51
|
Xiao Y, Luo H, Tang R, Hou J. Preparation and Applications of Electrospun Optically Transparent Fibrous Membrane. Polymers (Basel) 2021; 13:506. [PMID: 33567610 PMCID: PMC7915363 DOI: 10.3390/polym13040506] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 02/07/2023] Open
Abstract
The optically transparent electrospun fibrous membrane has been widely used in many fields due to its simple operation, flexible design, controllable structure, high specific surface area, high porosity, and unique excellent optical properties. This paper comprehensively summarizes the preparation methods and applications of an electrospun optically transparent fibrous membrane in view of the selection of raw materials and structure modulation during preparation. We start by the factors that affect transmittance among different materials and explain the light transmission mechanism of the fibrous membrane. This paper also provides an overview of the methods to fabricate a transparent nanofibrous membrane based on the electrospinning technology including direct electrospinning, solution treatment after electrospinning, heat treatment after electrospinning, and surface modification after electrospinning. It further summarizes the differences in the processes and mechanisms between different transparent fibrous membranes prepared by different methods. Additionally, we study the utilization of transparent as-spun membranes as flexible functional materials, namely alcohol dipstick, air purification, self-cleaning materials, biomedicine, sensors, energy and optoelectronics, oil-water separation, food packaging, anti-icing coating, and anti-corrosion materials. It demonstrates the high transparency of the nanofibers' effects on the applications as well as upgrades the product performance.
Collapse
Affiliation(s)
| | | | | | - Jiazi Hou
- Key Laboratory of Automobile Materials, Ministry of Education, College of Materials Science and Engineering, Jilin University, Changchun 130025, China; (Y.X.); (H.L.); (R.T.)
| |
Collapse
|
52
|
Arica TA, Guzelgulgen M, Yildiz AA, Demir MM. Electrospun GelMA fibers and p(HEMA) matrix composite for corneal tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111720. [PMID: 33545871 DOI: 10.1016/j.msec.2020.111720] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/20/2022]
Abstract
The development of biocompatible and transparent three-dimensional materials is desirable for corneal tissue engineering. Inspired from the cornea structure, gelatin methacryloyl-poly(2-hydroxymethyl methacrylate) (GelMA-p(HEMA)) composite hydrogel was fabricated. GelMA fibers were produced via electrospinning and covered with a thin layer of p(HEMA) in the presence of N,N'-methylenebisacrylamide (MBA) as cross-linker by drop-casting. The structure of resulting GelMA-p(HEMA) composite was characterized by spectrophotometry, microscopy, and swelling studies. Biocompatibility and biological properties of the both p(HEMA) and GelMA-p(HEMA) composite have been investigated by 3D cell culture, red blood cell hemolysis, and protein adsorption studies (i.e., human serum albumin, human immunoglobulin and egg white lysozyme). The optical transmittance of the GelMA-p(HEMA) composite was found to be approximately 70% at 550 nm. The GelMA-p(HEMA) composite was biocompatible with tear fluid proteins and convenient for cell adhesion and growth. Thus, as prepared hydrogel composite may find extensive applications in future for the development of corneal tissue engineering as well as preparation of stroma of the corneal material.
Collapse
Affiliation(s)
- Tugce A Arica
- Department of Material Science and Engineering, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Meltem Guzelgulgen
- Department of Bioengineering, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Ahu Arslan Yildiz
- Department of Bioengineering, Izmir Institute of Technology, 35430 Izmir, Turkey
| | - Mustafa M Demir
- Department of Material Science and Engineering, Izmir Institute of Technology, 35430 Izmir, Turkey.
| |
Collapse
|
53
|
Keshvardoostchokami M, Majidi SS, Huo P, Ramachandran R, Chen M, Liu B. Electrospun Nanofibers of Natural and Synthetic Polymers as Artificial Extracellular Matrix for Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 11:E21. [PMID: 33374248 PMCID: PMC7823539 DOI: 10.3390/nano11010021] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/18/2020] [Accepted: 12/20/2020] [Indexed: 02/06/2023]
Abstract
Many types of polymer nanofibers have been introduced as artificial extracellular matrices. Their controllable properties, such as wettability, surface charge, transparency, elasticity, porosity and surface to volume proportion, have attracted much attention. Moreover, functionalizing polymers with other bioactive components could enable the engineering of microenvironments to host cells for regenerative medical applications. In the current brief review, we focus on the most recently cited electrospun nanofibrous polymeric scaffolds and divide them into five main categories: natural polymer-natural polymer composite, natural polymer-synthetic polymer composite, synthetic polymer-synthetic polymer composite, crosslinked polymers and reinforced polymers with inorganic materials. Then, we focus on their physiochemical, biological and mechanical features and discussed the capability and efficiency of the nanofibrous scaffolds to function as the extracellular matrix to support cellular function.
Collapse
Affiliation(s)
- Mina Keshvardoostchokami
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Sara Seidelin Majidi
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Sino-Danish College (SDC), University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peipei Huo
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Rajan Ramachandran
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, DK-8000 Aarhus C, Denmark; (S.S.M.); (M.C.)
- Department of Engineering, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Bo Liu
- Laboratory of Functional Molecules and Materials, School of Physics and Optoelectronic Engineering, Shandong University of Technology, Xincun West Road 266, Zibo 255000, China; (M.K.); (P.H.); (R.R.)
| |
Collapse
|
54
|
Hancox Z, Heidari Keshel S, Yousaf S, Saeinasab M, Shahbazi MA, Sefat F. The progress in corneal translational medicine. Biomater Sci 2020; 8:6469-6504. [PMID: 33174878 DOI: 10.1039/d0bm01209b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cornea tissue is in high demand by tissue donation centres globally, and thus tissue engineering cornea, which is the main topic of corneal translational medicine, can serve as a limitless alternative to a donated human cornea tissue. Tissue engineering aims to produce solutions to the challenges associated with conventional cornea tissue, including transplantation and use of human amniotic membrane (HAM), which have issues with storage and immune rejection in patients. Accordingly, by carefully selecting biomaterials and fabrication methods to produce these therapeutic tissues, the demand for cornea tissue can be met, with an improved healing outcome for recipients with less associated harmful risks. In this review paper, we aim to present the recent advancements in the research and clinical applications of cornea tissue, applications including biomaterial selection, fabrication methods, scaffold structure, cellular response to these scaffolds, and future advancements of these techniques.
Collapse
Affiliation(s)
- Zoe Hancox
- Department of Biomedical and Electronics Engineering, School of Engineering, University of Bradford, Bradford, UK.
| | | | | | | | | | | |
Collapse
|
55
|
Nosrati H, Abpeikar Z, Mahmoudian ZG, Zafari M, Majidi J, Alizadeh A, Moradi L, Asadpour S. Corneal epithelium tissue engineering: recent advances in regeneration and replacement of corneal surface. Regen Med 2020; 15:2029-2044. [PMID: 33169642 DOI: 10.2217/rme-2019-0055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Currently, many corneal diseases are treated by corneal transplantation, artificial corneal implantation or, in severe cases, keratoprosthesis. Owing to the shortage of cornea donors and the risks involved with artificial corneal implants, such as infection transmission, researchers continually seek new approaches for corneal regeneration. Corneal tissue engineering is a promising approach that has attracted much attention from researchers and is focused on regenerative strategies using various biomaterials in combination with different cell types. These constructs should have the ability to mimic the native tissue microenvironment and present suitable optical, mechanical and biological properties. In this article, we review studies that have focused on the current clinical techniques for corneal replacement. We also describe tissue-engineering and cell-based approaches for corneal regeneration.
Collapse
Affiliation(s)
- Hamed Nosrati
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Gholami Mahmoudian
- Department of Anatomical Sciences, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Zafari
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Jafar Majidi
- Cellular & Molecular Research Center, Basic Health Science Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Akram Alizadeh
- Department of Tissue Engineering & Applied Cell Sciences, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Lida Moradi
- The Ronald O Perelman Department of Dermatology, New York University, School of Medicine, New York, NY 10016, USA.,Department of Cell Biology, New York University, School of Medicine, New York, NY, 10016 USA
| | - Shiva Asadpour
- Department of Tissue Engineering & Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Cellular & Molecular Research Center, Basic Health Science Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
56
|
Comparative behaviour of electrospun nanofibers fabricated from acid and alkaline hydrolysed gelatin: towards corneal tissue engineering. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-020-02307-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
57
|
Mahdavi SS, Abdekhodaie MJ, Mashayekhan S, Baradaran-Rafii A, Djalilian AR. Bioengineering Approaches for Corneal Regenerative Medicine. Tissue Eng Regen Med 2020; 17:567-593. [PMID: 32696417 PMCID: PMC7373337 DOI: 10.1007/s13770-020-00262-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Since the cornea is responsible for transmitting and focusing light into the eye, injury or pathology affecting any layer of the cornea can cause a detrimental effect on visual acuity. Aging is also a reason for corneal degeneration. Depending on the level of the injury, conservative therapies and donor tissue transplantation are the most common treatments for corneal diseases. Not only is there a lack of donor tissue and risk of infection/rejection, but the inherent ability of corneal cells and layers to regenerate has led to research in regenerative approaches and treatments. METHODS In this review, we first discussed the anatomy of the cornea and the required properties for reconstructing layers of the cornea. Regenerative approaches are divided into two main categories; using direct cell/growth factor delivery or using scaffold-based cell delivery. It is expected delivered cells migrate and integrate into the host tissue and restore its structure and function to restore vision. Growth factor delivery also has shown promising results for corneal surface regeneration. Scaffold-based approaches are categorized based on the type of scaffold, since it has a significant impact on the efficiency of regeneration, into the hydrogel and non-hydrogel based scaffolds. Various types of cells, biomaterials, and techniques are well covered. RESULTS The most important characteristics to be considered for biomaterials in corneal regeneration are suitable mechanical properties, biocompatibility, biodegradability, and transparency. Moreover, a curved shape structure and spatial arrangement of the fibrils have been shown to mimic the corneal extracellular matrix for cells and enhance cell differentiation. CONCLUSION Tissue engineering and regenerative medicine approaches showed to have promising outcomes for corneal regeneration. However, besides proper mechanical and optical properties, other factors such as appropriate sterilization method, storage, shelf life and etc. should be taken into account in order to develop an engineered cornea for clinical trials.
