51
|
Simons ES, Smith MA, Dengler-Crish CM, Crish SD. Retinal ganglion cell loss and gliosis in the retinofugal projection following intravitreal exposure to amyloid-beta. Neurobiol Dis 2021; 147:105146. [PMID: 33122075 DOI: 10.1016/j.nbd.2020.105146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023] Open
Abstract
Pathological accumulations of amyloid-beta (Aβ) peptide are found in retina early in Alzheimer's disease, yet its effects on retinal neuronal structure remain unknown. To investigate this, we injected fibrillized Aβ1-42 protein into the eye of adult C57BL/6 J mice and analyzed the retina, optic nerve (ON), and the superior colliculus (SC), the primary retinal target in mice. We found that retinal Aβ exposure stimulated microglial activation and retinal ganglion cell (RGC) loss as early as 1-week post-injection. Pathology was not limited to the retina, but propagated into other areas of the central nervous system. Microgliosis spread throughout the retinal projection (retina, ON, and SC), with multiplex protein quantitation demonstrating an increase in endogenously produced Aβ in the ON and SC corresponding to the injected retinas. Surprisingly, this pathology spread to the opposite side, with unilateral Aβ eye injections driving increased Aβ levels, neuroinflammation, and RGC death in the opposite, un-injected retinal projection. As Aβ-mediated microglial activation has been shown to propagate Aβ pathology, we also investigated the role of the Aβ-binding microglial scavenger receptor CD36 in this pathology. Transgenic mice lacking the CD36 receptor were resistant to Aβ-induced inflammation and RGC death up to 2 weeks following exposure. These results indicate that Aβ pathology drives regional neuropathology in the retina and does not remain isolated to the affected eye, but spreads throughout the nervous system. Further, CD36 may serve as a promising target to prevent Aβ-mediated inflammatory damage.
Collapse
Affiliation(s)
- E S Simons
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States
| | - M A Smith
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States; Akron Children's Hospital, Rebecca D. Considine Research Institute, Akron, OH 44302, United States
| | - C M Dengler-Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States
| | - S D Crish
- Northeast Ohio Medical University, Rootstown, OH 44272, United States; Kent State Biomedical Sciences Graduate Program, Kent, OH 44240, United States.
| |
Collapse
|
52
|
Kakeshpour T, Ramanujam V, Barnes CA, Shen Y, Ying J, Bax A. A lowly populated, transient β-sheet structure in monomeric Aβ 1-42 identified by multinuclear NMR of chemical denaturation. Biophys Chem 2020; 270:106531. [PMID: 33453683 DOI: 10.1016/j.bpc.2020.106531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 12/08/2020] [Accepted: 12/13/2020] [Indexed: 02/07/2023]
Abstract
Chemical denaturation is a well-established approach for probing the equilibrium between folded and unfolded states of proteins. We demonstrate applicability of this method to the detection of a small population of a transiently folded structural element in a system that is often considered to be intrinsically fully disordered. The 1HN, 15N, 13Cα, and 13C' chemical shifts of Aβ1-40 and Aβ1-42 peptides and their M35-oxidized variants were monitored as a function of urea concentration and compared to analogous urea titrations of synthetic pentapeptides of homologous sequence. Fitting of the chemical shift titrations yields a 10 ± 1% population for a structured element at the C-terminus of Aβ1-42 that folds with a cooperativity of m = 0.06 kcal/mol·M. The fit also yields the chemical shifts of the folded state and, using a database search, for Aβ1-42 these shifts identified an antiparallel intramolecular β-sheet for residues I32-A42, linked by a type I' β-turn at G37 and G38. The structure is destabilized by oxidation of M35. Paramagnetic relaxation rates and two previously reported weak, medium-range NOE interactions are consistent with this transient β-sheet. Introduction of the requisite A42C mutation and tagging with MTSL resulted in a small stabilization of this β-sheet. Chemical shift analysis suggests a C-terminal β-sheet may be present in Aβ1-40 too, but the turn type at G37 is not type I'. The approach to derive Transient Structure from chemical Denaturation by NMR (TSD-NMR), demonstrated here for Aβ peptides, provides a sensitive tool for identifying the presence of lowly populated, transiently ordered elements in proteins that are considered to be intrinsically disordered, and permits extraction of structural data for such elements.
Collapse
Affiliation(s)
- Tayeb Kakeshpour
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Venkat Ramanujam
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - C Ashley Barnes
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Yang Shen
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Jinfa Ying
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA
| | - Ad Bax
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
| |
Collapse
|
53
|
Paul A, Kumar S, Kalita S, Kalita S, Sarkar D, Bhunia A, Bandyopadhyay A, Mondal AC, Mandal B. An explicitly designed paratope of amyloid-β prevents neuronal apoptosis in vitro and hippocampal damage in rat brain. Chem Sci 2020; 12:2853-2862. [PMID: 34164050 PMCID: PMC8179358 DOI: 10.1039/d0sc04379f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Synthetic antibodies hold great promise in combating diseases, diagnosis, and a wide range of biomedical applications. However, designing a therapeutically amenable, synthetic antibody that can arrest the aggregation of amyloid-β (Aβ) remains challenging. Here, we report a flexible, hairpin-like synthetic paratope (SP1, ∼2 kDa), which prevents the aggregation of Aβ monomers and reverses the preformed amyloid fibril to a non-toxic species. Structural and biophysical studies further allowed dissecting the mode and affinity of molecular recognition events between SP1 and Aβ. Subsequently, SP1 reduces Aβ-induced neurotoxicity, neuronal apoptosis, and ROS-mediated oxidative damage in human neuroblastoma cells (SH-SY5Y). The non-toxic nature of SP1 and its ability to ameliorate hippocampal neurodegeneration in a rat model of AD demonstrate its therapeutic potential. This paratope engineering module could readily implement discoveries of cost-effective molecular probes to nurture the basic principles of protein misfolding, thus combating related diseases.
Collapse
Affiliation(s)
- Ashim Paul
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG) North Guwahati Assam-781039 India
| | - Sourav Kumar
- Neuroscience Research Unit, Department of Physiology, Raja Peary Mohan College Hooghly Uttarpara West Bengal-712258 India
| | - Sujan Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG) North Guwahati Assam-781039 India
| | - Sourav Kalita
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG) North Guwahati Assam-781039 India
| | - Dibakar Sarkar
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Anirban Bhunia
- Biomolecular NMR and Drug Design Laboratory, Department of Biophysics, Bose Institute P-1/12 CIT Scheme VII (M) Kolkata 700054 India
| | - Anupam Bandyopadhyay
- Peptide Engineering Laboratory, Department of Chemistry, Indian Institute of Technology Ropar Punjab-140001 India
| | - Amal Chandra Mondal
- Neuroscience Research Unit, Department of Physiology, Raja Peary Mohan College Hooghly Uttarpara West Bengal-712258 India .,Laboratory of Cellular & Molecular Neurobiology, School of Life Sciences, Jawaharlal Nehru University New Delhi-110 067 India
| | - Bhubaneswar Mandal
- Laboratory of Peptide and Amyloid Research, Department of Chemistry, Indian Institute of Technology Guwahati (IITG) North Guwahati Assam-781039 India
| |
Collapse
|
54
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. Ionic Environment Affects Biomolecular Interactions of Amyloid-β: SPR Biosensor Study. Int J Mol Sci 2020; 21:E9727. [PMID: 33419257 PMCID: PMC7766583 DOI: 10.3390/ijms21249727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
In early stages of Alzheimer's disease (AD), amyloid beta (Aβ) accumulates in the mitochondrial matrix and interacts with mitochondrial proteins, such as cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase 10 (17β-HSD10). Multiple processes associated with AD such as increased production or oligomerization of Aβ affect these interactions and disbalance the equilibrium between the biomolecules, which contributes to mitochondrial dysfunction. Here, we investigate the effect of the ionic environment on the interactions of Aβ (Aβ1-40, Aβ1-42) with cypD and 17β-HSD10 using a surface plasmon resonance (SPR) biosensor. We show that changes in concentrations of K+ and Mg2+ significantly affect the interactions and may increase the binding efficiency between the biomolecules by up to 35% and 65% for the interactions with Aβ1-40 and Aβ1-42, respectively, in comparison with the physiological state. We also demonstrate that while the binding of Aβ1-40 to cypD and 17β-HSD10 takes place preferentially around the physiological concentrations of ions, decreased concentrations of K+ and increased concentrations of Mg2+ promote the interaction of both mitochondrial proteins with Aβ1-42. These results suggest that the ionic environment represents an important factor that should be considered in the investigation of biomolecular interactions taking place in the mitochondrial matrix under physiological as well as AD-associated conditions.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Zdeňka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| |
Collapse
|
55
|
de Vidania S, Palomares-Perez I, Frank-García A, Saito T, Saido TC, Draffin J, Szaruga M, Chávez-Gutierrez L, Calero M, Medina M, Guix FX, Dotti CG. Prodromal Alzheimer's Disease: Constitutive Upregulation of Neuroglobin Prevents the Initiation of Alzheimer's Pathology. Front Neurosci 2020; 14:562581. [PMID: 33343276 PMCID: PMC7744294 DOI: 10.3389/fnins.2020.562581] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022] Open
Abstract
In humans, a considerable number of the autopsy samples of cognitively normal individuals aged between 57 and 102 years have revealed the presence of amyloid plaques, one of the typical signs of AD, indicating that many of us use mechanisms that defend ourselves from the toxic consequences of Aß. The human APP NL/F (hAPP NL/F) knockin mouse appears as the ideal mouse model to identify these mechanisms, since they have high Aß42 levels at an early age and moderate signs of disease when old. Here we show that in these mice, the brain levels of the hemoprotein Neuroglobin (Ngb) increase with age, in parallel with the increase in Aß42. In vitro, in wild type neurons, exogenous Aß increases the expression of Ngb and Ngb over-expression prevents Aß toxicity. In vivo, in old hAPP NL/F mice, Ngb knockdown leads to dendritic tree simplification, an early sign of Alzheimer’s disease. These results could indicate that Alzheimer’s symptoms may start developing at the time when defense mechanisms start wearing out. In agreement, analysis of plasma Ngb levels in aged individuals revealed decreased levels in those whose cognitive abilities worsened during a 5-year longitudinal follow-up period.
