51
|
Johnson BA, Zhou Y, Lokugamage KG, Vu MN, Bopp N, Crocquet-Valdes PA, Kalveram B, Schindewolf C, Liu Y, Scharton D, Plante JA, Xie X, Aguilar P, Weaver SC, Shi PY, Walker DH, Routh AL, Plante KS, Menachery VD. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. PLoS Pathog 2022; 18:e1010627. [PMID: 35728038 PMCID: PMC9275689 DOI: 10.1371/journal.ppat.1010627] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/12/2022] [Accepted: 05/30/2022] [Indexed: 12/27/2022] Open
Abstract
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo. Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection.
Collapse
Affiliation(s)
- Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kumari G. Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nathen Bopp
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Birte Kalveram
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Patricia Aguilar
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Drug Discovery, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
52
|
Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, Shroff H, Piszczek G, Schuck P. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. PNAS NEXUS 2022; 1:pgac049. [PMID: 35783502 PMCID: PMC9235412 DOI: 10.1093/pnasnexus/pgac049] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023]
Abstract
Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by three to four different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced coassembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
53
|
Johnson BA, Zhou Y, Lokugamage KG, Vu MN, Bopp N, Crocquet-Valdes PA, Kalveram B, Schindewolf C, Liu Y, Scharton D, Plante JA, Xie X, Aguilar P, Weaver SC, Shi PY, Walker DH, Routh AL, Plante KS, Menachery VD. Nucleocapsid mutations in SARS-CoV-2 augment replication and pathogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2021.10.14.464390. [PMID: 34671771 PMCID: PMC8528077 DOI: 10.1101/2021.10.14.464390] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
While SARS-CoV-2 continues to adapt for human infection and transmission, genetic variation outside of the spike gene remains largely unexplored. This study investigates a highly variable region at residues 203-205 in the SARS-CoV-2 nucleocapsid protein. Recreating a mutation found in the alpha and omicron variants in an early pandemic (WA-1) background, we find that the R203K+G204R mutation is sufficient to enhance replication, fitness, and pathogenesis of SARS-CoV-2. The R203K+G204R mutant corresponds with increased viral RNA and protein both in vitro and in vivo . Importantly, the R203K+G204R mutation increases nucleocapsid phosphorylation and confers resistance to inhibition of the GSK-3 kinase, providing a molecular basis for increased virus replication. Notably, analogous alanine substitutions at positions 203+204 also increase SARS-CoV-2 replication and augment phosphorylation, suggesting that infection is enhanced through ablation of the ancestral 'RG' motif. Overall, these results demonstrate that variant mutations outside spike are key components in SARS-CoV-2's continued adaptation to human infection. AUTHOR SUMMARY Since its emergence, SARS-CoV-2 has continued to adapt for human infection resulting in the emergence of variants with unique genetic profiles. Most studies of genetic variation have focused on spike, the target of currently available vaccines, leaving the importance of variation elsewhere understudied. Here, we characterize a highly variable motif at residues 203-205 in nucleocapsid. Recreating the prominent nucleocapsid R203K+G204R mutation in an early pandemic background, we show that this mutation is alone sufficient to enhance SARS-CoV-2 replication and pathogenesis. We also link augmentation of SARS-CoV-2 infection by the R203K+G204R mutation to its modulation of nucleocapsid phosphorylation. Finally, we characterize an analogous alanine double substitution at positions 203-204. This mutant was found to mimic R203K+G204R, suggesting augmentation of infection occurs by disrupting the ancestral sequence. Together, our findings illustrate that mutations outside of spike are key components of SARS-CoV-2's adaptation to human infection.
Collapse
Affiliation(s)
- Bryan A. Johnson
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Yiyang Zhou
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Kumari G. Lokugamage
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Michelle N. Vu
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Nathen Bopp
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | | | - Birte Kalveram
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Craig Schindewolf
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Yang Liu
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Dionna Scharton
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Jessica A. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Xuping Xie
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Patricia Aguilar
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Scott C. Weaver
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Drug Discovery, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Andrew L. Routh
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Kenneth S. Plante
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
- World Reference Center of Emerging Viruses and Arboviruses, University of Texas Medical Branch; Galveston, Texas, United States of America
| | - Vineet D. Menachery
- Department of Microbiology and Immunology, University of Texas Medical Branch; Galveston, Texas, United States of America
- Institute for Human Infection and Immunity, University of Texas Medical Branch; Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch; Galveston, Texas, United States of America
| |
Collapse
|
54
|
Colton H, Hodgson D, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJ, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, CMMID COVID-19 Working Group, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Res 2022; 6:220. [PMID: 35600250 PMCID: PMC9091808 DOI: 10.12688/wellcomeopenres.17143.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2022] [Indexed: 11/20/2022] Open
Abstract
Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. We developed an in-house ELISA for testing participant serum for SARS-CoV-2 IgG and IgA reactivity against Spike and Nucleoprotein. Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: Our in-house assay had a sensitivity of 99·47% and specificity of 99·56%. We found that 24·4% (n=311/1275) of HCWs were seropositive as of 12th June 2020. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. Conclusions: HCWs in acute medical units and those working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more severe COVID-19 cases.
