51
|
Nakano R, Tran LM, Geller DA, Macedo C, Metes DM, Thomson AW. Dendritic Cell-Mediated Regulation of Liver Ischemia-Reperfusion Injury and Liver Transplant Rejection. Front Immunol 2021; 12:705465. [PMID: 34262574 PMCID: PMC8273384 DOI: 10.3389/fimmu.2021.705465] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/11/2021] [Indexed: 12/24/2022] Open
Abstract
Liver allograft recipients are more likely to develop transplantation tolerance than those that receive other types of organ graft. Experimental studies suggest that immune cells and other non-parenchymal cells in the unique liver microenvironment play critical roles in promoting liver tolerogenicity. Of these, liver interstitial dendritic cells (DCs) are heterogeneous, innate immune cells that appear to play pivotal roles in the instigation, integration and regulation of inflammatory responses after liver transplantation. Interstitial liver DCs (recruited in situ or derived from circulating precursors) have been implicated in regulation of both ischemia/reperfusion injury (IRI) and anti-donor immunity. Thus, livers transplanted from mice constitutively lacking DCs into syngeneic, wild-type recipients, display increased tissue injury, indicating a protective role of liver-resident donor DCs against transplant IRI. Also, donor DC depletion before transplant prevents mouse spontaneous liver allograft tolerance across major histocompatibility complex (MHC) barriers. On the other hand, mouse liver graft-infiltrating host DCs that acquire donor MHC antigen via "cross-dressing", regulate anti-donor T cell reactivity in association with exhaustion of graft-infiltrating T cells and promote allograft tolerance. In an early phase clinical trial, infusion of donor-derived regulatory DCs (DCreg) before living donor liver transplantation can induce alterations in host T cell populations that may be conducive to attenuation of anti-donor immune reactivity. We discuss the role of DCs in regulation of warm and liver transplant IRI and the induction of liver allograft tolerance. We also address design of cell therapies using DCreg to reduce the immunosuppressive drug burden and promote clinical liver allograft tolerance.
Collapse
Affiliation(s)
- Ryosuke Nakano
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Lillian M. Tran
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David A. Geller
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Liver Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Camila Macedo
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Diana M. Metes
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Angus W. Thomson
- Department of Surgery, Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
52
|
Zhou X, Li Y, Ji Y, Liu T, Zhao N, He J, Yao J. PD-1 Involvement in Peripheral Blood CD8 + T Lymphocyte Dysfunction in Patients with Acute-on-chronic Liver Failure. J Clin Transl Hepatol 2021; 9:283-290. [PMID: 34221914 PMCID: PMC8237147 DOI: 10.14218/jcth.2020.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIMS Programmed cell death-1 (PD-1) plays an important role in downregulating T lymphocytes but the mechanisms are still poorly understood. This study aimed to explore the role of PD-1 in CD8+ T lymphocyte dysfunction in hepatitis B virus (HBV)-related acute-on-chronic liver failure (ACLF). METHODS Thirty patients with HBV-ACLF and 30 healthy controls (HCs) were recruited. The differences in the numbers and functions of CD8+ T lymphocytes, PD-1 and glucose transporter-1 (Glut1) expression from the peripheral blood of patients with HBV-ACLF and HCs were analyzed. In vitro, the CD8+ T lymphocytes from HCs were cultured (HC group) and the CD8+ T lymphocytes from ACLF patients were cultured with PD-L1-IgG (ACLF+PD-1 group) or IgG (ACLF group). The numbers and functions of CD8+ T lymphocytes, PD-1 expression, glycogen uptake capacity, and Glut1, hexokinase-2 (HK2), and pyruvate kinase (PKM2) expression were analyzed among the HC group, ACLF group and ACLF+ PD-1group. RESULTS The absolute numbers of CD8+ T lymphocytes in the peripheral blood from patients with HBV-ACLF were lower than in the HCs (p<0.001). The expression of PD-1 in peripheral blood CD8+ T lymphocytes was lower in HCs than in patients with HBV-ACLF (p=0.021). Compared with HCs, PD-1 expression was increased (p=0.021) and Glut1 expression was decreased (p=0.016) in CD8+ T lymphocytes from the HBV-ACLF group. In vitro, glycogen uptake and functions of ACLF CD8+ T lymphocytes were significantly lower than that in HCs (p=0.017; all p<0.001). When PD-1/PD-L1 was activated, the glycogen uptake rate and expression levels of Glut1, HK2, and PKM2 showed a decreasing trend (ACLF+PD-1 group compared to ACLF group , all p<0.05). The functions of CD8+ T lymphocytes in the ACLF+PD-1 group [using biomarkers of Ki67, CD69, IL-2, interferon-gamma, and tumor necrosis factor-alpha- were lower than in the ACLF group (all p<0.05). CONCLUSIONS CD8+ T lymphocyte dysfunction is observed in patients with HBV-ACLF. PD-1-induced T lymphocyte dysfunction might involve glycolysis inhibition.
Collapse
Affiliation(s)
- Xiaoshuang Zhou
- Department of Nephrology, Shanxi Provincial People’s Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yidong Li
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yaqiu Ji
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Tian Liu
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ninghui Zhao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Correspondence to: Jia Yao and Ninghui Zhao, Department of Gastroenterology, Shanxi Baiqiuen Hospital, Shanxi Medical University, No. 99 Longcheng Street, Taiyuan, Shanxi 030001, China. ORCID: https://orcid.org/0000-0003-2210-7717 (JY), https://orcid.org/0000-0002-9715-9303 (NZ). Tel/Fax: +86-199-3491-1619, E-mail: (JY) and (NZ); Jiefeng He, Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China. ORCID: https://orcid.org/0000-0003-2958-0232. E-mail:
| | - Jiefeng He
- Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Correspondence to: Jia Yao and Ninghui Zhao, Department of Gastroenterology, Shanxi Baiqiuen Hospital, Shanxi Medical University, No. 99 Longcheng Street, Taiyuan, Shanxi 030001, China. ORCID: https://orcid.org/0000-0003-2210-7717 (JY), https://orcid.org/0000-0002-9715-9303 (NZ). Tel/Fax: +86-199-3491-1619, E-mail: (JY) and (NZ); Jiefeng He, Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China. ORCID: https://orcid.org/0000-0003-2958-0232. E-mail:
| | - Jia Yao
- Department of Gastroenterology, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi, China
- Institute of Liver Disease and Organ Transplantation, Shanxi Medical University, Taiyuan, Shanxi, China
- Correspondence to: Jia Yao and Ninghui Zhao, Department of Gastroenterology, Shanxi Baiqiuen Hospital, Shanxi Medical University, No. 99 Longcheng Street, Taiyuan, Shanxi 030001, China. ORCID: https://orcid.org/0000-0003-2210-7717 (JY), https://orcid.org/0000-0002-9715-9303 (NZ). Tel/Fax: +86-199-3491-1619, E-mail: (JY) and (NZ); Jiefeng He, Department of Hepatobiliary Surgery, Shanxi Bethune Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, China. ORCID: https://orcid.org/0000-0003-2958-0232. E-mail:
| |
Collapse
|
53
|
Xue D, Hsu E, Fu YX, Peng H. Next-generation cytokines for cancer immunotherapy. Antib Ther 2021; 4:123-133. [PMID: 34263141 PMCID: PMC8271143 DOI: 10.1093/abt/tbab014] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/09/2021] [Accepted: 06/22/2021] [Indexed: 12/12/2022] Open
Abstract
Most studies focus on the first and second signals of T cell activation. However, the roles of cytokines in immunotherapy are not fully understood, and cytokines have not been widely used in patient care. Clinical application of cytokines is limited due to their short half-life in vivo, severe toxicity at therapeutic doses, and overall lack of efficacy. Several modifications have been engineered to extend their half-life and increase tumor targeting, including polyethylene glycol conjugation, fusion to tumor-targeting antibodies, and alteration of cytokine/cell receptor-binding affinity. These modifications demonstrate an improvement in either increased antitumor efficacy or reduced toxicity. However, these cytokine engineering strategies may still be improved further, as each strategy poses advantages and disadvantages in the delicate balance of targeting tumor cells, tumor-infiltrating lymphocytes, and peripheral immune cells. This review focuses on selected cytokines, including interferon-α, interleukin (IL)-2, IL-15, IL-21, and IL-12, in both preclinical studies and clinical applications. We review next-generation designs of these cytokines that improve half-life, tumor targeting, and antitumor efficacy. We also present our perspectives on the development of new strategies to potentiate cytokine-based immunotherapy.
Collapse
Affiliation(s)
- Diyuan Xue
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Eric Hsu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Hua Peng
- Key laboratory of Infection and Immunity Institute of Biophysics, Chinese Academy of Sciences, 15 Da Tun Rd, Chaoyang District, Beijing 100101, China
| |
Collapse
|
54
|
Sun F, Guo ZS, Gregory AD, Shapiro SD, Xiao G, Qu Z. Dual but not single PD-1 or TIM-3 blockade enhances oncolytic virotherapy in refractory lung cancer. J Immunother Cancer 2021; 8:jitc-2019-000294. [PMID: 32461344 PMCID: PMC7254155 DOI: 10.1136/jitc-2019-000294] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/07/2020] [Indexed: 12/17/2022] Open
Abstract
Background Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) blockade therapy fails in the majority of patients with cancer. Oncolytic viruses represent a new class of therapeutic agents, yet the therapeutic efficacy is still disappointing. Moreover, intratumoral injection of viruses is the main approach and preclinical studies mainly employ syngeneic or xenograft models. Methods Use an endogenous mouse lung cancer model that faithfully recapitulates human lung cancer, and various in vivo, ex vivo and in vitro assays, to investigate the efficacy, mechanism of action and resistance of systemically administered oncolytic vaccinia virus (oVV), immunotherapy and their combination, to find an effective therapy for refractory lung cancer. Results Resembling human lung cancers, the majority of which are largely resistant to PD-1/PD-L1 blockade and with decreased PD-L1 expression and T-cell activation by our analysis, urethane-induced endogenous lung tumors in mice show reduced PD-L1 expression, low tumor-infiltrating lymphocytes and innate resistance to PD-1/PD-L1 blockade. Intravenous administration of oVV has efficacy and synergizes with simultaneous but not single blockade of PD-1 and T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) in this cancer model. Besides direct tumor cell killing, oVV induces T-cell lung recruitment, tumor infiltration, along with expression of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumor cells and tumor-associated immune cells. Blockade of PD-1 or TIM-3 also causes their mutual induction on T cells. Conclusions While systemic administration of oVV shows efficacy in lung cancer by killing tumor cells directly and recruiting and activating T cells for indirect tumor killing, its induction of PD-1 and TIM-3 on T cells and PD-1 and TIM-3 ligands on tumors and tumor-associated immune cells as well as mutual induction of PD-1 or TIM-3 on T cells by their blockade restricts the efficacy of oVV or its combination with single PD-1 or TIM-3 blockade. The triple combination therapy is more effective for refractory lung cancer, and possibly other cold cancers as well.
Collapse
Affiliation(s)
- Fan Sun
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zong Sheng Guo
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alyssa D Gregory
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven D Shapiro
- Department of Medicine, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gutian Xiao
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Zhaoxia Qu
- UPMC Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA .,Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
55
|
Leone P, Solimando AG, Fasano R, Argentiero A, Malerba E, Buonavoglia A, Lupo LG, De Re V, Silvestris N, Racanelli V. The Evolving Role of Immune Checkpoint Inhibitors in Hepatocellular Carcinoma Treatment. Vaccines (Basel) 2021; 9:vaccines9050532. [PMID: 34065489 PMCID: PMC8160723 DOI: 10.3390/vaccines9050532] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 05/15/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of most common cancers and the fourth leading cause of death worldwide. Commonly, HCC development occurs in a liver that is severely compromised by chronic injury or inflammation. Liver transplantation, hepatic resection, radiofrequency ablation (RFA), transcatheter arterial chemoembolization (TACE), and targeted therapies based on tyrosine protein kinase inhibitors are the most common treatments. The latter group have been used as the primary choice for a decade. However, tumor microenvironment in HCC is strongly immunosuppressive; thus, new treatment approaches for HCC remain necessary. The great expression of immune checkpoint molecules, such as programmed death-1 (PD-1), cytotoxic T-lymphocyte antigen 4 (CTLA-4), lymphocyte activating gene 3 protein (LAG-3), and mucin domain molecule 3 (TIM-3), on tumor and immune cells and the high levels of immunosuppressive cytokines induce T cell inhibition and represent one of the major mechanisms of HCC immune escape. Recently, immunotherapy based on the use of immune checkpoint inhibitors (ICIs), as single agents or in combination with kinase inhibitors, anti-angiogenic drugs, chemotherapeutic agents, and locoregional therapies, offers great promise in the treatment of HCC. This review summarizes the recent clinical studies, as well as ongoing and upcoming trials.
