51
|
Song H, Kumar A, Zhang Y. Microbial-induced carbonate precipitation prevents Cd 2+ migration through the soil profile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157167. [PMID: 35792264 DOI: 10.1016/j.scitotenv.2022.157167] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd)-containing wastewater has been used to irrigate agricultural land. However, long term usage has resulted in the accumulation of Cd in the soil systems, which can eventually leach into the aquifer, contaminating groundwater. Microbial-induced carbonate precipitation (MICP), an economical and effective method, was used to block the in situ migration of Cd2+ in the soil profile. The results of the laboratory experiments showed that the maximum Cd2+ adsorption capacity of the soil exposed to MICP (8.92 mg/g) was higher than that of soil without MICP (7.12 mg/g). The Thomas model provided a good fit for the Cd2+ migration process in soil exposed to MICP (R2 > 0.96), and Cd2+ was trapped more effectively by soil exposed to MICP than by soil alone. Further testing showed that the Cd2+ retention time in the MICP soil column increased with increasing soil urea content and pH but decreased with increasing flow rate. Soil physico-chemical properties showed that the MICP process increased the soil particle size and Cd capacity and decreased the proportion of exchangeable Cd in the soil. Scanning electron microscopy and X-ray diffraction analyses confirmed the generation of CdCO3 in the MICP soil column. The findings of this study indicate that MICP can be effectively used to immobilize Cd2+ and prevent its migration in the soil profile.
Collapse
Affiliation(s)
- Hewei Song
- College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China
| | - Amit Kumar
- School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, People's Republic of China
| | - Yuling Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, People's Republic of China; Key Lab of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, People's Republic of China.
| |
Collapse
|
52
|
Huang H, Liu H, Zhang R, Chen Y, Lei L, Qiu C, Xu H. Effect of slow-released biomass alkaline amendments oyster shell on microecology in acidic heavy metal contaminated paddy soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115683. [PMID: 35853307 DOI: 10.1016/j.jenvman.2022.115683] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/27/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Soil ecosystem functions and microbial community structure were severely impaired with long-term cadmium (Cd) contamination and acidification. To investigate the effect of amendments on soil physiochemical parameters and soil micro-ecology in acidic Cd contaminated soil, this study was conducted in a pot experiment with the application of calcium amendments, oyster shell powders (OS) and limestone (LM). Each amendment applied at ratios of 1.0%, 3.0%, and 5.0% (w/w), respectively. The results showed that the application of amendments increased the soil pH by 2.10-2.88, the bioavailable Cd decreased by 12.49%-19.48%, and un-bioavailable Cd increased by 96.57%-200.7%. The OS increased the richness index (Chao and Ace increased by 13.23%-16.20% and 7.13%-47.63%), and LM increased the microbial diversity index (Shannon increased by 1.14%-8.72% and Simpson indexes decreased by 28.00%-63.61%). In LM groups, soil microbial communities were significantly altered with increasing application concentrations, the relative abundance of phylum Proteobacteria, Bacteroidota and Gemmatimonadota increased, while Firmicute, Actinobacteria, Chloroflexi decreased. In OS treatments, the soil microbial community structure was basically unchanged. The correlation analysis showed that pH, TN, TP, CEC, OM were the dominant factors affecting the microbial community. This study has shown that application of amendments could effectively reduce the Cd bioavailability in soil, but LM altered the soil microbial community structure, while OS maintained the soil microbiological structure.
Collapse
Affiliation(s)
- Huayan Huang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Huakang Liu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Yahui Chen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Ling Lei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China
| | - Chengshu Qiu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu 611130, PR China.
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu 610065, Sichuan, PR China.
| |
Collapse
|
53
|
Lin H, Shi J, Dong Y, Li B, Yin T. Construction of bifunctional bacterial community for co-contamination remediation: Pyrene biodegradation and cadmium biomineralization. CHEMOSPHERE 2022; 304:135319. [PMID: 35700808 DOI: 10.1016/j.chemosphere.2022.135319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Polycyclic aromatic hydrocarbons and heavy metals are typical pollutants in the non-ferrous metal smelting industry. The combination of biodegradation and biomineralization has great development potential for co-contamination removal as an environmentally friendly method. Pyrene (Pyr) and cadmium (Cd) were regarded as model pollutants of co-contamination in this study. A bifunctional bacterial community named Ycp was screened from a non-ferrous smelting slag field soil. The 16S rRNA gene high throughput sequencing analysis showed that Enterobacter was the dominant genus (99.1%). Ycp had adaptability under a wide range of environmental conditions (pH 3-9, salinity 0-10 g L-1 NaCl, Pyr concentration 0-50 mg L-1, Cd concentration 0-100 mg L-1), and the removal rate of Pyr and Cd reached 41.8%-76.9%, 82.8%-98.8%, respectively. It was found that compound carbon sources had promoting effect on the removal of Pyr and Cd, with the maximum removal rate of 88.3% and 98.0%. According to the degradation products of Pyr by LC-MS analysis and the mineralized products of Cd2+ by XRD and SEM-EDS analysis, the mechanism of Ycp for co-contamination remediation was: Ycp biodegraded Pyr through salicylic acid and phthalic acid metabolic pathways, and biomineralized Cd2+ into CdCO3 through microbially induced carbonate precipitation. This study provided a basis for microbial remediation of co-contamination.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Jingyun Shi
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; State Key Laboratory of Mineral Processing, Beijing, 102628, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Tingting Yin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
54
|
He Z, Xu Y, Yang X, Shi J, Wang X, Jin Z, Zhang D, Pan X. Passivation of heavy metals in copper-nickel tailings by in-situ bio-mineralization: A pilot trial and mechanistic analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156504. [PMID: 35688247 DOI: 10.1016/j.scitotenv.2022.156504] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Metal tailings contain a variety of toxic heavy metals and have potential environmental risks owing to long-term open piling. In the present study, a strain of ureolytic bacteria with bio-mineralization ability, Lysinibacillus fusiformis strain Lf, was isolated from copper-nickel mine tailings in Xinjiang and applied to a pilot trial of tailings solidification under field conditions. The results of the pilot trial (0.5 m3 in scale) showed that strain Lf effectively solidified the tailings. The compressive strength of the solidified tailings increased by 121 ± 9 % and the permeability coefficient decreased by 68 ± 3 %. Compared to the control, the leaching reduction of the solidified tailings of Cu and Ni was >98 %, and that of As was 92.5 ± 1.7 %. Two mechanisms of tailings solidification and heavy metal passivation were proposed based on the findings of Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HR-TEM), and energy-dispersive X-ray spectroscopy (EDS) mapping. Biogenic calcite filled the interstices of the tailings particles and cemented the adjacent particles. This improved the mechanical properties and reduced permeability. Moreover, heavy metal colloids were incorporated into large-sized calcite crystals, and heavy metal ions were sequestered within the calcite lattice. This method of using indigenous ureolytic bacteria to solidify tailings was successful in this work and may be replicated to remediate other tailings.
