51
|
Shin SH, Wendland MF, Wang J, Velasquez M, Vandsburger MH. Noninvasively differentiating acute and chronic nephropathies via multiparametric urea-CEST, nuclear Overhauser enhancement-CEST, and quantitative magnetization transfer MRI. Magn Reson Med 2023; 89:774-786. [PMID: 36226662 PMCID: PMC11027791 DOI: 10.1002/mrm.29477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/26/2022] [Accepted: 09/14/2022] [Indexed: 12/13/2022]
Abstract
PURPOSE Standardized blood tests often lack adequate sensitivity and specificity to capture the gradual progression of renal injuries. We suggest a multiparametric molecular MRI approach as a noninvasive tool for monitoring renal function loss and distinguishing different types of renal injuries. METHODS CEST and quantitative magnetization transfer (qMT) imaging were performed on cisplatin (n = 16) and aristolochic acid (AA)-induced nephropathy (n = 22) mouse models at 7T with an infusion of either saline or urea. Seven-pool Lorentzian fitting was applied for the analysis of CEST Z-spectra, and the T1 -corrected CEST contrast apparent exchange-dependent relaxation (AREX) from urea (+1 ppm) and two nuclear Overhauser enhancement (NOE) pools (-1.6 and -3.5 ppm) were measured. Similarly, qMT spectra were fitted into two-pool Ramani equation and the relative semi-solid macromolecular pool-size ratio was measured. Histology of mouse kidneys was performed to validate the MR findings. RESULTS AA model showed disrupted spatial gradients of urea in the kidney and significantly decreased NOE CEST and qMT contrast. The cisplatin model showed slightly decreased qMT contrast only. The orrelation of MR parameters to histological features showed that NOE CEST and qMT imaging are sensitive to both acute and chronic injuries, whereas urea CEST shows a significant correlation only to acute injuries. CONCLUSION These results indicate that our multiparametric approach allows comprehensive and totally noninvasive monitoring of renal function and histological changes for distinguishing different nephropathies.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | - Michael F. Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, CA
| | - Jingshen Wang
- Department of Biostatistics, University of California, Berkeley, Berkeley, CA
| | - Mark Velasquez
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA
| | | |
Collapse
|
52
|
Jardim-Perassi BV, Irrera P, Lau JYC, Budzevich M, Whelan CJ, Abrahams D, Ruiz E, Ibrahim-Hashim A, Damgaci Erturk S, Longo DL, Pilon-Thomas SA, Gillies RJ. Intraperitoneal Delivery of Iopamidol to Assess Extracellular pH of Orthotopic Pancreatic Tumor Model by CEST-MRI. CONTRAST MEDIA & MOLECULAR IMAGING 2023; 2023:1944970. [PMID: 36704211 PMCID: PMC9836819 DOI: 10.1155/2023/1944970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/05/2022] [Accepted: 12/06/2022] [Indexed: 01/07/2023]
Abstract
The extracellular pH (pHe) of solid tumors is often acidic, as a consequence of the Warburg effect, and an altered metabolic state is often associated with malignancy. It has been shown that acidosis can promote tumor progression; thus, many therapeutic strategies have been adopted against tumor metabolism; one of these involves alkalinization therapies to raise tumor pH to inhibit tumor progression, improve immune surveillance, and overcome resistance to chemotherapies. Chemical exchange saturation transfer-magnetic resonance imaging (CEST-MRI) is a noninvasive technique that can measure pH in vivo using pH-sensitive contrast agents. Iopamidol, an iodinated contrast agent, clinically used for computed tomography (CT), contains amide group protons with pH-dependent exchange rates that can reveal the pHe of the tumor microenvironment. In this study, we optimized intraperitoneal (IP) delivery of iopamidol to facilitate longitudinal assessments of orthotopic pancreatic tumor pHe by CEST-MRI. Following IV-infusion and IP-bolus injections, we compared the two protocols for assessing tumor pH. Time-resolved CT imaging was used to evaluate the uptake of iopamidol in the tumor, revealing that IP-bolus delivered a high amount of contrast agent 40 min postinjection, which was similar to the amounts reached with the IV-infusion protocol. As expected, both IP and IV injection protocols produced comparable measurements of tumor pHe, showing no statistically significant difference between groups (p=0.16). In addition, we showed the ability to conduct longitudinal monitoring of tumor pHe using CEST-MRI with the IP injection protocol, revealing a statistically significant increase in tumor pHe following bicarbonate administration (p < 0.001). In conclusion, this study shows the capability to measure pHe using an IP delivery of iopamidol into orthotopic pancreatic tumors, which is important to conduct longitudinal studies.