Collapse
Affiliation(s)
- Patrizia Leone
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
| | - Antonio Giovanni Solimando
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Rossella Fasano
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | | | - Eleonora Malerba
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- Department of Experimental Diagnostic and Specialty Medicine, “L. and A. Seràgnoli”, University of Bologna, 40138 Bologna, Italy
| | - Alessio Buonavoglia
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
| | - Luigi Giovanni Lupo
- Department of General Surgery and Liver Transplantation, University of Bari, 70124 Bari, Italy;
| | - Valli De Re
- Immunopathology and Cancer Biomarkers—Bio-Proteomics Facility, CRO Aviano National Cancer Institute, 33081 Aviano, Italy;
| | - Nicola Silvestris
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- IRCCS Istituto Tumori “Giovanni Paolo II”, 70124 Bari, Italy;
| | - Vito Racanelli
- Unit of Internal Medicine “Guido Baccelli”, Department of Biomedical Sciences and Human Oncology, University of Bari Medical School, 70124 Bari, Italy; (P.L.); (A.G.S.); (R.F.); (E.M.); (A.B.); (N.S.)
- Correspondence: ; Tel.: +39-080-5478050
| |
Collapse
|
56
|
Anti-PD-1/PD-L1 Based Combination Immunotherapy to Boost Antigen-Specific CD8 + T Cell Response in Hepatocellular Carcinoma. Cancers (Basel) 2021; 13:cancers13081922. [PMID: 33923463 PMCID: PMC8073815 DOI: 10.3390/cancers13081922] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 12/13/2022] Open
Abstract
Simple Summary The cytotoxic T cell response against hepatocellular carcinoma antigens is exhausted and fails in its task of deleting tumoral cells. These cells are featured by the expression of negative immune checkpoints that can be modulated to restore T cell function. The blockade of the PD-1/PD-L1 pathway has shown promising results in rescuing hepatocellular carcinoma-specific CD8 T cells but only a reduced group of cases is sensitive to this treatment and the effect is usually temporary. Therefore, new anti-PD-1 based combinatory strategies are underway to increase the response by adding the effect of blocking neo-angiogenesis and other negative immune checkpoints, boosting positive immune checkpoints, blocking suppressive cytokines, or inducing the expression of tumoral neoantigens. The restoration of T cell responses with these anti-PD-1 based combinatory therapies will change the outcome of advanced hepatocellular carcinoma. Abstract Thirty to fifty percent of hepatocellular carcinomas (HCC) display an immune class genetic signature. In this type of tumor, HCC-specific CD8 T cells carry out a key role in HCC control. Those potential reactive HCC-specific CD8 T cells recognize either HCC immunogenic neoantigens or aberrantly expressed host’s antigens, but they become progressively exhausted or deleted. These cells express the negative immunoregulatory checkpoint programmed cell death protein 1 (PD-1) which impairs T cell receptor signaling by blocking the CD28 positive co-stimulatory signal. The pool of CD8 cells sensitive to anti-PD-1/PD-L1 treatment is the PD-1dim memory-like precursor pool that gives rise to the effector subset involved in HCC control. Due to the epigenetic imprints that are transmitted to the next generation, the effect of PD-1 blockade is transient, and repeated treatments lead to tumor resistance. During long-lasting disease, besides the TCR signaling impairment, T cells develop other failures that should be also set-up to increase T cell reactivity. Therefore, several PD-1 blockade-based combinatory therapies are currently under investigation such as adding antiangiogenics, anti-TGFβ1, blockade of other negative immune checkpoints, or increasing HCC antigen presentation. The effect of these combinations on CD8+ T cells is discussed in this review.
Collapse
|
57
|
Hu B, Sun M, Wang Z, Zheng Y, Cai W, Shi HHH, Zhuang Y, Lin Q. Prognostic Value of Programmed Cell Death-Ligand 1 Expression in Tumor-Infiltrating Lymphocytes and Viral Load in Peripheral Blood Mononuclear Cells for Epstein-Barr Virus-Positive Nasopharyngeal Carcinoma. Clin Chem 2021; 66:1219-1227. [PMID: 32870999 DOI: 10.1093/clinchem/hvaa170] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/23/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND Epstein-Barr virus (EBV) infection has a role in the development and progression of nasopharyngeal carcinoma (NPC); however, it is unclear whether EBV load correlates with tumor prognosis or the need for immunotherapy. This study evaluated whether the EBV DNA concentration in peripheral blood mononuclear cells (PBMC) or programmed cell death-ligand1 (PD-L1) expression in tumor-infiltrating lymphocytes (TIL) could predict the clinical outcomes of patients with NPC. METHODS Clinicopathological parameters of 198 patients with NPC were analyzed retrospectively from June 2012 to May 2018. Patients' EBV loads were determined by droplet digital PCR. TIL PD-L1 was analyzed by immunohistochemistry. RESULTS A log value of 1.98 log IU/mL for PBMC EBV DNA and a percentage of PD-L1 expression of 15% in TILs marked distinguishing cutoffs in NPC prognosis. The 5-year progression-free survival (PFS) rates in patients with high vs low log (PBMC EBV DNA) were 68.2% and 93.1%, respectively (P = 0.002). The 5-year PFS rates in patients with high vs low TIL PD-L1 expression were 66.3% and 33.7%, respectively (P = 0.03). The 5-year PFS rates of the high-risk group (high log [PBMC EBV DNA] and low TIL PD-L1), low-risk group (low log [PBMC EBV DNA] and high TIL PD-L1), and those in between (intermediate group) were 0%, 91.9%, and 71.4%, respectively (P < 0.001). CONCLUSION Concentrations of PBMC EBV DNA and TIL PD-L1 expression can be used as prognostic markers in NPC. The combination of both an increased EBV DNA concentration and suppressed TIL PD-L1 expression is associated with metastasis or relapse.
Collapse
Affiliation(s)
- Bin Hu
- Clinical Laboratory of Oncology, Xiamen Cancer Center and Department of Clinical Laboratory Medicine, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China.,Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA
| | - Ming Sun
- Department of Reproductive Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Zijin Wang
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yanping Zheng
- Clinical Laboratory of Oncology, Xiamen Cancer Center and Department of Clinical Laboratory Medicine, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Weifeng Cai
- Clinical Laboratory of Oncology, Xiamen Cancer Center and Department of Clinical Laboratory Medicine, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | | | - Yanzhen Zhuang
- Department of Pathology, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qin Lin
- Department of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| |
Collapse
|
58
|
Liang Y, Hannan R, Fu YX. Type I IFN Activating Type I Dendritic Cells for Antitumor Immunity. Clin Cancer Res 2021; 27:3818-3824. [PMID: 33692027 DOI: 10.1158/1078-0432.ccr-20-2564] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/26/2021] [Accepted: 03/01/2021] [Indexed: 11/16/2022]
Abstract
Immune checkpoint inhibitors are successful immunotherapy modalities that enhance CD8+ T-cell responses. Although T cells are initially primed in draining lymph nodes, the mechanisms that underlie their reactivation inside the tumor microenvironment are less clear. Recent studies have found that not only is the cross-priming of conventional type 1 dendritic cells (cDC1) required to initiate CD8+ T-cell responses during tumor progression, but it also plays a central role in immunotherapy-mediated reactivation of tumor-specific CD8+ T cells for tumor regression. Moreover, many cancer treatment modalities trigger type I IFN responses, which play critical roles in boosting cDC1 cross-priming and CD8+ T-cell reactivation. Inducing type I IFNs within tumors can overcome innate immune resistance and activate antitumor adaptive immunity. Here, we review recent studies on how type I IFN-cDC1 cross-priming reactivates CD8+ T cells and contributes to tumor control by cancer immunotherapy.
Collapse
Affiliation(s)
- Yong Liang
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas
| | - Raquibul Hannan
- The Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Yang-Xin Fu
- The Department of Pathology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
59
|
Merimi M, Lagneaux L, Lombard CA, Agha DM, Bron D, Lewalle P, Meuleman N, Najimi M, Sokal EM, Najar M. Immuno-comparative screening of adult-derived human liver stem/progenitor cells for immune-inflammatory-associated molecules. Inflamm Res 2021; 70:229-239. [PMID: 33404674 DOI: 10.1007/s00011-020-01428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 11/04/2020] [Accepted: 11/27/2020] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVE One of the main challenges in liver cell therapy is the replacement of damaged cells and the induction of a tolerogenic microenvironment to promote graft acceptance by the recipient. Adult-derived human liver stem/progenitor cells (ADHLSCs) are currently evaluated at the clinical levels as a promising pro-regenerative and immune-modulatory tool. The expression profile of several immunological molecules may influence the local immune-inflammatory response and, therefore, modulate the tissue healing process. To increase the quality and safety of ADHLSCs before transplantation requires an appropriate analysis and characterization of their pattern expression of immune-inflammatory-associated molecules. METHODS The expression of 27 molecules belonging to T-cell co-stimulatory pathway, CD47 partners, Ikaros family, CD300 family and TNF family were analyzed using flow cytometry. We compared their expression profiles to PBMCs, hepatocytes and ADHLSCs in both expansion and after hepatogenic differentiation culture conditions. RESULTS This original immuno-comparative screening revealed that liver cell populations do not constitutively present significant immunological pattern compared to PBMCs. Moreover, our findings highlight that neither the expansion nor the hepatogenic differentiation induces the expression of immune-inflammatory molecules. The detailed expression characteristics (percentage of positive cells and median fluorescence intensity) of each molecule were analyzed and presented. CONCLUSION By analyzing 27 relevant molecules, our immuno-comparative screening demonstrates that ADHLSCs keep a non-immunogenic profile independent of their expansion or hepatogenic differentiation state. Accordingly, the immunological profile of ADHLSCs seems to support their safe and efficient use in liver tissue therapeutic repair strategy.
Collapse
Affiliation(s)
- Makram Merimi
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000, Brussels, Belgium
| | - Laurence Lagneaux
- Laboratory of Clinical Cell Therapy, Jules Bordet Institute, Université Libre de Bruxelles, 1070, Brussels, Belgium
| | - Catherine A Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Douâa Moussa Agha
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000, Brussels, Belgium
| | - Dominique Bron
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000, Brussels, Belgium
| | - Philippe Lewalle
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000, Brussels, Belgium
| | - Nathalie Meuleman
- Laboratory of Experimental Hematology, Jules Bordet Institute, Université Libre de Bruxelles, 1000, Brussels, Belgium
| | - Mustapha Najimi
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Etienne M Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale Et Clinique (IREC), Université Catholique de Louvain, 1200, Brussels, Belgium
| | - Mehdi Najar
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, H2X 0A9, Canada.
- Department of Medicine, University of Montreal, Montreal, QC, H2X 0A9, Canada.
| |
Collapse
|
60
|
Construction of a TF-miRNA-gene feed-forward loop network predicts biomarkers and potential drugs for myasthenia gravis. Sci Rep 2021; 11:2416. [PMID: 33510225 PMCID: PMC7843995 DOI: 10.1038/s41598-021-81962-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/07/2021] [Indexed: 01/07/2023] Open
Abstract
Myasthenia gravis (MG) is an autoimmune disease and the most common type of neuromuscular disease. Genes and miRNAs associated with MG have been widely studied; however, the molecular mechanisms of transcription factors (TFs) and the relationship among them remain unclear. A TF–miRNA–gene network (TMGN) of MG was constructed by extracting six regulatory pairs (TF–miRNA, miRNA–gene, TF–gene, miRNA–TF, gene–gene and miRNA–miRNA). Then, 3/4/5-node regulatory motifs were detected in the TMGN. Then, the motifs with the highest Z-score, occurring as 3/4/5-node composite feed-forward loops (FFLs), were selected as statistically significant motifs. By merging these motifs together, we constructed a 3/4/5-node composite FFL motif-specific subnetwork (CFMSN). Then, pathway and GO enrichment analyses were performed to further elucidate the mechanism of MG. In addition, the genes, TFs and miRNAs in the CFMSN were also utilized to identify potential drugs. Five related genes, 3 TFs and 13 miRNAs, were extracted from the CFMSN. As the most important TF in the CFMSN, MYC was inferred to play a critical role in MG. Pathway enrichment analysis showed that the genes and miRNAs in the CFMSN were mainly enriched in pathways related to cancer and infections. Furthermore, 21 drugs were identified through the CFMSN, of which estradiol, estramustine, raloxifene and tamoxifen have the potential to be novel drugs to treat MG. The present study provides MG-related TFs by constructing the CFMSN for further experimental studies and provides a novel perspective for new biomarkers and potential drugs for MG.