Collapse
Affiliation(s)
- Zhanfei He
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yiting Xu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Xiaoliang Yang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Jianfei Shi
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Xin Wang
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Zhengzhong Jin
- Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyong Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, China; Xinjiang Key Laboratory of Environmental Pollution and Bioremediation, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| |
Collapse
|
55
|
Sheng M, Peng D, Luo S, Ni T, Luo H, Zhang R, Wen Y, Xu H. Micro-dynamic process of cadmium removal by microbial induced carbonate precipitation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119585. [PMID: 35728693 DOI: 10.1016/j.envpol.2022.119585] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/31/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is a technique used extensively to address heavy metal pollution but its micro-dynamic process remains rarely explored. In this study, A novel Cd-tolerant ureolytic bacterium DL-1 (Pseudochrobactrum sp.) was used to study the micro-dynamic process. With conditions optimized by response surface methodology, the removal efficiency of Cd2+ could achieve 99.89%. Three components were separated and characterized in the reaction mixture of Cd2+ removal by MICP. The quantitative-dynamic distribution of Cd2+ in different components was revealed. Five synergistic effects for Cd2+ removal were found, including co-precipitation, adsorption by precipitation, crystal precipitation on the cell surface, intracellular accumulation and extracellular chemisorption. Importantly, during Cd2+ removal by MICP, the phenomenon that crystalline nanoparticles adhere to the cell surface, but without any micrometer-sized precipitation encapsulated bacterial cells was observed. This indicated that the previously studied model of bacterial cells as nucleation sites for metal cation precipitation and crystal growth is oversimplified. Our findings provided valuable insights into the mechanism of heavy metals removal by MICP, and a more straightforward method for studying biomineralization-related dynamic process.
Collapse
Affiliation(s)
- Mingping Sheng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Shihua Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Ting Ni
- School of Life Science, Shanxi University, Taiyuan, 03006, PR China
| | - Huanyan Luo
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Renfeng Zhang
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Yu Wen
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Science, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
56
|
Wei T, Li H, Yashir N, Li X, Jia H, Ren X, Yang J, Hua L. Effects of urease-producing bacteria and eggshell on physiological characteristics and Cd accumulation of pakchoi (Brassica chinensis L.) plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:63886-63897. [PMID: 35469379 DOI: 10.1007/s11356-022-20344-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Soil cadmium (Cd) contamination resulting from anthropogenic activity poses severe threats to food safety and human health. In this study, a pot experiment was performed to evaluate the possibility of using urease-producing bacterium UR21 and eggshell (ES) waste for improving the physiological characteristics and reducing Cd accumulation of pakchoi (Brassica chinensis L.) plants. UR21 has siderophore and IAA production ability. The application of UR21 and ES individually or in combination could improve the root and shoot length, and fresh and dry weight of pakchoi plants under Cd stress. In Cd + ES + UR21-treated plants, the dry weight of shoot and root were increased by 61.54% and 72.73%, respectively. The chlorophyll a, chlorophyll b, and carotenoid content were increased by 52.19%, 42.95%, and 95.56% in Cd + ES + UR21-treated plants. Meanwhile, the H2O2 and MDA content were decreased while the SOD and POD activity were increased, and an increase of soluble protein level in pakchoi plants was observed under Cd + ES + UR21 treatment. Importantly, eggshell and UR21 alone or in combination induced a decline of Cd content in pakchoi plants, especially that Cd + ES + UR21 treatment decreased Cd content in shoot and root by 26.96% and 42.91%, respectively. Meanwhile, the soil urease and sucrase activities were enhanced. Generally, the combined application of ureolytic bacteria UR21 and eggshell exhibited better effects than applied them individually in terms of alleviating Cd toxicity in pakchoi plants. Our findings may give a unique perspective for an eco-friendly and sustainable strategy to remediate heavy metal-polluted soils.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Noman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Honglei Jia
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Xinhao Ren
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Jing Yang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China
| | - Li Hua
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, People's Republic of China.
| |
Collapse
|
57
|
Luo Y, Liao M, Zhang Y, Xu N, Xie X, Fan Q. Cadmium resistance, microbial biosorptive performance and mechanisms of a novel biocontrol bacterium Paenibacillus sp. LYX-1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:68692-68706. [PMID: 35543785 DOI: 10.1007/s11356-022-20581-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
In this study, a novel biocontrol bacterium was isolated and identified as Paenibacillus sp. LYX-1 from soils in the peach orchard. Both Cd2+ resistance and biosorption behavior of strain LYX-1 was explored. Meanwhile, the Cd2+ resistance and biosorption mechanisms were further identified by Cd-resistant genes, SEM-EDS, FTIR, XPS, and TEM analysis. The results showed that strain LYX-1 could resist 50 mg/L Cd2+ and had the CzcD gene responsible for Cd2+ efflux. Under pH 8.0 and at a dose of 1.0 g/L sorbent dose, the removal efficiencies of living and dead cells were as high as 90.39% and 75.67% at 20 mg/L Cd2+, respectively. For the adsorption isotherm test, results revealed that both Langmuir (R2 = 0.9704) and Freundlich (R2 = 0.9915) model could describe the Cd2+ biosorption well for living strain LYX-1. The maximum equilibrium biosorption capacities of living and dead biomass were 30.6790 and 24.3752 mg/g, respectively. In the adsorption kinetic test, the adsorption process of both living and dead strain LYX-1 all satisfied the pseudo-second kinetic equation. A desorption study showed that strain LYX-1 sorbents could be recycled and regenerated by eluents efficiently. SEM-EDS analysis reflected that Cd2+ was bound to the cell wall. Besides, the biosorption process was controlled by chemisorption with the participation of the -OH, -NH, -C = O, O = C-O, C-N, S2-, and phosphate functional groups on the cell surface of strain LYX-1, which were identified by FTIR and XPS. Bioaccumulation also made a contribution to the Cd2+ removal during the biosorption process of living sorbent. The above results indicated that strain LYX-1 had higher Cd2+ tolerance and Cd2+ removal capacity. This strain exhibits promising application to the removal of Cd2+ in the Cd-contaminated environment.
Collapse
Affiliation(s)
- Yixin Luo
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Min Liao
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China.