Collapse
Affiliation(s)
- S Sharareh Mahdavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Mohammad J Abdekhodaie
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran.
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, 1393 Azadi Ave., Tehran, 11365-11155, Iran
| | - Alireza Baradaran-Rafii
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, SBUMS, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839-63113, Iran
| | - Ali R Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1200 W Harrison St, Chicago, IL, 60607, USA
| |
Collapse
|
58
|
Beckett LE, Lewis JT, Tonge TK, Korley LTJ. Enhancement of the Mechanical Properties of Hydrogels with Continuous Fibrous Reinforcement. ACS Biomater Sci Eng 2020; 6:5453-5473. [PMID: 33320571 DOI: 10.1021/acsbiomaterials.0c00911] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Reinforcing mechanically weak hydrogels with fibers is a promising route to obtain strong and tough materials for biomedical applications while retaining a favorable cell environment. The resulting hierarchical structure recreates structural elements of natural tissues such as articular cartilage, with fiber diameters ranging from the nano- to microscale. Through control of properties such as the fiber diameter, orientation, and porosity, it is possible to design materials which display the nonlinear, synergistic mechanical behavior observed in natural tissues. In order to fully exploit these advantages, it is necessary to understand the structure-property relationships in fiber-reinforced hydrogels. However, there are currently limited models which capture their complex mechanical properties. The majority of reported fiber-reinforced hydrogels contain fibers obtained by electrospinning, which allows for limited spatial control over the fiber scaffold and limits the scope for systematic mechanical testing studies. Nevertheless, new manufacturing techniques such as melt electrowriting and bioprinting have emerged, which allow for increased control over fiber deposition and the potential for future investigations on the effect of specific structural features on mechanical properties. In this review, we therefore explore the mechanics of fiber-reinforced hydrogels, and the evolution of their design and manufacture from replicating specific features of biological tissues to more complex structures, by taking advantage of design principles from both tough hydrogels and fiber-reinforced composites. By highlighting the overlap between these fields, it is possible to identify the remaining challenges and opportunities for the development of effective biomedical devices.
Collapse
Affiliation(s)
- Laura E Beckett
- University of Delaware, Department of Materials Science and Engineering, 127 The Green, Newark, Delaware 19716, United States
| | - Jackson T Lewis
- W. L. Gore & Associates, Inc., 501 Vieves Way, Elkton, Maryland 21921, United States
| | - Theresa K Tonge
- W. L. Gore & Associates, Inc., 501 Vieves Way, Elkton, Maryland 21921, United States
| | - LaShanda T J Korley
- University of Delaware, Department of Materials Science and Engineering, 127 The Green, Newark, Delaware 19716, United States.,University of Delaware, Department of Chemical and Biomolecular Engineering, 150 Academy Street, Newark, Delaware 19716, United States
| |
Collapse
|
59
|
Banerjee A, Ganguly S. Behavior of alginate–gelatin blended gel with embedded macrovoids: Stress‐induced changes and the solute release characteristics. J Appl Polym Sci 2020. [DOI: 10.1002/app.49035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Arindam Banerjee
- Department of Chemical EngineeringIndian Institute of Technology Kharagpur India
| | - Somenath Ganguly
- Department of Chemical EngineeringIndian Institute of Technology Kharagpur India
| |
Collapse
|
60
|
Jia Y, Sciutto G, Mazzeo R, Samorì C, Focarete ML, Prati S, Gualandi C. Organogel Coupled with Microstructured Electrospun Polymeric Nonwovens for the Effective Cleaning of Sensitive Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39620-39629. [PMID: 32820898 PMCID: PMC8009474 DOI: 10.1021/acsami.0c09543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 08/07/2020] [Indexed: 05/21/2023]
Abstract
Hydrogels and organogels are widely used as cleaning materials, especially when a controlled solvent release is necessary to prevent substrate damage. This situation is often encountered in the personal care and electronic components fields and represents a challenge in restoration, where the removal of a thin layer of aged varnish from a painting may compromise the integrity of the painting itself. There is an urgent need for new and effective cleaning materials capable of controlling and limiting the use of solvents, achieving at the same time high cleaning efficacy. In this paper, new sandwich-like composites that fully address these requirements are developed by using an organogel (poly(3-hydroxybutyrate) + γ-valerolactone) in the core and two external layers of electrospun nonwovens made of continuous submicrometric fibers produced by electrospinning (either poly(vinyl alcohol) or polyamide 6,6). The new composite materials exhibit an extremely efficient cleaning action that results in the complete elimination of the varnish layer with a minimal amount of solvent adsorbed by the painting layer after the treatment. This demonstrates that the combined materials exert a superficial action that is of utmost importance to safeguard the painting. Moreover, we found that the electrospun nonwoven layers act as mechanically reinforcement components, greatly improving the bending resistance of organogels and their handling. The characterization of these innovative cleaning materials allowed us to propose a mechanism to explain their action: electrospun fibers play the leading role by slowing down the diffusion of the solvent and by conferring to the entire composite a microstructured rough superficial morphology, enabling to achieve outstanding cleaning performance.
Collapse
Affiliation(s)
- Yiming Jia
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
- Chongqing
Cultural Heritage Research Institute, 400013 Chongqing, China
| | - Giorgia Sciutto
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
| | - Rocco Mazzeo
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
| | - Chiara Samorì
- Department
of Chemistry “G. Ciamician”, University of Bologna, Via Sant’Alberto 163, 48123 Ravenna, Italy
| | - Maria Letizia Focarete
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Health
Sciences & Technologies (HST) CIRI, University of Bologna, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia Bologna, Italy
| | - Silvia Prati
- Department
of Chemistry “G. Ciamician”, Microchemistry and Microscopy
Art Diagnostic Laboratory (M2ADL), University
of Bologna, Via Guaccimanni 42, 48121 Ravenna, Italy
| | - Chiara Gualandi
- Department
of Chemistry “Giacomo Ciamician” and INSTM UdR of Bologna, University of Bologna, Via Selmi 2, 40126 Bologna, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Viale Risorgimento, 2, 40136 Bologna, Italy
| |
Collapse
|
61
|
Joshi MK, Lee S, Tiwari AP, Maharjan B, Poudel SB, Park CH, Kim CS. Integrated design and fabrication strategies for biomechanically and biologically functional PLA/β-TCP nanofiber reinforced GelMA scaffold for tissue engineering applications. Int J Biol Macromol 2020; 164:976-985. [PMID: 32710964 DOI: 10.1016/j.ijbiomac.2020.07.179] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 07/06/2020] [Accepted: 07/17/2020] [Indexed: 12/12/2022]
Abstract
We present an integrated design and fabrication strategy for the development of hierarchically structured biomechanically and biologically functional tissue scaffold. An integration of β-TCP incorporated fluffy type nanofibers and biodegradable interpenetrating gelatin-hydrogel networks (IGN) result in biomimetic tissue engineered constructs with fully tunable properties that can match specific tissue requirements. FESEM images showed that nanofibers were efficiently assembled into an orientation of IGN without disturbing its pore architecture. The pore architecture, compressive stiffness and modulus, swelling, and the biological properties of the composite constructs can be tailored by adjusting the composition of nanofiber content with respect to IGN. Experimental results of cell proliferation assay and confocal microscopy imaging showed that the as-fabricated composite constructs exhibit excellent ability for MC3T3-E1 cell proliferation, infiltration and growth. Furthermore, β-TCP incorporated functionalized nanofiber enhanced the biomimetic mineralization, cell infiltration and cell proliferation. Within two weeks of cell-seeding, the composite construct exhibited enhanced osteogenic performance (Runx2, osterix and ALP gene expression) compared to pristine IGN hydrogel scaffold. Our integrated design and fabrication approach enables the assembly of nanofiber within IGN architecture, laying the foundation for biomimetic scaffold.