Collapse
Affiliation(s)
- Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kirsty L. Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Benjamin B. Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martin J. Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jon R. Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah L. Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - CMMID COVID-19 Working Group
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Thomas C. Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thushan I. de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul J. Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
55
|
Abstract
The 14-3-3 family proteins are vital scaffold proteins that ubiquitously expressed in various tissues. They interact with numerous protein targets and mediate many cellular signaling pathways. The 14-3-3 binding motifs are often embedded in intrinsically disordered regions which are closely associated with liquid-liquid phase separation (LLPS). In the past ten years, LLPS has been observed for a variety of proteins and biological processes, indicating that LLPS plays a fundamental role in the formation of membraneless organelles and cellular condensates. While extensive investigations have been performed on 14-3-3 proteins, its involvement in LLPS is overlooked. To date, 14-3-3 proteins have not been reported to undergo LLPS alone or regulate LLPS of their binding partners. To reveal the potential involvement of 14-3-3 proteins in LLPS, in this review, we summarized the LLPS propensity of 14-3-3 binding partners and found that about one half of them may undergo LLPS spontaneously. We further analyzed the phase separation behavior of representative 14-3-3 binders and discussed how 14-3-3 proteins may be involved. By modulating the conformation and valence of interactions and recruiting other molecules, we speculate that 14-3-3 proteins can efficiently regulate the functions of their targets in the context of LLPS. Considering the critical roles of 14-3-3 proteins, there is an urgent need for investigating the involvement of 14-3-3 proteins in the phase separation process of their targets and the underling mechanisms.
Collapse
|
56
|
Zhao H, Nguyen A, Wu D, Li Y, Hassan SA, Chen J, Shroff H, Piszczek G, Schuck P. Plasticity in structure and assembly of SARS-CoV-2 nucleocapsid protein. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.02.08.479556. [PMID: 35169797 PMCID: PMC8845419 DOI: 10.1101/2022.02.08.479556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Worldwide SARS-CoV-2 sequencing efforts track emerging mutations in its spike protein, as well as characteristic mutations in other viral proteins. Besides their epidemiological importance, the observed SARS-CoV-2 sequences present an ensemble of viable protein variants, and thereby a source of information on viral protein structure and function. Charting the mutational landscape of the nucleocapsid (N) protein that facilitates viral assembly, we observe variability exceeding that of the spike protein, with more than 86% of residues that can be substituted, on average by 3-4 different amino acids. However, mutations exhibit an uneven distribution that tracks known structural features but also reveals highly protected stretches of unknown function. One of these conserved regions is in the central disordered linker proximal to the N-G215C mutation that has become dominant in the Delta variant, outcompeting G215 variants without further spike or N-protein substitutions. Structural models suggest that the G215C mutation stabilizes conserved transient helices in the disordered linker serving as protein-protein interaction interfaces. Comparing Delta variant N-protein to its ancestral version in biophysical experiments, we find a significantly more compact and less disordered structure. N-G215C exhibits substantially stronger self-association, shifting the unliganded protein from a dimeric to a tetrameric oligomeric state, which leads to enhanced co-assembly with nucleic acids. This suggests that the sequence variability of N-protein is mirrored by high plasticity of N-protein biophysical properties, which we hypothesize can be exploited by SARS-CoV-2 to achieve greater efficiency of viral assembly, and thereby enhanced infectivity.