Collapse
Affiliation(s)
- Silvia de Vidania
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Irene Palomares-Perez
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Ana Frank-García
- Department of Neurology, Instituto de Salud Carlos III (ISCIII), Division Neurodegenerative Disease, University Hospital La Paz, Madrid, Spain
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako-shi, Japan
| | - Takaomi C Saido
- Department of Neurocognitive Science, Nagoya City University Graduate School of Medical Science, Nagoya, Japan
| | - Jonathan Draffin
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - María Szaruga
- KU Leuven Department for Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Lucía Chávez-Gutierrez
- KU Leuven Department for Neurosciences, VIB-KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Miguel Calero
- CIBERNED, Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
| | - Miguel Medina
- CIBERNED, Queen Sofia Foundation Alzheimer Center, CIEN Foundation, Instituto de Salud Carlos III, Madrid, Spain
| | - Francesc X Guix
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| | - Carlos G Dotti
- Molecular Neuropathology, Physiological and Pathological Processes, Centro de Biología Molecular Severo Ochoa, CSIC/UAM, Madrid, Spain
| |
Collapse
|
56
|
Salkov VN, Khudoyerkov RM. [Changes in iron content in brain structures during aging and associated neurodegenerative diseases]. Arkh Patol 2020; 82:73-78. [PMID: 33054036 DOI: 10.17116/patol20208205173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The literature data on changes in the content of iron and its metabolites in brain structures during aging and neurodegenerative diseases (Parkinson's disease - PD and Alzheimer's disease - AD) are analyzed. It was revealed that with aging, the iron content in nigrostriatal formations of brain changes: the level of non-heme iron and ferritin increases and neuromelanin also accumulates in neurons of black substance. The accumulation of neuromelanin in combination with increase in ferritin content can be considered as a morphochemical sign of neuroprotective effect of nervous tissue during aging. The iron level in PD and AD compared with that during physiological aging continues to increase, and the ability of chelating agents to bind iron decreases (ferritin in neuroglia cells and neuromelanin in neurons), which activates the mechanisms of cell destruction. As a result, in PD, the aggregation of α-synuclein is disrupted, which leads to the formation of Levi bodies, and in AD, the amyloid beta precursor protein (APP) undergoes proteolysis and this leads to the formation of amyloid plaques, which triggers subsequent neurodegenerative changes, including the death of neurons.
Collapse
Affiliation(s)
- V N Salkov
- Scientific Center of Neurology, Moscow, Russia
| | | |
Collapse
|
57
|
Iwaya N, Goda N, Matsuzaki M, Narita A, Shigemitsu Y, Tenno T, Abe Y, Hoshi M, Hiroaki H. Principal component analysis of data from NMR titration experiment of uniformly 15N labeled amyloid beta (1-42) peptide with osmolytes and phenolic compounds. Arch Biochem Biophys 2020; 690:108446. [PMID: 32593678 DOI: 10.1016/j.abb.2020.108446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/11/2020] [Accepted: 06/01/2020] [Indexed: 10/24/2022]
Abstract
A simple NMR method to analyze the data obtained by NMR titration experiment of amyloid formation inhibitors against uniformly 15N-labeled amyloid-β 1-42 peptide (Aβ(1-42)) was described. By using solution nuclear magnetic resonance (NMR) measurement, the simplest method for monitoring the effects of Aβ fibrilization inhibitors is the NMR chemical shift perturbation (CSP) experiment using 15N-labeled Aβ(1-42). However, the flexible and dynamic nature of Aβ(1-42) monomer may hamper the interpretation of CSP data. Here we introduced principal component analysis (PCA) for visualizing and analyzing NMR data of Aβ(1-42) in the presence of amyloid inhibitors including high concentration osmolytes. We measured 1H-15N 2D spectra of Aβ(1-42) at various temperatures as well as of Aβ(1-42) with several inhibitors, and subjected all the data to PCA (PCA-HSQC). The PCA diagram succeeded in differentiating the various amyloid inhibitors, including epigallocatechin gallate (EGCg), rosmarinic acid (RA) and curcumin (CUR) from high concentration osmolytes. We hypothesized that the CSPs reflected the conformational equilibrium of intrinsically disordered Aβ(1-42) induced by weak inhibitor binding rather than the specific molecular interactions.
Collapse
Affiliation(s)
- Naoko Iwaya
- Research Fellowship for Young Scientists, Japan Society for the Promotion of Science, Japan; Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Natsuko Goda
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Mizuki Matsuzaki
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Akihiro Narita
- Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshiki Shigemitsu
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuda, 4259, Midori-ku, Yokohama, Kanagawa, 226-8503, Japan.
| | - Takeshi Tenno
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| | - Yoshito Abe
- Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | - Minako Hoshi
- Institute of Biomedical Research and Innovation, Kobe, 650-0047, Japan.
| | - Hidekazu Hiroaki
- Laboratory of Structural Molecular Pharmacology, Graduate School of Pharmaceutical Sciences, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan; Structural Biology Research Center and Division of Biological Sciences, Graduate School of Science, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601, Japan.
| |
Collapse
|
58
|
Hemmerová E, Špringer T, Krištofiková Z, Homola J. Study of Biomolecular Interactions of Mitochondrial Proteins Related to Alzheimer's Disease: Toward Multi-Interaction Biomolecular Processes. Biomolecules 2020; 10:E1214. [PMID: 32825572 PMCID: PMC7563123 DOI: 10.3390/biom10091214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/17/2020] [Accepted: 08/19/2020] [Indexed: 12/14/2022] Open
Abstract
Progressive mitochondrial dysfunction due to the accumulation of amyloid beta (Aβ) peptide within the mitochondrial matrix represents one of the key characteristics of Alzheimer's disease (AD) and appears already in its early stages. Inside the mitochondria, Aβ interacts with a number of biomolecules, including cyclophilin D (cypD) and 17β-hydroxysteroid dehydrogenase type 10 (17β-HSD10), and affects their physiological functions. However, despite intensive ongoing research, the exact mechanisms through which Aβ impairs mitochondrial functions remain to be explained. In this work, we studied the interactions of Aβ with cypD and 17β-HSD10 in vitro using the surface plasmon resonance (SPR) method and determined the kinetic parameters (association and dissociation rates) of these interactions. This is the first work which determines all these parameters under the same conditions, thus, enabling direct comparison of relative affinities of Aβ to its mitochondrial binding partners. Moreover, we used the determined characteristics of the individual interactions to simulate the concurrent interactions of Aβ with cypD and 17β-HSD10 in different model situations associated with the progression of AD. This study not only advances the understanding of Aβ-induced processes in mitochondria during AD, but it also provides a new perspective on research into complex multi-interaction biomolecular processes in general.
Collapse
Affiliation(s)
- Erika Hemmerová
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Tomáš Špringer
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| | - Zdeňka Krištofiková
- National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic;
| | - Jiří Homola
- Institute of Photonics and Electronics of the Czech Academy of Sciences, Chaberská 1014/57, 182 51 Prague, Czech Republic; (E.H.); (T.Š.)
| |
Collapse
|
59
|
Differences in the free energies between the excited states of A β40 and A β42 monomers encode their aggregation propensities. Proc Natl Acad Sci U S A 2020; 117:19926-19937. [PMID: 32732434 DOI: 10.1073/pnas.2002570117] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The early events in the aggregation of the intrinsically disordered peptide, amyloid-β (Aβ), involve transitions from the disordered free energy ground state to assembly-competent states. Are the fingerprints of order found in the amyloid fibrils encoded in the conformations that the monomers access at equilibrium? If so, could the enhanced aggregation rate of Aβ42 compared to Aβ40 be rationalized from the sparsely populated high free energy states of the monomers? Here, we answer these questions in the affirmative using coarse-grained simulations of the self-organized polymer-intrinsically disordered protein (SOP-IDP) model of Aβ40 and Aβ42. Although both the peptides have practically identical ensemble-averaged properties, characteristic of random coils (RCs), the conformational ensembles of the two monomers exhibit sequence-specific heterogeneity. Hierarchical clustering of conformations reveals that both the peptides populate high free energy aggregation-prone ([Formula: see text]) states, which resemble the monomers in the fibril structure. The free energy gap between the ground (RC) and the [Formula: see text] states of Aβ42 peptide is smaller than that for Aβ40. By relating the populations of excited states of the two peptides to the fibril formation time scales using an empirical formula, we explain nearly quantitatively the faster aggregation rate of Aβ42 relative to Aβ40. The [Formula: see text] concept accounts for fibril polymorphs, leading to the prediction that the less stable [Formula: see text] state of Aβ42, encoding for the U-bend fibril, should form earlier than the structure with the S-bend topology, which is in accord with Ostwald's rule rationalizing crystal polymorph formation.
Collapse
|
60
|
Boopathi S, Dinh Quoc Huy P, Gonzalez W, Theodorakis PE, Li MS. Zinc binding promotes greater hydrophobicity inAlzheimer's Aβ42peptide than copper binding: Molecular dynamics and solvation thermodynamics studies. Proteins 2020; 88:1285-1302. [DOI: 10.1002/prot.25901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/04/2020] [Accepted: 05/13/2020] [Indexed: 12/29/2022]
Affiliation(s)
- Subramanian Boopathi
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
| | | | - Wendy Gonzalez
- Centro de Bioinformática y Simulación Molecular (CBSM), Facultad de IngenieríaUniversidad de Talca Talca Chile
- Millennium Nucleus of Ion Channels‐Associated Diseases (MiNICAD)Universidad de Talca Talca Chile
| | | | - Mai Suan Li
- Institute of PhysicsPolish Academy of Sciences Warsaw Poland
- Institute for Computational Science and Technology, Quang Trung Software City Tan Chanh Hiep Ward Ho Chi Minh City Vietnam
| |
Collapse
|
61
|
Loschwitz J, Olubiyi OO, Hub JS, Strodel B, Poojari CS. Computer simulations of protein-membrane systems. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2020; 170:273-403. [PMID: 32145948 PMCID: PMC7109768 DOI: 10.1016/bs.pmbts.2020.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The interactions between proteins and membranes play critical roles in signal transduction, cell motility, and transport, and they are involved in many types of diseases. Molecular dynamics (MD) simulations have greatly contributed to our understanding of protein-membrane interactions, promoted by a dramatic development of MD-related software, increasingly accurate force fields, and available computer power. In this chapter, we present available methods for studying protein-membrane systems with MD simulations, including an overview about the various all-atom and coarse-grained force fields for lipids, and useful software for membrane simulation setup and analysis. A large set of case studies is discussed.