Collapse
Affiliation(s)
- Mahesh Kumar Joshi
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Department of Chemistry, Tri-Chandra Multiple Campus, Tribhuvan University, Kathmandu, Nepal.
| | - Sunny Lee
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Arjun Prasad Tiwari
- Carbon Nano Convergence Technology Center for Next Generation Engineers (CNN), Jeonbuk National University, Jeonju, Republic of Korea
| | - Bikendra Maharjan
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Sher Bahadur Poudel
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Chan Hee Park
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| | - Cheol Sang Kim
- Department of Bionanosystem Engineering, Graduate School, Jeonbuk National University, Jeonju 561-756, Republic of Korea; Division of Mechanical Design Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea.
| |
Collapse
|
62
|
Catoira MC, González-Payo J, Fusaro L, Ramella M, Boccafoschi F. Natural hydrogels R&D process: technical and regulatory aspects for industrial implementation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:64. [PMID: 32696261 PMCID: PMC7374448 DOI: 10.1007/s10856-020-06401-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 07/08/2020] [Indexed: 05/17/2023]
Abstract
Since hydrogel therapies have been introduced into clinic treatment procedures, the biomedical industry has to face the technology transfer and the scale-up of the processes. This will be key in the roadmap of the new technology implementation. Transfer technology and scale-up are already known for some applications but other applications, such as 3D printing, are still challenging. Decellularized tissues offer a lot of advantages when compared to other natural gels, for example they display enhanced biological properties, due to their ability to preserve natural molecules. For this reason, even though their use as a source for bioinks represents a challenge for the scale-up process, it is very important to consider the advantages that originate with overcoming this challenge. Therefore, many aspects that influence the scaling of the industrial process should be considered, like the addition of drugs or cells to the hydrogel, also, the gelling process is important to determine the chemical and physical parameters that must be controlled in order to guarantee a successful process. Legal aspects are also crucial when carrying out the scale-up of the process since they determine the industrial implementation success from the regulatory point of view. In this context, the new law Regulation (EU) 2017/745 on biomedical devices will be considered. This review summarizes the different aspects, including the legal ones, that should be considered when scaling up hydrogels of natural origin, in order to balance these different aspects and to optimize the costs in terms of raw materials and engine.
Collapse
Affiliation(s)
- Marta Calvo Catoira
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, 28100, Novara, Italy
- Tissuegraft srl, 28100, Novara, Italy
| | - Javier González-Payo
- Telecomunicación, Department of Signal Theory and Communications, University of Vigo, 36310, Vigo, Spain
| | - Luca Fusaro
- Tissuegraft srl, 28100, Novara, Italy
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy
| | | | - Francesca Boccafoschi
- Center for Translational Research on Autoimmune & Allergic Diseases-CAAD, 28100, Novara, Italy.
- Tissuegraft srl, 28100, Novara, Italy.
- Department of Health Sciences, University of Piemonte Orientale, 28100, Novara, Italy.
| |
Collapse
|
63
|
Recent developments in regenerative ophthalmology. SCIENCE CHINA-LIFE SCIENCES 2020; 63:1450-1490. [PMID: 32621058 DOI: 10.1007/s11427-019-1684-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 03/21/2020] [Indexed: 12/13/2022]
Abstract
Regenerative medicine (RM) is one of the most promising disciplines for advancements in modern medicine, and regenerative ophthalmology (RO) is one of the most active fields of regenerative medicine. This review aims to provide an overview of regenerative ophthalmology, including the range of tools and materials being used, and to describe its application in ophthalmologic subspecialties, with the exception of surgical implantation of artificial tissues or organs (e.g., contact lens, artificial cornea, intraocular lens, artificial retina, and bionic eyes) due to space limitations. In addition, current challenges and limitations of regenerative ophthalmology are discussed and future directions are highlighted.
Collapse
|
64
|
|
65
|
Fernández-Pérez J, Kador KE, Lynch AP, Ahearne M. Characterization of extracellular matrix modified poly(ε-caprolactone) electrospun scaffolds with differing fiber orientations for corneal stroma regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 108:110415. [DOI: 10.1016/j.msec.2019.110415] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 10/25/2022]
|
66
|
Liang W, Luo Z, Zhou L. Preparation and characterization of the n-HA/PVA/CS porous composite hydrogel. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2019.01.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
67
|
Rosellini E, Lazzeri L, Maltinti S, Vanni F, Barbani N, Cascone MG. Development and characterization of a suturable biomimetic patch for cardiac applications. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2019; 30:126. [PMID: 31728643 DOI: 10.1007/s10856-019-6327-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/03/2019] [Indexed: 06/10/2023]
Abstract
3D scaffolds used to repair damaged tissues should be able to mimic both composition and functions of natural extracellular matrix, which is mainly composed of polysaccharides and proteins. In our previous research new biomimetic sponges, based on blends of alginate with gelatin, were produced and characterized for myocardial tissue engineering applications. It was observed that these scaffolds can potentially function as a promising cardiac extracellular matrix substitute, but a reinforcement is required to improve their suturing properties. Aim of the present work was the development of a suturable biomimetic patch by the inclusion of a synthetic mesh within an alginate/gelatin scaffold. The mesh, produced by dry spinning, was made of eight superimposed layers of polycaprolactone microfibers, each one rotated of 45° with respect to the adjacent one. Reinforced scaffolds were obtained through the use of a mold, specially designed to place the fibrous mesh exactly in the center of the sponge. Both the reinforcement mesh and the reinforced scaffold were characterized. A perfect integration between the mesh and the sponge was observed. The fibrous mesh reduced the capacity of the sponge to absorb water, but the degree of hydrophilicity of the material was still comparable with that of natural cardiac tissue. The reinforced system showed a suitable stability in aqueous environment and it resulted much more resistant to suturing than not reinforced scaffold and even than human arteries. Polycaprolactone mesh was not cytotoxic and the reinforced scaffold was able to support cardiomyocytes adhesion and proliferation. Overall, the obtained results confirmed that the choice to modify the alginate/gelatin sponges through the insertion of an appropriate reinforcement system turned out to be correct in view of their potential use in myocardial tissue engineering.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
- Inter-University Center for the 3Rs Principles in Teaching & Research (Centro 3R), 56126, Pisa, Italy
| | - Luigi Lazzeri
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
- Inter-University Center for the 3Rs Principles in Teaching & Research (Centro 3R), 56126, Pisa, Italy
| | - Simona Maltinti
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Francesca Vanni
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering (DICI), University of Pisa, Largo Lucio Lazzarino, 56126, Pisa, Italy.
- Inter-University Center for the 3Rs Principles in Teaching & Research (Centro 3R), 56126, Pisa, Italy.
| |
Collapse
|
68
|
Khanal S, Bhattarai SR, Sankar J, Bhandari RK, Macdonald JM, Bhattarai N. Nano-fibre Integrated Microcapsules: A Nano-in-Micro Platform for 3D Cell Culture. Sci Rep 2019; 9:13951. [PMID: 31562351 PMCID: PMC6765003 DOI: 10.1038/s41598-019-50380-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 09/09/2019] [Indexed: 01/25/2023] Open
Abstract
Nano-in-micro (NIM) system is a promising approach to enhance the performance of devices for a wide range of applications in disease treatment and tissue regeneration. In this study, polymeric nanofibre-integrated alginate (PNA) hydrogel microcapsules were designed using NIM technology. Various ratios of cryo-ground poly (lactide-co-glycolide) (PLGA) nanofibres (CPN) were incorporated into PNA hydrogel microcapsule. Electrostatic encapsulation method was used to incorporate living cells into the PNA microcapsules (~500 µm diameter). Human liver carcinoma cells, HepG2, were encapsulated into the microcapsules and their physio-chemical properties were studied. Morphology, stability, and chemical composition of the PNA microcapsules were analysed by light microscopy, fluorescent microscopy, scanning electron microscopy (SEM), Fourier-Transform Infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The incorporation of CPN caused no significant changes in the morphology, size, and chemical structure of PNA microcapsules in cell culture media. Among four PNA microcapsule products (PNA-0, PNA-10, PNA-30, and PNA-50 with size 489 ± 31 µm, 480 ± 40 µm, 473 ± 51 µm and 464 ± 35 µm, respectively), PNA-10 showed overall suitability for HepG2 growth with high cellular metabolic activity, indicating that the 3D PNA-10 microcapsule could be suitable to maintain better vitality and liver-specific metabolic functions. Overall, this novel design of PNA microcapsule and the one-step method of cell encapsulation can be a versatile 3D NIM system for spontaneous generation of organoids with in vivo like tissue architectures, and the system can be useful for numerous biomedical applications, especially for liver tissue engineering, cell preservation, and drug toxicity study.