Collapse
Affiliation(s)
- Huaying Zhao
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ai Nguyen
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Di Wu
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sergio A. Hassan
- Bioinformatics and Computational Biosciences Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jiji Chen
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Hari Shroff
- Advanced Imaging and Microscopy Resource, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
- Laboratory of High Resolution Optical Imaging, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| | - Grzegorz Piszczek
- Biophysics Core Facility, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter Schuck
- Laboratory of Dynamics of Macromolecular Assembly, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
57
|
Active site prediction of phosphorylated SARS-CoV-2 N-Protein using molecular simulation. INFORMATICS IN MEDICINE UNLOCKED 2022; 29:100889. [PMID: 35224174 PMCID: PMC8860464 DOI: 10.1016/j.imu.2022.100889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 11/23/2022] Open
Abstract
The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) nucleocapsid protein (N-protein) is responsible for viral replication by assisting in viral RNA synthesis and attaching the viral genome to the replicase-transcriptase complex (RTC). Numerous studies suggested the N-protein as a drug target. However, the specific N-protein active sites for SARS-CoV-2 drug treatments are yet to be discovered. The purpose of this study was to determine active sites of the SARS-CoV-2 N-protein by identifying torsion angle classifiers for N-protein structural changes that correlated with the respective angle differences between the active and inactive N-protein. In the study, classifiers with a minimum accuracy of 80% determined from molecular simulation data were analyzed by Principal Component Analysis and cross-validated by Logistic Regression, Support Vector Machine, and Random Forest Classification. The ability of torsion angles ψ252 and φ375 to differentiate between phosphorylated and unphosphorylated structures suggested that residues 252 and 375 in the RNA binding domain might be important in N-protein activation. Furthermore, the φ and ψ angles of residue S189 correlated to a 90.7% structural determination accuracy. The key residues involved in the structural changes identified here might suggest possible important functional sites on the N-protein that could be the focus of further study to understand their potential as drug targets.
Collapse
|
58
|
Kolesov DE, Sinegubova MV, Safenkova IV, Vorobiev II, Orlova NA. Antigenic properties of the SARS-CoV-2 nucleoprotein are altered by the RNA admixture. PeerJ 2022; 10:e12751. [PMID: 35036106 PMCID: PMC8744485 DOI: 10.7717/peerj.12751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 12/15/2021] [Indexed: 01/07/2023] Open
Abstract
Determining the presence of antibodies to the SARS-CoV-2 antigens is the best way to identify infected people, regardless of the development of symptoms of COVID-19. The nucleoprotein (NP) of the SARS-CoV-2 is an immunodominant antigen of the virus; anti-NP antibodies are detected in persons previously infected with the virus with the highest titers. Many test systems for detecting antibodies to SARS-CoV-2 contain NP or its fragments as antigen. The sensitivity and specificity of such test systems differ significantly, which can be explained by variations in the antigenic properties of NP caused by differences in the methods of its cultivation, isolation and purification. We investigated this effect for the Escherichia coli-derived SARS-CoV-2 NP, obtained from the cytoplasm in the soluble form. We hypothesized that co-purified nucleic acids that form a strong complex with NP might negatively affect NP's antigenic properties. Therefore, we have established the NP purification method, which completely eliminates the RNA in the NP preparation. Two stages of RNA removal were used: treatment of the crude lysate of E. coli with RNase A and subsequent selective RNA elution with 2 M NaCl solution. The resulting NP without RNA has a significantly better signal-to-noise ratio when used as an ELISA antigen and tested with a control panel of serum samples with antibodies to SARS-CoV-2; therefore, it is preferable for in vitro diagnostic use. The same increase of the signal-to-noise ratio was detected for the free N-terminal domain of the NP. Complete removal of RNA complexed with NP during purification will significantly improve its antigenic properties, and the absence of RNA in NP preparations should be controlled during the production of this antigen.