Collapse
Affiliation(s)
- Jennifer Loschwitz
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Olujide O Olubiyi
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Obafemi Awolowo University, Ile-Ife, Nigeria
| | - Jochen S Hub
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany
| | - Birgit Strodel
- Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Institute of Biological Information Processing (IBI-7: Structural Biochemistry), Forschungszentrum Jülich, Jülich, Germany
| | - Chetan S Poojari
- Theoretical Physics and Center for Biophysics, Saarland University, Saarbrücken, Germany.
| |
Collapse
|
62
|
Dutta MS, Basu S. Identifying the key residues instrumental in imparting stability to amyloid beta protofibrils - a comparative study using MD simulations of 17-42 residues. J Biomol Struct Dyn 2020; 39:431-456. [PMID: 31900057 DOI: 10.1080/07391102.2019.1711192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Extracellular plaques, the hallmark of Alzheimer's disease brains, consist of insoluble amyloid fibrils that result from the aggregation of amyloid beta peptides. None of the few therapeutic options currently adopted, address the cause of the disease. Instead, they reduce symptom of the disease. Inhibition of aggregation or destabilization of aggregates therefore, emerges as a preferable therapeutic approach. Designing inhibitors or destabilizers demands comprehensive knowledge of the residues of amyloid beta responsible for the phenomenal structural stability of the aggregate. For the purpose, we have compared the effect on structural destabilization of 13 in silico mutations (single and double) with the wild type counterpart of beta-strand-turn-beta-strand motif of the amyloid beta protofibrils by molecular dynamics simulation. Besides the already known salt bridge interaction between K28 and D23, our analyses expose more significant role of K28 as the only positive charge present in the vicinity. Amongst the two consecutive aromatic residues, F19 is involved in stacking interaction; although effect of F20 mutation is more pronounced. Face to face arrangement of A21 and V36 acts as a pillar maintaining the necessary optimum distance between consecutive chains to promote stabilizing interactions. In addition to providing stability to the first beta-strand, large sized negatively charged E22 facilitates salt bridge formation by ensuring fixed relative position of D23 and in turn K28. Likewise, the hydrophobic residues I32 and L34 pack the protofibril core, once again fostering salt bridge interaction. Prospectively, these findings may be compiled for efficient identification or design of scaffolds accountable for protofibril destabilization.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Soumalee Basu
- Department of Microbiology, University of Calcutta, Kolkata, India
| |
Collapse
|
63
|
Xing X, Liu C, Yang H, Nouman MF, Ai H. Folding dynamics of Aβ42 monomer at pH 4.0–7.5 with and without physiological salt conditions – does the β1 or β2 region fold first? NEW J CHEM 2020. [DOI: 10.1039/d0nj01090a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The seeding region of Aβ42 monomer is jointly affected by the solution acidity, ionic distribution of the salt, and charged residues.
Collapse
Affiliation(s)
- Xiaofeng Xing
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Chengqiang Liu
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | - Huijuan Yang
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| | | | - Hongqi Ai
- School of Chemistry and Chemical Engineering
- University of Jinan
- Jinan
- China
| |
Collapse
|
64
|
Kaur A, Shuaib S, Goyal D, Goyal B. Interactions of a multifunctional di-triazole derivative with Alzheimer's Aβ42monomer and Aβ42protofibril: a systematic molecular dynamics study. Phys Chem Chem Phys 2020; 22:1543-1556. [DOI: 10.1039/c9cp04775a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The molecular dynamics simulations results highlighted that the multi-target-directed ligand6nstabilizes the native α-helix conformation of the Aβ42monomer and induces a sizable destabilization in the Aβ42protofibril structure.
Collapse
Affiliation(s)
- Anupamjeet Kaur
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Suniba Shuaib
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Deepti Goyal
- Department of Chemistry
- Faculty of Basic and Applied Sciences
- Sri Guru Granth Sahib World University
- Fatehgarh Sahib-140406
- India
| | - Bhupesh Goyal
- School of Chemistry & Biochemistry
- Thapar Institute of Engineering & Technology
- Patiala-147004
- India
| |
Collapse
|
65
|
Tamano H, Takiguchi M, Tanaka Y, Murakami T, Adlard PA, Bush AI, Takeda A. Preferential Neurodegeneration in the Dentate Gyrus by Amyloid β 1-42-Induced Intracellular Zn 2+Dysregulation and Its Defense Strategy. Mol Neurobiol 2019; 57:1875-1888. [PMID: 31865526 DOI: 10.1007/s12035-019-01853-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
On the basis of the evidence that rapid intracellular Zn2+ dysregulation by amyloid β1-42 (Aβ1-42) in the normal hippocampus transiently induces cognitive decline, here we report preferential neurodegeneration in the dentate gyrus by Aβ1-42-induced intracellular Zn2+ dysregulation and its defense strategy. Neurodegeneration was preferentially observed in the dentate granule cell layer in the hippocampus after a single Aβ1-42 injection into the lateral ventricle but not in the CA1 and CA3 pyramidal cell layers, while intracellular Zn2+ dysregulation was extensively observed in the hippocampus in addition to the dentate gyrus. Neurodegeneration in the dentate granule cell layer was rescued after co-injection of extracellular and intracellular Zn2+ chelators, i.e., CaEDTA and ZnAF-2DA, respectively. Aβ1-42-induced cognitive impairment was also rescued by co-injection of CaEDTA and ZnAF-2DA. Pretreatment with dexamethasone, an inducer of metalothioneins, Zn2+-binding proteins rescued neurodegeneration in the dentate granule cell layer and cognitive impairment via blocking the intracellular Zn2+ dysregulation induced by Aβ1-42. The present study indicates that intracellular Zn2+ dysregulation induced by Aβ1-42 preferentially causes neurodegeneration in the dentate gyrus, resulting in hippocampus-dependent cognitive decline. It is likely that controlling intracellular Zn2+ dysregulation, which is induced by the rapid uptake of Zn-Aβ1-42 complexes, is a defense strategy for Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Haruna Tamano
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Mako Takiguchi
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Yukino Tanaka
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Taku Murakami
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan
| | - Paul A Adlard
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Ashley I Bush
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC, 3052, Australia
| | - Atsushi Takeda
- Department of Neurophysiology, School of Pharmaceutical Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka, 422-8526, Japan.
| |
Collapse
|
66
|
Computational analysis of Alzheimer-causing mutations in amyloid precursor protein and presenilin 1. Arch Biochem Biophys 2019; 678:108168. [DOI: 10.1016/j.abb.2019.108168] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/25/2019] [Accepted: 11/02/2019] [Indexed: 12/13/2022]
|
67
|
Posado-Fernández A, Afonso CF, Dória G, Flores O, Cabrita EJ. Epitope Mapping by NMR of a Novel Anti-Aβ Antibody (STAB-MAb). Sci Rep 2019; 9:12241. [PMID: 31439854 PMCID: PMC6706428 DOI: 10.1038/s41598-019-47626-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 07/19/2019] [Indexed: 11/17/2022] Open
Abstract
Alzheimer´s Disease (AD) is one of the most common neurodegenerative disorders worldwide. Excess of β-amyloid (Aβ), a peptide with a high propensity to misfold and self-aggregate, is believed to be the major contributor to the observed neuronal degeneration and cognitive decline in AD. Here, we characterize the epitope of a novel anti-Aβ monoclonal antibody, the STAB-MAb, which has previously demonstrated picomolar affinities for both monomers (KD = 80 pM) and fibrils (KD = 130 pM) of Aβ(1–42) and has shown therapeutic efficacy in preclinical mouse models of AD. Our findings reveal a widespread epitope that embraces several key Aβ residues that have been previously described as important in the Aβ fibrillation process. Of note, STAB-MAb exhibits a stronger affinity for the N-terminus of Aβ and stabilizes an α-helix conformation in the central to N-terminal region of the peptide, in addition to disrupting a characteristic salt-bridge of a hairpin structure present in fibrils. The NMR derived epitope supports the observed results from ThT-monitored fluorescence and electron microscopy experiments, in which STAB-MAb was shown to inhibit the formation of aggregates and promote disruption of pre-formed fibrils. In combination with the published in vitro and in vivo assays, our study highlights STAB-MAb as a rare and versatile antibody with analytical, diagnostic and therapeutic efficacy.
Collapse
Affiliation(s)
- Adrián Posado-Fernández
- UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-516, Caparica, Portugal.,STAB VIDA Lda., Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal
| | - Cláudia F Afonso
- UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-516, Caparica, Portugal.,Instituto de Medicina Molecular (iMM), Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Gonçalo Dória
- STAB VIDA Lda., Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal
| | - Orfeu Flores
- STAB VIDA Lda., Madan Parque, Rua dos Inventores, 2825-182, Caparica, Portugal
| | - Eurico J Cabrita
- UCIBIO, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2825-516, Caparica, Portugal.
| |
Collapse
|
68
|
Krupa P, Quoc Huy PD, Li MS. Properties of monomeric Aβ42 probed by different sampling methods and force fields: Role of energy components. J Chem Phys 2019. [DOI: 10.1063/1.5093184] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Pawel Krupa
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Pham Dinh Quoc Huy
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
| | - Mai Suan Li
- Institute of Physics Polish Academy of Sciences, Al. Lotników 32/46, 02-668 Warsaw, Poland
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City, Vietnam
| |
Collapse
|
69
|
Nguyen PH, Campanera JM, Ngo ST, Loquet A, Derreumaux P. Tetrameric Aβ40 and Aβ42 β-Barrel Structures by Extensive Atomistic Simulations. II. In Aqueous Solution. J Phys Chem B 2019; 123:6750-6756. [DOI: 10.1021/acs.jpcb.9b05288] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Phuong H. Nguyen
- CNRS, Université de Paris, UPR 9080,
Laboratoire de Biochimie Théorique, 13 rue Pierre et Marie Curie, F-75005, Paris, France
- Institut de Biologie Physico-Chimique-Fondation Edmond de Rothschild, PSL Research University, Paris, France
| | - Josep M. Campanera
- Departament de Fisicoquímica, Facultat de Farmacia, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
| | - Son Tung Ngo
- Laboratory of Theoretical and Computational Biophysics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Antoine Loquet
- Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248 CNRS, Université de Bordeaux, Bordeaux, France
| | - Philippe Derreumaux
- Laboratory of Theoretical Chemistry, Ton Duc Thang University, Ho Chi Minh City, Vietnam
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| |
Collapse
|
70
|
Rezaei-Ghaleh N, Parigi G, Zweckstetter M. Reorientational Dynamics of Amyloid-β from NMR Spin Relaxation and Molecular Simulation. J Phys Chem Lett 2019; 10:3369-3375. [PMID: 31181936 PMCID: PMC6598774 DOI: 10.1021/acs.jpclett.9b01050] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Amyloid-β (Aβ) aggregation is a hallmark of Alzheimer's disease. As an intrinsically disordered protein, Aβ undergoes extensive dynamics on multiple length and time scales. Access to a comprehensive picture of the reorientational dynamics in Aβ requires therefore the combination of complementary techniques. Here, we integrate 15N spin relaxation rates at three magnetic fields with microseconds-long molecular dynamics simulation, ensemble-based hydrodynamic calculations, and previously published nanosecond fluorescence correlation spectroscopy to investigate the reorientational dynamics of Aβ1-40 (Aβ40) at single-residue resolution. The integrative analysis shows that librational and dihedral angle fluctuations occurring at fast and intermediate time scales are not sufficient to decorrelate orientational memory in Aβ40. Instead, slow segmental motions occurring at ∼5 ns are detected throughout the Aβ40 sequence and reach up to ∼10 ns for selected residues. We propose that the modulation of time scales of reorientational dynamics with respect to intra- and intermolecular diffusion plays an important role in disease-related Aβ aggregation.