Collapse
Affiliation(s)
- Shalil Khanal
- 0000 0001 0287 4439grid.261037.1Department of Applied Science and Technology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| | - Shanta R. Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemistry, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0287 4439grid.261037.1Department of Biology, North Carolina A&T State University, Greensboro, NC USA ,0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jagannathan Sankar
- 0000 0001 0287 4439grid.261037.1Department of Mechanical Engineering, North Carolina A&T State University, Greensboro, NC USA
| | - Ramji K. Bhandari
- 0000 0001 0671 255Xgrid.266860.cDepartment of Biology, University of North Carolina Greensboro, Greensboro, NC USA
| | - Jeffrey M. Macdonald
- 0000 0001 1034 1720grid.410711.2Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC USA
| | - Narayan Bhattarai
- 0000 0001 0287 4439grid.261037.1Department of Chemical, Biological, and Bioengineering, North Carolina A&T State University, Greensboro, NC USA
| |
Collapse
|
69
|
Kilic Bektas C, Burcu A, Gedikoglu G, Telek HH, Ornek F, Hasirci V. Methacrylated gelatin hydrogels as corneal stroma substitutes: in vivo study. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:1803-1821. [DOI: 10.1080/09205063.2019.1666236] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Cemile Kilic Bektas
- Departments of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Ayse Burcu
- Eye Clinic, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Gokhan Gedikoglu
- Department of Medical Pathology, Hacettepe University, Ankara, Turkey
| | - Hande H. Telek
- Eye Clinic, Beytepe Murat Erdi Eker State Hospital, Ankara, Turkey
| | - Firdevs Ornek
- Eye Clinic, University of Health Sciences, Ankara Training and Research Hospital, Ankara, Turkey
| | - Vasif Hasirci
- Departments of Biological Sciences, Middle East Technical University (METU), Ankara, Turkey
- Department of Biotechnology, Middle East Technical University (METU), Ankara, Turkey
- BIOMATEN, METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Department of Medical Engineering, Acıbadem Mehmet Ali Aydınlar University, İstanbul, Turkey
| |
Collapse
|
70
|
Campiglio CE, Contessi Negrini N, Farè S, Draghi L. Cross-Linking Strategies for Electrospun Gelatin Scaffolds. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2476. [PMID: 31382665 PMCID: PMC6695673 DOI: 10.3390/ma12152476] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 01/02/2023]
Abstract
Electrospinning is an exceptional technology to fabricate sub-micrometric fiber scaffolds for regenerative medicine applications and to mimic the morphology and the chemistry of the natural extracellular matrix (ECM). Although most synthetic and natural polymers can be electrospun, gelatin frequently represents a material of choice due to the presence of cell-interactive motifs, its wide availability, low cost, easy processability, and biodegradability. However, cross-linking is required to stabilize the structure of the electrospun matrices and avoid gelatin dissolution at body temperature. Different physical and chemical cross-linking protocols have been described to improve electrospun gelatin stability and to preserve the morphological fibrous arrangement of the electrospun gelatin scaffolds. Here, we review the main current strategies. For each method, the cross-linking mechanism and its efficiency, the influence of electrospinning parameters, and the resulting fiber morphology are considered. The main drawbacks as well as the open challenges are also discussed.
Collapse
Affiliation(s)
- Chiara Emma Campiglio
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Nicola Contessi Negrini
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Silvia Farè
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Lorenza Draghi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
- INSTM, National Interuniversity Consortium of Materials Science and Technology, Local Unit Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| |
Collapse
|
71
|
Rusdiputra S, Wibowo A, Tresna Wulan Asri LA, Purwasasmita BS. Fabrication of Chitosan based-Scaffold as Potential Cornea Implant. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1757-899x/547/1/012062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
72
|
Pan N, Qin J, Feng P, Song B. Window screen inspired fibrous materials with anisotropic thickness gradients for improving light transmittance. NANOSCALE 2019; 11:13521-13531. [PMID: 31290508 DOI: 10.1039/c9nr02810b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fibrous materials with high light transmittance exhibit great potential in a wide range of applications; unfortunately, fabrication of such materials still remains a challenge due to the strong light scattering caused by the rough fibrous structure and the voids between fibers. Window screens are commonly used in our daily life, and their unique woven structure ensures excellent mechanical properties, while the voids between wires allow light to pass through. By learning from the architecture of window screens, we proposed a novel patterned electrospinning approach with window screen like wire meshes as collectors to deposit fibers with anisotropic thickness gradients and further to improve the optical properties. The results indicated that the obtained fibrous mats closely copied the structure of the wire meshes, and exhibited unique thickness anisotropy with most of the fibers densely packed on the wires in a small area, while very few fibers sparsely suspended in the voids over a large area. Owing to the large area of the thin region within fibrous mats, the overall light transmittance of such a well-organized mat was greatly improved as compared with that of an isotropous mat. Furthermore, by carefully investigating the microstructure of the fibrous mats and simulating the electric field distribution with the software Comsol Multiphysics, a novel needle array collector with an ultra large area of voids was designed to achieve optimal light transparency. Finally, as proof of concepts, we investigated the potential use of transparent fibrous mats as a visual wound dressing and a window dust filter, respectively.
Collapse
Affiliation(s)
- Nan Pan
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Juanrong Qin
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Pingping Feng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| | - Botao Song
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, Shaanxi, People's Republic of China.
| |
Collapse
|
73
|
Production and characterization of bactericidal wound dressing material based on gelatin nanofiber. Int J Biol Macromol 2019; 137:392-404. [PMID: 31233795 DOI: 10.1016/j.ijbiomac.2019.06.119] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/08/2019] [Accepted: 06/17/2019] [Indexed: 01/03/2023]
Abstract
Gelatin is a biocompatible and biodegradable natural polymer obtained by collagen. Gelatin nanofibers meet all the necessary requirements when used as wound dressing material. However, their lack of antimicrobial properties limits their use. The purpose of this study is to expand the field of use of gelatin by providing it with antimicrobial properties. For this purpose, poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride) (PMETAC), was used. In this study, the polymers were dissolved in formic acid-acetic acid and nanofibers were synthesized by electrospinning. The obtained nanofibers were characterized with SEM, FTIR, and TGA. The antibacterial effect, degradation tests, and cell viability, adhesion and proliferation were investigated. The SEM studies show that the nanofibers are homogeneous and smooth. At the end of 14 days, all nanofibers lost >90% of their mass. The nanofibers containing PMETAC showed good bactericidal activity against Staphylococcus aureus, Escherichia coli, methicillin-resistant Staphylococcus aureus and Acinetobacter baumannii. MTT test demonstrated that low doses of the nanofibers were biocompatible. The cell adhesion study has been shown that many cells attachment and proliferate on the surface of nanofibers. It has been found that the obtained nanofibers can be used safely and effectively as antimicrobial wound dressing material.
Collapse
|
74
|
Gill E, Willis S, Gerigk M, Cohen P, Zhang D, Li X, Huang YYS. Fabrication of Designable and Suspended Microfibers via Low-Voltage 3D Micropatterning. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19679-19690. [PMID: 31081331 PMCID: PMC6613729 DOI: 10.1021/acsami.9b01258] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/13/2019] [Indexed: 05/02/2023]
Abstract
Building two-dimensional (2D) and three-dimensional (3D) fibrous structures in the micro- and nanoscale will offer exciting prospects for numerous applications spanning from sensors to energy storage and tissue engineering scaffolds. Electrospinning is a well-suited technique for drawing micro- to nanoscale fibers, but current methods of building electrospun fibers in 3D are restrictive in terms of printed height, design of macroscopic fiber networks, and choice of polymer. Here, we combine low-voltage electrospinning and additive manufacturing as a method to pattern layers of suspended mesofibers. Layers of fibers are suspended between 3D-printed supports in situ in multiple fiber layers and designable orientations. We examine the key working parameters to attain a threshold for fiber suspension, use those behavioral observations to establish a "fiber suspension indicator", and demonstrate its utility through design of intricate suspended fiber architectures. Individual fibers produced by this method approach the micrometer/submicrometer scale, while the overall suspended 3D fiber architecture can span over a centimeter in height. We demonstrate an application of suspended fiber architectures in 3D cell culture, utilizing patterned fiber topography to guide the assembly of suspended high-cellular-density structures. The solution-based fiber suspension patterning process we report offers a unique competence in patterning soft polymers, including extracellular matrix-like materials, in a high resolution and aspect ratio. The platform could thus offer new design and manufacturing capabilities of devices and functional products by incorporating functional fibrous elements.
Collapse
Affiliation(s)
- Elisabeth
L. Gill
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| | - Samuel Willis
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Magda Gerigk
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| | - Paul Cohen
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Duo Zhang
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| | - Xia Li
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
| | - Yan Yan Shery Huang
- Department
of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, U.K.