Collapse
|
61
|
Liu Q, Tian J, Tian Y, Sun Q, Sun D, Wang F, Xu H, Ying G, Wang J, Yetisen AK, Jiang N. Near-Infrared-II Nanoparticles for Cancer Imaging of Immune Checkpoint Programmed Death-Ligand 1 and Photodynamic/Immune Therapy. ACS NANO 2021; 15:515-525. [PMID: 33426893 DOI: 10.1021/acsnano.0c05317] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Development of second near-infrared (NIR-II) nanoparticles (NPs) with high biocompatibility, low toxicity, and high singlet oxygen quantum yield (ΦΔ) to prevent tumor recurrence is highly desirable in molecular imaging and photodynamic/immune combination therapy. Here, theranostic photosensitizer BODIPY (BDP)-I-N-anti-PD-L1 NPs were developed by encapsulating the photosensitizer BDP-I-N with amphipathic poly(styrene-co-chloromethylstyrene)-graft-poly(ethylene glycol) nanocarriers through self-assembly functionalization with programmed cell death-ligand 1 (PD-L1) monoclonal antibody. These NPs exhibit highly intensive luminescence in the NIR-II window (1000-1700 nm) to real-time imaging of immune checkpoint PD-L1, high singlet oxygen quantum yield (ΦΔ = 73%), and an eliminating effect of primary cancers. The NPs also allow for profiling PD-L1 expression as well as accumulating in MC38 tumor and enabling molecular imaging in vivo. Upon an 808 nm laser excitation, the targeted NPs produce an emission wavelength above 1200 nm to image a tumor to a normal tissue signal ratio (T/NT) at an approximate value of 14.1. Moreover, the MC38 tumors in mice are eliminated by combining photodynamic therapy and immunotherapy within 30 days, with no tumor recurrence within a period of 40 days. In addition, the tumors do not grow in the rechallenged mice within 7 days of inoculation. Such a strategy shows a durable immune memory effect against tumor rechallenging without toxic side effects to major organs.
Collapse
Affiliation(s)
- Qiang Liu
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jiangwei Tian
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of TCM Evaluation and Translational Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Ye Tian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Qinchao Sun
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Dan Sun
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Feifei Wang
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Haijun Xu
- Jiangsu Co-innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Jiangsu Key Lab of Biomass-based Green Fuels and Chemicals, Nanjing Forestry University, Nanjing 210037, China
| | - Guoliang Ying
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- Brigham and Women's Hospital, Harvard Medical School, Cambridge, Massachusetts 02139, United States
| | - Jigang Wang
- Artemisinin Research Center and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, China
- Department of Urology, Shenzhen People's Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Nan Jiang
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
62
|
Huang J, Xiao Z, An Y, Han S, Wu W, Wang Y, Guo Y, Shuai X. Nanodrug with dual-sensitivity to tumor microenvironment for immuno-sonodynamic anti-cancer therapy. Biomaterials 2021; 269:120636. [PMID: 33453632 DOI: 10.1016/j.biomaterials.2020.120636] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/17/2020] [Accepted: 12/25/2020] [Indexed: 12/17/2022]
Abstract
Although a combination with photodynamic therapy (PDT) is a potential means to improve the immune checkpoint blockade (ICB)-based anticancer immunotherapy, this strategy is subjected to the extremely poor light penetration in melanoma. Herein, we develop a lipid (LP)-based micellar nanocarrier encapsulating sonosensitizer chlorin e6 (Ce6) in the core, conjugating anti-PD-L1 antibody (aPD-L1) to the interlayer through MMP-2-cleavable peptide, and bearing a PEG coating sheddable at low pH value (≈6.5) of tumor microenvironment. The unique nanocarrier design allows a tumor-targeting delivery to activate the anti-tumor immunity and meanwhile to reduce immune-related adverse effects (irAEs). Moreover, a sonodynamic therapy (SDT) is triggerable by using ultrasonic insonation to produce tumor-killing reactive oxygen species (ROS), thereby bypassing the poor light penetration which restricts PDT in melanoma. A combination of SDT with aPD-L1 immunotherapy effectively promotes tumor infiltration and activation of cytotoxic T cells, which resulted in robust anti-cancer immunity and long-term immune memory to effectively suppress melanoma growth and postoperative recurrence. This strategy for tumor-targeting codelivery of immune checkpoint inhibitors and SDT agents could be readily extended to other tumor types for better immunotherapeutic outcome and reduced irAEs.
Collapse
Affiliation(s)
- Jinsheng Huang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China
| | - Zecong Xiao
- PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yongcheng An
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510275, China
| | - Shisong Han
- Department of Minimally Invasive Interventional Radiology, and Laboratory of Interventional Radiology, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510275, China
| | - Wei Wu
- Department of Medical Oncology, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Yong Wang
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China.
| | - Yu Guo
- Department of General Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xintao Shuai
- College of Chemistry and Materials Science, Jinan University, Guangzhou, 510632, China; PCFM Lab of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
63
|
Chua C, Salimzadeh L, Gehring AJ. Immunopathogenesis of Hepatitis B Virus Infection. HEPATITIS B VIRUS AND LIVER DISEASE 2021:73-97. [DOI: 10.1007/978-981-16-3615-8_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
64
|
Lee SA, Wang Y, Liu F, Riordan SM, Liu L, Zhang L. Escherichia coli K12 Upregulates Programmed Cell Death Ligand 1 (PD-L1) Expression in Gamma Interferon-Sensitized Intestinal Epithelial Cells via the NF-κB Pathway. Infect Immun 2020; 89:e00618-20. [PMID: 33046511 PMCID: PMC7927934 DOI: 10.1128/iai.00618-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
Programmed cell death ligand-1 (PD-L1) is an immune checkpoint protein which is used by tumor cells for immune evasion. PD-L1 is upregulated in inflamed intestinal tissues. The intestinal tract is colonized by millions of bacteria, most of which are commensal bacterial species. We hypothesized that under inflammatory conditions, some commensal bacterial species contribute to increased PD-L1 expression in intestinal epithelium and examined this hypothesis. Human intestinal epithelial HT-29 cells with and without interferon (IFN)-γ sensitization were incubated with six strains of four enteric bacterial species. The mRNA and protein levels of PD-L1 in HT-29 cells were examined using quantitative real-time PCR and flow cytometry, respectively. The levels of interleukin (IL)-1β, IL-18, IL-6, IL-8, and tumor necrosis factor (TNF)-α secreted by HT-29 cells were measured using enzyme-linked immunosorbent assay. Apoptosis of HT-29 cells was measured using a caspase 3/7 assay. We found that Escherichia coli K12 significantly upregulated both PD-L1 mRNA and protein in IFN-γ-sensitized HT-29 cells. E. coli K12 induced the production of IL-8 in HT-29 cells, however, IL-8 did not affect HT-29 PD-L1 expression. Inhibition of the nuclear factor-kappa B pathway significantly reduced E. coli K12-induced PD-L1 expression in HT-29 cells. The other two E. coli strains and two enteric bacterial species did not significantly affect PD-L1 expression in HT-29 cells. Enterococcus faecalis significantly inhibited PD-L1 expression due to induction of cell death. Data from this study suggest that some gut bacterial species have the potential to affect immune function under inflammatory conditions via upregulating epithelial PD-L1 expression.
Collapse
Affiliation(s)
- Seul A Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Yiming Wang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Infection & Immunity Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Fang Liu
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Stephen M Riordan
- Gastrointestinal and Liver Unit, Prince of Wales Hospital, University of New South Wales, Sydney, Australia
| | - Lu Liu
- School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Li Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| |
Collapse
|
65
|
Induction of Durable Antitumor Response by a Novel Oncolytic Herpesvirus Expressing Multiple Immunomodulatory Transgenes. Biomedicines 2020; 8:biomedicines8110484. [PMID: 33182232 PMCID: PMC7695276 DOI: 10.3390/biomedicines8110484] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy is a promising new tool for cancer treatment, but direct lytic destruction of tumor cells is not sufficient and must be accompanied by strong immune activation to elicit anti-tumor immunity. We report here the creation of a novel replication-competent recombinant oncolytic herpes simplex virus type 1 (VG161) that carries genes coding for IL-12, IL-15, and IL-15 receptor alpha subunit, along with a peptide fusion protein capable of disrupting PD-1/PD-L1 interactions. The VG161 virus replicates efficiently and exhibits robust cytotoxicity in multiple tumor cell lines. Moreover, the encoded cytokines and the PD-L1 blocking peptide work cooperatively to boost immune cell function. In vivo testing in syngeneic CT26 and A20 tumor models reveals superior efficacy when compared to a backbone virus that does not express exogenous genes. Intratumoral injection of VG161 induces abscopal responses in non-injected distal tumors and grants resistance to tumor re-challenge. The robust anti-tumor effect of VG161 is associated with T cell and NK cell tumor infiltration, expression of Th1 associated genes in the injection site, and increased frequency of splenic tumor-specific T cells. VG161 also displayed a superb safety profile in GLP acute and repeated injection toxicity studies performed using cynomolgus monkeys. Overall, we demonstrate that VG161 can induce robust oncolysis and stimulate a robust anti-tumor immune response without sacrificing safety.
Collapse
|
66
|
Mochizuki Y, Tazawa H, Demiya K, Kure M, Kondo H, Komatsubara T, Sugiu K, Hasei J, Yoshida A, Kunisada T, Urata Y, Kagawa S, Ozaki T, Fujiwara T. Telomerase-specific oncolytic immunotherapy for promoting efficacy of PD-1 blockade in osteosarcoma. Cancer Immunol Immunother 2020; 70:1405-1417. [PMID: 33151368 DOI: 10.1007/s00262-020-02774-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 10/19/2020] [Indexed: 12/20/2022]
Abstract
Immune checkpoint inhibitors including anti-programmed cell death 1 (PD-1) antibody have recently improved clinical outcome in certain cancer patients; however, osteosarcoma (OS) patients are refractory to PD-1 blockade. Oncolytic virotherapy has emerged as novel immunogenic therapy to augment antitumor immune response. We developed a telomerase-specific replication-competent oncolytic adenovirus OBP-502 that induces lytic cell death via binding to integrins. In this study, we assessed the combined effect of PD-1 blockade and OBP-502 in OS cells. The expression of coxsackie and adenovirus receptor (CAR), integrins αvβ3 and αvβ5, and programmed cell death ligand 1 (PD-L1) was analyzed in two murine OS cells (K7M2, NHOS). The cytopathic activity of OBP-502 in both cells was analyzed using the XTT assay. OBP-502-induced immunogenic cell death was assessed by analyzing the level of extracellular ATP and high-mobility group box protein B1 (HMGB1). Subcutaneous tumor models for K7M2 and NHOS cells were used to evaluate the antitumor effect and number of tumor-infiltrating CD8+ cells in combination therapy. K7M2 and NHOS cells showed high expression of integrins αvβ3 and αvβ5, but not CAR. OBP-502 significantly suppressed the viability of both cells, in which PD-L1 expression and the release of ATP and HMGB1 were significantly increased. Intratumoral injection of OBP-502 significantly augmented the efficacy of PD-1 blockade on subcutaneous K2M2 and NHOS tumor models via enhancement of tumor-infiltrating CD8+ T cells. Our results suggest that telomerase-specific oncolytic virotherapy is a promising antitumor strategy to promote the efficacy of PD-1 blockade in OS.
Collapse
Affiliation(s)
- Yusuke Mochizuki
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroshi Tazawa
- Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan. .,Center for Innovative Clinical Medicine, Okayama University Hospital, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8558, Japan.
| | - Koji Demiya
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Miho Kure
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Hiroya Kondo
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Tadashi Komatsubara
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Kazuhisa Sugiu
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Joe Hasei
- Sports Medicine, Dentistry and Pharmaceutical Sciences, Okayama University Graduate School of Medicine, Okayama, 700-8558, Japan
| | - Aki Yoshida
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyuki Kunisada
- Medical Materials for Musculoskeletal Reconstruction, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Yasuo Urata
- Oncolys BioPharma, Inc, Tokyo, 105-0001, Japan
| | - Shunsuke Kagawa
- Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan.,Minimally Invasive Therapy Center, Okayama University Hospital, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Departments of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| | - Toshiyoshi Fujiwara
- Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, 700-8558, Japan
| |
Collapse
|
67
|
Abstract
In this issue of JEM, Du et al. (https://doi.org/10.1084/jem.20191115) report that enhancement of the β-catenin signaling by Wnt or EGF treatment increases the expression of PD-L1 in an AKT and β-catenin-dependent manner, and blocking the AKT pathway synergizes with anti-PD-1 in a glioblastoma model.