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China.
| | - Yuhao Zhang
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Na Xu
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Xiaomei Xie
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No. 866, Hangzhou, 310058, China
| | - Qiyan Fan
- College of Environmental and Resource Science, Zhejiang University, Yuhangtang Road No. 866, Hangzhou, 310058, China
- National Demonstration Center for Experimental Environmental and Resources Education (Zhejiang University), Yuhangtang Road No. 866, Hangzhou, 310058, China
| |
Collapse
|
58
|
Zhang R, Wang Z, Huang H, Song J, Wu B, Wang M, Xu H. Assessment about bioindicator capacity of acrocarpous moss Campylopus schmidii exposed to abandoned pyritic tailings. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115471. [PMID: 35751270 DOI: 10.1016/j.jenvman.2022.115471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Terrestrial mosses are promising species to study concerning metal deposition, absorption, and soil fertility as moss biocrusts. However, acrocarpous moss, as a kind of terrestrial mosses, has not yet been well understood, both in environmental monitoring and ecological application, especially exposed to an abandoned pyrite mining. Herein, we investigated the concentrations of different heavy metals in soil underlying acrocarpous moss Campylopus schmidii at three distances from an abandoned pyrite mine tailings (0.5, 1, 2 km) by sampling analysis, as well as the accumulation properties of heavy metals in different parts of mosses and soil nutrients under intact mosses and moss-free layers. The results indicated that the soil we researched was heavily polluted by Cr, Cu, and Cd, which was 4.46, 4.18, and 1.77 times higher than the standard of risk screening values for soil environment quality in China. And there was a marked difference in the concentrations and distribution of heavy metals in mosses, with higher concentrations of Cr, Cu, Ni and Pb mainly in the ageing parts. In addition, mosses can effectively promote soil fertility. Compared with the bare soil without the moss layer, the total organic matter and total potassium concentrations of the soil covered by the intact moss layer were significantly increased, by 113.91% and 186.08% respectively. Correlation analysis indicated that similar pollution sources for Zn, Cd, Cu, and Pb, and the concentrations of these heavy metals in soil connected with the distance from the source of pollution. Overall, we expected that these findings could assess the greater potential of single native dominant moss species C.schmidii to act as biomonitors in specific pyrite mine tailings characterized by barren soil with strong acids (pH < 4.0) and polymetallic pollution. Meanwhile, our results revealed may serve as a possibility reference for similar areas and is recommended for developing a vegetative cover utilizing local acrocarpous mosses to achieve greening of degraded tailings in the future, as well as environmental management and protection.
Collapse
Affiliation(s)
- Rong Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| | - Ziru Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Huayan Huang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Jianjincang Song
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Bohan Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Maolin Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China; Key Laboratory of Environment Protection, Soil Ecological Protection and Pollution Control, Sichuan University & Department of Ecology and Environment of Sichuan, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
59
|
Lin H, Qin K, Dong Y, Li B. A newly-constructed bifunctional bacterial consortium for removing butyl xanthate and cadmium simultaneously from mineral processing wastewater: Experimental evaluation, degradation and biomineralization. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 316:115304. [PMID: 35588671 DOI: 10.1016/j.jenvman.2022.115304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 04/19/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Due to the technological limitations associated with beneficiation technology, large amounts of flotation reagents and heavy metals remain in mineral processing wastewater. Unfortunately, however, no treatment methods are available to mitigate the resulting pollution by them. In this study, a bacterial consortium SDMC (simultaneously degrade butyl xanthate and biomineralize cadmium) was constructed in an effort to simultaneously degrade butyl xanthate (BX) and biomineralize cadmium (Cd) by screening and domesticating two different bacterial species including Hypomicrobium and Sporosarcina. SDMC is efficient in removing the combined pollution due to BX and Cd with a 100% degradation rate for BX and 99% biomineralization rate for Cd within 4 h. Besides, SDMC can tolerate high concentrations of Fe(III) (0-40 mg/L). It has an excellent ability to utilize Fe(III) for enhanced removal of the combined pollutants. SDMC can effectively remove pollutants with a pH range of 6-9. Further, we discussed pathways for potential degradation and biomineralization: Cd(BX)2-Cd2+, BX-; BX--CS2, butyl perxanthate (BPX); Cd2+-(Ca0.67,Cd0.33)CO3. The removal of the combined pollutants primarily entails decomposition, degradation, and biomineralization, C-O bond cleavage, and microbially induced carbonate precipitation (MICP). SDMC is a simple, efficient, and eco-friendly bifunctional bacterial consortium for effective treatment of BX-Cd combined pollution in mineral processing wastewater.
Collapse
Affiliation(s)
- Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Kangjia Qin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China.
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing, 100083, China
| |
Collapse
|
60
|
Wu P, Rane NR, Xing C, Patil SM, Roh HS, Jeon BH, Li X. Integrative chemical and omics analyses reveal copper biosorption and tolerance mechanisms of Bacillus cereus strain T6. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:129002. [PMID: 35490635 DOI: 10.1016/j.jhazmat.2022.129002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
A comprehensive understanding of the cellular response of microbes to metal stress is necessary for the rational development of microbe-based biosorbents for metal removal. The present study investigated the copper (Cu) sorption and resistance mechanism of Bacillus cereus strain T6, a newly isolated Cu-resistant bacterium, by integrative analyses of physiochemistry, genomics, transcriptomics, and metabolomics. The growth inhibition assay and biosorption determination showed that this bacterium exhibited high tolerance to Cu, with a minimum inhibitory concentration of 4.0 mM, and accumulated Cu by both extracellular adsorption and intracellular binding. SEM microscopic images and FTIR spectra showed significant cellular surface changes at the high Cu level but not at low, and the involvement of surface functional groups in the biosorption of Cu, respectively. Transcriptomic and untargeted metabolomic analyses detected 362 differentially expressed genes and 60 significantly altered metabolites, respectively. Integrative omics analyses revealed that Cu exposure dramatically induced a broad spectrum of genes involved in Cu transport and iron homeostasis, and suppressed the denitrification pathway, leading to significant accumulation of metabolites for metal transporter synthesis, membrane remolding, and antioxidant activities. The results presented here provide a new perspective on the intricate regulatory network of Cu homeostasis in bacteria.