- The
Nanoscience Centre, University of Cambridge, 11 JJ Thomson Avenue, Cambridge CB3 0FF, U.K.
| |
Collapse
|
75
|
Pina S, Ribeiro VP, Marques CF, Maia FR, Silva TH, Reis RL, Oliveira JM. Scaffolding Strategies for Tissue Engineering and Regenerative Medicine Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1824. [PMID: 31195642 PMCID: PMC6600968 DOI: 10.3390/ma12111824] [Citation(s) in RCA: 260] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 05/31/2019] [Accepted: 06/03/2019] [Indexed: 02/06/2023]
Abstract
During the past two decades, tissue engineering and the regenerative medicine field have invested in the regeneration and reconstruction of pathologically altered tissues, such as cartilage, bone, skin, heart valves, nerves and tendons, and many others. The 3D structured scaffolds and hydrogels alone or combined with bioactive molecules or genes and cells are able to guide the development of functional engineered tissues, and provide mechanical support during in vivo implantation. Naturally derived and synthetic polymers, bioresorbable inorganic materials, and respective hybrids, and decellularized tissue have been considered as scaffolding biomaterials, owing to their boosted structural, mechanical, and biological properties. A diversity of biomaterials, current treatment strategies, and emergent technologies used for 3D scaffolds and hydrogel processing, and the tissue-specific considerations for scaffolding for Tissue engineering (TE) purposes are herein highlighted and discussed in depth. The newest procedures focusing on the 3D behavior and multi-cellular interactions of native tissues for further use for in vitro model processing are also outlined. Completed and ongoing preclinical research trials for TE applications using scaffolds and hydrogels, challenges, and future prospects of research in the regenerative medicine field are also presented.
Collapse
Affiliation(s)
- Sandra Pina
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Viviana P Ribeiro
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Catarina F Marques
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - F Raquel Maia
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - Tiago H Silva
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
| | - Rui L Reis
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| | - J Miguel Oliveira
- 3B's Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Guimarães, Portugal.
- ICVS/3B's-PT Government Associate Laboratory, 4805-017 Braga/Guimarães, Portugal.
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
76
|
Fernández-Pérez J, Ahearne M. Decellularization and recellularization of cornea: Progress towards a donor alternative. Methods 2019; 171:86-96. [PMID: 31128238 DOI: 10.1016/j.ymeth.2019.05.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 05/09/2019] [Accepted: 05/10/2019] [Indexed: 12/20/2022] Open
Abstract
The global shortage of donor corneas for transplantation has led to corneal bioengineering being investigated as a method to generate transplantable tissues. Decellularized corneas are among the most promising materials for engineering corneal tissue since they replicate the complex structure and composition of real corneas. Decellularization is a process that aims to remove cells from organs or tissues resulting in a cell-free scaffold consisting of the tissues extracellular matrix. Here different decellularization techniques are described, including physical, chemical and biological methods. Analytical techniques to confirm decellularization efficiency are also discussed. Different cell sources for the recellularization of the three layers of the cornea, recellularization methods used in the literature and techniques used to assess the outcome of the implantation of such scaffolds are examined. Studies involving the application of decellularized corneas in animal models and human clinical studies are discussed. Finally, challenges for this technology are explored involving scalability, automatization and regulatory affairs.
Collapse
Affiliation(s)
- Julia Fernández-Pérez
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland
| | - Mark Ahearne
- Dept of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, University of Dublin, Ireland; Trinity Centre for Biomedical Engineering, Trinity Biomedical Science Institute, Trinity College Dublin, University of Dublin, Ireland.
| |
Collapse
|
77
|
Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today 2019; 24:1669-1678. [PMID: 31051266 DOI: 10.1016/j.drudis.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD), can lead to permanent sight loss. Although intravitreal anti-vascular endothelial growth factor (VEGF) and steroid injections are effective for the management of early stages of wet and/or neovascular AMD (nAMD), no proven treatments currently exist for dry AMD or for the advanced geographic atrophy of the retina that follows. Tissue engineering (TE) has recently emerged as a promising alternative to repair retinal damaged and restore its functions. Here, we review recent advances in TE, with a particular emphasis on retinal regeneration. We provide an overview of retinal diseases, followed by a comprehensive review of TE techniques, cells, and polymers used in the fabrication of scaffolds for retinal cell regenerations, in particular the retinal pigment epithelium (RPE).
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Husam M Younes
- Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
78
|
Rose JB, Sidney LE, Patient J, White LJ, Dua HS, El Haj AJ, Hopkinson A, Rose FR. In vitro
evaluation of electrospun blends of gelatin and PCL for application as a partial thickness corneal graft. J Biomed Mater Res A 2019; 107:828-838. [DOI: 10.1002/jbm.a.36598] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 11/14/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022]
Affiliation(s)
- James B. Rose
- Centre for Biomolecular Sciences, School of Pharmacy; University of Nottingham; NG7 2RD United Kingdom
| | - Laura E. Sidney
- Academic Ophthalmology, Division of Clinical Neuroscience; University of Nottingham; Queen's Medical Centre Campus, NG7 2UH United Kingdom
| | - James Patient
- Centre for Biomolecular Sciences, School of Pharmacy; University of Nottingham; NG7 2RD United Kingdom
| | - Lisa J. White
- Centre for Biomolecular Sciences, School of Pharmacy; University of Nottingham; NG7 2RD United Kingdom
| | - Harminder S. Dua
- Academic Ophthalmology, Division of Clinical Neuroscience; University of Nottingham; Queen's Medical Centre Campus, NG7 2UH United Kingdom
| | - Alicia J. El Haj
- Institute for Science and Technology in Medicine, School of Medicine; Keele University; Stoke-on-Trent, ST4 7QB United Kingdom
| | - Andrew Hopkinson
- Academic Ophthalmology, Division of Clinical Neuroscience; University of Nottingham; Queen's Medical Centre Campus, NG7 2UH United Kingdom
| | - Felicity R.A.J. Rose
- Centre for Biomolecular Sciences, School of Pharmacy; University of Nottingham; NG7 2RD United Kingdom
| |
Collapse
|
79
|
Goodarzi H, Jadidi K, Pourmotabed S, Sharifi E, Aghamollaei H. Preparation and in vitro characterization of cross-linked collagen-gelatin hydrogel using EDC/NHS for corneal tissue engineering applications. Int J Biol Macromol 2018; 126:620-632. [PMID: 30562517 DOI: 10.1016/j.ijbiomac.2018.12.125] [Citation(s) in RCA: 131] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 02/02/2023]
Abstract
Corneal disease is considered as the second leading cause of vision loss and keratoplasty is known as an effective treatment for it. However, the tissue engineered corneal substitutes are promising tools in experimental in vivo repair of cornea. Selecting appropriate cell sources and scaffolds are two important concerns in corneal tissue engineering. The object of this study was to investigate biocompatibility and physical properties of the bio-engineered cornea, fabricated from type-I collagen (COL) and gelatin (Gel). Two gelatin based hydrogels cross-linked with EDC/NHS were fabricated, and their physicochemical properties such as equilibrium water content, enzymatic degradation, mechanical properties, rheological, contact angle and optical properties as well as their ability to support human bone-marrow mesenchymal stem cells (hBM-MSCs) survival were characterized. The equilibrium water content and enzymatic degradation of these hydrogels can be easily controlled by adding COL. Our findings suggest that incorporation of COL-I increases optical properties, hydrophilicity, stiffness and Young's modulus. The viability of hBM-MSCs cultured in Gel and Gel: COL was assessed via CCK-8 assay. Also, the morphology of the hBM-MSCs on the top of Gel and Gel: COL hydrogels were characterized by phase-contrast microscopy. This biocompatible hydrogel may promise to be used as artificial corneal substitutes.
Collapse
Affiliation(s)
- Hamid Goodarzi
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Khosrow Jadidi
- Department of Ophthalmology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Samiramis Pourmotabed
- Department of Emergency Medicine, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Esmaeel Sharifi
- Department of Molecular Medicine and Genetics, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran; Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran..
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
80
|
A UV-cured nanofibrous membrane of vinylbenzylated gelatin-poly(ɛ-caprolactone) dimethacrylate co-network by scalable free surface electrospinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 91:541-555. [DOI: 10.1016/j.msec.2018.05.076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 05/03/2018] [Accepted: 05/26/2018] [Indexed: 12/15/2022]
|
81
|
Daelemans L, Steyaert I, Schoolaert E, Goudenhooft C, Rahier H, De Clerck K. Nanostructured Hydrogels by Blend Electrospinning of Polycaprolactone/Gelatin Nanofibers. NANOMATERIALS 2018; 8:nano8070551. [PMID: 30036979 PMCID: PMC6070828 DOI: 10.3390/nano8070551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022]
Abstract
Nanofibrous membranes based on polycaprolactone (PCL) have a large potential for use in biomedical applications but are limited by the hydrophobicity of PCL. Blend electrospinning of PCL with other biomedical suited materials, such as gelatin (Gt) allows for the design of better and new materials. This study investigates the possibility of blend electrospinning PCL/Gt nanofibrous membranes which can be used to design a range of novel materials better suited for biomedical applications. The electrospinnability and stability of PCL/Gt blend nanofibers from a non-toxic acid solvent system are investigated. The solvent system developed in this work allows good electrospinnable emulsions for the whole PCL/Gt composition range. Uniform bead-free nanofibers can easily be produced, and the resulting fiber diameter can be tuned by altering the total polymer concentration. Addition of small amounts of water stabilizes the electrospinning emulsions, allowing the electrospinning of large and homogeneous nanofibrous structures over a prolonged period. The resulting blend nanofibrous membranes are analyzed for their composition, morphology, and homogeneity. Cold-gelling experiments on these novel membranes show the possibility of obtaining water-stable PCL/Gt nanofibrous membranes, as well as nanostructured hydrogels reinforced with nanofibers. Both material classes provide a high potential for designing new material applications.