Collapse
Affiliation(s)
| | - Yang-Xin Fu
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
68
|
Nimmagadda S. Quantifying PD-L1 Expression to Monitor Immune Checkpoint Therapy: Opportunities and Challenges. Cancers (Basel) 2020; 12:cancers12113173. [PMID: 33137949 PMCID: PMC7692040 DOI: 10.3390/cancers12113173] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Malignant cells hijack the regulatory roles of immune checkpoint proteins for immune evasion and survival. Therapeutics blocking those proteins can restore the balance of the immune system and lead to durable responses in cancer patients. Although a subset of patients derive benefit, there are few non-invasive technologies to guide and monitor those therapies to improve success rates. This is a review of the advancements in non-invasive methods for quantification of immune checkpoint protein programmed death ligand 1 expression, a biomarker detected by immunohistochemistry and widely used for guiding immune checkpoint therapy. Abstract Therapeutics targeting programmed death ligand 1 (PD-L1) protein and its receptor PD-1 are now dominant players in restoring anti-tumor immune responses. PD-L1 detection by immunohistochemistry (IHC) is emerging as a reproducible biomarker for guiding patient stratification for those therapies in some cancers. However, PD-L1 expression in the tumor microenvironment is highly complex. It is upregulated by aberrant genetic alterations, and is highly regulated at the transcriptional, posttranscriptional, and protein levels. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Imaging technologies could potentially assist in meeting that need. Early clinical investigations show promising results in quantifying PD-L1 expression in the whole body by positron emission tomography (PET). Within this context, this review summarizes advancements in regulation of PD-L1 expression and imaging agents, and in PD-L1 PET for drug development, and discusses opportunities and challenges presented by these innovations for guiding immune checkpoint therapy (ICT).
Collapse
Affiliation(s)
- Sridhar Nimmagadda
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; ; Tel.: +1-410-502-6244; Fax: +1-410-614-3147
- Division of Clinical Pharmacology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Science, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Bloomberg–Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
69
|
Yan H, Zhong M, Yang J, Guo J, Yu J, Yang Y, Ma Z, Zhao B, Zhang Y, Wang J, Wu C, Dittmer U, Yang D, Lu M, Zhang E, Yan H. TLR5 activation in hepatocytes alleviates the functional suppression of intrahepatic CD8 + T cells. Immunology 2020; 161:325-344. [PMID: 32852795 DOI: 10.1111/imm.13251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 08/04/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022] Open
Abstract
The liver is an immune-privileged organ with a tolerogenic environment for maintaining liver homeostasis. This hepatic tolerance limits the intrahepatic CD8+ T-cell response for eliminating infections. The tolerant microenvironment in the liver is orchestrated by liver-specific immunoregulatory cells that can be functionally regulated by pathogen-associated molecular patterns (PAMPs). Here, we report that flagellin, a key PAMP of gut bacteria, modulates the intrahepatic CD8+ T-cell response by activating the TLR5 signalling pathway of hepatocytes. We found that mice treated with Salmonella-derived recombinant flagellin (SF) by hydrodynamic injection had a significantly elevated IFN-γ production by the intrahepatic lymphocytes in 7 days after injection. This was correlated with a reduced immune suppressive effect of primary mouse hepatocytes (PMHs) in comparison with that of PMHs from mock-injected control mice. In vitro co-culture of SF-treated PMHs with splenocytes revealed that hepatocyte-induced immune suppression is alleviated through activation of the TLR5 but not the NLRC4 signalling pathway, leading to improved activation and function of CD8+ T cells during anti-CD3 stimulation or antigen-specific activation. In an acute HBV replication mouse model established by co-administration of SF together with an HBV-replicating plasmid by hydrodynamic injection, SF significantly enhanced the intrahepatic HBV-specific CD8+ T-cell response against HBV surface antigen. Our results clearly showed that flagellin plays a role in modulating the intrahepatic CD8+ T-cell response by activating the TLR5 pathway in PMHs, which suggests a potential role for gut bacteria in regulating liver immunity.
Collapse
Affiliation(s)
- Hu Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Maohua Zhong
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jingyi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Jiabao Guo
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yu
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yi Yang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyong Ma
- Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bali Zhao
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yue Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Junzhong Wang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chunchen Wu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengji Lu
- Institute for Virology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Ejuan Zhang
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Huimin Yan
- Mucosal Immunity Research Group, State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
70
|
Verdon DJ, Mulazzani M, Jenkins MR. Cellular and Molecular Mechanisms of CD8 + T Cell Differentiation, Dysfunction and Exhaustion. Int J Mol Sci 2020; 21:ijms21197357. [PMID: 33027962 PMCID: PMC7582856 DOI: 10.3390/ijms21197357] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/07/2023] Open
Abstract
T cells follow a triphasic distinct pathway of activation, proliferation and differentiation before becoming functionally and phenotypically “exhausted” in settings of chronic infection, autoimmunity and in cancer. Exhausted T cells progressively lose canonical effector functions, exhibit altered transcriptional networks and epigenetic signatures and gain constitutive expression of a broad coinhibitory receptor suite. This review outlines recent advances in our understanding of exhausted T cell biology and examines cellular and molecular mechanisms by which a state of dysfunction or exhaustion is established, and mechanisms by which exhausted T cells may still contribute to pathogen or tumour control. Further, this review describes our understanding of exhausted T cell heterogeneity and outlines the mechanisms by which checkpoint blockade differentially engages exhausted T cell subsets to overcome exhaustion and recover T cell function.
Collapse
Affiliation(s)
- Daniel J. Verdon
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Matthias Mulazzani
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
| | - Misty R. Jenkins
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; (D.J.V.); (M.M.)
- Department of Medical Biology, The University of Melbourne, Parkville, VIC 3052, Australia
- Institute of Molecular Science, La Trobe University, Bundoora, VIC 3086, Australia
- Correspondence:
| |
Collapse
|
71
|
Immune Checkpoint Inhibitors as Monotherapy or Within a Combinatorial Strategy in Advanced Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21176302. [PMID: 32878115 PMCID: PMC7504231 DOI: 10.3390/ijms21176302] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
In advanced-stage hepatocellular carcinoma (HCC), systemic treatment represents the standard therapy. Target therapy has marked a new era based on a greater knowledge of molecular disease signaling. Nonetheless, survival outcomes and long-term response remain unsatisfactory, mostly because of the onset of primary or acquired resistance. More recently, results from clinical trials with immune targeting agents, such as the immune checkpoint inhibitors (ICIs), have shown a promising role for these drugs in the treatment of advanced HCC. In the context of an intrinsic tolerogenic liver environment, since HCC-induced immune tolerance, it is supported by multiple immunosuppressive mechanisms and several clinical trials are now underway to evaluate ICI-based combinations, including their associations with antiangiogenic agents or multikinase kinase inhibitors and multiple ICIs combinations. In this review, we will first discuss the basic principles of hepatic immunogenic tolerance and the evasive mechanism of antitumor immunity in HCC; furthermore we will elucidate the consistent biological rationale for immunotherapy in HCC even in the presence of an intrinsic tolerogenic environment. Subsequently, we will critically report and discuss current literature on ICIs in the treatment of advanced HCC, including a focus on the currently explored combinatorial strategies and their rationales. Finally, we will consider both challenges and future directions in this field.
Collapse
|
72
|
Takaki H, Hirata Y, Ueshima E, Kodama H, Matsumoto S, Wada R, Suzuki H, Nakasho K, Yamakado K. Hepatic Artery Embolization Enhances Expression of Programmed Cell Death 1 Ligand 1 in an Orthotopic Rat Hepatocellular Carcinoma Model: In Vivo and in Vitro Experimentation. J Vasc Interv Radiol 2020; 31:1475-1482.e2. [PMID: 32800663 DOI: 10.1016/j.jvir.2020.03.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/21/2020] [Accepted: 03/29/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE To evaluate the effects of hepatic artery embolization (HAE) on the expression of programmed cell death 1 ligand 1 (PD-L1) in an orthotopic rat hepatocellular carcinoma (HCC) model. MATERIALS AND METHODS A rat HCC model was established in Sprague-Dawley rats with the RH7777 cell line. Six animals each were assigned to receive HAE or sham treatment. Liver tissues were harvested 24 h after the procedure. Immunohistochemistry (IHC) was used to compare expression of PD-L1 and hypoxia-inducible factor (HIF)-1α in the intratumoral and peritumoral regions and normal liver tissue. In vitro cell culture study was performed for 24 h under normoxic and hypoxic conditions, and protein expression of PD-L1 and HIF-1α and the effects of HIF-1α inhibitors were assessed. RESULTS IHC showed that PD-L1- and HIF-1α-positive areas were significantly larger in the HAE group vs the sham group in intratumoral (P = .006 and P < .001, respectively) and peritumoral regions (both P < .001). The expression of PD-L1 positively correlated with HIF-1α expression in the intratumoral region (r2 = 0.551; P < .001). In vitro cell culture study revealed that protein expression of PD-L1 and HIF-1α were significantly higher when cells were incubated under hypoxic vs normoxic conditions (P = .028 and P = .010, respectively). PD-L1 expression was suppressed significantly when the HIF-1α inhibitor rapamycin was added to the culture medium (P = .024). CONCLUSIONS HAE enhances intratumoral and peritumoral PD-L1 expression in a rat HCC model. The HIF-1α pathway is a possible mechanism underlying increased intratumoral PD-L1 expression after HAE.
Collapse
Affiliation(s)
- Haruyuki Takaki
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan.
| | - Yutaka Hirata
- Department of Physiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Eisuke Ueshima
- Department of Diagnostic and Interventional Radiology, Kobe University, Kobe, Japan
| | - Hiroshi Kodama
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Seiji Matsumoto
- Division of Thoracic Surgery and Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Reona Wada
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Hitomi Suzuki
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| | - Keiji Nakasho
- Department of Pathology, Suita Tokushukai Hospital, Osaka, Japan
| | - Koichiro Yamakado
- Department of Radiology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan
| |
Collapse
|
73
|
Abstract
Chronic liver injury due to viral hepatitis, alcohol abuse, and metabolic disorders is a worldwide health concern. Insufficient treatment of chronic liver injury leads to fibrosis, causing liver dysfunction and carcinogenesis. Most cases of hepatocellular carcinoma (HCC) develop in the fibrotic liver. Pathological features of liver fibrosis include extracellular matrix (ECM) accumulation, mesenchymal cell activation, immune deregulation, and angiogenesis, all of which contribute to the precancerous environment, supporting tumor development. Among liver cells, hepatic stellate cells (HSCs) and macrophages play critical roles in fibrosis and HCC. These two cell types interplay and remodel the ECM and immune microenvironment in the fibrotic liver. Once HCC develops, HCC-derived factors influence HSCs and macrophages to switch to protumorigenic cell populations, cancer-associated fibroblasts and tumor-associated macrophages, respectively. This review aims to summarize currently available data on the roles of HSCs and macrophages in liver fibrosis and HCC, with a focus on their interaction.
Collapse
Affiliation(s)
- Michitaka Matsuda
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
| |
Collapse
|
74
|
Richardson N, Ng STH, Wraith DC. Antigen-Specific Immunotherapy for Treatment of Autoimmune Liver Diseases. Front Immunol 2020; 11:1586. [PMID: 32793226 PMCID: PMC7385233 DOI: 10.3389/fimmu.2020.01586] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/15/2020] [Indexed: 12/11/2022] Open
Abstract
The liver is a critical organ in controlling immune tolerance. In particular, it is now clear that targeting antigens for presentation by antigen presenting cells in the liver can induce immune tolerance to either autoantigens from the liver itself or tissues outside of the liver. Here we review immune mechanisms active within the liver that contribute both to the control of infectious diseases and tolerance to self-antigens. Despite its extraordinary capacity for tolerance induction, the liver remains a target organ for autoimmune diseases. In this review, we compare and contrast known autoimmune diseases of the liver. Currently patients tend to receive strong immunosuppressive treatments and, in many cases, these treatments are associated with deleterious side effects, including a significantly higher risk of infection and associated health complications. We propose that, in future, antigen-specific immunotherapies are adopted for treatment of liver autoimmune diseases in order to avoid such adverse effects. We describe various therapeutic approaches that either are in or close to the clinic, highlight their mechanism of action and assess their suitability for treatment of autoimmune liver diseases.
Collapse
Affiliation(s)
| | | | - David C. Wraith
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
75
|
Noguchi K, Shimomura T, Ohuchi Y, Ishiyama M, Shiga M, Mori T, Katayama Y, Ueno Y. β-Galactosidase-Catalyzed Fluorescent Reporter Labeling of Living Cells for Sensitive Detection of Cell Surface Antigens. Bioconjug Chem 2020; 31:1740-1744. [PMID: 32538077 DOI: 10.1021/acs.bioconjchem.0c00180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The ability to detect cell surface proteins using fluorescent-dye-labeled antibodies is crucial for the reliable identification of many cell types. However, the different types of cell surface proteins used to identify cells are currently limited in number because they need to be expressed at high levels to exceed background cellular autofluorescence, especially in the shorter-wavelength region. Herein we report on a new method, quinone methide-based catalyzed labeling for signal amplification (CLAMP), in which the fluorescence signal is amplified by an enzymatic reaction that strongly facilitates the detection of cell surface proteins on living cells. We used β-galactosidase as an amplification enzyme and designed a substrate for it, called MUGF, that contains a fluoromethyl group. Upon removal of the galactosyl group in MUGF by β-galactosidase labeling of the target cell surface proteins, the resulting product containing the quinone methide group was found to be both cell-membrane-permeable and reactive with intracellular nucleophiles, thereby providing fluorescent adducts. Using this method, we successfully detected several cell surface proteins, including programmed death ligand 1 protein, which is difficult to detect using conventional fluorescent-dye-labeled antibodies.