Collapse
Affiliation(s)
- Ping Wu
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China
| | - Niraj R Rane
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Chao Xing
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Swapnil M Patil
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun-Seog Roh
- Department of Environmental Engineering, Yonsei University, 1 Yonseidae-gil, Wonju, Gangwon 26493, Republic of Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea.
| | - Xiaofang Li
- Hebei Key Laboratory of Soil Ecology, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050021, China.
| |
Collapse
|
61
|
Sun Y, Su J, Ali A, Wang Z, Zhang S, Zheng Z, Min Y. Fungal-sponge composite carriers coupled with denitrification and biomineralization bacteria to remove nitrate, calcium, and cadmium in a bioreactor. BIORESOURCE TECHNOLOGY 2022; 355:127259. [PMID: 35550924 DOI: 10.1016/j.biortech.2022.127259] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 06/15/2023]
Abstract
The coexistence of nitrate (NO3--N) and heavy metals in the aquatic environment causes harm to both the aquatic ecosystem and human health. Here, fungal-sponge composite carriers (FSC) were assembled and immobilized with strain WZ39 in a bioreactor to remove NO3--N, Ca2+, and Cd2+. Stable bioreactor performance under heavy metal pressure was achieved. The highest removal efficiencies of NO3--N, Ca2+, and Cd2+ reached 100, 71.81, and 92.50%, respectively. Bacteria and precipitates were found in fungal mycelium and sponge. The precipitates composed of Ca3.9(Ca4.7Cd0.7)(PO4)6(OH)1.8, CaCO3, and CdCO3. Fluorescence excitation-emission matrix (EEM) and flow cytometric (FCM) analysis indicated bacteria in FSC exhibited a strong metabolic activity and high percentage of intact cells under heavy metal stress. High-throughput sequencing results showed Pseudomonas sp. WZ39 played a major role in the bioreactor. The potential functions associated with metabolism, heavy metal transfer, and biofilm formation had high relative abundance in the bioreactor.
Collapse
Affiliation(s)
- Yi Sun
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Shuai Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhijie Zheng
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yitian Min
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
62
|
Abidli A, Huang Y, Ben Rejeb Z, Zaoui A, Park CB. Sustainable and efficient technologies for removal and recovery of toxic and valuable metals from wastewater: Recent progress, challenges, and future perspectives. CHEMOSPHERE 2022; 292:133102. [PMID: 34914948 DOI: 10.1016/j.chemosphere.2021.133102] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 11/08/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
Due to their numerous effects on human health and the natural environment, water contamination with heavy metals and metalloids, caused by their extensive use in various technologies and industrial applications, continues to be a huge ecological issue that needs to be urgently tackled. Additionally, within the circular economy management framework, the recovery and recycling of metals-based waste as high value-added products (VAPs) is of great interest, owing to their high cost and the continuous depletion of their reserves and natural sources. This paper reviews the state-of-the-art technologies developed for the removal and recovery of metal pollutants from wastewater by providing an in-depth understanding of their remediation mechanisms, while analyzing and critically discussing the recent key advances regarding these treatment methods, their practical implementation and integration, as well as evaluating their advantages and remaining limitations. Herein, various treatment techniques are covered, including adsorption, reduction/oxidation, ion exchange, membrane separation technologies, solvents extraction, chemical precipitation/co-precipitation, coagulation-flocculation, flotation, and bioremediation. A particular emphasis is placed on full recovery of the captured metal pollutants in various reusable forms as metal-based VAPs, mainly as solid precipitates, which is a powerful tool that offers substantial enhancement of the remediation processes' sustainability and cost-effectiveness. At the end, we have identified some prospective research directions for future work on this topic, while presenting some recommendations that can promote sustainability and economic feasibility of the existing treatment technologies.
Collapse
Affiliation(s)
- Abdelnasser Abidli
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| | - Yifeng Huang
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, Heilongjiang, China
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Aniss Zaoui
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada
| | - Chul B Park
- Microcellular Plastics Manufacturing Laboratory (MPML), Department of Mechanical and Industrial Engineering, Faculty of Applied Science and Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8, Canada; Institute for Water Innovation (IWI), Faculty of Applied Science and Engineering, University of Toronto, 55 St. George Street, Toronto, Ontario, M5S 1A4, Canada.
| |
Collapse
|
63
|
Ali A, Li M, Su J, Li Y, Wang Z, Bai Y, Ali EF, Shaheen SM. Brevundimonas diminuta isolated from mines polluted soil immobilized cadmium (Cd 2+) and zinc (Zn 2+) through calcium carbonate precipitation: Microscopic and spectroscopic investigations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 813:152668. [PMID: 34963589 DOI: 10.1016/j.scitotenv.2021.152668] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
The toxic metal(loid)s TMs resistant bacterium Brevundimonas diminuta was isolated for the first time from mines polluted soil in Fengxian, China, and assessed for its potential for Cd and Zn precipitation in Cd and Zn co-contaminated aqueous solution at various Cd and Zn levels (20, 40, 80, 160, and 200 mg L-1), pH values (5, 6, 7, 8, and 9), and temperatures (20, 25, 30, and 35 °C). B. diminuta showed a high resistance to both Cd and Zn and was able to precipitate up to 99.2 and 99.7% of dissolved Cd and Zn respectively, at a pH of 7 and temperature of 30 °C. B. diminuta reduced the dissolved concentrations of Cd and Zn below the threshold levels in water. The 3D-EEM analysis revealed the presence of extracellular polymeric substances (EPS) such as tryptophan indicating bacterial growth under Cd/Zn stress. FTIR showed polysaccharides, CO32-, CaCO3, PO43-, and proteins, which may enhance bacterial growth and metal precipitation. SEM-EDS confirmed the leaf-like and granular shape of the biological precipitation and reduction in the percent weight of TMs, which promoted the adhesion/adsorption of Cd2+, Zn2+, and Ca2+. Moreover, XRD analysis confirmed the precipitation of Cd, Zn, and Ca in the form of CdCO3/Cd3(PO4)2, ZnCO3/ZnHPO4/Zn2(OH)PO4/Zn3(PO4)2, and CaCO3/Ca5(PO3)4OH, respectively. These findings indicate that Brevundimonas diminuta can be used for the bioremediation of TMs-contaminated aquatic environments.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Yifei Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yihan Bai
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Esmat F Ali
- Department of Biology, College of Science, Taif University, 11099, Taif 21944, Saudi Arabia
| | - Sabry M Shaheen
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water- and Waste-Management, Laboratory of Soil- and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; King Abdulaziz University, Faculty of Meteorology, Environment, and Arid Land Agriculture, Department of Arid Land Agriculture, 21589 Jeddah, Saudi Arabia; University of Kafrelsheikh, Faculty of Agriculture, Department of Soil and Water Sciences, 33516 Kafr El-Sheikh, Egypt
| |
Collapse
|
64
|
Xue ZF, Cheng WC, Wang L, Hu W. Effects of bacterial inoculation and calcium source on microbial-induced carbonate precipitation for lead remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 426:128090. [PMID: 34952498 DOI: 10.1016/j.jhazmat.2021.128090] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/30/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
Heavy metal contamination has caused serious threats to surrounding fragile environments and human health. While the novel microbial-induced carbonate precipitation (MICP) technology in the recent years has been proven effective in improving material mechanical and durability properties, the mechanisms remedying heavy metal contamination still remain unclear. In this study, the potential of applying the MICP technology to the lead remediation under the effects of urease activity and calcium source was explored. The values of OD600 corresponding to the ureolytic bacterial activity, electrical conductivity (EC), urease activity (UA) and pH were applied to monitor the degree of urea hydrolysis. Further, the carbonate precipitations that possess different speciations and cannot be distinguished through test tube experiments were reproduced using the Visual MINTEQ software package towards verifying the validity of the proposed simulations, and revealing the mechanisms affecting the lead remediation efficiency. The findings summarised in this work give deep insights into lead-contaminated site remediation engineering.