Collapse
Affiliation(s)
- Nasrollah Rezaei-Ghaleh
- Department
of Neurology, University Medical Center
Goettingen, 37075 Goettingen, Germany
- Department
for NMR-Based Structural Biology, Max Planck
Institute for Biophysical Chemistry, 37077 Goettingen, Germany
- E-mail:
| | - Giacomo Parigi
- Magnetic
Resonance Center (CERM) and Department of Chemistry “Ugo Schiff”, University of Florence, via Sacconi 6, 50019 Sesto Fiorentino, Italy
| | - Markus Zweckstetter
- Department
of Neurology, University Medical Center
Goettingen, 37075 Goettingen, Germany
- Department
for NMR-Based Structural Biology, Max Planck
Institute for Biophysical Chemistry, 37077 Goettingen, Germany
- Research
Group for Structural Biology in Dementia, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37075 Goettingen, Germany
| |
Collapse
|
71
|
Liu C, Zhao W, Xing X, Shi H, Kang B, Liu H, Li P, Ai H. An Original Monomer Sampling from a Ready‐Made Aβ
42
NMR Fibril Suggests a Turn‐β‐Strand Synergetic Seeding Mechanism. Chemphyschem 2019; 20:1649-1660. [DOI: 10.1002/cphc.201801137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Indexed: 01/15/2023]
Affiliation(s)
- Chengqiang Liu
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Wei Zhao
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Xiaofeng Xing
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Hu Shi
- School of Chemistry and Chemical EngineeringShanxi University Taiyuan 030006 China
| | - Baotao Kang
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| | - Haiying Liu
- School of PhysicsUniversity of Jinan Jinan 250022 China
| | - Ping Li
- Key Laboratory of Life-Organic Analysis, School of Chemistry and Chemical EngineeringQufu Normal University Qufu 273165 China
| | - Hongqi Ai
- School of Chemistry and Chemical EngineeringUniversity of Jinan Jinan 250022 China
| |
Collapse
|
72
|
Abstract
OBJECTIVE Increased pulse pressure (PP) has been implicated in the development and progression of Alzheimer's disease in middle-aged and elderly adults. Considering the close relationship between peripheral amyloid-β clearance and brain amyloid-β deposition, we investigated the potential association between PP and plasma amyloid-β transport function. METHODS In this cross-sectional study, a total of 1118 participants underwent a health assessment and quantification of plasma amyloid-β and amyloid-β transporter expression. Relationships between plasma levels of amyloid-β1-40, amyloid-β1-42, soluble low-density lipoprotein receptor-related protein-1 (sLRP1), soluble receptor for advanced glycation end products (sRAGE), and PP were determined using multiple linear regressions. RESULTS PP was a significant determinant of amyloid-β1-40 level (β = 0.059, P = 0.036) and log-transformed sRAGE (β = -0.002, P = 0.029) independent of age, sex, body mass index, pulse rate, mean arterial pressure, blood glucose, blood lipids, lifestyle, and medical history. Additionally, log-transformed soluble low-density lipoprotein receptor-related protein-1 and log-transformed sRAGE were positively associated with plasma amyloid-β1-40 level (β = 3.610, P < 0.001; β = 2.573, P = 0.001). Similar associations were observed between log-transformed sRAGE and plasma amyloid-β1-42 level (β = 1.350, P = 0.022). CONCLUSION An elevation in PP is associated with increased plasma amyloid-β1-40 and decreased log-transformed sRAGE among individuals not taking antihypertensive medication. The underlying mechanism of this effect may be relevant to peripheral amyloid-β clearance.
Collapse
|
73
|
Bürge M, Kratzer S, Mattusch C, Hofmann C, Kreuzer M, Parsons CG, Rammes G. The anaesthetic xenon partially restores an amyloid beta-induced impairment in murine hippocampal synaptic plasticity. Neuropharmacology 2019; 151:21-32. [PMID: 30940537 DOI: 10.1016/j.neuropharm.2019.03.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/15/2019] [Accepted: 03/26/2019] [Indexed: 02/08/2023]
Abstract
BACKGROUND It is controversially discussed whether general anaesthesia increases the risk of Alzheimer's disease (AD) or accelerates its progression. One important factor in AD pathogenesis is the accumulation of soluble amyloid beta (Aβ) oligomers which affect N-methyl-d-aspartate (NMDA) receptor function and abolish hippocampal long-term potentiation (LTP). NMDA receptor antagonists, at concentrations allowing physiological activation, can prevent Aβ-induced deficits in LTP. The anaesthetics xenon and S-ketamine both act as NMDA receptor antagonists and have been reported to be neuroprotective. In this study, we investigated the effects of subanaesthetic concentrations of these drugs on LTP deficits induced by different Aβ oligomers and compared them to the effects of radiprodil, a NMDA subunit 2B (GluN2B)-selective antagonist. METHODS We applied different Aβ oligomers to murine brain slices and recorded excitatory postsynaptic field potentials before and after high-frequency stimulation in the CA1 region of hippocampus. Radiprodil, xenon and S-ketamine were added and recordings evoked from a second input were measured. RESULTS Xenon and radiprodil, applied at low concentrations, partially restored the LTP deficit induced by pre-incubated Aβ1-42. S-ketamine showed no effect. None of the drugs tested were able to ameliorate Aβ1-40-induced LTP-deficits. CONCLUSIONS Xenon administered at subanaesthetic concentrations partially restored Aβ1-42-induced impairment of LTP, presumably via its weak NMDA receptor antagonism. The effects were in a similar range than those obtained with the NMDA-GluN2B antagonist radiprodil. Our results point to protective properties of xenon in the context of pathological distorted synaptic physiology which might be a meaningful alternative for anaesthesia in AD patients.
Collapse
Affiliation(s)
- Martina Bürge
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Department of Perioperative Medicine, Barts Heart Centre, St Bartholomew's Hospital, West Smithfield, London EC1A 7BE, United Kingdom.
| | - Stephan Kratzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Corinna Mattusch
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany; Hexal AG, Industriestr. 25, 83607 Holzkirchen, Germany
| | - Carolin Hofmann
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | - Matthias Kreuzer
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| | | | - Gerhard Rammes
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675 Munich, Germany
| |
Collapse
|
74
|
Kasim JK, Kavianinia I, Ng J, Harris PWR, Birch NP, Brimble MA. Efficient synthesis and characterisation of the amyloid beta peptide, Aβ 1-42, using a double linker system. Org Biomol Chem 2019; 17:30-34. [PMID: 30500032 DOI: 10.1039/c8ob02929f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amyloidogenic Aβ42 peptide was efficiently prepared using a double linker system, markedly improving solubility and chromatographic peak resolution, thus enabling full characterisation using standard techniques. The tag was readily cleaved with sodium hydroxide and removed by aqueous extraction, affording Aβ42 in high purity and yield for biophysical characterisation studies.
Collapse
Affiliation(s)
- Johanes K Kasim
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand.
| | - Iman Kavianinia
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Jin Ng
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, New Zealand
| | - Paul W R Harris
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| | - Nigel P Birch
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Brain Research New Zealand Rangahau Roro Aotearoa and Centre for Brain Research, Auckland 1010, New Zealand
| | - Margaret A Brimble
- School of Biological Sciences, The University of Auckland, 3A Symonds Street, Auckland 1010, New Zealand. and Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, 3 Symonds St, Auckland 1010, New Zealand and School of Chemical Sciences, The University of Auckland, 23 Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
75
|
Fanni AM, Monge FA, Lin CY, Thapa A, Bhaskar K, Whitten DG, Chi EY. High Selectivity and Sensitivity of Oligomeric p-Phenylene Ethynylenes for Detecting Fibrillar and Prefibrillar Amyloid Protein Aggregates. ACS Chem Neurosci 2019; 10:1813-1825. [PMID: 30657326 DOI: 10.1021/acschemneuro.8b00719] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Misfolding and aggregation of amyloid proteins into fibrillar aggregates is a central pathogenic event in neurodegenerative disorders such as Alzheimer's (AD) and Parkinson's diseases (PD). Currently, there is a lack of reliable sensors for detecting the range of protein aggregates involved in disease etiology, particularly the prefibrillar aggregate conformations that are more neurotoxic. In this study, the fluorescent sensing of two novel oligomeric p-phenylene ethynylenes (OPEs), anionic OPE1- and cationic OPE2+, for detecting prefibrillar and fibrillar aggregates of AD-associated amyloid-β (Aβ40 and Aβ42) and PD-associated α-synuclein proteins (wildtype, and single mutants A30P, E35K, and A53T) over their monomeric counterparts, were tested. Furthermore, the performance of OPEs was evaluated and compared to thioflavin T (ThT), the most widely used fibril dye. Our results show that OPE1- and OPE2+ exhibited aggregate-specific binding inducing large fluorescence turn-on and spectral shifts based on a combination of backbone planarization, hydrophobic unquenching, and superluminescent OPE complex formation sensing modes. OPEs exhibited higher selectivity, higher binding affinity, and comparable limits of detection for Aβ40 fibrils compared to ThT. OPE2+ exhibited the largest fluorescence turn-on and highest sensitivity. Significantly, OPEs detected prefibrillar aggregates of Aβ42 and α-synuclein that ThT failed to detect. The superior sensing performance, the nonprotein specific detection, and the ability to selectively detect fibrillar and prefibrillar amyloid protein aggregates point to the potential of OPEs to overcome the limitations of existing probes and promise significant advancement in the detection of the myriad of protein aggregates involved in the early stages of AD and PD.