Collapse
Affiliation(s)
- Katsuya Noguchi
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Takashi Shimomura
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Yuya Ohuchi
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Munetaka Ishiyama
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Masanobu Shiga
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| | - Takeshi Mori
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yoshiki Katayama
- Department of Applied Chemistry, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan.,Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| | - Yuichiro Ueno
- Dojindo Laboratories, 2025-5 Tabaru, Mashiki-machi, Kumamoto 861-2202, Japan
| |
Collapse
|
76
|
Liu L, Hou J, Xu Y, Qin L, Liu W, Zhang H, Li Y, Chen M, Deng M, Zhao B, Hu J, Zheng H, Li C, Meng S. PD-L1 upregulation by IFN-α/γ-mediated Stat1 suppresses anti-HBV T cell response. PLoS One 2020; 15:e0228302. [PMID: 32628668 PMCID: PMC7337294 DOI: 10.1371/journal.pone.0228302] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 06/08/2020] [Indexed: 12/17/2022] Open
Abstract
Programmed death ligand 1 (PD-L1) has been recently shown to be a major obstacle to antiviral immunity by binding to its receptor programmed death 1 (PD-1) on specific IFN-γ producing T cells in chronic hepatitis B. Currently, IFN-α is widely used to treat hepatitis B virus (HBV) infection, but its antiviral effect vary greatly and the mechanism is not totally clear. We found that IFN-α/γ induced a marked increase of PD-L1 expression in hepatocytes. Signal and activators of transcription (Stat1) was then identified as a major transcription factor involved in IFN-α/γ-mediated PD-L1 elevation both in vitro and in mice. Blockage of the PD-L1/PD-1 interaction by a specific mAb greatly enhanced HBV-specific T cell activity by the gp96 adjuvanted therapeutic vaccine, and promoted HBV clearance in HBV transgenic mice. Our results demonstrate the IFN-α/γ-Stat1-PD-L1 axis plays an important role in mediating T cell hyporesponsiveness and inactivating liver-infiltrating T cells in the hepatic microenvironment. These data raise further potential interest in enhancing the anti-HBV efficacy of IFN-α and therapeutic vaccines.
Collapse
Affiliation(s)
- LanLan Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China
| | - Junwei Hou
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuxiu Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Qin
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weiwei Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Han Zhang
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yang Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mi Chen
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Deng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao Zhao
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Huaguo Zheng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Institute of Microbiology, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- * E-mail: (SM); (CL)
| |
Collapse
|
77
|
Liu L, Wang Q, Qiu Z, Kang Y, Liu J, Ning S, Yin Y, Pang D, Xu S. Noncoding RNAs: the shot callers in tumor immune escape. Signal Transduct Target Ther 2020; 5:102. [PMID: 32561709 PMCID: PMC7305134 DOI: 10.1038/s41392-020-0194-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 05/05/2020] [Accepted: 05/06/2020] [Indexed: 01/17/2023] Open
Abstract
Immunotherapy, designed to exploit the functions of the host immune system against tumors, has shown considerable potential against several malignancies. However, the utility of immunotherapy is heavily limited due to the low response rate and various side effects in the clinical setting. Immune escape of tumor cells may be a critical reason for such low response rates. Noncoding RNAs (ncRNAs) have been identified as key regulatory factors in tumors and the immune system. Consequently, ncRNAs show promise as targets to improve the efficacy of immunotherapy in tumors. However, the relationship between ncRNAs and tumor immune escape (TIE) has not yet been comprehensively summarized. In this review, we provide a detailed account of the current knowledge on ncRNAs associated with TIE and their potential roles in tumor growth and survival mechanisms. This review bridges the gap between ncRNAs and TIE and broadens our understanding of their relationship, providing new insights and strategies to improve immunotherapy response rates by specifically targeting the ncRNAs involved in TIE.
Collapse
Affiliation(s)
- Lei Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Qin Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhilin Qiu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yujuan Kang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Jiena Liu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Shipeng Ning
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yanling Yin
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Da Pang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China. .,Heilongjiang Academy of Medical Sciences, Harbin, 150086, China.
| | - Shouping Xu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
78
|
Jiang Y, Que W, Zhu P, Li XK. The Role of Diverse Liver Cells in Liver Transplantation Tolerance. Front Immunol 2020; 11:1203. [PMID: 32595648 PMCID: PMC7304488 DOI: 10.3389/fimmu.2020.01203] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/14/2020] [Indexed: 12/11/2022] Open
Abstract
Liver transplantation is the ideal treatment approach for a variety of end-stage liver diseases. However, life-long, systemic immunosuppressive treatment after transplantation is required to prevent rejection and graft loss, which is associated with severe side effects, although liver allograft is considered more tolerogenic. Therefore, understanding the mechanism underlying the unique immunologically privileged liver organ is valuable for transplantation management and autoimmune disease treatment. The unique hepatic acinus anatomy and a complex cellular network constitute the immunosuppressive hepatic microenvironment, which are responsible for the tolerogenic properties of the liver. The hepatic microenvironment contains a variety of hepatic-resident immobile non-professional antigen-presenting cells, including hepatocytes, liver sinusoidal endothelial cells, Kupffer cells, and hepatic stellate cells, that are insufficient to optimally prime T cells locally and lead to the removal of alloreactive T cells due to the low expression of major histocompatibility complex (MHC) molecules, costimulatory molecules and proinflammatory cytokines but a rather high expression of coinhibitory molecules and anti-inflammatory cytokines. Hepatic dendritic cells (DCs) are generally immature and less immunogenic than splenic DCs and are also ineffective in priming naïve allogeneic T cells via the direct recognition pathway in recipient secondary lymphoid organs. Although natural killer cells and natural killer T cells are reportedly associated with liver tolerance, their roles in liver transplantation are multifaceted and need to be further clarified. Under these circumstances, T cells are prone to clonal deletion, clonal anergy and exhaustion, eventually leading to tolerance. Other proposed liver tolerance mechanisms, such as soluble donor MHC class I molecules, passenger leukocytes theory and a high-load antigen effect, have also been addressed. We herein comprehensively review the current evidence implicating the tolerogenic properties of diverse liver cells in liver transplantation tolerance.
Collapse
Affiliation(s)
- Yanzhi Jiang
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| |
Collapse
|
79
|
Betzler AC, Theodoraki MN, Schuler PJ, Döscher J, Laban S, Hoffmann TK, Brunner C. NF-κB and Its Role in Checkpoint Control. Int J Mol Sci 2020; 21:ijms21113949. [PMID: 32486375 PMCID: PMC7312739 DOI: 10.3390/ijms21113949] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 05/25/2020] [Accepted: 05/28/2020] [Indexed: 12/20/2022] Open
Abstract
Nuclear factor-κB (NF-κB) has been described as one of the most important molecules linking inflammation to cancer. More recently, it has become clear that NF-κB is also involved in the regulation of immune checkpoint expression. Therapeutic approaches targeting immune checkpoint molecules, enabling the immune system to initiate immune responses against tumor cells, constitute a key breakthrough in cancer treatment. This review discusses recent evidence for an association of NF-κB and immune checkpoint expression and examines the therapeutic potential of inhibitors targeting either NF-κB directly or molecules involved in NF-κB regulation in combination with immune checkpoint blockade.
Collapse
|
80
|
Sun DW, An L, Huang HY, Sun XD, Lv GY. Establishing peripheral PD-L1 as a prognostic marker in hepatocellular carcinoma patients: how long will it come true? Clin Transl Oncol 2020; 23:82-91. [PMID: 32462395 DOI: 10.1007/s12094-020-02390-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/10/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND The prognostic role of intratumoral programmed cell death ligand 1 (PD-L1) expression in hepatocellular carcinoma (HCC) has been investigated by several meta-analyses. However, the prognostic value of pretreatment peripheral PD-L1 (PPPD-L1) level in HCC remains undetermined. Thus, this systemic review aimed to establish PPPD-L1 as a new prognostic marker in HCC according to available evidence. METHODS Case-control studies investigating the prognostic role of PPPD-L1 in HCC were systemically sought in the database of PubMed and Web of Science until March 25th, 2020. Our main concern is survival results, including overall survival (OS), disease-free survival (DFS), and progression-free survival (PFS). The combined results were summarized in narrative form according to data extracted from each included study. RESULTS Finally, nine studies published from 2011 to 2019, were incorporated into this systemic review. Among these, six studies evaluated the PD-L1 expression by enzyme-linked immunosorbent assay (ELISA) from blood serum, and three studies evaluated the PD-L1 expression by flow cytometric analysis from peripheral blood mononuclear cells (PBMC). According to the extracted evidence, high PPPD-L1 expression, measured in either blood serum or PBMC, is associated with poor OS, poor DFS, and poor PFS. Meanwhile, PPPD-L1 was also correlated with enlarged tumor size and more likely with advanced tumor stage as well as vascular invasion. CONCLUSION High PPPD-L1 level is associated with increased mortality rate and increased recurrence rate in HCC. As a convenient serum marker, PPPD-L1 could be a promising marker of prognosis in HCC patients.
Collapse
Affiliation(s)
- D-W Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - L An
- Department of Hand Surgery, China-Japan Union Hospital of Jilin University, Jilin University, Changchun, 130033, Jilin, China
| | - H-Y Huang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China
| | - X-D Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| | - G-Y Lv
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Jilin University, Changchun, 130021, Jilin, China.
| |
Collapse
|
81
|
Ezzikouri S, Hoque Kayesh ME, Benjelloun S, Kohara M, Tsukiyama-Kohara K. Targeting Host Innate and Adaptive Immunity to Achieve the Functional Cure of Chronic Hepatitis B. Vaccines (Basel) 2020; 8:vaccines8020216. [PMID: 32403281 PMCID: PMC7349973 DOI: 10.3390/vaccines8020216] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the availability of an effective preventive vaccine for hepatitis B virus (HBV) for over 38 years, chronic HBV (CHB) infection remains a global health burden with around 257 million patients. The ideal treatment goal for CHB infection would be to achieve complete cure; however, current therapies such as peg-interferon and nucleos(t)ide analogs are unable to achieve the functional cure, the newly set target for HBV chronic infection. Considering the fact functional cure has been accepted as an endpoint in the treatment of chronic hepatitis B by scientific committee, the development of alternative therapeutic strategies is urgently needed to functionally cure CHB infection. A promising target for future therapeutic strategies is immune modulation to restore dysfunctional HBV-specific immunity. In this review, we provide an overview of the progress in alternative therapeutic strategies, including immune-based therapeutic approaches that enhance host innate and adaptive immunity to achieve and increase the functional cure from CHB infection.
Collapse
Affiliation(s)
- Sayeh Ezzikouri
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20250, Morocco;
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Correspondence: (S.E.); (K.T.-K.); Tel.: +212-5-2243-4470 (S.E.); Tel./Fax: +81-99-285-3589 (K.T.-K.)
| | - Mohammad Enamul Hoque Kayesh
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Department of Microbiology and Public Health, Faculty of Animal Science and Veterinary Medicine, Patuakhali Science and Technology University, Barishal 8210, Bangladesh
| | - Soumaya Benjelloun
- Virology Unit, Viral Hepatitis Laboratory, Institut Pasteur du Maroc, Casablanca 20250, Morocco;
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, The Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Centre, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima 890-0065, Japan;
- Correspondence: (S.E.); (K.T.-K.); Tel.: +212-5-2243-4470 (S.E.); Tel./Fax: +81-99-285-3589 (K.T.-K.)
| |
Collapse
|
82
|
Huang J, Weng Q, Shi Y, Mao W, Zhao Z, Wu R, Ren J, Fang S, Lu C, Du Y, Ji J. MicroRNA-155-5p suppresses PD-L1 expression in lung adenocarcinoma. FEBS Open Bio 2020; 10:1065-1071. [PMID: 32237066 PMCID: PMC7262882 DOI: 10.1002/2211-5463.12853] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 03/15/2020] [Accepted: 03/26/2020] [Indexed: 01/12/2023] Open
Abstract
MiR‐155‐5p is a key oncogenic microRNA that maintains immune homeostasis and mediates cross‐talk between inflammation and tumorigenesis. High expression of programmed death ligand‐1 (PD‐L1) also plays an important role in immune tolerance in tumors. The present study aimed to explore the relationship between miR‐155‐5p and PD‐L1 in lung adenocarcinoma (LUAD) cells A549 and H1650. The expression levels of miR‐155‐5p and PD‐L1 in LUAD patients were detected by a quantitative reverse transcriptase‐polymerase chain reaction (qRT‐PCR) and mimics of miR‐155‐5p were used to model increased expression in A549 or H1650 cells. After 24 h, we measured levels of PD‐L1 by qRT‐PCR, western blotting and flow cytometry. In addition, we identified two sites in the PD‐L1 3′‐UTR (5′‐AGCAUUA‐3′ and 5′‐GCAUUAA‐3′) that can be bound by miR‐155‐5p using TargetScan (http://www.targetscan.org). Compared to normal tissue, miR‐155‐5p was overexpressed in tumor tissue (P = 0.0456), whereas the expression of PD‐L1 was not significantly different (P = 0.1349). The expression levels of miR‐155‐5p and PD‐L1 were negatively correlated (r = −0.6409, P = 0.0459 and r = −0.7544, P = 0.0117). Exogenous overexpression of miR‐155‐5p decreased the mRNA, total protein and membrane protein expression levels of PD‐L1 both in A549 and H1650 cells (P < 0.05). Taken together, our data suggest that miR‐155‐5p may suppress the expression of PD‐L1 in LUAD.