Collapse
Affiliation(s)
- Zhong-Fei Xue
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wen-Chieh Cheng
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Lin Wang
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| | - Wenle Hu
- School of Civil Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Geotechnical and Underground Space Engineering (XAUAT), Xi'an 710055, China.
| |
Collapse
|
65
|
Lyu C, Qin Y, Chen T, Zhao Z, Liu X. Microbial induced carbonate precipitation contributes to the fates of Cd and Se in Cd-contaminated seleniferous soils. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126977. [PMID: 34481395 DOI: 10.1016/j.jhazmat.2021.126977] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Bioremediation based on microbial induced carbonate precipitation (MICP) was conducted in Cd-contaminated seleniferous soils with objective to investigate effects of MICP on the fates of Cd and Se in soils. Results showed that soil indigenous microorganisms could induce MICP process to stabilize Cd and mobilize Se without inputting exogenous urease-producing strain. After remediation, soluble Cd (SOL-Cd) and exchangeable Cd (EXC-Cd) concentrations were decreased respectively by 59.8% and 9.4%, the labile Cd measured by the diffusive gradients in thin-films technique (DGT) was decreased by 14.2%. The MICP stabilized Cd mainly by increasing soil pH and co-precipitating Cd during the formation of calcium carbonate. Compared with chemical extraction method, DGT technique performs better in reflecting Cd bioavailability in soils remediated with MICP since this technique could eliminate the interference of Ca2+. The increase in pH resulted in Se conversion from nonlabile fraction to soluble and exchangeable fractions, thus improving Se bioavailability. And Se in soil solution could adsorb to or co-precipitate with the insoluble calcium carbonate during MICP, which would partly weaken Se bioavailability. Taken together, MICP had positive effects on the migration of Se. In conclusion, MICP could stabilize Cd and improve Se availability simultaneously in Cd-contaminated seleniferous soils.
Collapse
Affiliation(s)
- Chenhao Lyu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Yongjie Qin
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Tian Chen
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Agricultural Microbiology, Wuhan 430070, China
| | - Zhuqing Zhao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China
| | - Xinwei Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for New-Type Fertilizer, Wuhan 430070, China.
| |
Collapse
|
66
|
Wang Z, Su J, Ali A, Zhang R, Yang W, Xu L, Shi J, Gao Z. Synergistic removal of fluoride from groundwater by seed crystals and bacteria based on microbially induced calcium precipitation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150341. [PMID: 34563912 DOI: 10.1016/j.scitotenv.2021.150341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
A new hypothesis that seed crystals (SC) and bacteria based on microbially induced calcium precipitation (MICP) synergistically remove fluoride (F-) from groundwater was proposed, with a focus on evaluating the defluoridation potential of this method and revealing its F- removal mechanism. The crucial conditions were optimized to reduce preparation and operation costs. SC furnished more available binding sites due to the existence of bacteria, and the reuse experiments showed that the defluoridation efficiency of SC still remained a high level after 14 cycles (70.10%), with a residual F- concentration of 0.96 mg L-1. The SEM-EDS, FTIR and XRD analyses indicated the predominant F- removal mechanism of SC could be ascribed to the chemisorption, ion exchange, and co-precipitation. Moreover, ion exchange and co-precipitation (PO43- involvement) were validated more contributive than chemisorption (CaCO3 and CaSO4 involvement). As a feasible, reusable, and eco-friendly technique, SC suggests promising applications in the treatment of fluoride-contaminated groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Wenshuo Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Liang Xu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Shi
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihong Gao
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
67
|
Wei T, Yashir N, An F, Imtiaz SA, Li X, Li H. Study on the performance of carbonate-mineralized bacteria combined with eggshell for immobilizing Pb and Cd in water and soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2924-2935. [PMID: 34382171 DOI: 10.1007/s11356-021-15138-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/22/2021] [Indexed: 06/13/2023]
Abstract
Microbially induced carbonate precipitation (MICP) is an advanced bioremediation approach to remediate heavy metal (HM)-contaminated water and soil. In this study, metal-tolerant urease-producing bacterial isolates, namely, UR1, UR16, UR20, and UR21, were selected based on their urease activity. The efficiency of these isolates in water for Pb and Cd immobilizations was explored. Our results revealed that UR21 had the highest removal rates of Pb (81.9%) and Cd (65.0%) in solution within 72 h through MICP. The scanning electron microscopy-energy-dispersive x-ray and x-ray diffraction analysis confirmed the structure and the existence of PbCO3 and CdCO3 crystals in the precipitates. In addition, the strain UR21, in combination with urea/eggshell waste (EGS) or both, was further employed to investigate the effect of MICP on soil enzymatic activity, chemical fractions, and bioavailability of Pb and Cd. The outcomes indicated that the applied treatments reduced the proportion of soluble-exchangeable-Pb and -Cd, which resulted in an increment in carbonate-bound Pb and Cd in the soil. The DTPA-extractable Pb and Cd were reduced by 29.2% and 25.2% with the treatment of UR21+urea+EGS as compared to the control. Besides, the application of UR21 and EGS significantly increased the soil pH, cation exchange capacity, and enzyme activities. Our findings may provide a novel perceptive for an eco-friendly and sustainable approach to remediate heavy metal-contaminated environment through a combination of metal-resistant ureolytic bacterial strain and EGS.
Collapse
Affiliation(s)
- Ting Wei
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China.
| | - Noman Yashir
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Fengqiu An
- College of Environmental and Chemical Engineering, Polytechnic University, Xi'an, 710048, China
| | - Syed Asad Imtiaz
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Xian Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| | - Hong Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an, 710021, People's Republic of China
| |
Collapse
|
68
|
Parvulescu VI, Epron F, Garcia H, Granger P. Recent Progress and Prospects in Catalytic Water Treatment. Chem Rev 2021; 122:2981-3121. [PMID: 34874709 DOI: 10.1021/acs.chemrev.1c00527] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Presently, conventional technologies in water treatment are not efficient enough to completely mineralize refractory water contaminants. In this context, the implementation of catalytic processes could be an alternative. Despite the advantages provided in terms of kinetics of transformation, selectivity, and energy saving, numerous attempts have not yet led to implementation at an industrial scale. This review examines investigations at different scales for which controversies and limitations must be solved to bridge the gap between fundamentals and practical developments. Particular attention has been paid to the development of solar-driven catalytic technologies and some other emerging processes, such as microwave assisted catalysis, plasma-catalytic processes, or biocatalytic remediation, taking into account their specific advantages and the drawbacks. Challenges for which a better understanding related to the complexity of the systems and the coexistence of various solid-liquid-gas interfaces have been identified.
