced KRG-TS-increased VASP (Ser157) phosphorylation, and increased KRG-TS-inhibited fibrinogen-, and fibronectin-binding to αIIb/β3. These findings indicate that KRG-TS interferes with the binding of fibrinogen and fibronectin to αIIb/β3 via cAMP-dependent phosphorylation of VASP (Ser157). In addition, KRG-TS decreased the rate of clot retraction, reflecting inhibition of αIIb/β3 activation. In this study, we clarified ginsenoside Ro (G-Ro) in KRG-TS inhibited thrombin-induced platelet aggregation via both inhibition of [Ca2+]i mobilization and increase of cAMP production. Conclusion These results strongly indicate that KRG-TS is a beneficial herbal substance inhibiting fibrinogen-, and fibronectin-binding to αIIb/β3, and clot retraction, and may prevent platelet αIIb/β3-mediated thrombotic disease. In addition, we demonstrate that G-Ro is a novel compound with antiplatelet characteristics of KRG-TS.
Collapse
Affiliation(s)
- Hyuk-Woo Kwon
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, Gyungnam, Republic of Korea
| | - Jung-Hae Shin
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, Gyungnam, Republic of Korea
| | - Hyun-Jeong Cho
- Department of Biomedical Laboratory Science, College of Medical Science, Konyang University, Daejeon, Republic of Korea
| | - Man Hee Rhee
- Laboratory of Veterinary Physiology and Signaling, College of Veterinary Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Hwa-Jin Park
- Department of Biomedical Laboratory Science, College of Biomedical Science and Engineering, Inje University, Gyungnam, Republic of Korea
| |
Collapse
|
66
|
Hossen MJ, Kim SC, Son YJ, Baek KS, Kim E, Yang WS, Jeong D, Park JG, Kim HG, Chung WJ, Yoon K, Ryou C, Lee SY, Kim JH, Cho JY. AP-1-Targeting Anti-Inflammatory Activity of the Methanolic Extract of Persicaria chinensis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:608126. [PMID: 25878717 PMCID: PMC4386570 DOI: 10.1155/2015/608126] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/22/2015] [Accepted: 03/02/2015] [Indexed: 11/24/2022]
Abstract
In traditional Chinese medicine, Persicaria chinensis L. has been prescribed to cure numerous inflammatory disorders. We previously analyzed the bioactivity of the methanol extract of this plant (Pc-ME) against LPS-induced NO and PGE2 in RAW264.7 macrophages and found that it prevented HCl/EtOH-induced gastric ulcers in mice. The purpose of the current study was to explore the molecular mechanism by which Pc-ME inhibits activator protein- (AP-) 1 activation pathway and mediates its hepatoprotective activity. To investigate the putative therapeutic properties of Pc-ME against AP-1-mediated inflammation and hepatotoxicity, lipopolysaccharide- (LPS-) stimulated RAW264.7 and U937 cells, a monocyte-like human cell line, and an LPS/D-galactosamine- (D-GalN-) induced acute hepatitis mouse model were employed. The expression of LPS-induced proinflammatory cytokines including interleukin- (IL-) 1β, IL-6, and tumor necrosis factor-α (TNF-α) was significantly diminished by Pc-ME. Moreover, Pc-ME reduced AP-1 activation and mitogen-activated protein kinase (MAPK) phosphorylation in both LPS-stimulated RAW264.7 cells and differentiated U937 cells. Additionally, we highlighted the hepatoprotective and curative effects of Pc-ME pretreated orally in a mouse model of LPS/D-GalN-intoxicated acute liver injury by demonstrating the significant reduction in elevated serum AST and ALT levels and histological damage. Therefore, these results strongly suggest that Pc-ME could function as an antihepatitis remedy suppressing MAPK/AP-1-mediated inflammatory events.
Collapse
Affiliation(s)
- Muhammad Jahangir Hossen
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
- Department of Animal Science, Patuakhali Science and Technology University, Patuakhali 8602, Bangladesh
| | - Seung Cheol Kim
- Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Ewha Womans University Mokdong Hospital College of Medicine, Ewha Womans University, Seoul 158-710, Republic of Korea
| | - Young-Jin Son
- Department of Pharmacy, Sunchon National University, Suncheon 540-742, Republic of Korea
| | - Kwang-Soo Baek
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Eunji Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo Seok Yang
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Deok Jeong
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Jae Gwang Park
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Han Gyung Kim
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Woo-Jae Chung
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Keejung Yoon
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| | - Chongsuk Ryou
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan 426-791, Republic of Korea
| | - Sang Yeol Lee
- Department of Life Science, Gachon University, Sungnam 461-701, Republic of Korea
| | - Jong-Hoon Kim
- Department of Veterinary Physiology, College of Veterinary Medicine, Biosafety Research Institute, Chonbuk National University, Jeonju 561-756, Republic of Korea
| | - Jae Youl Cho
- Department of Genetic Engineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea
| |
Collapse
|