Collapse
Affiliation(s)
| | - Pietro Irrera
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Justin Y. C. Lau
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Mikalai Budzevich
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Christopher J. Whelan
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
- Department of Biological Sciences, University of Illinois, Chicago, IL, USA
| | | | - Epifanio Ruiz
- Small Animal Imaging Laboratory, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Arig Ibrahim-Hashim
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Sultan Damgaci Erturk
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Dario Livio Longo
- Institute of Biostructures and Bioimages (IBB), National Research Council of Italy (CNR), Turin, Italy
| | - Shari A. Pilon-Thomas
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | - Robert J. Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| |
Collapse
|
53
|
Jabehdar Maralani P, Chan RW, Lam WW, Oakden W, Oglesby R, Lau A, Mehrabian H, Heyn C, Chan AK, Soliman H, Sahgal A, Stanisz GJ. Chemical Exchange Saturation Transfer MRI: What Neuro-Oncology Clinicians Need To Know. Technol Cancer Res Treat 2023; 22:15330338231208613. [PMID: 37872686 PMCID: PMC10594966 DOI: 10.1177/15330338231208613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/19/2023] [Accepted: 09/28/2023] [Indexed: 10/25/2023] Open
Abstract
Chemical exchange saturation transfer (CEST) is a relatively novel magnetic resonance imaging (MRI) technique with an image contrast designed for in vivo measurement of certain endogenous molecules with protons that are exchangeable with water protons, such as amide proton transfer commonly used for neuro-oncology applications. Recent technological advances have made it feasible to implement CEST on clinical grade scanners within practical acquisition times, creating new opportunities to integrate CEST in clinical workflow. In addition, the majority of CEST applications used in neuro-oncology are performed without the use gadolinium-based contrast agents which are another appealing feature of this technique. This review is written for clinicians involved in neuro-oncologic care (nonphysicists) as the target audience explaining what they need to know as CEST makes its way into practice. The purpose of this article is to (1) review the basic physics and technical principles of CEST MRI, and (2) review the practical applications of CEST in neuro-oncology.
Collapse
Affiliation(s)
- Pejman Jabehdar Maralani
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Rachel W. Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wilfred W. Lam
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Wendy Oakden
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Ryan Oglesby
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Angus Lau
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Hatef Mehrabian
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Chris Heyn
- Department of Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Aimee K.M. Chan
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Hany Soliman
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J. Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
54
|
Mouchel Dit Leguerrier D, Barré R, Ruet Q, Frachet V, Imbert D, Thomas F, Molloy JK. Symmetric CEST-active lanthanide complexes for redox monitoring. Dalton Trans 2022; 51:18400-18408. [PMID: 36415954 DOI: 10.1039/d2dt02776c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Two symmetric ligands harbouring two TEMPO radicals and two functionalized acetamide arms (R = OMe (L1), CF3 (L2)) were prepared and chelated to lanthanide ions (EuIII, YbIII for both L1 and L2, DyIII for L1). Luminescence measurements on the europium complexes support the coordination of a single water molecule. The TEMPO arms are magnetically interacting in L1 (and its complexes) but not in L2. The TEMPO moieties can be reversibly oxidized into an oxoammonium (0.33-0.36 V vs. Fc+/Fc) or reduced into a hydroxylamine (ill-defined redox wave, reduction by ascorbate), which are both diamagnetic. The europium complexes [Eu(L1)]3+ and [Eu(L2)]3+ in their hydroxylamine form exhibit a temperature dependent CEST effect, which is maximal at 25 °C (30%) and 37 °C (12%), respectively. The CEST activity is dramatically reduced in the corresponding nitroxide forms due to the paramagnetism of the ligand. The europium complexes show no cytotoxicity against M21 cell lines over long incubation times (72 h) at high concentration (40 μM).