Collapse
Affiliation(s)
- Vasile I Parvulescu
- Department of Organic Chemistry, Biochemistry and Catalysis, University of Bucharest, B-dul Regina Elisabeta 4-12, Bucharest 030016, Romania
| | - Florence Epron
- Université de Poitiers, CNRS UMR 7285, Institut de Chimie des Milieux et Matériaux de Poitiers (IC2MP), 4 rue Michel Brunet, TSA 51106, 86073 Poitiers Cedex 9, France
| | - Hermenegildo Garcia
- Instituto Universitario de Tecnología Química, Universitat Politecnica de Valencia-Consejo Superior de Investigaciones Científicas, Universitat Politencia de Valencia, Av. de los Naranjos s/n, 46022 Valencia, Spain
| | - Pascal Granger
- CNRS, Centrale Lille, Univ. Artois, UMR 8181 - UCCS - Unité de Catalyse et Chimie du Solide, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
69
|
Remediation of soil cadmium pollution by biomineralization using microbial-induced precipitation: a review. World J Microbiol Biotechnol 2021; 37:208. [PMID: 34719751 DOI: 10.1007/s11274-021-03176-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 10/24/2021] [Indexed: 10/20/2022]
Abstract
In recent years, with industrial pollution and the application of agricultural fertilizers with high cadmium (Cd) content, soil Cd pollution has become increasingly serious. A large amount of Cd is discharged into the environment, greatly endangering the stability of the ecological environment and human health. The use of microorganisms to induce Cd precipitation and mineralization is an important bioremediation method. Itis highly efficient, has a low cost, enables environmental protection, and convenient to operate. This article summarizes the pollution status, pollution source, biological toxicity and existing forms of Cd, as well as the biomineralization mechanism of microbial induced Cd(II) precipitation, mainly including microbial-induced carbonate precipitation, microbial-induced phosphate precipitation and microbial-induced sulfide precipitation. Factors affecting the bioremediation of Cd, such as pH, coexisting ions, and temperature, are introduced. Finally, the key points and difficulties of future microbe-induced Cd(II) biomineralization research are highlighted, providing a scientific basis and theoretical guidance for the application of microbe-induced Cd(II) immobilization in soil.
Collapse
|
70
|
Improving the Strength and Leaching Characteristics of Pb-Contaminated Silt through MICP. CRYSTALS 2021. [DOI: 10.3390/cryst11111303] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Microbial-induced carbonate precipitation (MICP) is an effective technology for repairing sites contaminated by heavy metals. In this work, Sporosarcina pasteurii was cultured and mixed with a cementing fluid as a binder to remediate Pb-contaminated silt. The effects of varying experimental parameters, including Pb concentration and dry density, were also tested and analyzed. The leaching and strength characteristics and the MICP improvement mechanism of the Pb-contaminated silt were studied. Samples with dry densities of 1.50 g/cm3 and 1.55 g/cm3 exhibited the highest unconfined compression strengths (UCS). Scanning electron microscopy showed that not all CaCO3 crystals produced a cementation effect, with some filling pores in an invalid cementation form. The results showed that MICP remediation of low Pb2+ concentration-contaminated silt could meet the relevant Chinese environmental safety standards. Low Pb concentrations helped improve MICP-treated, Pb-contaminated silt strength, whereas high Pb concentrations significantly reduced this strength. Testing to determine the tolerance of an active microbe, Sporosarcina pasteurii, showed that trace amounts of Pb promoted its growth, thus improving the MICP effect, whereas excessive Pb had a toxic effect, which reduced MICP effectiveness. Mercury injection experiments showed that MICP produced CaCO3; this mainly filled soil mesopores and macropores and, thus, improved the soil UCS. Scanning electron microscopy showed that not all CaCO3 crystals produced a cementation effect, with some filling pores in an invalid cementation form. MICP was innovatively applied to silt sites with heavy metal pollutants while considering the soil compaction in actual construction, thus broadening the application scope of MICP, optimizing the construction process, and reducing the construction cost.
Collapse
|
71
|
Liu J, Ali A, Su J, Wu Z, Zhang R, Xiong R. Simultaneous removal of calcium, fluoride, nickel, and nitrate using microbial induced calcium precipitation in a biological immobilization reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:125776. [PMID: 33836330 DOI: 10.1016/j.jhazmat.2021.125776] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
In this research, an immobilized biofilm reactor was established for the simultaneous removal of calcium (Ca2+), fluoride (F-), nickel (Ni2+), and nitrate (NO3--N) by microbial induced calcium precipitation (MICP). The operating parameters of the reactor, hydraulic retention time (HRT: 4, 8, and 12 h), influent Ca2+ concentration (36.0, 108.0, and 180.0 mg L-1), and influent Ni2+ concentration (0.0, 3.0, and 6.0 mg L-1) were discussed. Under the HRT of 12 h, influent Ca2+ concentration of 180.0 mg L-1, and influent Ni2+ concentration of 3.0 mg L-1, the removal ratios of Ca2+, F-, Ni2+, and NO3--N reached 45.31%, 79.55%, 85.11%, and 55.29%, respectively, which was the reactor stable operation performance. The SEM revealed the morphology of calcium-precipitated bio-crystals. XPS showed the Ca2+ and Ni2+ precipitate components and XRD further revealed the formation of CaCO3, Ca5(PO4)3OH, and NiCO3 precipitation. Nitrogen (N2) was the main gas produced in the reactor. Fluorescence spectroscopy manifested that extracellular polymers played an important role in the organism nucleation. High-throughput sequencing exhibited that Acinetobacter sp. H12 was the dominant bacterial group. This study provided a new insight for simultaneous remediation of Ca2+, F-, Ni2+, and NO3--N in water bodies.
Collapse
Affiliation(s)
- Jiaran Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Ruijie Zhang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Renbo Xiong
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
72
|
Ali A, Wu Z, Li M, Su J. Carbon to nitrogen ratios influence the removal performance of calcium, fluoride, and nitrate by Acinetobacter H12 in a quartz sand-filled biofilm reactor. BIORESOURCE TECHNOLOGY 2021; 333:125154. [PMID: 33895669 DOI: 10.1016/j.biortech.2021.125154] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 06/12/2023]
Abstract
This study investigated the influence of different carbon to nitrogen (C/N) ratios on the bio-removal efficiency of aquatic pollutants like calcium (Ca2+), fluoride (F-), and nitrate (NO3-N) in a quartz sand-filled biofilm reactor (QSBR) to treat the low C/N wastewater using Acinetobacter sp. H12 at pH 6.50. The simultaneous bio-removal rate of Ca2+, F-, and NO3- reached 56.31%, 96.33, and 96.95 respectively. Nitrogen gas (N2) was produced with no evidence of N2O emission. Moreover, the morphological study of strain H12 and biological precipitates through SEM revealed that strain H12 provides the nucleation sites for microbially induced calcium precipitation to remove Ca2+ and F-. Besides, XPS and XRD peak spectra implicated that Ca2+ and F- were removed as CaF2 and Ca5(PO4)3F co-precipitates. The 16S rRNA sequencing analyses revealed that H12 belongs to Acinetobacter and has stronger MICP and denitrification potential as compared with other strains under low C/N conditions.