Collapse
Affiliation(s)
- Jiansheng Huang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Yang Shi
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Weibo Mao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Zhigang Zhao
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Rongzhen Wu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Jianmin Ren
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Shiji Fang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Chenying Lu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| | - Yongzhong Du
- School of Pharmacy, Zhejiang University, Hangzhou, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital of Zhejiang University, China
| |
Collapse
|
83
|
Gong K, Guo G, Panchani N, Bender ME, Gerber DE, Minna JD, Fattah F, Gao B, Peyton M, Kernstine K, Mukherjee B, Burma S, Chiang CM, Zhang S, Amod Sathe A, Xing C, Dao KH, Zhao D, Akbay EA, Habib AA. EGFR inhibition triggers an adaptive response by co-opting antiviral signaling pathways in lung cancer. NATURE CANCER 2020; 1:394-409. [PMID: 33269343 PMCID: PMC7706867 DOI: 10.1038/s43018-020-0048-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/02/2020] [Indexed: 02/07/2023]
Abstract
EGFR inhibition is an effective treatment in the minority of non-small cell lung cancer (NSCLC) cases harboring EGFR-activating mutations, but not in EGFR wild type (EGFRwt) tumors. Here, we demonstrate that EGFR inhibition triggers an antiviral defense pathway in NSCLC. Inhibiting mutant EGFR triggers Type I IFN-I upregulation via a RIG-I-TBK1-IRF3 pathway. The ubiquitin ligase TRIM32 associates with TBK1 upon EGFR inhibition, and is required for K63-linked ubiquitination and TBK1 activation. Inhibiting EGFRwt upregulates interferons via an NF-κB-dependent pathway. Inhibition of IFN signaling enhances EGFR-TKI sensitivity in EGFR mutant NSCLC and renders EGFRwt/KRAS mutant NSCLC sensitive to EGFR inhibition in xenograft and immunocompetent mouse models. Furthermore, NSCLC tumors with decreased IFN-I expression are more responsive to EGFR TKI treatment. We propose that IFN-I signaling is a major determinant of EGFR-TKI sensitivity in NSCLC and that a combination of EGFR TKI plus IFN-neutralizing antibody could be useful in most NSCLC patients.
Collapse
Affiliation(s)
- Ke Gong
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gao Guo
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nishah Panchani
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matthew E Bender
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Department of Internal Medicine, Division of Hematology-Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Farjana Fattah
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Boning Gao
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Michael Peyton
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kemp Kernstine
- Department of Cardiovascular and Thoracic Surgery, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bipasha Mukherjee
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Sandeep Burma
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cheng-Ming Chiang
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Adwait Amod Sathe
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Chao Xing
- Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Dawen Zhao
- Departments of Biomedical Engineering and Cancer Biology, Wake Forest School of Medicine, Winston Salem, NC, USA
| | - Esra A Akbay
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Amyn A Habib
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Medicine, Division of Neurology, VA North Texas Health Care System, Dallas, TX, USA.
| |
Collapse
|
84
|
Eranki A, Srinivasan P, Ries M, Kim A, Lazarski CA, Rossi CT, Khokhlova TD, Wilson E, Knoblach SM, Sharma KV, Wood BJ, Moonen C, Sandler AD, Kim PCW. High-Intensity Focused Ultrasound (HIFU) Triggers Immune Sensitization of Refractory Murine Neuroblastoma to Checkpoint Inhibitor Therapy. Clin Cancer Res 2020; 26:1152-1161. [PMID: 31615935 PMCID: PMC9009723 DOI: 10.1158/1078-0432.ccr-19-1604] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/05/2019] [Accepted: 10/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy promises unprecedented benefits to patients with cancer. However, the majority of cancer types, including high-risk neuroblastoma, remain immunologically unresponsive. High-intensity focused ultrasound (HIFU) is a noninvasive technique that can mechanically fractionate tumors, transforming immunologically "cold" tumors into responsive "hot" tumors. EXPERIMENTAL DESIGN We treated <2% of tumor volume in previously unresponsive, large, refractory murine neuroblastoma tumors with mechanical HIFU and assessed systemic immune response using flow cytometry, ELISA, and gene sequencing. In addition, we combined this treatment with αCTLA-4 and αPD-L1 to study its effect on the immune response and long-term survival. RESULTS Combining HIFU with αCTLA-4 and αPD-L1 significantly enhances antitumor response, improving survival from 0% to 62.5%. HIFU alone causes upregulation of splenic and lymph node NK cells and circulating IL2, IFNγ, and DAMPs, whereas immune regulators like CD4+Foxp3+, IL10, and VEGF-A are significantly reduced. HIFU combined with checkpoint inhibitors induced significant increases in intratumoral CD4+, CD8α+, and CD8α+CD11c+ cells, CD11c+ in regional lymph nodes, and decrease in circulating IL10 compared with untreated group. We also report significant abscopal effect following unilateral treatment of mice with large, established bilateral tumors using HIFU and checkpoint inhibitors compared with tumors treated with HIFU or checkpoint inhibitors alone (61.1% survival, P < 0.0001). This combination treatment significantly also induces CD4+CD44+hiCD62L+low and CD8α+CD44+hiCD62L+low population and is adoptively transferable, imparting immunity, slowing subsequent de novo tumor engraftment. CONCLUSIONS Mechanical fractionation of tumors using HIFU can effectively induce immune sensitization in a previously unresponsive murine neuroblastoma model and promises a novel yet efficacious immunoadjuvant modality to overcome therapeutic resistance.
Collapse
Affiliation(s)
- Avinash Eranki
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
- Center for Interventional Oncology, National Cancer Institute, Radiology & Imaging Sciences, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Priya Srinivasan
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Mario Ries
- Imaging Division, UMC Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - AeRang Kim
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Christopher A Lazarski
- Center for Cancer and Immunology Research, Children's National Medical Center, Washington, D.C
| | - Christopher T Rossi
- Department of Pathology, Children's National Medical Center, Washington, D.C
| | - Tatiana D Khokhlova
- Division of Gastroenterology, Department of Medicine, University of Washington, Seattle, Washington
| | - Emmanuel Wilson
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Susan M Knoblach
- Center for Genetic Medicine Research, Children's National Medical Center, Washington, D.C
| | - Karun V Sharma
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Bradford J Wood
- Center for Interventional Oncology, National Cancer Institute, Radiology & Imaging Sciences, NIH Clinical Center, NIH, Bethesda, Maryland
| | - Chrit Moonen
- Imaging Division, UMC Utrecht, Heidelberglaan, Utrecht, the Netherlands
| | - Anthony D Sandler
- The Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National Medical Center, Washington, D.C
| | - Peter C W Kim
- Department of Surgery, Brown University, Providence, Rhode Island.
| |
Collapse
|
85
|
Ferrari C, Barili V, Varchetta S, Mondelli MU. Immune Mechanisms of Viral Clearance and Disease Pathogenesis During Viral Hepatitis. THE LIVER 2020:821-850. [DOI: 10.1002/9781119436812.ch63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
86
|
Sun Y, Yu M, Qu M, Ma Y, Zheng D, Yue Y, Guo S, Tang L, Li G, Zheng W, Wang M, Guo D, Li C. Hepatitis B virus-triggered PTEN/β-catenin/c-Myc signaling enhances PD-L1 expression to promote immune evasion. Am J Physiol Gastrointest Liver Physiol 2020; 318:G162-G173. [PMID: 31604033 DOI: 10.1152/ajpgi.00197.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Hepatitis B virus (HBV) exploits multiple strategies to evade host immune surveillance. Programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) signaling plays a critical role in regulating T cell homeostasis. However, it remains largely unknown as to how HBV infection elevates PD-L1 expression in hepatocytes. A mouse model of HBV infection was established by hydrodynamic injection with a vector containing 1.3-fold overlength HBV genome (pHBV1.3) via the tail vein. Coculture experiments with HBV-expressing hepatoma cells and Jurkat T cells were established in vitro. We observed significant decrease in the expression of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) and increase in β-catenin/PD-L1 expression in liver tissues from patients with chronic hepatitis B and mice subjected to pHBV1.3 hydrodynamic injection. Mechanistically, decrease in PTEN enhanced β-catenin/c-Myc signaling and PD-L1 expression in HBV-expressing hepatoma cells, which in turn augmented PD-1 expression, lowered IL-2 secretion, and induced T cell apoptosis. However, β-catenin disruption inhibited PTEN-mediated PD-L1 expression, which was accompanied by decreased PD-1 expression, and increased IL-2 production in T cells. Luciferase reporter assays revealed that c-Myc stimulated transcriptional activity of PD-L1. In addition, HBV X protein (HBx) and HBV polymerase (HBp) contributed to PTEN downregulation and β-catenin/PD-L1 upregulation. Strikingly, PTEN overexpression in hepatocytes inhibited β-catenin/PD-L1 signaling and promoted HBV clearance in vivo. Our findings suggest that HBV-triggered PTEN/β-catenin/c-Myc signaling via HBx and HBp enhances PD-L1 expression, leading to inhibition of T cell response, and promotes HBV immune evasion.NEW & NOTEWORTHY This study demonstrates that during HBV infection, HBV can increase PD-L1 expression via PTEN/β-catenin/c-Myc signaling pathway, which in turn inhibits T cell response and ultimately promotes HBV immune evasion. Targeting this signaling pathway is a potential strategy for immunotherapy of chronic hepatitis B.
Collapse
Affiliation(s)
- Yishuang Sun
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mengxue Yu
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Mengmeng Qu
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yuhong Ma
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Dandan Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Yanan Yue
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Shuting Guo
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Li Tang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Guorui Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Weishuai Zheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Min Wang
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| | - Deyin Guo
- Laboratory of Medical Virology, School of Medicine, Sun Yat-sen University, Guangzhou, People's Republic of China
| | - Changyong Li
- School of Basic Medical Sciences, Wuhan University, Wuhan, People's Republic of China
| |
Collapse
|
87
|
Giambartolomei GH, Delpino MV. Immunopathogenesis of Hepatic Brucellosis. Front Cell Infect Microbiol 2019; 9:423. [PMID: 31956605 PMCID: PMC6951397 DOI: 10.3389/fcimb.2019.00423] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 11/28/2019] [Indexed: 01/18/2023] Open
Abstract
The hepatic immune system can induce rapid and controlled responses to pathogenic microorganisms and tumor cells. Accordingly, most of the microorganisms that reach the liver through the blood are eliminated. However, some of them, including Brucella spp., take advantage of the immunotolerant capacity of the liver to persist in the host. Brucella has a predilection for surviving in the reticuloendothelial system, with the liver being the largest organ of this system in the human body. Therefore, its involvement in brucellosis is practically invariable. In patients with active brucellosis, the liver is commonly affected, and the most frequent clinical manifestation is hepatosplenomegaly. The molecular mechanisms implicated in liver damage have been recently elucidated. It has been demonstrated how Brucella interacts with hepatocytes inducing its death by apoptosis. The inflammatory microenvironment and the direct effect of Brucella on hepatic stellate cells (HSC) induce their activation and turn these cells from its quiescent form to their fibrogenic phenotype. This HSC activation induced by Brucella infection relies on the presence of a functional type IV secretion system and the effector protein BPE005 through a mechanism involved in the activation of the autophagic pathway. Finally, the molecular mechanisms of liver brucellosis observed so far are shedding light on how the interaction of Brucella with liver cells may play an important role in the discovery of new targets to control the infection. In this review, we report the current understanding of the interaction between liver structural cells and immune system cells during Brucella infection.