Collapse
Affiliation(s)
- Denis E. Kolesov
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Maria V. Sinegubova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Irina V. Safenkova
- Laboratory of Immunobiochemistry, Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia, Moscow, Russia
| | - Ivan I. Vorobiev
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Nadezhda A. Orlova
- Laboratory of Mammalian Cell Bioengineering, Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
59
|
Lam AHY, Cai JP, Leung KY, Zhang RR, Liu D, Fan Y, Tam AR, Cheng VCC, To KKW, Yuen KY, Hung IFN, Chan KH. In-House Immunofluorescence Assay for Detection of SARS-CoV-2 Antigens in Cells from Nasopharyngeal Swabs as a Diagnostic Method for COVID-19. Diagnostics (Basel) 2021; 11:diagnostics11122346. [PMID: 34943583 PMCID: PMC8700487 DOI: 10.3390/diagnostics11122346] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 12/18/2022] Open
Abstract
Immunofluorescence is a traditional diagnostic method for respiratory viruses, allowing rapid, simple and accurate diagnosis, with specific benefits of direct visualization of antigens-of-interest and quality assessment. This study aims to evaluate the potential of indirect immunofluorescence as an in-house diagnostic method for SARS-CoV-2 antigens from nasopharyngeal swabs (NPS). Three primary antibodies raised from mice were used for immunofluorescence staining, including monoclonal antibody against SARS-CoV nucleocapsid protein, and polyclonal antibodies against SARS-CoV-2 nucleocapsid protein and receptor-binding domain of SARS-CoV-2 spike protein. Smears of cells from NPS of 29 COVID-19 patients and 20 non-infected individuals, and cells from viral culture were stained by the three antibodies. Immunofluorescence microscopy was used to identify respiratory epithelial cells with positive signals. Polyclonal antibody against SARS-CoV-2 N protein had the highest sensitivity and specificity among the three antibodies tested, detecting 17 out of 29 RT-PCR-confirmed COVID-19 cases and demonstrating no cross-reactivity with other tested viruses except SARS-CoV. Detection of virus-infected cells targeting SARS-CoV-2 N protein allow identification of infected individuals, although accuracy is limited by sample quality and number of respiratory epithelial cells. The potential of immunofluorescence as a simple diagnostic method was demonstrated, which could be applied by incorporating antibodies targeting SARS-CoV-2 into multiplex immunofluorescence panels used clinically, such as for respiratory viruses, thus allowing additional routine testing for diagnosis and surveillance of SARS-CoV-2 even after the epidemic has ended with low prevalence of COVID-19.
Collapse
Affiliation(s)
- Athene Hoi-Ying Lam
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | - Jian-Piao Cai
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
| | - Ka-Yi Leung
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
| | - Ricky-Ruiqi Zhang
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | - Danlei Liu
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | - Yujing Fan
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
| | | | | | - Kelvin Kai-Wang To
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
- Department of Microbiology, Queen Mary Hospital, Hospital Authority, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
| | - Ivan Fan-Ngai Hung
- Department of Medicine, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (A.H.-Y.L.); (R.-R.Z.); (D.L.); (Y.F.)
- Department of Medicine, Queen Mary Hospital, Hong Kong, China;
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Correspondence: (I.F.-N.H.); (K.-H.C.)
| | - Kwok-Hung Chan
- Department of Microbiology, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China; (J.-P.C.); (K.-Y.L.); (K.K.-W.T.); (K.-Y.Y.)
- State Key Laboratory for Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong, China
- Correspondence: (I.F.-N.H.); (K.-H.C.)
| |
Collapse
|
60
|
Dynamic, but Not Necessarily Disordered, Human-Virus Interactions Mediated through SLiMs in Viral Proteins. Viruses 2021; 13:v13122369. [PMID: 34960638 PMCID: PMC8703344 DOI: 10.3390/v13122369] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Most viruses have small genomes that encode proteins needed to perform essential enzymatic functions. Across virus families, primary enzyme functions are under functional constraint; however, secondary functions mediated by exposed protein surfaces that promote interactions with the host proteins may be less constrained. Viruses often form transient interactions with host proteins through conformationally flexible interfaces. Exposed flexible amino acid residues are known to evolve rapidly suggesting that secondary functions may generate diverse interaction potentials between viruses within the same viral family. One mechanism of interaction is viral mimicry through short linear motifs (SLiMs) that act as functional signatures in host proteins. Viral SLiMs display specific patterns of adjacent amino acids that resemble their host SLiMs and may occur by chance numerous times in viral proteins due to mutational and selective processes. Through mimicry of SLiMs in the host cell proteome, viruses can interfere with the protein interaction network of the host and utilize the host-cell machinery to their benefit. The overlap between rapidly evolving protein regions and the location of functionally critical SLiMs suggest that these motifs and their functional potential may be rapidly rewired causing variation in pathogenicity, infectivity, and virulence of related viruses. The following review provides an overview of known viral SLiMs with select examples of their role in the life cycle of a virus, and a discussion of the structural properties of experimentally validated SLiMs highlighting that a large portion of known viral SLiMs are devoid of predicted intrinsic disorder based on the viral SLiMs from the ELM database.