Collapse
Affiliation(s)
| | - Richard Barré
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | - Quentin Ruet
- Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, 38700 La Tronche, France.,EPHE, PSL Research University, 75014 Paris, France
| | - Véronique Frachet
- Institute for Advanced Biosciences, INSERM U1209, UMR CNRS 5309, Grenoble Alpes University, 38700 La Tronche, France.,EPHE, PSL Research University, 75014 Paris, France
| | - Daniel Imbert
- Univ. Grenoble Alpes, CEA, CNRS, IRIG-LCBM, 38000 Grenoble, France
| | - Fabrice Thomas
- Univ. Grenoble Alpes, CNRS, DCM, 38000 Grenoble, France.
| | | |
Collapse
|
55
|
Sun PZ. Quasi-steady-state amide proton transfer (QUASS APT) MRI enhances pH-weighted imaging of acute stroke. Magn Reson Med 2022; 88:2633-2644. [PMID: 36178234 PMCID: PMC9529238 DOI: 10.1002/mrm.29408] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) imaging measurement depends not only on the labile proton concentration and pH-dependent exchange rate but also on experimental conditions, including the relaxation delay and radiofrequency (RF) saturation time. Our study aimed to extend a quasi-steady-state (QUASS) solution to a modified multi-slice CEST MRI sequence and test if it provides enhanced pH imaging after acute stroke. METHODS Our study derived the QUASS solution for a modified multislice CEST MRI sequence with an unevenly segmented RF saturation between image readout and signal averaging. Numerical simulation was performed to test if the generalized QUASS solution corrects the impact of insufficiently long relaxation delay, primary and secondary saturation times, and multi-slice readout. In addition, multiparametric MRI scans were obtained after middle cerebral artery occlusion, including relaxation and CEST Z-spectrum, to evaluate the performance of QUASS CEST MRI in a rodent acute stroke model. We also performed Lorentzian fitting to isolate multi-pool CEST contributions. RESULTS The QUASS analysis enhanced pH-weighted magnetization transfer asymmetry contrast over the routine apparent CEST measurements in both contralateral normal (-3.46% ± 0.62% (apparent) vs. -3.67% ± 0.66% (QUASS), P < 0.05) and ischemic tissue (-5.53% ± 0.68% (apparent) vs. -5.94% ± 0.73% (QUASS), P < 0.05). Lorentzian fitting also showed significant differences between routine and QUASS analysis of ischemia-induced changes in magnetization transfer, amide, amine, guanidyl CEST, and nuclear Overhauser enhancement (-1.6 parts per million) effects. CONCLUSION Our study demonstrated that generalized QUASS analysis enhanced pH MRI contrast and improved quantification of the underlying CEST contrast mechanism, promising for further in vivo applications.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Athinoula A Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
- Imaging Center, Emory National Primate Research Center, Emory University, Atlanta GA
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta GA
| |
Collapse
|
56
|
Rivlin M, Anaby D, Nissan N, Zaiss M, Deshmane A, Navon G, Sklair-Levy M. Breast cancer imaging with glucosamine CEST (chemical exchange saturation transfer) MRI: first human experience. Eur Radiol 2022; 32:7365-7373. [PMID: 35420304 DOI: 10.1007/s00330-022-08772-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES This study aims to evaluate the feasibility of imaging breast cancer with glucosamine (GlcN) chemical exchange saturation transfer (CEST) MRI technique to distinguish between tumor and surrounding tissue, compared to the conventional MRI method. METHODS Twelve patients with newly diagnosed breast tumors (median age, 53 years) were recruited in this prospective IRB-approved study, between August 2019 and March 2020. Informed