Collapse
Affiliation(s)
- Lode Daelemans
- Department of Materials, Textiles and Chemical Engineering (MaTCh), Ghent University, Technologiepark 907, 9052 Ghent, Belgium.
| | - Iline Steyaert
- Department of Materials, Textiles and Chemical Engineering (MaTCh), Ghent University, Technologiepark 907, 9052 Ghent, Belgium.
- Research Unit of Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Ella Schoolaert
- Department of Materials, Textiles and Chemical Engineering (MaTCh), Ghent University, Technologiepark 907, 9052 Ghent, Belgium.
| | - Camille Goudenhooft
- Department of Materials, Textiles and Chemical Engineering (MaTCh), Ghent University, Technologiepark 907, 9052 Ghent, Belgium.
| | - Hubert Rahier
- Research Unit of Physical Chemistry and Polymer Science, Department of Materials and Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.
| | - Karen De Clerck
- Department of Materials, Textiles and Chemical Engineering (MaTCh), Ghent University, Technologiepark 907, 9052 Ghent, Belgium.
| |
Collapse
|
82
|
Bas O, Catelas I, De-Juan-Pardo EM, Hutmacher DW. The quest for mechanically and biologically functional soft biomaterials via soft network composites. Adv Drug Deliv Rev 2018; 132:214-234. [PMID: 30048654 DOI: 10.1016/j.addr.2018.07.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/18/2018] [Accepted: 07/20/2018] [Indexed: 12/15/2022]
Abstract
Developing multifunctional soft biomaterials capable of addressing all the requirements of the complex tissue regeneration process is a multifaceted problem. In order to tackle the current challenges, recent research efforts are increasingly being directed towards biomimetic design concepts that can be translated into soft biomaterials via advanced manufacturing technologies. Among those, soft network composites consisting of a continuous hydrogel matrix and a reinforcing fibrous network closely resemble native soft biological materials in terms of design and composition as well as physicochemical properties. This article reviews soft network composite systems with a particular emphasis on the design, biomaterial and fabrication aspects within the context of soft tissue engineering and drug delivery applications.
Collapse
Affiliation(s)
- Onur Bas
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Isabelle Catelas
- School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia; Department of Mechanical Engineering, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Elena M De-Juan-Pardo
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia
| | - Dietmar W Hutmacher
- ARC Industrial Transformation Training Centre in Additive Biomanufacturing, Queensland University of Technology (QUT), Kelvin Grove, Brisbane, QLD 4059, Australia; Centre in Regenerative Medicine, Institute of Health and Biomedical Innovation, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia; School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty (SEF), Queensland University of Technology (QUT), Brisbane, QLD 4001, Australia; Institute for Advanced Study, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
83
|
Chen Z, You J, Liu X, Cooper S, Hodge C, Sutton G, Crook JM, Wallace GG. Biomaterials for corneal bioengineering. ACTA ACUST UNITED AC 2018; 13:032002. [PMID: 29021411 DOI: 10.1088/1748-605x/aa92d2] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Corneal transplantation is an important surgical treatment for many common corneal diseases. However, a worldwide shortage of tissue from suitable corneal donors has meant that many people are not able to receive sight-restoring operations. In addition, rejection is a major cause of corneal transplant failure. Bioengineering corneal tissue has recently gained widespread attention. In order to facilitate corneal regeneration, a range of materials is currently being investigated. The ideal substrate requires sufficient tectonic durability, biocompatibility with cultured cellular elements, transparency, and perhaps biodegradability and clinical compliance. This review considers the anatomy and function of the native cornea as a precursor to evaluating a variety of biomaterials for corneal regeneration including key characteristics for optimal material form and function. The integration of appropriate cells with the most appropriate biomaterials is also discussed. Taken together, the information provided offers insight into the requirements for fabricating synthetic and semisynthetic corneas for in vitro modeling of tissue development and disease, pharmaceutical screening, and in vivo application for regenerative medicine.
Collapse
Affiliation(s)
- Zhi Chen
- ARC Centre of Excellence for Electromaterials Science, Intelligent Polymer Research Institute, AIIM Facility, Innovation Campus, University of Wollongong, Squires Way, Fairy Meadow, New South Wales 2519, Australia
| | | | | | | | | | | | | | | |
Collapse
|
84
|
Pugliese E, Coentro JQ, Zeugolis DI. Advancements and Challenges in Multidomain Multicargo Delivery Vehicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2018; 30:e1704324. [PMID: 29446161 DOI: 10.1002/adma.201704324] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/05/2017] [Indexed: 06/08/2023]
Abstract
Reparative and regenerative processes are well-orchestrated temporal and spatial events that are governed by multiple cells, molecules, signaling pathways, and interactions thereof. Yet again, currently available implantable devices fail largely to recapitulate nature's complexity and sophistication in this regard. Herein, success stories and challenges in the field of layer-by-layer, composite, self-assembly, and core-shell technologies are discussed for the development of multidomain/multicargo delivery vehicles.
Collapse
Affiliation(s)
- Eugenia Pugliese
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - João Q Coentro
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular and Developmental Engineering Laboratory (REMODEL), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
- Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), Biomedical Sciences Building, National University of Ireland Galway (NUI Galway), Ireland
| |
Collapse
|
85
|
Rosellini E, Zhang YS, Migliori B, Barbani N, Lazzeri L, Shin SR, Dokmeci MR, Cascone MG. Protein/polysaccharide-based scaffolds mimicking native extracellular matrix for cardiac tissue engineering applications. J Biomed Mater Res A 2018; 106:769-781. [PMID: 29052369 PMCID: PMC5845858 DOI: 10.1002/jbm.a.36272] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 09/22/2017] [Accepted: 10/12/2017] [Indexed: 11/07/2022]
Abstract
Tissue engineering has emerged as a viable approach to treat disease or repair damage in tissues and organs. One of the key elements for the success of tissue engineering is the use of a scaffold serving as artificial extracellular matrix (ECM). The ECM hosts the cells and improves their survival, proliferation, and differentiation, enabling the formation of new tissue. Here, we propose the development of a class of protein/polysaccharide-based porous scaffolds for use as ECM substitutes in cardiac tissue engineering. Scaffolds based on blends of a protein component, collagen or gelatin, with a polysaccharide component, alginate, were produced by freeze-drying and subsequent ionic and chemical crosslinking. Their morphological, physicochemical, and mechanical properties were determined and compared with those of natural porcine myocardium. We demonstrated that our scaffolds possessed highly porous and interconnected structures, and the chemical homogeneity of the natural ECM was well reproduced in both types of scaffolds. Furthermore, the alginate/gelatin (AG) scaffolds better mimicked the native tissue in terms of interactions between components and protein secondary structure, and in terms of swelling behavior. The AG scaffolds also showed superior mechanical properties for the desired application and supported better adhesion, growth, and differentiation of myoblasts under static conditions. The AG scaffolds were subsequently used for culturing neonatal rat cardiomyocytes, where high viability of the resulting cardiac constructs was observed under dynamic flow culture in a microfluidic bioreactor. We therefore propose our protein/polysaccharide scaffolds as a viable ECM substitute for applications in cardiac tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 769-781, 2018.
Collapse
Affiliation(s)
- Elisabetta Rosellini
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56126, Italy
| | - Yu Shrike Zhang
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02139
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139
| | - Bianca Migliori
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02139
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139
| | - Niccoletta Barbani
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56126, Italy
| | - Luigi Lazzeri
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56126, Italy
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02139
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139
| | - Mehmet Remzi Dokmeci
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02139
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, Massachusetts, 02139
| | - Maria Grazia Cascone
- Department of Civil and Industrial Engineering, University of Pisa, Largo Lucio Lazzarino, Pisa, 56126, Italy
| |
Collapse
|
86
|
Wu Z, Kong B, Liu R, Sun W, Mi S. Engineering of Corneal Tissue through an Aligned PVA/Collagen Composite Nanofibrous Electrospun Scaffold. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E124. [PMID: 29495264 PMCID: PMC5853755 DOI: 10.3390/nano8020124] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/06/2018] [Accepted: 02/13/2018] [Indexed: 01/04/2023]
Abstract
Corneal diseases are the main reason of vision loss globally. Constructing a corneal equivalent which has a similar strength and transparency with the native cornea, seems to be a feasible way to solve the shortage of donated cornea. Electrospun collagen scaffolds are often fabricated and used as a tissue-engineered cornea, but the main drawback of poor mechanical properties make it unable to meet the requirement for surgery suture, which limits its clinical applications to a large extent. Aligned polyvinyl acetate (PVA)/collagen (PVA-COL) scaffolds were electrospun by mixing collagen and PVA to reinforce the mechanical strength of the collagen electrospun scaffold. Human keratocytes (HKs) and human corneal epithelial cells (HCECs) inoculated on aligned and random PVA-COL electrospun scaffolds adhered and proliferated well, and the aligned nanofibers induced orderly HK growth, indicating that the designed PVA-COL composite nanofibrous electrospun scaffold is suitable for application in tissue-engineered cornea.