Collapse
|
61
|
The role of dancing duplexes in biology and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021. [PMID: 34656330 DOI: 10.1016/bs.pmbts.2021.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Across species, a common protein assembly arises: proteins containing structured domains separated by long intrinsically disordered regions, and dimerized through a self-association domain or through strong protein interactions. These systems are termed "IDP duplexes." These flexible dimers have roles in diverse pathologies including development of cancer, viral infections, and neurodegenerative disease. Here we discuss the role of disorder in IDP duplexes with similar domain architectures that bind hub protein, LC8. LC8-binding IDP duplexes are categorized into three groups: IDP duplexes that contain a self-association domain that is extended by LC8 binding, IDP duplexes that have no self-association domain and are dimerized through binding several copies of LC8, and multivalent LC8-binders that also have a self-association domain. Additionally, we discuss non-LC8-binding IDP duplexes with similar domain organizations, including the Nucleocapsid protein of SARS-CoV-2. We propose that IDP duplexes have structural features that are essential in many biological processes and that improved understanding of their structure function relationship will provide new therapeutic opportunities.
Collapse
|
62
|
Tarczewska A, Kolonko-Adamska M, Zarębski M, Dobrucki J, Ożyhar A, Greb-Markiewicz B. The method utilized to purify the SARS-CoV-2 N protein can affect its molecular properties. Int J Biol Macromol 2021; 188:391-403. [PMID: 34371045 PMCID: PMC8343380 DOI: 10.1016/j.ijbiomac.2021.08.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
One of the main structural proteins of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the nucleocapsid protein (N). The basic function of this protein is to bind genomic RNA and to form a protective nucleocapsid in the mature virion. The intrinsic ability of the N protein to interact with nucleic acids makes its purification very challenging. Therefore, typically employed purification methods appear to be insufficient for removing nucleic acid contamination. In this study, we present a novel purification protocol that enables the N protein to be prepared without any bound nucleic acids. We also performed comparative structural analysis of the N protein contaminated with nucleic acids and free of contamination and showed significant differences in the structural and phase separation properties of the protein. These results indicate that nucleic-acid contamination may severely affect molecular properties of the purified N protein. In addition, the notable ability of the N protein to form condensates whose morphology and behaviour suggest more ordered forms resembling gel-like or solid structures is described.
Collapse
Affiliation(s)
- Aneta Tarczewska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Marta Kolonko-Adamska
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| | - Mirosław Zarębski
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Jurek Dobrucki
- Department of Cell Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Cracow, Poland
| | - Andrzej Ożyhar
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland
| | - Beata Greb-Markiewicz
- Department of Biochemistry, Molecular Biology and Biotechnology, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wroclaw, Poland.
| |
Collapse
|
63
|
Del Veliz S, Rivera L, Bustos DM, Uhart M. Analysis of SARS-CoV-2 nucleocapsid phosphoprotein N variations in the binding site to human 14-3-3 proteins. Biochem Biophys Res Commun 2021; 569:154-160. [PMID: 34246830 PMCID: PMC8249750 DOI: 10.1016/j.bbrc.2021.06.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 06/30/2021] [Indexed: 12/15/2022]
Abstract
The SARS-CoV-2 N protein binds several cell host proteins including 14-3-3γ, a well-characterized regulatory protein. However, the biological function of this interaction is not completely understood. We analyzed the variability of ∼90 000 sequences of the SARS-CoV-2 N protein, particularly, its mutations in disordered regions containing binding motifs for 14-3-3 proteins. We studied how these mutations affect the binding energy to 14-3-3γ and found that changes positively affecting the predicted interaction with 14-3-3γ are the most successfully spread, with the highest prevalence in the phylogenetic tree. Although most residues are highly conserved within the 14-3-3 binding site, compensatory mutations to maintain the interaction energy of N-14-3-3γ were found, including half of the current variants of concern and interest. Our results suggest that binding of N to 14-3-3γ is beneficial for the virus, thus targeting this viral-host protein-protein interaction seems an attractive approach to explore antiviral strategies.
Collapse
Affiliation(s)
- Samanta Del Veliz
- Laboratorio de Integración de Señales Celulares, IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Lautaro Rivera
- Laboratorio de Integración de Señales Celulares, IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina
| | - Diego M. Bustos
- Laboratorio de Integración de Señales Celulares, IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina,Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Marina Uhart
- Laboratorio de Integración de Señales Celulares, IHEM, Universidad Nacional de Cuyo, CONICET, Mendoza, Argentina,Corresponding author. IHEM, U.N.Cuyo-CONICET, Av. Libertador 80, 5500, Mendoza, Argentina
| |
Collapse
|
64
|
Colton H, Hodgson D, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJ, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, CMMID COVID-19 Working Group, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. Wellcome Open Res 2021; 6:220. [PMID: 35600250 PMCID: PMC9091808 DOI: 10.12688/wellcomeopenres.17143.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 12/23/2022] Open
Abstract
Background: We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. Methods: HCWs at Sheffield Teaching Hospitals NHS Foundation Trust were prospectively enrolled and sampled at two time points. SARS-CoV-2 antibodies were tested using an in-house assay for IgG and IgA reactivity against Spike and Nucleoprotein (sensitivity 99·47%, specificity 99·56%). Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. Results: As of 12th June 2020, 24·4% (n=311/1275) of HCWs were seropositive. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. Conclusions: HCWs in acute medical units working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more symptomatic individuals.