Collapse
|
76
|
Martinelli AHS, Lopes FC, John EBO, Carlini CR, Ligabue-Braun R. Modulation of Disordered Proteins with a Focus on Neurodegenerative Diseases and Other Pathologies. Int J Mol Sci 2019; 20:ijms20061322. [PMID: 30875980 PMCID: PMC6471803 DOI: 10.3390/ijms20061322] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/03/2019] [Accepted: 02/12/2019] [Indexed: 12/15/2022] Open
Abstract
Intrinsically disordered proteins (IDPs) do not have rigid 3D structures, showing changes in their folding depending on the environment or ligands. Intrinsically disordered proteins are widely spread in eukaryotic genomes, and these proteins participate in many cell regulatory metabolism processes. Some IDPs, when aberrantly folded, can be the cause of some diseases such as Alzheimer′s, Parkinson′s, and prionic, among others. In these diseases, there are modifications in parts of the protein or in its entirety. A common conformational variation of these IDPs is misfolding and aggregation, forming, for instance, neurotoxic amyloid plaques. In this review, we discuss some IDPs that are involved in neurodegenerative diseases (such as beta amyloid, alpha synuclein, tau, and the “IDP-like” PrP), cancer (p53, c-Myc), and diabetes (amylin), focusing on the structural changes of these IDPs that are linked to such pathologies. We also present the IDP modulation mechanisms that can be explored in new strategies for drug design. Lastly, we show some candidate drugs that can be used in the future for the treatment of diseases caused by misfolded IDPs, considering that cancer therapy has more advanced research in comparison to other diseases, while also discussing recent and future developments in this area of research. Therefore, we aim to provide support to the study of IDPs and their modulation mechanisms as promising approaches to combat such severe diseases.
Collapse
Affiliation(s)
- Anne H S Martinelli
- Department of Molecular Biology and Biotechnology & Department of Biophysics, Biosciences Institute-IB, (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Fernanda C Lopes
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Elisa B O John
- Center for Biotechnology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
| | - Célia R Carlini
- Graduate Program in Cell and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre CEP 91501-970, RS, Brazil.
- Graduate Program in Medicine and Health Sciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 91410-000, RS, Brazil.
- Brain Institute-InsCer, Laboratory of Neurotoxins, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre CEP 90610-000, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Department of Pharmaceutical Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre CEP 90050-170, RS, Brazil.
| |
Collapse
|
77
|
Meng F, Bellaiche MMJ, Kim JY, Zerze GH, Best RB, Chung HS. Highly Disordered Amyloid-β Monomer Probed by Single-Molecule FRET and MD Simulation. Biophys J 2019; 114:870-884. [PMID: 29490247 DOI: 10.1016/j.bpj.2017.12.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 12/12/2017] [Accepted: 12/18/2017] [Indexed: 12/13/2022] Open
Abstract
Monomers of amyloid-β (Aβ) protein are known to be disordered, but there is considerable controversy over the existence of residual or transient conformations that can potentially promote oligomerization and fibril formation. We employed single-molecule Förster resonance energy transfer (FRET) spectroscopy with site-specific dye labeling using an unnatural amino acid and molecular dynamics simulations to investigate conformations and dynamics of Aβ isoforms with 40 (Aβ40) and 42 residues (Aβ42). The FRET efficiency distributions of both proteins measured in phosphate-buffered saline at room temperature show a single peak with very similar FRET efficiencies, indicating there is apparently only one state. 2D FRET efficiency-donor lifetime analysis reveals, however, that there is a broad distribution of rapidly interconverting conformations. Using nanosecond fluorescence correlation spectroscopy, we measured the timescale of the fluctuations between these conformations to be ∼35 ns, similar to that of disordered proteins. These results suggest that both Aβ40 and Aβ42 populate an ensemble of rapidly reconfiguring unfolded states, with no long-lived conformational state distinguishable from that of the disordered ensemble. To gain molecular-level insights into these observations, we performed molecular dynamics simulations with a force field optimized to describe disordered proteins. We find, as in experiments, that both peptides populate configurations consistent with random polymer chains, with the vast majority of conformations lacking significant secondary structure, giving rise to very similar ensemble-averaged FRET efficiencies.
Collapse
Affiliation(s)
- Fanjie Meng
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Mathias M J Bellaiche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland; Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Jae-Yeol Kim
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Gül H Zerze
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania
| | - Robert B Best
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| | - Hoi Sung Chung
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
78
|
Lin Y, Im H, Diem LT, Ham S. Characterizing the structural and thermodynamic properties of Aβ42 and Aβ40. Biochem Biophys Res Commun 2019; 510:442-448. [PMID: 30722990 DOI: 10.1016/j.bbrc.2019.01.124] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 01/28/2019] [Indexed: 01/20/2023]
Abstract
The self-assembly of amyloid-beta (Aβ) proteins in aqueous extracellular environments is implicated in Alzheimer's disease. Among several alloforms of Aβ proteins differing in sequence length, the 42- and 40-residue forms (Aβ42 and Aβ40) are the most abundant ones in the human body. Although the only difference is the additional I41A42 residues in the C-terminus, Aβ42 exhibits more aggregation tendency and stronger neurotoxicity than Aβ40. Here, we investigate the molecular factors that confer more aggregation potential to Aβ42 than to Aβ40 based on molecular dynamics simulations combined with solvation thermodynamic analyses. It is observed that the most salient structural feature of Aβ42 relative to Aβ40 is the more enhanced β-sheet forming tendency, in particular in the C-terminal region. While such a structural characteristic of Aβ42 will certainly serve to facilitate the formation of aggregate species rich in β-sheet structure, we also detect its interesting thermodynamic consequence. Indeed, we find from the decomposition analysis that the C-terminal region substantially increases the solvation free energy (i.e., overall "hydrophobicity") of Aβ42, which is caused by the dehydration of the backbone moieties showing the enhanced tendency of forming the β-structure. Together with the two additional hydrophobic residues (I41A42), this leads to the higher solvation free energy of Aβ42, implying the larger water-mediated attraction toward the self-assembly. Thus, our computational results provide structural and thermodynamic grounds on why Aβ42 has more aggregation propensity than Aβ40 in aqueous environments.
Collapse
Affiliation(s)
- Yuxi Lin
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Haeri Im
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Le Thi Diem
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea
| | - Sihyun Ham
- Department of Chemistry, The Research Institute of Natural Sciences, Sookmyung Women's University, Cheongpa-ro-47-gil 100, Yongsan-ku, Seoul, 04310, South Korea.
| |
Collapse
|
79
|
Li X, Xie B, Sun Y. Basified Human Lysozyme: A Potent Inhibitor against Amyloid β-Protein Fibrillogenesis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15569-15577. [PMID: 30407837 DOI: 10.1021/acs.langmuir.8b03278] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The aggregation of amyloid β-proteins (Aβ) has been recognized as a key process in the pathogenesis of Alzheimer's disease (AD), so inhibiting Aβ aggregation is an important strategy to prevent the onset and treatment of AD. Our recent work indicated that decreasing the positive charges (or introducing negative charges) on human lysozyme (hLys) was unfavorable in keeping the inhibiting capability of hLys on Aβ aggregation. Therefore, we have herein proposed to basify hLys by conversion of the carboxyl groups into amino groups by modification with ethylene diamine. Basified hLys (Lys-B) preparations of three modification degrees (MDs), denoted as hLys-B1 (MD, 1.5), hLys-B2 (MD, 3.3), and hLys-B3 (MD, 4.4), were synthesized for modulating Aβ fibrillogenesis. The hLys-B preparations kept the stability and biocompatibility as native hLys did, whereas the inhibitory potency of hLys-B on Aβ fibrillogenesis increased with increasing MD. Cytotoxicity analysis showed that cell viability with 2.5 μM hLys-B3 increased from 62.5% (with 25 μM Aβ only) to 76.1%, similar to the case with 12.5 μM hLys (75.5%); cell viability with 6.25 μM hLys-B3 increased to 82.0%, similar to the case with 25 μM hLys (80.9%). The results indicate about four- to fivefold increase in the inhibition efficiency of hLys by the amino modification. Mechanistic analysis suggests that such a superior inhibitory capability of hLys-B was attributed to its more widely distributed positive charges, which promoted broad electrostatic interactions between Aβ and hLys-B. Thus, hLys-B suppressed the conformational transition of Aβ to β-sheet structures at low concentrations (e.g., 2.5 μM hLys-B3), leading to changes in the aggregation pathway and the formation of Aβ species with less cytotoxicity. The findings provided new insights into the development of more potent protein-based inhibitors against Aβ fibrillogenesis.
Collapse
Affiliation(s)
- Xi Li
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| | - Baolong Xie
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
- Institute of Tianjin Seawater Desalination and Multipurpose Utilization, State Oceanic Administration (SOA) , Tianjin 300192 , China
| | - Yan Sun
- Department of Biochemical Engineering and Key Laboratory of Systems Bioengineering of the Ministry of Education, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300354 , China
| |
Collapse
|
80
|
Liu Z, Jiang F, Wu YD. Significantly different contact patterns between Aβ40 and Aβ42 monomers involving the N-terminal region. Chem Biol Drug Des 2018; 94:1615-1625. [PMID: 30381893 DOI: 10.1111/cbdd.13431] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/28/2018] [Accepted: 10/10/2018] [Indexed: 01/03/2023]
Abstract
Aβ42 peptide, with two additional residues at C-terminus, aggregates much faster than Aβ40. We performed equilibrium replica-exchange molecular dynamics simulations of their monomers using our residue-specific force field. Simulated 3 JHNH α -coupling constants agree excellently with experimental data. Aβ40 and Aβ42 have very similar local conformational features, with considerable β-strand structures in the segments: A2-H6 (A), L17-A21 (B), A30-V36 (C) of both peptides and V39-I41 (D) of Aβ42. Both peptides have abundant A-B and B-C contacts, but Aβ40 has much more contacts between A and C than Aβ42, which may retard its aggregation. Only Aβ42 has considerable A-B-C-D topology. Decreased probability of A-C contact in Aβ42 relates to the competition from C-D contact. Increased A-C contact probability may also explain the slower aggregation of A2T and A2V mutants of Aβ42.