Collapse
Affiliation(s)
- Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Min Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| |
Collapse
|
73
|
Hu X, Liu X, Qiao L, Zhang S, Su K, Qiu Z, Li X, Zhao Q, Yu C. Study on the spatial distribution of ureolytic microorganisms in farmland soil around tailings with different heavy metal pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 775:144946. [PMID: 33618300 DOI: 10.1016/j.scitotenv.2021.144946] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/02/2021] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
Ureolytic microorganisms, a kind of microorganism which can secrete urease and decompose urea, have great potential in remediation of soil heavy metals based on microbial induced carbonate precipitation. However, the horizontal and vertical distribution of ureolytic microbial community in heavy metals contaminated soils is poorly understood. In this study, urease genes in agricultural soils surrounding tailings were first investigated using metagenomic in two dimensions: heavy metal pollution (Low-L, Middle-M, High-H) and soil depth (0-20 cm, 20-40 cm, 40-60 cm, 60-80 cm, 80-100 cm). Results showed that the effect of heavy metal concentration on ureolytic microorganisms was indeed significant, while the changes of ureolytic microorganisms with increasing soil depth varied in the vertical direction at the same level of heavy metal contamination. H site had the highest diversity of ureolytic microorganisms except for the topsoil. And at the same heavy metal contamination level, the ureolytic microbial diversity was lower in deeper soils. Proteobacteria, Actinobacteria and Thaumarchaeota (Archaea) were the dominant phyla of ureolytic microorganisms in all three sites, accounting for more than 80% of the total. However, the respond to the heavy metal concentrations of three phyla were different, which were increasing, decreasing and essentially unchanged, respectively. Besides, other environmental factors such as SOM and pH had different effects on ureolytic microorganisms, with Proteobacteria being positively correlated and Actinobacteria being the opposite. Another phenomenon was that Actinobacteria and Verrucomicrobia were biomarkers of group L, which could significantly explain the difference with the other two sites. These results provided valuable information for further research on the response mechanism and remediation of heavy metal pollution by ureolytic microbial system.
Collapse
Affiliation(s)
- Xuesong Hu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Xiaoxia Liu
- Beijing Station of Agro-Environmental Monitoring, Test and Supervision Center of Agro-Environmental Quality, MOA, 100032 Beijing, China
| | - Longkai Qiao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Shuo Zhang
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Kaiwen Su
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Ziliang Qiu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Qiancheng Zhao
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining and Technology (Beijing), 100083 Beijing, China.
| |
Collapse
|
74
|
Chen M, Li Y, Jiang X, Zhao D, Liu X, Zhou J, He Z, Zheng C, Pan X. Study on soil physical structure after the bioremediation of Pb pollution using microbial-induced carbonate precipitation methodology. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125103. [PMID: 33858089 DOI: 10.1016/j.jhazmat.2021.125103] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/25/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
Soil structure is an important index to evaluate soil quality; however, previous researchers have only paid attention to the effect and economic benefits of soil heavy metal remediation. In this study, microbial-induced carbonate precipitation (MICP) technology was used to remediate soil Pb pollution, and its effect on soil structure was studied by sieving and X-ray computed tomography techniques. The results showed that the leaching amount of heavy metals in soil decreased by 76.34% after remediation. Interestingly, due to the addition of organic matter and microorganisms, the soil particle size changed from microaggregates to large aggregates, and the large soil particle size (diameter > 2 mm) increased significantly by 71.43%. The soil porosity increased by 73.78%, which enhanced the soil permeability and increased the soil hydraulic conductivity. Therefore, MICP bioremediation not only remediated soil heavy metal pollution but also promoted the soil aggregation structure, which has important significance for soil remediation and improvement.
Collapse
Affiliation(s)
- Minjie Chen
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Yafei Li
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Xiaoru Jiang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Dingran Zhao
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Xuefeng Liu
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Jianlin Zhou
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China
| | - Zhanfei He
- Zhejiang University of Technology Zhejiang Univ Technol, Coll Environm, Key Lab Microbial Technol Ind Pollut Control Zhej, Hangzhou 310014, People's Republic of China
| | - Chunli Zheng
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou 014010, People's Republic of China; Inner Mongolia Engineering Research Center of Evaluation and Restoration in the Mining Ecological Environments, Baotou 014010, People's Republic of China; Key Laboratory of Integrated Exploitation of Bayan Obo Multi-Metal Resources, Baotou 014010, People's Republic of China.
| | - Xiangliang Pan
- Zhejiang University of Technology Zhejiang Univ Technol, Coll Environm, Key Lab Microbial Technol Ind Pollut Control Zhej, Hangzhou 310014, People's Republic of China.
| |
Collapse
|
75
|
Bettini S, Ottolini M, Pagano R, Pal S, Licciulli A, Valli L, Giancane G. Coffee Grounds-Derived CNPs for Efficient Cr(VI) Water Remediation. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1064. [PMID: 33919207 PMCID: PMC8143114 DOI: 10.3390/nano11051064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 11/17/2022]
Abstract
Carbon nanomaterials are a group of materials characterized by sp2/sp3 carbon backbone which, combined with surface atoms and/or chemical groups, ensures peculiar physical chemical features for a wide range of applications. Among these materials, carbon dots and carbon nanoparticles belong to carbon nanomaterials with a few nanometer dimensions. In this work, carbon nanoparticles were produced from spent coffee grounds as sustainable carbon source through a simple, cheap and eco-friendly procedure according to an oxidation process (at controlled temperature) driven by hydrogen peroxide. Atomic Force Microscope (AFM) and fluorescence, UV-Vis absorption, FT-IR and Raman spectroscopy were used to assess the formation of carbon nanomaterials of about 10 nm with the typical emission and absorption properties of carbon dots and peculiar surface features. In fact, the presence of heteroatoms, i.e., phosphorus, and the carbonyl/carboxyl surface groups on carbon nanoparticles, was proposed to confer peculiar properties allowing the fast Mn(VII) reduction to Mn(II) at neutral pH and the Cr(VI) reduction to Cr(III) in weak acid aqueous media.