Collapse
Affiliation(s)
- Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Kirsty L. Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Benjamin B. Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
| | - David C. James
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
| | - Martin J. Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Jon R. Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
| | - Sarah L. Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - CMMID COVID-19 Working Group
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, Sheffield, S10 2TN, UK
- Department of Virology, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S5 7AU, UK
| | - Thomas C. Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Thushan I. de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| | - Paul J. Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals Nhs Foundation Trust, Sheffield, S10 2JF, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S10 2TN, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
65
|
Panagiotopoulos A, Tseliou M, Karakasiliotis I, Kotzampasi D, Daskalakis V, Kesesidis N, Notas G, Lionis C, Kampa M, Pirintsos S, Sourvinos G, Castanas E. p-cymene impairs SARS-CoV-2 and Influenza A (H1N1) viral replication: In silico predicted interaction with SARS-CoV-2 nucleocapsid protein and H1N1 nucleoprotein. Pharmacol Res Perspect 2021; 9:e00798. [PMID: 34128351 PMCID: PMC8204097 DOI: 10.1002/prp2.798] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023] Open
Abstract
Therapeutic regimens for the COVID-19 pandemics remain unmet. In this line, repurposing of existing drugs against known or predicted SARS-CoV-2 protein actions have been advanced, while natural products have also been tested. Here, we propose that p-cymene, a natural monoterpene, can act as a potential novel agent for the treatment of SARS-CoV-2-induced COVID-19 and other RNA-virus-induced diseases (influenza, rabies, Ebola). We show by extensive molecular simulations that SARS-CoV-2 C-terminal structured domain contains a nuclear localization signal (NLS), like SARS-CoV, on which p-cymene binds with low micromolar affinity, impairing nuclear translocation of this protein and inhibiting viral replication, as verified by preliminary in vitro experiments. A similar mechanism may occur in other RNA-viruses (influenza, rabies and Ebola), also verified in vitro for influenza, by interaction of p-cymene with viral nucleoproteins, and structural modification of their NLS site, weakening its interaction with importin A. This common mechanism of action renders therefore p-cymene as a possible antiviral, alone, or in combination with other agents, in a broad spectrum of RNA viruses, from SARS-CoV-2 to influenza A infections.
Collapse
Affiliation(s)
| | - Melpomeni Tseliou
- Laboratory of Clinical VirologySchool of MedicineUniversity of CreteHeraklionGreece
| | - Ioannis Karakasiliotis
- Laboratory of BiologySchool of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - Danai‐Maria Kotzampasi
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
| | - Vangelis Daskalakis
- Department of Chemical EngineeringCyprus University of TechnologyLimassolCyprus
| | - Nikolaos Kesesidis
- Laboratory of BiologySchool of MedicineDemocritus University of ThraceAlexandroupolisGreece
| | - George Notas
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
| | - Christos Lionis
- Clinic of Social and Family MedicineSchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| | - Marilena Kampa
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| | - Stergios Pirintsos
- Nature Crete PharmaceuticalsHeraklionGreece
- Department of BiologyUniversity of CreteHeraklionGreece
- Botanical GardenUniversity of CreteRethymnonGreece
| | - George Sourvinos
- Laboratory of Clinical VirologySchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| | - Elias Castanas
- Laboratory of Experimental EndocrinologySchool of MedicineUniversity of CreteHeraklionGreece
- Nature Crete PharmaceuticalsHeraklionGreece
| |
Collapse
|
66
|
Hodgson D, Colton H, Hornsby H, Brown R, Mckenzie J, Bradley KL, James C, Lindsey BB, Birch S, Marsh L, Wood S, Bayley M, Dickson G, James DC, Nicklin MJH, Sayers JR, Zafred D, Rowland-Jones SL, Kudesia G, Kucharski A, Darton TC, de Silva TI, Collini PJ. Risk factors for SARS-CoV-2 seroprevalence following the first pandemic wave in UK healthcare workers in a large NHS Foundation Trust. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.07.07.21260151. [PMID: 34268521 PMCID: PMC8282110 DOI: 10.1101/2021.07.07.21260151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