Collapse
Affiliation(s)
- Ziye Liu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Fan Jiang
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Yun-Dong Wu
- Lab of Computational Chemistry and Drug Design, State Key Laboratory of Chemical Oncogenomics, Peking University Shenzhen Graduate School, Shenzhen, China.,College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| |
Collapse
|
81
|
Kar RK, Brender JR, Ghosh A, Bhunia A. Nonproductive Binding Modes as a Prominent Feature of Aβ 40 Fiber Elongation: Insights from Molecular Dynamics Simulation. J Chem Inf Model 2018; 58:1576-1586. [PMID: 30047732 DOI: 10.1021/acs.jcim.8b00169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The formation of amyloid fibers has been implicated in a number of neurodegenerative diseases. The growth of amyloid fibers is strongly thermodynamically favorable, but kinetic traps exist where the incoming monomer binds in an incompatible conformation that blocks further elongation. Unfortunately, this process is difficult to follow experimentally at the atomic level. It is also too complex to simulate in full detail and to date has been explored either through coarse-grained simulations, which may miss many important interactions, or full atomic simulations, in which the incoming peptide is constrained to be near the ideal fiber geometry. Here we use an alternate approach starting from a docked complex in which the monomer is from an experimental NMR structure of one of the major conformations in the unbound ensemble, a largely unstructured peptide with the central hydrophobic region in a 310 helix. A 1000 ns full atomic simulation in explicit solvent shows the formation of a metastable intermediate by sequential, concerted movements of both the fiber and the monomer. A Markov state model shows that the unfolded monomer is trapped at the end of the fiber in a set of interconverting antiparallel β-hairpin conformations. The simulation here may serve as a model for the binding of other non-β-sheet conformations to amyloid fibers.
Collapse
Affiliation(s)
- Rajiv K Kar
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Jeffrey R Brender
- Radiation Biology Branch , National Institutes of Health , Bethesda , Maryland 20814 , United States
| | - Anirban Ghosh
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| | - Anirban Bhunia
- Department of Biophysics , Bose Institute , P-1/12 CIT Scheme VII (M) , Kolkata 700054 , India
| |
Collapse
|
82
|
Rosenman DJ, Clemente N, Ali M, García AE, Wang C. High pressure NMR reveals conformational perturbations by disease-causing mutations in amyloid β-peptide. Chem Commun (Camb) 2018; 54:4609-4612. [PMID: 29670961 DOI: 10.1039/c8cc01674g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here we present the high pressure NMR characterization of Aβ42 and two Aβ40 variants with Alzheimer-causing mutations E22G and D23N. While chemical shifts only identified localized changes at ambient pressure compared with Aβ40, high pressure NMR revealed a common site with heightened pressure sensitivity at Q15, K16 and L17 in all three variants, which correlates to higher β-propensity at central hydrophobic cluster (CHC) and faster aggregation.
Collapse
Affiliation(s)
- David J Rosenman
- Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 Eighth Street, Troy, New York 12180, USA.
| | | | | | | | | |
Collapse
|
83
|
Abstract
Alzheimer's disease (AD) is a debilitating disease influencing a multitude of outcomes, including memory function. Recent work suggests that memory may be influenced by exercise ('memorcise'), even among those with AD. The present narrative review details (1) the underlying mechanisms of AD; (2) whether exercise has a protective effect in preventing AD; (3) the mechanisms through which exercise may help to prevent AD; (4) the mechanisms through which exercise may help attenuate the progression of AD severity among those with existing AD; (5) the effects and mechanisms through which exercise is associated with memory among those with existing AD; and (6) exercise recommendations for those with existing AD. Such an understanding will aid clinicians in their ability to use exercise as a potential behavioral strategy to help prevent and treat AD.
Collapse
Affiliation(s)
- Paul D Loprinzi
- a Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management , The University of Mississippi , University , MS , USA
| | - Emily Frith
- a Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management , The University of Mississippi , University , MS , USA
| | - Pamela Ponce
- a Physical Activity Epidemiology Laboratory, Exercise Psychology Laboratory, Department of Health, Exercise Science and Recreation Management , The University of Mississippi , University , MS , USA
| |
Collapse
|
84
|
Zhao W, Xing X, Kang B, Zhu X, Ai H. Positive effect of strong acidity on the twist of Aβ 42 fibrils and the counteraction of Aβ 42 N-terminus. J Mol Graph Model 2018; 82:59-66. [PMID: 29698798 DOI: 10.1016/j.jmgm.2018.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Revised: 03/26/2018] [Accepted: 04/04/2018] [Indexed: 11/28/2022]
Abstract
pH is a crucial factor in terms of affecting the aggregation and morphology of β-Amyloid and hence a focus of study. In this study, structural and mechanical properties of a series of models (5, 6, …, 30 layer) of one-fold Aβ42 fibrils at pH 1.5, 3.0 and 7.5, have been computed by using all-atom molecular dynamics simulations. 12, 14, and 15 layers are established to be the smallest realistic models for Aβ42 fibrils at pH 1.5, 3.0 and 7.5, with twist angles of 0.40°, 0.34°, 0.31° respectively, disclosing the favorable effect of strong acidity on fibril twist. However, these angles are all lower than that (0.48°) determined for the truncated Aβ17-42 fibril at pH 7.5, indicating that the disordered N-terminal depresses greatly the fibril twist and the lower pH disfavors the depression. Three commonly used indices to measure the fibril properties, namely number of H-bonds, interstrand distance and β-sheet content have imperceptible changes with the pH alternation, therefore changes in fibril twist can be taken as a probe to monitor fibril properties. By contrast, N-terminus is determined not only to inhibit the U-shaped fibril twist by hampering the stagger between β1 and β2 strands, but also to play a vital carrier role in feeling solution (i.e., pH, salt) changes. These results can help design the nextgeneration of amyloid materials for state-of-the-art bio-nano-med applications by changing the solution pH or modifying chain length.
Collapse
Affiliation(s)
- Wei Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xiaofeng Xing
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Baotao Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Xueying Zhu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Hongqi Ai
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
85
|
Mittal S, Bravo-Rodriguez K, Sanchez-Garcia E. Mechanism of Inhibition of Beta Amyloid Toxicity by Supramolecular Tweezers. J Phys Chem B 2018; 122:4196-4205. [DOI: 10.1021/acs.jpcb.7b10530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sumit Mittal
- University of Duisburg-Essen, Universitätsstraße 2, 45141 Essen, Germany
| | | | | |
Collapse
|
86
|
Chen L, Huang Z, Du Y, Fu M, Han H, Wang Y, Dong Z. Capsaicin Attenuates Amyloid-β-Induced Synapse Loss and Cognitive Impairments in Mice. J Alzheimers Dis 2018; 59:683-694. [PMID: 28671132 DOI: 10.3233/jad-170337] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Alzheimer's disease (AD) is the most common cause of progressive cognitive impairment in the aged. The aggregation of the amyloid β-protein (Aβ) is a hallmark of AD and is linked to synapse loss and cognitive impairment. Capsaicin, a specific agonist of the transient receptor potential vanilloid 1 (TRPV1), has been proven to ameliorate stress-induced AD-like pathological and cognitive impairments, but it is unclear whether TRPV1 activation can affect cognitive and synaptic functions in Aβ-induced mouse model of AD. In this study, we investigated the effects of TRPV1 activation on spatial memory and synaptic plasticity in mice treated with Aβ. To induce AD-like pathological and cognitive impairments, adult C57Bl/6 mice were microinjected with Aβ42 (100 μM, 2.5 μl/mouse, i.c.v.). Two weeks after Aβ42 microinjection, spatial learning and memory as well as hippocampal long-term potentiation (LTP) were examined. The results showed that Aβ42 microinjection significantly impaired spatial learning and memory in the Morris water maze and novel object recognition tests compared with controls. These behavioral changes were accompanied by synapse loss and impaired LTP in the CA1 area of hippocampus. More importantly, daily capsaicin (1 mg/kg, i.p.) treatment throughout the experiment dramatically improved spatial learning and memory and synaptic function, as reflected by enhanced hippocampal LTP and reduced synapse loss, whereas the TRPV1 antagonist capsazepine (1 mg/kg, i.p.) treatment had no effects on cognitive and synaptic function in Aβ42-treated mice. These results indicate that TRPV1 activation by capsaicin rescues cognitive deficit in the Aβ42-induced mouse model of AD both structurely and functionally.
Collapse
Affiliation(s)
- Long Chen
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Zhilin Huang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yehong Du
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Min Fu
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Huili Han
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| | - Yutian Wang
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Brain Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China.,Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, PR China
| |
Collapse
|
87
|
Owen MC, Kulig W, Poojari C, Rog T, Strodel B. Physiologically-relevant levels of sphingomyelin, but not GM1, induces a β-sheet-rich structure in the amyloid-β(1-42) monomer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2018; 1860:1709-1720. [PMID: 29626441 DOI: 10.1016/j.bbamem.2018.03.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 01/07/2023]
Abstract
To resolve the contribution of ceramide-containing lipids to the aggregation of the amyloid-β protein into β-sheet rich toxic oligomers, we employed molecular dynamics simulations to study the effect of cholesterol-containing bilayers comprised of POPC (70% POPC, and 30% cholesterol) and physiologically relevant concentrations of sphingomyelin (SM) (30% SM, 40% POPC, and 30% cholesterol), and the GM1 ganglioside (5% GM1, 70% POPC, and 25% cholesterol). The increased bilayer rigidity provided by SM (and to a lesser degree, GM1) reduced the interactions between the SM-enriched bilayer and the N-terminus of Aβ42 (and also residues Ser26, Asn27, and Lys28), which facilitated the formation of a β-sheet in the normally disordered N-terminal region. Aβ42 remained anchored to the SM-enriched bilayer through hydrogen bonds with the side chain of Arg5. With β-sheets in the at the N and C termini, the structure of Aβ42 in the sphingomyelin-enriched bilayer most resembles β-sheet-rich structures found in higher-ordered Aβ fibrils. Conversely, when bound to a bilayer comprised of 5% GM1, the conformation remained similar to that observed in the absence of GM1, with Aβ42 only making contact with one or two GM1 molecules. This article is part of a Special Issue entitled: Protein Aggregation and Misfolding at the Cell Membrane Interface edited by Ayyalusamy Ramamoorthy.
Collapse
Affiliation(s)
- Michael C Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; CEITEC - Central European Institute of Technology, Masaryk University, Kamenice 753/5, Brno 625 00, Czech Republic.
| | - Waldemar Kulig
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Chetan Poojari
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Tomasz Rog
- Department of Physics, University of Helsinki, P.O. Box 64, FI-00014 Helsinki, Finland; Department of Physics, Tampere University of Technology, P.O. Box 692, FI-33101 Tampere, Finland
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6), Forschungszentrum Jülich, 52425 Jülich, Germany; Institute of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
88
|
Wang J, Yamamoto T, Bai J, Cox SJ, Korshavn KJ, Monette M, Ramamoorthy A. Real-time monitoring of the aggregation of Alzheimer's amyloid-β via 1H magic angle spinning NMR spectroscopy. Chem Commun (Camb) 2018; 54:2000-2003. [PMID: 29411841 DOI: 10.1039/c8cc00167g] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Proton magic-angle-spinning NMR used for real-time analysis of amyloid aggregation reveals that mechanical rotation of Aβ1-40 monomers increases the rate of formation of aggregates, and that the increasing lag-time with peptide concentration suggests the formation of growth-incompetent species. EGCG's ability to shift off-pathway aggregation is also demonstrated.