Collapse
Affiliation(s)
| | - María Victoria Delpino
- Instituto de Inmunología, Genética y Metabolismo (INIGEM), Universidad de Buenos Aires, Buenos Aires (UBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
88
|
Elmezayen HA, Okabe H, Baba Y, Yusa T, Itoyama R, Nakao Y, Yamao T, Umzaki N, Tsukamoto M, Kitano Y, Miyata T, Arima K, Hayashi H, Imai K, Chikamoto A, Yamashita YI, Baba H. Clinical role of serum programmed death ligand 1 in patients with hepatocellular carcinoma: Where does it come from? Surg Today 2019; 50:569-576. [PMID: 31760568 DOI: 10.1007/s00595-019-01920-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
PURPOSES Programmed death ligand 1 (PD-L1) is a key target for the treatment of several malignancies. The present study was conducted to clarify the role of serum PD-L1 in hepatocellular carcinoma (HCC). METHODS Serum PD-L1 (sPD-L1) was examined by an enzyme-linked immunosorbent assay in 153 patients with HCC who underwent curative hepatectomy at Kumamoto University in 2011-2016. The expression of PD-L1 in tissue (tPD-L1) was investigated by immunohistochemistry. The clinical roles of the PD-L1 expression in both serum and tissue were examined. RESULTS The sPD-L1 was significantly elevated in HCC patients compared to patients without any malignant or inflammatory disease (234 vs. 93 pg/mL, p < 0.0001). The percentage of the tPD-L1-positive area (%tPD-L1) in the background liver was significantly higher than in the tumor (1.52% vs. 0.48%, p < 0.0001). The %tPD-L1 in the background liver but not in the tumor was significantly correlated with the sPD-L1 level (p = 0.0079). The sPD-L1, %tPD-L1 in the tumor, and %tPD-L1 in the background liver were not correlated with the overall survival after surgery. CONCLUSION PD-L1-expressing cells in the background liver, but not in the tumor tissue, appeared to contribute to the sPD-L1 level. The sPD-L1 level may thus not indicate the tumor burden in patients with HCC.
Collapse
Affiliation(s)
- Hatem A Elmezayen
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
- Department of Chemistry, Helwan University, Cairo, Egypt
| | - Hirohisa Okabe
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yoshifumi Baba
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshihiko Yusa
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Rumi Itoyama
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yosuke Nakao
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Takanobu Yamao
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Naoki Umzaki
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Masayo Tsukamoto
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yuki Kitano
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Kota Arima
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hiromitsu Hayashi
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Katsunori Imai
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Akira Chikamoto
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yo-Ichi Yamashita
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Hideo Baba
- Department of Gastroenterological Surgery, Graduate School of Life Science, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan.
| |
Collapse
|
89
|
Thomsen MK, Skouboe MK, Boularan C, Vernejoul F, Lioux T, Leknes SL, Berthelsen MF, Riedel M, Cai H, Joseph JV, Perouzel E, Tiraby M, Vendelbo MH, Paludan SR. The cGAS-STING pathway is a therapeutic target in a preclinical model of hepatocellular carcinoma. Oncogene 2019; 39:1652-1664. [PMID: 31740782 DOI: 10.1038/s41388-019-1108-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 10/29/2019] [Accepted: 11/06/2019] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer, and the incidence of HCC is increasing. Recently, cancer immunotherapy has emerged as an efficient treatment against some cancers. Here we have used a mouse model of mutagen-induced HCC to explore the therapeutic usefulness of targeting the DNA-activated STING pathway in HCC. STING-deficient mice exhibited unaltered initial development of HCC, but had higher number of large tumors at late stages of disease. In the liver of STING-deficient HCC mice, we observed reduced levels of phospho-STAT1, autophagy, and cleaved caspase3. These responses were activated in the liver by treatment with a cyclic dinucleotide (CDN) STING agonist. Importantly, CDN treatment of mice after HCC development efficiently reduced tumor size. Initiation of CDN treatment at an even later stage of disease to allow HCC detection by MR scanning revealed that the majority of tumors regressed in response to CDN, but new tumors were also detected, which were unresponsive to CDN treatment. Overall, the modulation of the STING pathway affects the development of HCC, and holds promise for a use as a treatment of this disease, most likely in combination with other immunomodulatory treatments such as PD1 inhibitors or with standard of care.
Collapse
Affiliation(s)
- Martin K Thomsen
- Department of Biomedicine, University of Aarhus, Hoegh-Guldberg Gade 10, Aarhus C, Denmark. .,Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark.
| | - Morten K Skouboe
- Department of Biomedicine, University of Aarhus, Hoegh-Guldberg Gade 10, Aarhus C, Denmark
| | | | | | | | - Siv L Leknes
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Martin F Berthelsen
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Maria Riedel
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Huiqiang Cai
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | - Justin V Joseph
- Department of Clinical Medicine, University of Aarhus, Palle Juul-Jensens Boulevard 82, 8200, Aarhus N, Denmark
| | | | | | - Mikkel H Vendelbo
- Department of Biomedicine, University of Aarhus, Hoegh-Guldberg Gade 10, Aarhus C, Denmark.,Department of Nuclear Medicine & PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Søren R Paludan
- Department of Biomedicine, University of Aarhus, Hoegh-Guldberg Gade 10, Aarhus C, Denmark.
| |
Collapse
|
90
|
Expression of programmed cell death ligand 1 and programmed cell death 1 in cutaneous warts. J Am Acad Dermatol 2019; 81:1127-1133. [DOI: 10.1016/j.jaad.2019.02.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 02/21/2019] [Accepted: 02/28/2019] [Indexed: 01/02/2023]
|
91
|
Agina HA, Ehsan NA, Abd-Elaziz TA, Abd-Elfatah GA, Said EM, Sira MM. Hepatic expression of programmed death-1 (PD-1) and its ligand, PD-L1, in children with autoimmune hepatitis: relation to treatment response. Clin Exp Hepatol 2019; 5:256-264. [PMID: 31598564 PMCID: PMC6781821 DOI: 10.5114/ceh.2019.87642] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 06/01/2019] [Indexed: 02/07/2023] Open
Abstract
AIM OF THE STUDY Autoimmune hepatitis (AIH) is characterized histologically by aggressive inflammation with interface hepatitis and prominent lymphoplasmacytic infiltration. Programmed death-1 (PD-1) is expressed on activated lymphocytes. Engagement of PD-1 by its ligand PD-L1 leads to cell apoptosis and death. We aimed to evaluate the immunohistochemical expression of PD-1 and PD-L1 in children with AIH, and its relation to treatment outcome. MATERIAL AND METHODS Pre-treatment liver biopsies of 31 children with AIH were compared to 30 children with chronic hepatitis C virus (HCV) infection as a control group. PD-1 was evaluated in lymphocytes, while PD-L1 was evaluated in lymphocytes, hepatocytes, biliary epithelial cells, sinusoidal endothelial cells and Kupffer cells. All AIH patients received the standard treatment. RESULTS The mean PD-1 was significantly higher in AIH than HCV patients (29.19 ±18.5% vs. 15.2 ±10.1%; p = 0.002) while there was no statistically significant difference as regards PD-L1 on lymphocytes (p = 0.853). Neither PD-1 nor PD-L1 correlated with either liver fibrosis or the inflammatory activity (p > 0.05 for all). PD-1/PD-L1 ratio was significantly higher in AIH compared to HCV patients and in non-responder AIH patients compared to responders (46.9 vs. 6.58). PD-1 expression was comparable in both responders and non-responders (p = 0.813), while PD-L1 was significantly upregulated in responders (4.17 ±3.15% vs. 0.63 ±1.3%; p = 0.046). PD-L1 expression on hepatocytes, biliary epithelial cells, sinusoidal endothelial cells and Kupffer cells was comparable in AIH and HCV groups. CONCLUSIONS PD-1/PD-L1 ratio, which reflects immune aggression, was significantly higher in AIH compared to HCV patients and in non-responder AIH patients compared to responders.
Collapse
Affiliation(s)
- Hala A Agina
- Pathology Department, Faculty of Medicine, Benha University, Egypt
| | - Nermine A Ehsan
- Pathology Department, National Liver Institute, Menoufia University, Egypt
| | | | | | - Eman M Said
- Pathology Department, Faculty of Medicine, Benha University, Egypt
| | - Mostafa M Sira
- Pediatric Hepatology, Gastroenterology and Nutrition Department, National Liver Institute, Menoufia University, Egypt
| |
Collapse
|
92
|
Salek Farrokhi A, Darabi N, Yousefi B, Askandar RH, Shariati M, Eslami M. Is it true that gut microbiota is considered as panacea in cancer therapy? J Cell Physiol 2019; 234:14941-14950. [PMID: 30786013 DOI: 10.1002/jcp.28333] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
Recent studies demonstrated that a combination of the gut microbiome has the vital effect on the efficacy of anticancer immune therapies. Regulatory effects of microbiota have been shown in different types of cancer therapies such as chemotherapy and immunotherapy. Immune-checkpoint-blocked therapies are the recent efficient cancer immunotherapy strategies. The target of immune-checkpoint blocking is cytotoxic T lymphocyte protein-4 (CTLA-4) or blockade of programmed death-1 (PD-1) protein and its ligand programmed death ligand 1 (PD-L1) that they have been considered as cancer immunotherapy in recent years. In the latest studies, it have been demonstrated that several gut bacteria such as Akkermansia muciniphila, Bifidobacterium spp., Faecalibacterium spp., and Bacteroides fragilis have the regulatory effects on PD-1, PD-L1, and CTLA-4 blocked anticancer therapy outcome.
Collapse
Affiliation(s)
- Amir Salek Farrokhi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Narges Darabi
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| | - Bahman Yousefi
- Department of Immunology, Semnan University of Medical Sciences, Semnan, Iran
| | - Rafee Habib Askandar
- Nursing Department, Halabja Technical Institute, Sulaimani Polytechnic University, Sulaimani, Iraq
| | - Mansoreh Shariati
- Faculty of Basic Sciences, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Eslami
- Department of Bacteriology and Virology, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
93
|
Circulating levels of PD-L1 and Galectin-9 are associated with patient survival in surgically treated Hepatocellular Carcinoma independent of their intra-tumoral expression levels. Sci Rep 2019; 9:10677. [PMID: 31337865 PMCID: PMC6650499 DOI: 10.1038/s41598-019-47235-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 07/15/2019] [Indexed: 02/07/2023] Open
Abstract
Tumor expression of immune co-inhibitory ligands, such as PD-L1 and Galectin-9, have potential prognostic value in Hepatocellular Carcinoma (HCC). Circulating levels of these molecules, however, have hardly been studied. This study aims to assess the prognostic significance of circulating PD-L1 and circulating Galectin-9 in patients with resected HCC, and to compare their prognostic significance to the intra-tumoral expression of these same molecules. Archived tissues and stored peripheral blood samples from 81 patients who underwent HCC resection or liver transplantation, with curative intent, were used. Immunohistochemistry was performed to determine intra-tumoral expression of PD-L1 and Galectin-9, while ELISA was used to quantify their respective circulating levels. High circulating PD-L1 (HR 0.12, 95%CI 0.16-0.86, p = 0.011) and high circulating Galectin-9 (HR 0.11, 95%CI 0.15-0.85, p = 0.010) levels were both associated with improved HCC-specific survival. Surprisingly, there was no correlation between circulating levels of PD-L1 and Galectin-9 and their intra-tumoral expression levels. In fact, circulating levels of PD-L1 and Galectin-9 were predictive of HCC-specific survival independently of intra-tumoral levels and baseline clinicopathologic characteristics. Combined analysis of circulating levels and intra-tumoral expression of PD-L1 (HR 0.33, 95%CI 0.16-0.68, p = 0.002) and Galectin-9 (HR 0.27, 95%CI 0.13-0.57, p = 0.001) resulted in more confident prediction of survival. In conclusion, circulating PD-L1 and Galectin-9 levels prognostically differentiate resected HCC patients, independently of their intra-tumoral expression. Combining circulating and intra-tumoral expression levels of PD-L1 or Galectin-9 further improves the prognostic values of these immune biomarkers.