BACKGROUND We aimed to measure SARS-CoV-2 seroprevalence in a cohort of healthcare workers (HCWs) during the first UK wave of the COVID-19 pandemic, explore risk factors associated with infection, and investigate the impact of antibody titres on assay sensitivity. METHODS HCWs at Sheffield Teaching Hospitals NHS Foundation Trust (STH) were prospectively enrolled and sampled at two time points. SARS-CoV-2 antibodies were tested using an in-house assay for IgG and IgA reactivity against Spike and Nucleoprotein (sensitivity 99·47%, specificity 99·56%). Data were analysed using three statistical models: a seroprevalence model, an antibody kinetics model, and a heterogeneous sensitivity model. FINDINGS As of 12th June 2020, 24·4% (n=311/1275) HCWs were seropositive. Of these, 39·2% (n=122/311) were asymptomatic. The highest adjusted seroprevalence was measured in HCWs on the Acute Medical Unit (41·1%, 95% CrI 30·0-52·9) and in Physiotherapists and Occupational Therapists (39·2%, 95% CrI 24·4-56·5). Older age groups showed overall higher median antibody titres. Further modelling suggests that, for a serological assay with an overall sensitivity of 80%, antibody titres may be markedly affected by differences in age, with sensitivity estimates of 89% in those over 60 years but 61% in those ≤30 years. INTERPRETATION HCWs in acute medical units working closely with COVID-19 patients were at highest risk of infection, though whether these are infections acquired from patients or other staff is unknown. Current serological assays may underestimate seroprevalence in younger age groups if validated using sera from older and/or more symptomatic individuals. RESEARCH IN CONTEXT Evidence before this study: We searched PubMed for studies published up to March 6th 2021, using the terms "COVID", "SARS-CoV-2", "seroprevalence", and "healthcare workers", and in addition for articles of antibody titres in different age groups against coronaviruses using "coronavirus", "SARS-CoV-2, "antibody", "antibody tires", "COVID" and "age". We included studies that used serology to estimate prevalence in healthcare workers. SARS-CoV-2 seroprevalence has been shown to be greater in healthcare workers working on acute medical units or within domestic services. Antibody levels against seasonal coronaviruses, SARS-CoV and SARS-CoV-2 were found to be higher in older adults, and patients who were hospitalised.Added value of this study: In this healthcare worker seroprevalence modelling study at a large NHS foundation trust, we confirm that those working on acute medical units, COVID-19 "Red Zones" and within domestic services are most likely to be seropositive. Furthermore, we show that physiotherapists and occupational therapists have an increased risk of COVID-19 infection. We also confirm that antibody titres are greater in older individuals, even in the context of non-hospitalised cases. Importantly, we demonstrate that this can result in age-specific sensitivity in serological assays, where lower antibody titres in younger individuals results in lower assay sensitivity.Implications of all the available evidence: There are distinct occupational roles and locations in hospitals where the risk of COVID-19 infection to healthcare workers is greatest, and this knowledge should be used to prioritise infection prevention control and other measures to protect healthcare workers. Serological assays may have different sensitivity profiles across different age groups, especially if assay validation was undertaken using samples from older and/or hospitalised patients, who tend to have higher antibody titres. Future seroprevalence studies should consider adjusting for age-specific assay sensitivities to estimate true seroprevalence rates. AUTHOR CONTRIBUTIONS
Collapse
Affiliation(s)
- David Hodgson
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, UK
| | - Hayley Colton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Hailey Hornsby
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Rebecca Brown
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Joanne Mckenzie
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kirsty L Bradley
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Cameron James
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Benjamin B Lindsey
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Sarah Birch
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Louise Marsh
- Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Steven Wood
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Martin Bayley
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Gary Dickson
- Department of Scientific Computing and Informatics, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - David C James
- Department of Chemical and Biological Engineering, University of Sheffield, UK
| | - Martin J H Nicklin
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Jon R Sayers
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
- Sheffield Institute for Nucleic Acids, University of Sheffield, UK
| | - Domen Zafred
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Sarah L Rowland-Jones
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| | - Goura Kudesia
- Department of Virology, Sheffield Teaching Hospitals NHS Foundation Trust, UK
| | - Adam Kucharski
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene and Tropical Medicine, UK
| | - Thomas C Darton
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| | - Thushan I de Silva
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| | - Paul J Collini