Collapse
Affiliation(s)
- Jian Wang
- Biophysics Program, The University of Michigan, Ann Arbor, MI 48109-1055, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Zhao W, Ai H. Effect of pH on Aβ 42 Monomer and Fibril-like Oligomers-Decoding in Silico of the Roles of pK Values of Charged Residues. Chemphyschem 2018; 19:1103-1116. [PMID: 29380494 DOI: 10.1002/cphc.201701384] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Indexed: 01/10/2023]
Abstract
Amyloid beta-peptide (Aβ) is the key to developing Alzheimer's disease. Experiments have confirmed that different acidity influences directly not only the structural morphology and population of Aβ oligomers, but also the toxicity. The atomic-level association between the pH, charged residues, and Aβ properties remains obscure. Herein, conformational changes of Aβ42 monomer, fibril-like trimer, and pentamer in the medium pH range of 4.0-7.5 are studied. The results reveal that, as the pH changes from 7.5 to the isoelectric pH, His6, His13, and His14 are protonated in turn, successively approach the center of mass of folded Aβ monomer, trigger ionic interactions and changes of neighboring turns (Asp7-Ser8, His14-Lys16) and even a distant one (Leu34-Met35), as well as concomitant changes of secondary structure, and promote the conformation transition from unfolded to folded. This observation discloses that protonation can convert these charged residues from originally hydrophilic to "hydrophobic-like". For fibril-like oligomers, the pH susceptibility essentially stems from the pK values of charged residues in the context of the Aβ fibril, and in turn one can predict the dynamic behavior of these residues in the processes of dissociation or stabilization of a fibril by comparing the pK values of residues involved in salt bridges in the normal state with those in the current context. This idea is justified by two fibril models and appears to be applicable to other peptides and their fibril systems.
Collapse
Affiliation(s)
- Wei Zhao
- Shandong Provincial Key Laboratory, of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Hongqi Ai
- Shandong Provincial Key Laboratory, of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
90
|
Young SC. A Systematic Review of Antiamyloidogenic and Metal-Chelating Peptoids: Two Structural Motifs for the Treatment of Alzheimer's Disease. Molecules 2018; 23:E296. [PMID: 29385058 PMCID: PMC6017092 DOI: 10.3390/molecules23020296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 11/17/2022] Open
Abstract
Alzheimer's disease (AD) is an incurable form of dementia affecting millions of people worldwide and costing billions of dollars in health care-related payments, making the discovery of a cure a top health, societal, and economic priority. Peptide-based drugs and immunotherapies targeting AD-associated beta-amyloid (Aβ) aggregation have been extensively explored; however, their therapeutic potential is limited by unfavorable pharmacokinetic (PK) properties. Peptoids (N-substituted glycine oligomers) are a promising class of peptidomimetics with highly tunable secondary structures and enhanced stabilities and membrane permeabilities. In this review, the biological activities, structures, and physicochemical properties for several amyloid-targeting peptoids will be described. In addition, metal-chelating peptoids with the potential to treat AD will be discussed since there are connections between the dysregulation of certain metals and the amyloid pathway.
Collapse
Affiliation(s)
- Sherri C Young
- Department of Chemistry, Muhlenberg College, 2400 Chew Street, Allentown, PA 18104, USA.
| |
Collapse
|
91
|
Blinov N, Khorvash M, Wishart DS, Cashman NR, Kovalenko A. Initial Structural Models of the Aβ42 Dimer from Replica Exchange Molecular Dynamics Simulations. ACS OMEGA 2017; 2:7621-7636. [PMID: 31457321 PMCID: PMC6645216 DOI: 10.1021/acsomega.7b00805] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 10/26/2017] [Indexed: 05/27/2023]
Abstract
Experimental characterization of the molecular structure of small amyloid (A)β oligomers that are currently considered as toxic agents in Alzheimer's disease is a formidably difficult task due to their transient nature and tendency to aggregate. Such structural information is of importance because it can help in developing diagnostics and an effective therapy for the disease. In this study, molecular simulations and protein-protein docking are employed to explore a possible connection between the structure of Aβ monomers and the properties of the intermonomer interface in the Aβ42 dimer. A structurally diverse ensemble of conformations of the monomer was sampled in microsecond timescale implicit solvent replica exchange molecular dynamics simulations. Representative structures with different solvent exposure of hydrophobic residues and secondary structure content were selected to build structural models of the dimer. Analysis of these models reveals that formation of an intramonomer salt bridge (SB) between Asp23 and Lys28 residues can prevent the building of a hydrophobic interface between the central hydrophobic clusters (CHCs) of monomers upon dimerization. This structural feature of the Aβ42 dimer is related to the difference in packing of hydrophobic residues in monomers with the Asp23-Lys28 SB in on and off states, in particular, to a lower propensity to form hydrophobic contacts between the CHC domain and C-terminal residues in monomers with a formed SB. These findings could have important implications for understanding the difference between aggregation pathways of Aβ monomers leading to neurotoxic oligomers or inert fibrillar structures.
Collapse
Affiliation(s)
- Nikolay Blinov
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- National
Institute for Nanotechnology, National Research
Council of Canada, Edmonton, Alberta T6G 2M9, Canada
| | - Massih Khorvash
- Department
of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - David S. Wishart
- Departments
of Computing Science and Biological Sciences, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
| | - Neil R. Cashman
- Department
of Medicine, University of British Columbia, Vancouver, British Columbia V6T 2B5, Canada
| | - Andriy Kovalenko
- Department
of Mechanical Engineering, University of
Alberta, Edmonton, Alberta T6G 1H9, Canada
- National
Institute for Nanotechnology, National Research
Council of Canada, Edmonton, Alberta T6G 2M9, Canada
| |
Collapse
|
92
|
Sasmal S, Lincoff J, Head-Gordon T. Effect of a Paramagnetic Spin Label on the Intrinsically Disordered Peptide Ensemble of Amyloid-β. Biophys J 2017; 113:1002-1011. [PMID: 28877484 DOI: 10.1016/j.bpj.2017.06.067] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 06/16/2017] [Accepted: 06/30/2017] [Indexed: 10/18/2022] Open
Abstract
Paramagnetic relaxation enhancement is an NMR technique that has yielded important insight into the structure of folded proteins, although the perturbation introduced by the large spin probe might be thought to diminish its usefulness when applied to characterizing the structural ensembles of intrinsically disordered proteins (IDPs). We compare the computationally generated structural ensembles of the IDP amyloid-β42 (Aβ42) to an alternative sequence in which a nitroxide spin label attached to cysteine has been introduced at its N-terminus. Based on this internally consistent computational comparison, we find that the spin label does not perturb the signature population of the β-hairpin formed by residues 16-21 and 29-36 that is dominant in the Aβ42 reference ensemble. However, the presence of the tag induces a strong population shift in a subset of the original Aβ42 structural sub-populations, including a sevenfold enhancement of the β-hairpin formed by residues 27-31 and 33-38. Through back-calculation of NMR observables from the computational structural ensembles, we show that the structural differences between the labeled and unlabeled peptide would be evident in local residual dipolar couplings, and possibly differences in homonuclear 1H-1H nuclear Overhauser effects (NOEs) and heteronuclear 1H-15N NOEs if the paramagnetic contribution to the longitudinal relaxation does not suppress the NOE intensities in the real experiment. This work shows that molecular simulation provides a complementary approach to resolving the potential structural perturbations introduced by reporter tags that can aid in the interpretation of paramagnetic relaxation enhancement, double electron-electron resonance, and fluorescence resonance energy transfer experiments applied to IDPs.
Collapse
Affiliation(s)
- Sukanya Sasmal
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| | - James Lincoff
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California
| | - Teresa Head-Gordon
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California; Department of Chemistry, University of California, Berkeley, Berkeley, California; Department of Bioengineering, University of California, Berkeley, Berkeley, California; Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, California.
| |
Collapse
|
93
|
Hilt S, Rojalin T, Viitala T, Koivuniemi A, Bunker A, Hogiu SW, Kálai T, Hideg K, Yliperttula M, Voss JC. Oligomerization Alters Binding Affinity Between Amyloid Beta and a Modulator of Peptide Aggregation. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2017; 121:23974-23987. [PMID: 30214656 PMCID: PMC6130836 DOI: 10.1021/acs.jpcc.7b06164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The soluble oligomeric form of the amyloid beta (Aβ) peptide is the major causative agent in the molecular pathogenesis of Alzheimer's disease (AD). We have previously developed a pyrroline-nitroxyl fluorene compound (SLF) that blocks the toxicity of Aβ. Here we introduce the multi-parametric surface plasmon resonance (MP-SPR) approach to quantify SLF binding and effect on the self-association of the peptide via a label-free, real-time approach. Kinetic analysis of SLF binding to Aβ and measurements of layer thickness alterations inform on the mechanism underlying the ability of SLF to inhibit Aβ toxicity and its progression towards larger oligomeric assemblies. Depending on the oligomeric state of Aβ, distinct binding affinities for SLF are revealed. The Aβ monomer and dimer uniquely possess sub-nanomolar affinity for SLF via a non-specific mode of binding. SLF binding is weaker in oligomeric Aβ, which displays an affinity for SLF on the order of 100 μM. To complement these experiments we carried out molecular docking and molecular dynamics simulations to explore how SLF interacts with the Aβ peptide. The MP-SPR results together with in silico modeling provide affinity data for the SLF-Aβ interaction and allow us to develop a new general method for examining protein aggregation.