Collapse
Affiliation(s)
- Simona Bettini
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, I-73100 Lecce, Italy; (R.P.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Michela Ottolini
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; (M.O.); (S.P.); (A.L.)
| | - Rosanna Pagano
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, I-73100 Lecce, Italy; (R.P.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Sudipto Pal
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; (M.O.); (S.P.); (A.L.)
| | - Antonio Licciulli
- Department of Engineering for Innovation, University of Salento, Via per Monteroni, I-73100 Lecce, Italy; (M.O.); (S.P.); (A.L.)
| | - Ludovico Valli
- Department of Biological and Environmental Sciences and Technologies, DISTEBA, University of Salento, Via per Arnesano, I-73100 Lecce, Italy; (R.P.); (L.V.)
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
| | - Gabriele Giancane
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali, INSTM, Via G. Giusti, 9, I-50121 Firenze, Italy
- Department of Cultural Heritage, University of Salento, Via D. Birago, 48, I-73100 Lecce, Italy
| |
Collapse
|
76
|
Wang Z, Su J, Hu X, Ali A, Wu Z. Isolation of biosynthetic crystals by microbially induced calcium carbonate precipitation and their utilization for fluoride removal from groundwater. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124748. [PMID: 33310318 DOI: 10.1016/j.jhazmat.2020.124748] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Biosynthetic crystals (BC) were prepared through microbially induced calcium carbonate precipitation (MICP) for fluoride (F-) removal from the groundwater. Batch experiments were conducted to evaluate the fluoride adsorption capacity and the impacts of critical factors (organic matter, pH, initial fluoride concentration and BC dosage) on defluorination efficiency of BC. The maximum adsorption amount and defluorination efficiency were recorded as 5.10 mg g-1 and 98.24%, respectively. The adsorption kinetics and isotherms studies showed that pseudo-second-order kinetic model and Freundlich isotherm model were best fitting to the reaction. Adsorption thermodynamic parameters indicated a spontaneous, endothermic and thermodynamically favorable adsorption process. Moreover, the mechanism of F- removal by BC was further analyzed by SEM, XPS, XRD and FTIR. The method can cope with the problem of applying the external organic substances in MICP, and avoid the microbial safety risk in the effluent. As an economically and environmentally friendly adsorbent, BC can be used for F- removal from groundwater.
Collapse
Affiliation(s)
- Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; State Key Laboratory of Green Building in West China, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
77
|
Wu Z, Su J, Ali A, Hu X, Wang Z. Study on the simultaneous removal of fluoride, heavy metals and nitrate by calcium precipitating strain Acinetobacter sp. H12. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124255. [PMID: 33092874 DOI: 10.1016/j.jhazmat.2020.124255] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/07/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
The removal properties and mechanisms of fluoride (F-) and nickel (Ni2+) were studied by biomineralizing bacteria (Acinetobacter sp. H12). The results showed that the removal ratio of F-, Ca2+ and Ni2+ reached 75% (0.031 mg·L-1·h-1), 84.96% (2.123 mg·L-1·h-1), and 56.67% (0.024 mg·L-1·h-1) after 72 h, respectively. The removal ratio of nitrate (NO3-) reached 100% (0.686 mg·L-1·h-1) after 24 h. SEM and XRD images indicated that bioprecipitation of CaF2, Ca5(PO4)3F, Ca5(PO4)3(OH), NiCO3, CaCO3 and Ni were formed, and some of these precipitation used bacteria as nucleation sites to form biological crystal seeds. N2 was the primary product in gas chromatography analysis. Meanwhile, both the fluorescence spectroscopy and fourier transform near-infrared spectroscopy analysis proved that strain H12 had good ability to remove fluoride and nickel ions simultaneously.
Collapse
Affiliation(s)
- Zizhen Wu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Junfeng Su
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Amjad Ali
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Xiaofen Hu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhao Wang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
78
|
Liu P, Zhang Y, Tang Q, Shi S. Bioremediation of metal-contaminated soils by microbially-induced carbonate precipitation and its effects on ecotoxicity and long-term stability. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2020.107856] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
79
|
Xia X, Wu S, Zhou Z, Wang G. Microbial Cd(II) and Cr(VI) resistance mechanisms and application in bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123685. [PMID: 33113721 DOI: 10.1016/j.jhazmat.2020.123685] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/16/2020] [Accepted: 08/05/2020] [Indexed: 05/21/2023]
Abstract
The heavy metals cadmium (Cd) and chromium (Cr) are extensively used in industry and result in water and soil contamination. The highly toxic Cd(II) and Cr(VI) are the most common soluble forms of Cd and Cr, respectively. They enter the human body through the food chain and drinking water and then cause serious illnesses. Microorganisms can adsorb metals or transform Cd(II) and Cr(VI) into insoluble or less bioavailable forms, and such strategies are applicable in Cd and Cr bioremediation. This review focuses on the highlighting of novel achievements on microbial Cd(II) and Cr(VI) resistance mechanisms and their bioremediation applications. In addition, the knowledge gaps and research perspectives are also discussed in order to build a bridge between the theoretical breakthrough and the resolution of Cd(II) and Cr(VI) contamination problems.
Collapse
Affiliation(s)
- Xian Xia
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Edible Wild Plants Conservation & Utilization, Hubei Engineering Research Center of Special Wild Vegetables Breeding and Comprehensive Utilization Technology, National Experimental Teaching Demonstrating Center, College of Life Sciences, Hubei Normal University, Huangshi, 435002, PR China
| | - Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
80
|
Application of Hybrid Membrane Processes Coupling Separation and Biological or Chemical Reaction in Advanced Wastewater Treatment. MEMBRANES 2020; 10:membranes10100281. [PMID: 33066241 PMCID: PMC7602016 DOI: 10.3390/membranes10100281] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 02/01/2023]
Abstract
The rapid urbanization and water shortage impose an urgent need in improving sustainable water management without compromising the socioeconomic development all around the world. In this context, reclaimed wastewater has been recognized as a sustainable water management strategy since it represents an alternative water resource for non-potable or (indirect) potable use. The conventional wastewater remediation approaches for the removal of different emerging contaminants (pharmaceuticals, dyes, metal ions, etc.) are unable to remove/destroy them completely. Hybrid membrane processes (HMPs) are a powerful solution for removing emerging pollutants from wastewater. On this aspect, the present paper focused on HMPs obtained by the synergic coupling of biological and/or chemical reaction driven processes with membrane processes, giving a critical overview and particular emphasis on some case studies reported in the pertinent literature. By using these processes, a satisfactory quality of treated water can be achieved, permitting its sustainable reuse in the hydrologic cycle while minimizing environmental and economic impact.
Collapse
|