- South Yorkshire Regional Department of Infection and Tropical Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, UK
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
- The Florey Institute for Host-Pathogen Interactions, University of Sheffield, UK
| |
Collapse
|
67
|
Cai T, Yu Z, Wang Z, Liang C, Richard S. Arginine methylation of SARS-Cov-2 nucleocapsid protein regulates RNA binding, its ability to suppress stress granule formation, and viral replication. J Biol Chem 2021; 297:100821. [PMID: 34029587 PMCID: PMC8141346 DOI: 10.1016/j.jbc.2021.100821] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/13/2021] [Accepted: 05/20/2021] [Indexed: 12/18/2022] Open
Abstract
Viral proteins are known to be methylated by host protein arginine methyltransferases (PRMTs) necessary for the viral life cycle, but it remains unknown whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins are methylated. Herein, we show that PRMT1 methylates SARS-CoV-2 nucleocapsid (N) protein at residues R95 and R177 within RGG/RG motifs, preferred PRMT target sequences. We confirmed arginine methylation of N protein by immunoblotting viral proteins extracted from SARS-CoV-2 virions isolated from cell culture. Type I PRMT inhibitor (MS023) or substitution of R95 or R177 with lysine inhibited interaction of N protein with the 5'-UTR of SARS-CoV-2 genomic RNA, a property required for viral packaging. We also defined the N protein interactome in HEK293 cells, which identified PRMT1 and many of its RGG/RG substrates, including the known interacting protein G3BP1 as well as other components of stress granules (SGs), which are part of the host antiviral response. Methylation of R95 regulated the ability of N protein to suppress the formation of SGs, as R95K substitution or MS023 treatment blocked N-mediated suppression of SGs. Also, the coexpression of methylarginine reader Tudor domain-containing protein 3 quenched N protein-mediated suppression of SGs in a dose-dependent manner. Finally, pretreatment of VeroE6 cells with MS023 significantly reduced SARS-CoV-2 replication. Because type I PRMT inhibitors are already undergoing clinical trials for cancer treatment, inhibiting arginine methylation to target the later stages of the viral life cycle such as viral genome packaging and assembly of virions may represent an additional therapeutic application of these drugs.
Collapse
Affiliation(s)
- Ting Cai
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec, Canada
| | - Zhenbao Yu
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec, Canada
| | - Zhen Wang
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research and Department of Medicine, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Chen Liang
- McGill Centre for Viral Diseases, Lady Davis Institute for Medical Research and Department of Medicine, Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Stéphane Richard
- Segal Cancer Center, Lady Davis Institute for Medical Research and Gerald Bronfman Department of Oncology and Departments of Biochemistry, Human Genetics and Medicine, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
68
|
Liu J, Cao S, Ding G, Wang B, Li Y, Zhao Y, Shao Q, Feng J, Liu S, Qin L, Xiao Y. The role of 14-3-3 proteins in cell signalling pathways and virus infection. J Cell Mol Med 2021; 25:4173-4182. [PMID: 33793048 PMCID: PMC8093981 DOI: 10.1111/jcmm.16490] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/06/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022] Open
Abstract
14-3-3 proteins are highly conserved in species ranging from yeast to mammals and regulate numerous signalling pathways via direct interactions with proteins carrying phosphorylated 14-3-3-binding motifs. Recent studies have shown that 14-3-3 proteins can also play a role in viral infections. This review summarizes the biological functions of 14-3-3 proteins in protein trafficking, cell-cycle control, apoptosis, autophagy and other cell signal transduction pathways, as well as the associated mechanisms. Recent findings regarding the role of 14-3-3 proteins in viral infection and innate immunity are also reviewed.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Shengliang Cao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Guofei Ding
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Bin Wang
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yingchao Li
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Yuzhong Zhao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Qingyuan Shao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Jian Feng
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Sidang Liu
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| | - Liting Qin
- Shandong New Hope Liuhe Group Co., Ltd.QingdaoChina
- Qingdao Jiazhi Biotechnology Co., Ltd.QingdaoChina
| | - Yihong Xiao
- Department of Fundamental Veterinary MedicineCollege of Animal Science and Veterinary MedicineShandong Agricultural UniversityTai'anChina
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and PreventionShandong Agricultural UniversityTai’anChina
| |
Collapse
|