Collapse
Affiliation(s)
- Silvia Hilt
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| | - Tatu Rojalin
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Tapani Viitala
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Artturi Koivuniemi
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Alex Bunker
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
| | - Sebastian Wachsmann Hogiu
- Department of Pathology and Laboratory Medicine, and Center for Biophotonics, University of California Davis, USA
- Intellectual Ventures/Global Good, Bellevue, WA, USA
| | - Tamás Kálai
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Kálmán Hideg
- Institute of Organic and Medicinal Chemistry, University of Pécs, H 7624 Pécs, Szigeti st. 12. Pécs, Hungary
| | - Marjo Yliperttula
- Centre for Drug Research, Division of Pharmaceutical Biosciences, University of Helsinki, Finland
- Department of Pharmaceutical Sciences, University of Padova, Italy
| | - John C. Voss
- Department of Biochemistry & Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
94
|
Peccati F, Pantaleone S, Riffet V, Solans-Monfort X, Contreras-García J, Guallar V, Sodupe M. Binding of Thioflavin T and Related Probes to Polymorphic Models of Amyloid-β Fibrils. J Phys Chem B 2017; 121:8926-8934. [DOI: 10.1021/acs.jpcb.7b06675] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Francesca Peccati
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Stefano Pantaleone
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vanessa Riffet
- Laboratoire
de Chimie Théorique (LCT), Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris, France
- Institut Photovoltaïque d’Ile de France (IPVF), 8 rue de la Renaissance, 92160 Antony, France
- Institute for Research and Development of Photovoltaic Energy (IRDEP), UMR 7174 CNRS/EDF R&D/Chimie ParisTech-PSL, 6 quai Watier, 78401 Chatou, France
| | | | - Julia Contreras-García
- Laboratoire
de Chimie Théorique (LCT), Sorbonne Universités, UPMC Univ Paris 06, CNRS, 4 place Jussieu, F-75005 Paris, France
| | - Victor Guallar
- Joint
Barcelona Supercomputing Center - Centre for Genomic Regulation -
Institute for Research in Biomedicine - Research Program in Computational
Biology, Barcelona Supercomputing Center, Barcelona, Spain
- ICREA, Passeig Lluís
Companys 23, E-08010 Barcelona, Spain
| | - Mariona Sodupe
- Departament
de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
- ICREA, Passeig Lluís
Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
95
|
Boopathi S, Kolandaivel P. Effect of mutation on Aβ1-42-Heme complex in aggregation mechanism: Alzheimer’s disease. J Mol Graph Model 2017; 76:224-233. [DOI: 10.1016/j.jmgm.2017.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/15/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
96
|
Roy A, Chandra K, Dolui S, Maiti NC. Envisaging the Structural Elevation in the Early Event of Oligomerization of Disordered Amyloid β Peptide. ACS OMEGA 2017; 2:4316-4327. [PMID: 31457723 PMCID: PMC6641910 DOI: 10.1021/acsomega.7b00522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/25/2017] [Indexed: 05/27/2023]
Abstract
In Alzheimer's disease (AD), amyloid β (Aβ) protein plays a detrimental role in neuronal injury and death. Recent in vitro and in vivo studies suggest that soluble oligomers of the Aβ peptide are neurotoxic. Structural properties of the oligomeric assembly, however, are largely unknown. Our present investigation established that the 40-residue-long Aβ peptide (Aβ40) became more helical, ordered, and compact in the oligomeric state, and both the helical and β-sheet components were found to increase significantly in the early event of oligomerization. The band-selective two-dimensional NMR analysis suggested that majority of the residues from sequence 12 to 22 gained a higher-ordered secondary structure in the oligomeric condition. The presence of a significant amount of helical conformation was confirmed by Raman bands at 1650 and 1336 cm-1. Other residues remained mostly in the extended polyproline II (PPII) and less compact β-conformation space. In the event of maturation of the oligomers into an amyloid fiber, both the helical content and the PPII-like structural components declined and ∼72% residues attained a compact β-sheet structure. Interestingly, however, some residues remained in the collagen triple helix/extended 2.51-helix conformation as evidenced by the amide III Raman signature band at 1272 cm-1. Molecular dynamics analysis using an optimized potential for liquid simulation force field with the peptide monomer indicated that some of the residues may have preferences for helical conformation and this possibly contributed in the event of oligomer formation, which eventually became a β-sheet-rich amyloid fiber.
Collapse
Affiliation(s)
- Anupam Roy
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Kousik Chandra
- NMR
Research Centre, Indian Institute of Science, CV Raman Road, Devasandra Layout, Bengaluru, Karnataka 560012, India
| | - Sandip Dolui
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| | - Nakul C. Maiti
- Structural
Biology and Bioinformatics Division, Indian
Institute of Chemical Biology, Council of Scientific and Industrial
Research, 4, Raja S.C. Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
97
|
Voelker MJ, Barz B, Urbanc B. Fully Atomistic Aβ40 and Aβ42 Oligomers in Water: Observation of Porelike Conformations. J Chem Theory Comput 2017; 13:4567-4583. [DOI: 10.1021/acs.jctc.7b00495] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Matthew J. Voelker
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
| | - Bogdan Barz
- Institute
of Complex Systems, Structural Biochemistry ICS-6: Structural Biochemistry, Forschungzentrum Jülich GmbH, Jülich 52425, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf 40225, Germany
| | - Brigita Urbanc
- Department
of Physics, Drexel University, Philadelphia, Pennsylvania 19104, United States
- Faculty
of Mathematics and Physics, University of Ljubljana, Ljubljana 1000, Slovenia
| |
Collapse
|
98
|
Aleksis R, Oleskovs F, Jaudzems K, Pahnke J, Biverstål H. Structural studies of amyloid-β peptides: Unlocking the mechanism of aggregation and the associated toxicity. Biochimie 2017; 140:176-192. [PMID: 28751216 DOI: 10.1016/j.biochi.2017.07.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/21/2017] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases worldwide. Formation of amyloid plaques consisting of amyloid-β peptides (Aβ) is one of the hallmarks of AD. Several lines of evidence have shown a correlation between the Aβ aggregation and the disease development. Extensive research has been conducted with the aim to reveal the structures of the neurotoxic Aβ aggregates. However, the exact structure of pathological aggregates and mechanism of the disease still remains elusive due to complexity of the occurring processes and instability of various disease-relevant Aβ species. In this article we review up-to-date structural knowledge about amyloid-β peptides, focusing on data acquired using solution and solid state NMR techniques. Furthermore, we discuss implications from these structural studies on the mechanisms of aggregation and neurotoxicity.
Collapse
Affiliation(s)
- Rihards Aleksis
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia.
| | - Filips Oleskovs
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Kristaps Jaudzems
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia
| | - Jens Pahnke
- Department of Neuro-/Pathology, Translational Neurodegeneration Research and Neuropathology Lab, University of Oslo (UiO) & Oslo University Hospital (OUS), Norway; LIED, University of Lübeck Uzl, Germany; Leibniz-Institute of Plant Biochemistry (IPB), Halle, Germany
| | - Henrik Biverstål
- Department of Physical Organic Chemistry, Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga, Latvia; Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
99
|
Dong M, Zhao W, Hu D, Ai H, Kang B. N-Terminus Binding Preference for Either Tanshinone or Analogue in Both Inhibition of Amyloid Aggregation and Disaggregation of Preformed Amyloid Fibrils-Toward Introducing a Kind of Novel Anti-Alzheimer Compounds. ACS Chem Neurosci 2017; 8:1577-1588. [PMID: 28406293 DOI: 10.1021/acschemneuro.7b00080] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Amyloid-β (Aβ40/Aβ42) peptide with a length of 40 or 42 residues is naturally secreted as cleavage product of the amyloid precursor protein, and formation of Aβ aggregates in a patient's brain is a hallmark of Alzheimer's disease (AD). Therefore, disaggregation and disruption provide potential therapeutic approaches to reduce, inhibit, and even reverse Aβ aggregation. The disaggregation/inhibition effect of the inhibitors applies generally to both Aβ40 and Aβ42 aggregations. Here we capture the atomic-level details of the interaction between Aβ40/Aβ42 and either natural tanshinone compound TS1 or its derivative TS0, and observe novel results by using molecular dynamics simulations. We observe that the natural TS1 indeed inhibits the monomolecular Aβ42 (mAβ42) aggregation and disaggregates Aβ42 amyloid fibrils, being in good agreement with the experimental results. TS1 is favorable to stabilize mAβ40 and even Aβ40 fibril, playing an opposite role to that in the Aβ42 counterpart, however. TS0 can inhibit the misfolding of either mAβ40 or mAβ42 and disaggregate Aβ42 fibril but stabilize the Aβ40 fibril. Using a combination of secondary structural analysis, MM-PBSA binding energy calculations, and radial distribution functions computations, we find that both TS0 and TS1, especially the former, prefer to bind at the charged residues within disordered N-terminus with a scarce positive binding energy and disappear the characteristic C-terminal bend region of Aβ42 fibril, as well as twist the Aβ42 fibril seriously. It turns out to destabilize the Aβ42 fibril and enable the conversion of U-shaped Aβ42 fibril from the onefold to the twofold morphologies. The N-terminal binding preference helps us to identify N-terminal region as the specific epitope for specific inhibitors/drugs (such as TS0 and analogues), heralding unusual inhibition/disaggregation or stabilization mechanisms, and offering an alternative direction in engineering new inhibitors to treat AD.
Collapse
Affiliation(s)
- Mingyan Dong
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Wei Zhao
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Dingkun Hu
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hongqi Ai
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Baotao Kang
- Shandong Provincial
Key Laboratory
of Fluorine Chemistry and Chemical Materials, School of Chemistry
and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
100
|
Ebrahimi K, Majdi A, Baghaiee B, Hosseini SH, Sadigh-Eteghad S. Physical activity and beta-amyloid pathology in Alzheimer's disease: A sound mind in a sound body. EXCLI JOURNAL 2017; 16:959-972. [PMID: 28900376 PMCID: PMC5579405 DOI: 10.17179/excli2017-475] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 06/17/2017] [Indexed: 11/10/2022]
Abstract
Alzheimer's disease (AD) is the most common type of dementia worldwide. Since curative treatment has not been established for AD yet and due to heavy financial and psychological costs of patients' care, special attention has been paid to preventive interventions such as physical activity. Evidence shows that physical activity has protective effects on cognitive function and memory in AD patients. Several pathologic factors are involved in AD-associated cognitive impairment some of which are preventable by physical activity. Also, various experimental and clinical studies are in progress to prove exercise role in the beta-amyloid (Aβ) pathology as a most prevailing hypothesis explaining AD pathogenesis. This study aims to review the role of physical activity in Aβ-related pathophysiology in AD.
Collapse
Affiliation(s)
- Khadije Ebrahimi
- Department of Sports Science and Physical Education, Marand Branch, Islamic Azad University, Marand, Iran
| | - Alireza Majdi
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behrouz Baghaiee
- Department of Sports Science and Physical Education, Jolfa Branch, Islamic Azad University, Jolfa, Iran
| | - Seyed Hojjat Hosseini
- Department of Physiology and Pharmacology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Saeed Sadigh-Eteghad
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|