Collapse
Affiliation(s)
- Zhengjie Wu
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
- Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Bin Kong
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
- Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Rui Liu
- Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
| | - Wei Sun
- Precision Medicine and Healthcare Research Center, Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, China.
- Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Department of Mechanical Engineering and Mechanics, Tsinghua University, Beijing 100084, China.
- Department of Mechanical Engineering, Drexel University, Philadelphia, PA 19104, USA.
| | - Shengli Mi
- Biomanufacturing Engineering Laboratory, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China.
- Open FIESTA Center, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
87
|
Assessment of the characteristics and biocompatibility of gelatin sponge scaffolds prepared by various crosslinking methods. Sci Rep 2018; 8:1616. [PMID: 29371676 PMCID: PMC5785510 DOI: 10.1038/s41598-018-20006-y] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 01/11/2018] [Indexed: 02/08/2023] Open
Abstract
This comparative study aims to identify a biocompatible and effective crosslinker for preparing gelatin sponges. Glutaraldehyde (GTA), genipin (GP), 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide (EDC), and microbial transglutaminase (mTG) were used as crosslinking agents. The physical properties of the prepared samples were characterized, and material degradation was studied in vitro with various proteases and in vivo through subcutaneous implantation of the sponges in rats. Adipose-derived stromal stem cells (ADSCs) were cultured and inoculated onto the scaffolds to compare the cellular biocompatibility of the sponges. Cellular seeding efficiency and digestion time of the sponges were also evaluated. Cellular viability and proliferation in scaffolds were analyzed by fluorescence staining and MTT assay. All the samples exhibited high porosity, good swelling ratio, and hydrolysis properties; however, material strength, hydrolysis, and enzymolytic properties varied among the samples. GTA–sponge and GP–sponge possessed high compressive moduli, and EDC–sponge exhibited fast degradation performance. GTA and GP sponge implants exerted strong in vivo rejections, and the former showed poor cell growth. mTG–sponge exhibited the optimal comprehensive performance, with good porosity, compressive modulus, anti-degradation ability, and good biocompatibility. Hence, mTG–sponge can be used as a scaffold material for tissue engineering applications.
Collapse
|
88
|
De France KJ, Xu F, Hoare T. Structured Macroporous Hydrogels: Progress, Challenges, and Opportunities. Adv Healthc Mater 2018; 7. [PMID: 29195022 DOI: 10.1002/adhm.201700927] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/15/2017] [Indexed: 12/15/2022]
Abstract
Structured macroporous hydrogels that have controllable porosities on both the nanoscale and the microscale offer both the swelling and interfacial properties of bulk hydrogels as well as the transport properties of "hard" macroporous materials. While a variety of techniques such as solvent casting, freeze drying, gas foaming, and phase separation have been developed to fabricate structured macroporous hydrogels, the typically weak mechanics and isotropic pore structures achieved as well as the required use of solvent/additives in the preparation process all limit the potential applications of these materials, particularly in biomedical contexts. This review highlights recent developments in the field of structured macroporous hydrogels aiming to increase network strength, create anisotropy and directionality within the networks, and utilize solvent-free or additive-free fabrication methods. Such functional materials are well suited for not only biomedical applications like tissue engineering and drug delivery but also selective filtration, environmental sorption, and the physical templating of secondary networks.
Collapse
Affiliation(s)
- Kevin J. De France
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Fei Xu
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| | - Todd Hoare
- Department of Chemical Engineering; McMaster University; 1280 Main Street West Hamilton ON L8S 4L8 Canada
| |
Collapse
|
89
|
Ai F, Liu T, Liu Y, Yang K, Liu Y, Wang W, Yuan F, Dong L, Xin H, Wang X. A 3D printed wound cooling system incorporated with injectable, adsorbable, swellable and broad spectrum antibacterial scaffolds for rapid hematischesis processing. J Mater Chem B 2018; 6:5940-5948. [DOI: 10.1039/c8tb01625a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Uncontrolled hemorrhage remains a leading cause of early death after trauma, and contamination further challenges the wounded.
Collapse
Affiliation(s)
- Fanrong Ai
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
- School of Mechanical & Electronic Engineering
| | - Tingwu Liu
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Yu Liu
- Department of Oncology
- The Second Affiliated Hospital of Nanchang University
- Nanchang
- China
| | - Kang Yang
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Yishen Liu
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Wenyan Wang
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Fushan Yuan
- College of Pharmacy
- Nanchang University
- Nanchang
- China
| | - Lina Dong
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
| | - Hongbo Xin
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
| | - Xiaolei Wang
- Institute of Translational Medicine
- Nanchang University
- Nanchang
- China
| |
Collapse
|
90
|
Jiang S, Chen Y, Duan G, Mei C, Greiner A, Agarwal S. Electrospun nanofiber reinforced composites: a review. Polym Chem 2018. [DOI: 10.1039/c8py00378e] [Citation(s) in RCA: 357] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
High performance electrospun nanofibers could be used to fabricate nanofiber reinforced composites.
Collapse
Affiliation(s)
- Shaohua Jiang
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Yiming Chen
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Gaigai Duan
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Changtong Mei
- College of Materials Science and Engineering
- Nanjing Forestry University
- Nanjing 210037
- China
| | - Andreas Greiner
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- Germany
| | - Seema Agarwal
- University of Bayreuth
- Faculty of Biology
- Chemistry and Earth Sciences
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces
- Germany
| |
Collapse
|
91
|
Golafshan N, Kharaziha M, Fathi M, Larson B, Giatsidis G, Masoumi N. Anisotropic architecture and electrical stimulation enhance neuron cell behaviour on a tough graphene embedded PVA: alginate fibrous scaffold. RSC Adv 2018; 8:6381-6389. [PMID: 35540432 PMCID: PMC9078254 DOI: 10.1039/c7ra13136d] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 01/31/2018] [Indexed: 12/16/2022] Open
Abstract
Tough scaffolds comprised of aligned and conductive fibers are promising for peripheral nerve regeneration due to their unique mechanical and electrical properties. Several studies have confirmed that electrical stimulation can control the axonal extension in vitro. However, the stimulatory effects of scaffold architecture and electrical stimulation have not yet been investigated in detail. Here, we assessed a comparison between aligned and random fibers made of graphene (Gr) embedded sodium alginate (SA) polyvinyl alcohol (PVA) (Gr-AP scaffolds) for peripheral nerve engineering. The effects of applied electrical stimulation and orientation of the fabricated fibers on the in vitro attachment, alignment, and proliferation of PC12 cells (a rat neuronal cell line) were investigated. The results revealed that the aligned fibrous Gr-AP scaffolds closely mimicked the anisotropic structure of the native sciatic nerve. Aligned fibrous Gr-AP scaffolds significantly improved mechanical properties as well as cell-scaffold integration compared to random fibrous scaffolds. In addition, electrical stimulation significantly improved PC12 cell proliferation. In summary, our findings revealed that aligned fibrous Gr-AP scaffolds offered superior mechanical characteristics and structural properties that enhanced neural cell–substrate interactions, resulting in a promising construct for nerve tissue regeneration. Tough scaffolds comprised of aligned and conductive fibers are promising for peripheral nerve regeneration due to their unique mechanical and electrical properties.![]()
Collapse
Affiliation(s)
- Nasim Golafshan
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran,
| | - Mahshid Kharaziha
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran,
| | - Mohammadhossein Fathi
- Department of Materials Engineering
- Isfahan University of Technology
- Isfahan 84156-83111
- Iran,
| | - Benjamin L. Larson
- Harvard-MIT Division of Health Sciences and Technology
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology
- Cambridge
- USA
| | - Giorgio Giatsidis
- Department of Surgery
- Brigham and Women Hospital
- Harvard Medical School
- Boston
- USA
| | - Nafiseh Masoumi
- Harvard-MIT Division of Health Sciences and Technology
- Koch Institute for Integrative Cancer Research
- Massachusetts Institute of Technology
- Cambridge
- USA
| |
Collapse
|
92
|
Raveendran S, Rochani AK, Maekawa T, Kumar DS. Smart Carriers and Nanohealers: A Nanomedical Insight on Natural Polymers. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E929. [PMID: 28796191 PMCID: PMC5578295 DOI: 10.3390/ma10080929] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/24/2017] [Accepted: 07/31/2017] [Indexed: 02/07/2023]
Abstract
Biodegradable polymers are popularly being used in an increasing number of fields in the past few decades. The popularity and favorability of these materials are due to their remarkable properties, enabling a wide range of applications and market requirements to be met. Polymer biodegradable systems are a promising arena of research for targeted and site-specific controlled drug delivery, for developing artificial limbs, 3D porous scaffolds for cellular regeneration or tissue engineering and biosensing applications. Several natural polymers have been identified, blended, functionalized and applied for designing nanoscaffolds and drug carriers as a prerequisite for enumerable bionano technological applications. Apart from these, natural polymers have been well studied and are widely used in material science and industrial fields. The present review explains the prominent features of commonly used natural polymers (polysaccharides and proteins) in various nanomedical applications and reveals the current status of the polymer research in bionanotechnology and science sectors.