Collapse
|
94
|
Makowska A, Braunschweig T, Denecke B, Shen L, Baloche V, Busson P, Kontny U. Interferon β and Anti-PD-1/PD-L1 Checkpoint Blockade Cooperate in NK Cell-Mediated Killing of Nasopharyngeal Carcinoma Cells. Transl Oncol 2019; 12:1237-1256. [PMID: 31295651 PMCID: PMC6617170 DOI: 10.1016/j.tranon.2019.04.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/22/2019] [Indexed: 01/16/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a highly malignant epithelial cancer linked to EBV infection. Addition of interferon-β (IFNβ) to chemo- and radiochemotherapy has led to survival rates >90% in children and adolescents. As NPC cells are sensitive to apoptosis via tumor necrosis factor-related apoptosis inducing ligand (TRAIL), we explored the role of TRAIL and IFNβ in the killing of NPC cells by natural killer (NK) cells. NPC cells, including cells of a patient-derived xenograft were exposed to NK cells in the presence or absence of IFNβ. NK cells killed NPC- but not nasoepithelial cells and killing was predominately mediated via TRAIL. Incubation of NK cells with IFNβ increased cytotoxicity against NPC cells. Concomitant incubation of NK- and NPC cells with IFNβ before coculture reduced cytotoxicity and could be overcome by blocking the PD-1/PD-L1 axis leading to the release of intracellular TRAIL from NK cells. In conclusion, combination of IFNβ and anti-PD-1, augmenting cytotoxicity of NK cells against NPC cells, could be a strategy to improve NPC-directed therapy and warrants further evaluation in vivo.
Collapse
Affiliation(s)
- Anna Makowska
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Till Braunschweig
- Institute of Pathology, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Bernd Denecke
- IZKF, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Lian Shen
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| | - Valentin Baloche
- CNRS UMR 8126, Gustave Roussy and Université Paris-Sud/Paris-Saclay, Villejuif, France.
| | - Pierre Busson
- CNRS UMR 8126, Gustave Roussy and Université Paris-Sud/Paris-Saclay, Villejuif, France.
| | - Udo Kontny
- Division of Pediatric Hematology, Oncology and Stem Cell Transplantation, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
95
|
Sprooten J, Agostinis P, Garg AD. Type I interferons and dendritic cells in cancer immunotherapy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 348:217-262. [PMID: 31810554 DOI: 10.1016/bs.ircmb.2019.06.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Type I interferons (IFNs) facilitate cancer immunosurveillance, antitumor immunity and antitumor efficacy of conventional cell death-inducing therapies (chemotherapy/radiotherapy) as well as immunotherapy. Moreover, it is clear that dendritic cells (DCs) play a significant role in aiding type I IFN-driven immunity. Owing to these antitumor properties several immunotherapies involving, or inducing, type I IFNs have received considerable clinical attention, e.g., recombinant IFNα2 or agonists targeting pattern recognition receptor (PRR) pathways like Toll-like receptors (TLRs), cGAS-STING or RIG-I/MDA5/MAVS. A series of preclinical and clinical evidence concurs that the success of anticancer therapy hinges on responsiveness of both cancer cells and DCs to type I IFNs. In this article, we discuss this link between type I IFNs and DCs in the context of cancer biology, with particular attention to mechanisms behind type I IFN production, their impact on DC driven anticancer immunity, and the implications of this for cancer immunotherapy, including DC-based vaccines.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Unit, Department for Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
96
|
Schönrich G, Raftery MJ. The PD-1/PD-L1 Axis and Virus Infections: A Delicate Balance. Front Cell Infect Microbiol 2019; 9:207. [PMID: 31263684 PMCID: PMC6584848 DOI: 10.3389/fcimb.2019.00207] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/27/2019] [Indexed: 12/17/2022] Open
Abstract
Programmed cell death protein (PD-1) and its ligands play a fundamental role in the evasion of tumor cells from antitumor immunity. Less well appreciated is the fact that the PD-1/PD-L1 axis also regulates antiviral immune responses and is therefore modulated by a number of viruses. Upregulation of PD-1 and its ligands PD-L1 and PD-L2 is observed during acute virus infection and after infection with persistent viruses including important human pathogens such as human immunodeficiency virus (HIV), hepatitis C virus (HCV), and hepatitis B virus (HBV). Experimental evidence suggests that insufficient signaling through the PD-1 pathway promotes immunopathology during acute infection by exaggerating primary T cell responses. If chronic infection is established, however, high levels of PD-1 expression can have unfavorable immunological consequences. Exhaustion and suppression of antiviral immune responses can result in viral immune evasion. The role of the PD-1/PD-L1 axis during viral infections is further complicated by evidence that PD-L1 also mediates inflammatory effects in the acute phase of an immune response. In this review, we discuss the intricate interplay between viruses and the PD-1/PD-L1 axis.
Collapse
Affiliation(s)
- Günther Schönrich
- Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Institute of Virology, Berlin, Germany
| | | |
Collapse
|
97
|
Mocan T, Sparchez Z, Craciun R, Bora CN, Leucuta DC. Programmed cell death protein-1 (PD-1)/programmed death-ligand-1 (PD-L1) axis in hepatocellular carcinoma: prognostic and therapeutic perspectives. Clin Transl Oncol 2019; 21:702-712. [PMID: 30387047 DOI: 10.1007/s12094-018-1975-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 10/22/2018] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC) is the most common primary neoplasia of the liver. There have been tremendous efforts in the development of therapeutic strategies in the last decades. As opposed to other cancer entities immunotherapy has just recently gained popularity in HCC. Among various immunotherapy approaches, programmed cell death protein-1 (PD-1), and its ligand programmed death receptor ligand-1 (PD-L1) axis became one of the most promising pathway of the decade. The scientific interest in PD-1/PD-L1 axis is definitely justified due to: ability to detect PD-L1 expression in patients that underwent resection for HCC with prognostic values; the role of serum PD-L1 as a tool to identify early recurrences and to monitor treatment outcome; PD-1/PDL1 is a highly targetable pathway, with possible predictive markers, and with high clinical applicability that might help us in selecting a subgroup of HCC patients who are most likely to benefit from PD-1/PD-L1 inhibitors. In this review we will first discuss the prognostic role of PD-1/PD-L1 as a bio-marker in various clinical scenarios. Afterwards we will critically analyse the recently published trials with PD-1/PD-L1 inhibitors in HCC either alone or in combination with other treatment modalities. The higher focus will be on clinical rather than preclinical studies. Nevertheless, the strengths and limits of PD-1/PD-L1 axis in both prognosis and therapy of HCC will be highlighted.
Collapse
Affiliation(s)
- T Mocan
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Cluj, Romania.
- Institute for Gastroenterology and Hepatology, Croitorilor St. 19-21, Cluj-Napoca, 400012, Cluj, Romania.
| | - Z Sparchez
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Cluj, Romania
- Institute for Gastroenterology and Hepatology, Croitorilor St. 19-21, Cluj-Napoca, 400012, Cluj, Romania
| | - R Craciun
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Cluj, Romania
- Institute for Gastroenterology and Hepatology, Croitorilor St. 19-21, Cluj-Napoca, 400012, Cluj, Romania
| | - C N Bora
- 3rd Medical Department, "Iuliu Hatieganu" University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, 400012, Cluj, Romania
- Institute for Gastroenterology and Hepatology, Croitorilor St. 19-21, Cluj-Napoca, 400012, Cluj, Romania
| | - D C Leucuta
- Medical Informatics and Biostatistics Department, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, 400012, Cluj, Romania
| |
Collapse
|
98
|
Roy S, Saha S, Gupta P, Ukil A, Das PK. Crosstalk of PD-1 signaling with the SIRT1/FOXO-1 axis during the progression of visceral leishmaniasis. J Cell Sci 2019; 132:jcs.226274. [PMID: 30910830 DOI: 10.1242/jcs.226274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 03/20/2019] [Indexed: 12/16/2022] Open
Abstract
Previously, we documented the role of the programmed death-1 (PD-1, also known as PDCD1) pathway in macrophage apoptosis and the downregulation of this signaling during infection by the intra-macrophage parasite Leishmania donovani However, we also found that, during the late phase of infection, PD-1 expression was significantly increased without activating host cell apoptosis; here we show that inhibition of PD-1 led to markedly decreased parasite survival, along with increased production of TNFα, IL-12, reactive oxygen species (ROS) and nitric oxide (NO). Increased PD-1 led to inactivation of AKT proteins resulting in nuclear sequestration of FOXO-1. Transfecting infected cells with constitutively active FOXO-1 (CA-FOXO) led to increased cell death, thereby suggesting that nuclear FOXO-1 might be inactivated. Infection significantly induced the expression of SIRT1, which inactivated FOXO-1 through deacetylation, and its knockdown led to increased apoptosis. SIRT1 knockdown also significantly decreased parasite survival along with increased production of TNFα, ROS and NO. Administration of the SIRT1 inhibitor sirtinol (10 mg/kg body weight) in infected mice decreased spleen parasite burden and a synergistic effect was found with PD-1 inhibitor. Collectively, our study shows that Leishmania utilizes the SIRT1/FOXO-1 axis for differentially regulating PD-1 signaling and, although they are interconnected, both pathways independently contribute to intracellular parasite survival.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Shalini Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shriya Saha
- Department of Biochemistry, Calcutta University, Kolkata 700019, India
| | - Purnima Gupta
- Department of Biochemistry, Calcutta University, Kolkata 700019, India
| | - Anindita Ukil
- Department of Biochemistry, Calcutta University, Kolkata 700019, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| |
Collapse
|
99
|
NKG2A is a NK cell exhaustion checkpoint for HCV persistence. Nat Commun 2019; 10:1507. [PMID: 30944315 PMCID: PMC6447531 DOI: 10.1038/s41467-019-09212-y] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 02/18/2019] [Indexed: 01/23/2023] Open
Abstract
Exhaustion of cytotoxic effector natural killer (NK) and CD8+ T cells have important functions in the establishment of persistent viral infections, but how exhaustion is induced during chronic hepatitis C virus (HCV) infection remains poorly defined. Here we show, using the humanized C/OTg mice permissive for persistent HCV infection, that NK and CD8+ T cells become sequentially exhausted shortly after their transient hepatic infiltration and activation in acute HCV infection. HCV infection upregulates Qa-1 expression in hepatocytes, which ligates NKG2A to induce NK cell exhaustion. Antibodies targeting NKG2A or Qa-1 prevents NK exhaustion and promotes NK-dependent HCV clearance. Moreover, reactivated NK cells provide sufficient IFN-γ that helps rejuvenate polyclonal HCV CD8+ T cell response and clearance of HCV. Our data thus show that NKG2A serves as a critical checkpoint for HCV-induced NK exhaustion, and that NKG2A blockade sequentially boosts interdependent NK and CD8+ T cell functions to prevent persistent HCV infection. Immune cells may become less responsive, or ‘exhausted’, upon chronic viral infection, but the underlying mechanism and crosstalk are still unclear. Here the authors show that, upon chronic hepatitis C virus (HCV) infection, natural killer cell exhaustion is induced by NKG2A signalling to instruct downstream exhaustion of CD8+ T cells and HCV persistence.
Collapse
|
100
|
Nie Z, Gao W, Zhang Y, Hou Y, Liu J, Li Z, Xue W, Ye X, Jin A. STAG2 loss-of-function mutation induces PD-L1 expression in U2OS cells. ANNALS OF TRANSLATIONAL MEDICINE 2019; 7:127. [PMID: 31157248 DOI: 10.21037/atm.2019.02.23] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background A tumor suppressor protein, stromal antigen 2 (STAG2), has recurrent mutations or loss of expression in many tumors including in bladder cancer, osteosarcoma (OS), and leukemia. However, the mechanism of STAG2 mutations promoting tumorigenesis is still unclear. Methods The distribution of STAG2 mutations in cancer was determined through the COSMIC database; we also generated a STAG2 truncating mutation in OS cell line U2OS cells to mimic a common mutation in OS. CCK-8 assay was employed to evaluate the effect of STAG2 on proliferation and chemo-resistance in OS cells. Cell apoptosis and cell cycle assays were used to assess the effect of STAG2 on apoptosis and the cycle of OS cells. A high throughput RNA sequencing (RNA-Seq) strategy using the Illumina Hiseq 2500 platform was applied to characterize the transcriptome profile from STAG2 knockout and STAG2 WT OS cell lines. Results We found that STAG2 deficient-cells exhibited reduced cell proliferation and growth; however, they enhanced cell metastasis and invasion, and increased tolerance to chemotherapeutic drugs. We also found that PD-L1, a molecule involved in tumor immune evasion, was up-regulated in the SATG2-lost cells. Expression profile analysis by RNA-seq revealed that there were changes in the expression of many immune-related genes. Conclusions Our findings indicated that STAG2 contributes to cell survival and chemo-resistance to cisplatin of OS, suggesting that deletion of STAG2 may promote tumorigenesis by enhancing the immune evasion capacity of cancer cells.
Collapse
Affiliation(s)
- Zhirui Nie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Wenwen Gao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Zhang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yuhe Hou
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jingxian Liu
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Zhaoqiang Li
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei Xue
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xidong Ye
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Anmin Jin
- Department of Orthopedics, Zhu Jiang Hospital of Southern Medical University, Guangzhou 510282, China
| |
Collapse
|