Collapse
Affiliation(s)
- Sreejith Raveendran
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Ankit K Rochani
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - Toru Maekawa
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| | - D Sakthi Kumar
- Bio Nano Electronics Research Centre, Graduate School of Interdisciplinary New Science, Toyo University, Saitama 350-8585, Japan.
| |
Collapse
|
93
|
Babitha S, Rachita L, Karthikeyan K, Shoba E, Janani I, Poornima B, Purna Sai K. Electrospun protein nanofibers in healthcare: A review. Int J Pharm 2017; 523:52-90. [PMID: 28286080 DOI: 10.1016/j.ijpharm.2017.03.013] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/11/2022]
Abstract
Electrospun nanofibers are being utilized for a wide range of healthcare applications. A plethora of natural and synthetic polymers are exploited for their ability to be electrospun and replace the complex habitat provided by the extracellular matrix for the cells. The fabrication of nanofibers can be tuned to act as a multicarrier system to deliver drugs, growth factors and health supplements etc. in a sustained manner. Owing to its pliability, nanofibers reached its heights in tissue engineering and drug delivery applications. This review mainly focuses on various standardized parameters and optimized blending ratios for animal and plant proteins to yield fine, continuous nanofibers for effective utilization in various healthcare applications.
Collapse
Affiliation(s)
- S Babitha
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Lakra Rachita
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - K Karthikeyan
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Ekambaram Shoba
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Indrakumar Janani
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - Balan Poornima
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India
| | - K Purna Sai
- Biological Materials Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai, 600020, India.
| |
Collapse
|
94
|
Ocular biocompatibility of gelatin microcarriers functionalized with oxidized hyaluronic acid. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:150-159. [DOI: 10.1016/j.msec.2016.11.067] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/26/2016] [Accepted: 11/17/2016] [Indexed: 11/21/2022]
|
95
|
Tonsomboon K, Butcher AL, Oyen ML. Strong and tough nanofibrous hydrogel composites based on biomimetic principles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:220-227. [DOI: 10.1016/j.msec.2016.11.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/13/2016] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
96
|
Systematic mechanical evaluation of electrospun gelatin meshes. J Mech Behav Biomed Mater 2017; 69:412-419. [PMID: 28208112 DOI: 10.1016/j.jmbbm.2017.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/17/2016] [Accepted: 02/06/2017] [Indexed: 01/18/2023]
Abstract
Electrospinning is a simple and efficient process for producing sub-micron fibres. However, the process has many variables, and their effects on the non-woven mesh of fibres is complex. In particular, the effects on the mechanical properties of the fibre meshes are poorly understood. This paper conducts a parametric study, where the concentration and bloom strength of the gelatin solutions are varied, while all electrospinning process parameters are held constant. The effects on the fibrous meshes are monitored using scanning electron microscopy and mechanical testing under uniaxial tension. Mesh mechanical properties are relatively consistent, despite changes to the solutions, demonstrating the robustness of electrospinning. The gel strength of the solution is shown to have a statistically significant effect on the morphology, stiffness and strength of the meshes, while the fibre diameter has surprisingly little influence on the stiffness of the meshes. This experimental finding is supported by finite element analysis, demonstrating that the stiffness of the meshes is controlled by the volume fraction, rather than fibre diameter. Our results demonstrate the importance of understanding how electrospinning parameters influence the pore size of the meshes, as controlling fibre diameter alone is insufficient for consistent mechanical properties.
Collapse
|
97
|
Banerjee A, Patra S, Ganguly S. Alginate-gelatin blend with embedded voids for controlled release applications. J Appl Polym Sci 2017. [DOI: 10.1002/app.44787] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Arindam Banerjee
- Department of Chemical Engineering; Indian Institute of Technology; Kharagpur 721302 India
| | - Subhajit Patra
- Department of Chemical Engineering; Indian Institute of Technology; Kharagpur 721302 India
| | - Somenath Ganguly
- Department of Chemical Engineering; Indian Institute of Technology; Kharagpur 721302 India
| |
Collapse
|
98
|
Liew AWL, Zhang AY. In vitro pre-vascularization strategies for tissue engineered constructs-Bioprinting and others. Int J Bioprint 2017; 3:008. [PMID: 33094183 PMCID: PMC7575626 DOI: 10.18063/iib.2017.01.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 12/14/2016] [Indexed: 11/23/2022] Open
Abstract
Tissue-engineered products commercially available today have been limited to thin avascular tissue such as skin and cartilage. The fabrication of thicker, more complex tissue still eludes scientists today. One reason for this is the lack of effective techniques to incorporate functional vascular networks within thick tissue constructs. Vascular networks provide cells throughout the tissue with adequate oxygen and nutrients; cells located within thick un-vascularized tissue implants eventually die due to oxygen and nutrient deficiency. Vascularization has been identified as one of the key components in the field of tissue engineering. In order to fabricate biomimetic tissue which accurately recapitulates our native tissue environment, in vitro pre-vascularization strategies need to be developed. In this review, we describe various in vitro vascularization techniques developed recently which employ different technologies such as bioprinting, microfluidics, micropatterning, wire molding, and cell sheet engineering. We describe the fabrication process and unique characteristics of each technique, as well as provide our perspective on the future of the field.
Collapse
Affiliation(s)
- Andy Wen Loong Liew
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - And Yilei Zhang
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
| |
Collapse
|
99
|
Aldana AA, Abraham GA. Current advances in electrospun gelatin-based scaffolds for tissue engineering applications. Int J Pharm 2016; 523:441-453. [PMID: 27640245 DOI: 10.1016/j.ijpharm.2016.09.044] [Citation(s) in RCA: 156] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 12/11/2022]
Abstract
The development of biomimetic highly-porous scaffolds is essential for successful tissue engineering. Electrospun nanofibers are highly versatile platforms for a broad range of applications in different research areas. In the biomedical field, micro/nanoscale fibrous structures have gained great interest for wound dressings, drug delivery systems, soft and hard-tissue engineering scaffolds, enzyme immobilization, among other healthcare applications. In this mini-review, electrospun gelatin-based scaffolds for a variety of tissue engineering applications, such as bone, cartilage, skin, nerve, and ocular and vascular tissue engineering, are reviewed and discussed. Gelatin blends with natural or synthetic polymers exhibit physicochemical, biomechanical, and biocompatibility properties very attractive for scaffolding. Current advances and challenges on this research field are presented.
Collapse
Affiliation(s)
- Ana A Aldana
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina
| | - Gustavo A Abraham
- Instituto de Investigaciones en Ciencia y Tecnología de Materiales, INTEMA (UNMdP-CONICET), Av. Juan B. Justo 4302, B7608FDQ Mar del Plata, Argentina.
| |
Collapse
|
100
|
Knoblauch J, Tepler Drobnitch S, Peters WS, Knoblauch M. In situ microscopy reveals reversible cell wall swelling in kelp sieve tubes: one mechanism for turgor generation and flow control? PLANT, CELL & ENVIRONMENT 2016; 39:1727-36. [PMID: 26991892 DOI: 10.1111/pce.12736] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 03/01/2016] [Accepted: 03/03/2016] [Indexed: 06/05/2023]
Abstract
Kelps, brown algae (Phaeophyceae) of the order Laminariales, possess sieve tubes for the symplasmic long-distance transport of photoassimilates that are evolutionarily unrelated but structurally similar to the tubes in the phloem of vascular plants. We visualized sieve tube structure and wound responses in fully functional, intact Bull Kelp (Nereocystis luetkeana [K. Mertens] Postels & Ruprecht 1840). In injured tubes, apparent slime plugs formed but were unlikely to cause sieve tube occlusion as they assembled at the downstream side of sieve plates. Cell walls expanded massively in the radial direction, reducing the volume of the wounded sieve elements by up to 90%. Ultrastructural examination showed that a layer of the immediate cell wall characterized by circumferential cellulose fibrils was responsible for swelling and suggested that alginates, abundant gelatinous polymers of the cell wall matrix, were involved. Wall swelling was rapid, reversible and depended on intracellular pressure, as demonstrated by pressure-injection of silicon oil. Our results revive the concept of turgor generation and buffering by swelling cell walls, which had fallen into oblivion over the last century. Because sieve tube transport is pressure-driven and controlled physically by tube diameter, a regulatory role of wall swelling in photoassimilate distribution is implied in kelps.
Collapse
Affiliation(s)
- Jan Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Sarah Tepler Drobnitch
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Winfried S Peters
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Michael Knoblauch
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|