consent was obtained from all patients. All MRI measurements were performed on a 3-T clinical MRI scanner. For CEST imaging, a fat-suppressed 3D RF-spoiled gradient echo sequence with saturation pulse train was applied. CEST signals were quantified in the tumor and in the surrounding tissue based on magnetization transfer ratio asymmetry (MTRasym) and a multi-Gaussian fitting. RESULTS GlcN CEST MRI revealed higher signal intensities in the tumor tissue compared to the surrounding breast tissue (MTRasym effect of 8.12 ± 4.09%, N = 12, p = 2.2 E-03) with the incremental increase due to GlcN uptake of 3.41 ± 0.79% (N = 12, p = 2.2 E-03), which is in line with tumor location as demonstrated by T1W and T2W MRI. GlcN CEST spectra comprise distinct peaks corresponding to proton exchange between free water and hydroxyl and amide/amine groups, and relayed nuclear Overhauser enhancement (NOE) from aliphatic groups, all yielded larger CEST integrals in the tumor tissue after GlcN uptake by an averaged factor of 2.2 ± 1.2 (p = 3.38 E-03), 1.4 ± 0.4 (p =9.88 E-03), and 1.6 ± 0.6 (p = 2.09 E-02), respectively. CONCLUSION The results of this initial feasibility study indicate the potential of GlcN CEST MRI to diagnose breast cancer in a clinical setup. KEY POINTS • GlcN CEST MRI method is demonstrated for its the ability to differentiate between breast tumor lesions and the surrounding tissue, based on the differential accumulation of the GlcN in the tumors. • GlcN CEST imaging may be used to identify metabolic active malignant breast tumors without using a Gd contrast agent. • The GlcN CEST MRI method may be considered for use in a clinical setup for breast cancer detection and should be tested as a complementary method to conventional clinical MRI methods.
Collapse
Affiliation(s)
- Michal Rivlin
- School of Chemistry, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel
| | - Debbie Anaby
- Department of Radiology, Sheba Medical Center, Sheba Tel Ha'shomer, Emek Ha Ella 1 St, 5265601, Ramat-Gan, Israel.,The Sackler School of Medicine, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel
| | - Noam Nissan
- Department of Radiology, Sheba Medical Center, Sheba Tel Ha'shomer, Emek Ha Ella 1 St, 5265601, Ramat-Gan, Israel.,The Sackler School of Medicine, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel
| | - Moritz Zaiss
- Departmnet of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Anagha Deshmane
- Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Gil Navon
- School of Chemistry, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel.
| | - Miri Sklair-Levy
- The Sackler School of Medicine, Tel-Aviv University, Levanon St., 6997801, Tel Aviv, Israel.,Meirav High Risk Clinic, Department of Diagnostic Imaging, Sheba Medical Center, Emek Ha Ella 1 St, 5265601, Ramat Gan, Israel
| |
Collapse
|
57
|
Pradhan RN, Irrera P, Romdhane F, Panda SK, Longo DL, Torres J, Kremer C, Assaiya A, Kumar J, Singh AK. Di-Pyridine-Containing Macrocyclic Triamide Fe(II) and Ni(II) Complexes as ParaCEST Agents. Inorg Chem 2022; 61:16650-16663. [PMID: 36205705 DOI: 10.1021/acs.inorgchem.2c02242] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Fe(II) and Ni(II) paraCEST contrast agents containing the di-pyridine macrocyclic ligand 2,2',2″-(3,7,10-triaza-1,5(2,6)-dipyridinacycloundecaphane-3,7,10-triyl)triacetamide (DETA) are reported here. Both [Fe(DETA)]2+ and [Ni(DETA)]2+ complexes were structurally characterized. Crystallographic data revealed the seven-coordinated distorted pentagonal bipyramidal geometry of the [Fe(DETA)]·(BF4)2·MeCN complex with five coordinated nitrogen atoms from the macrocyclic ring and two coordinated oxygen atoms from two amide pendant arms. The [Ni(DETA)]·Cl2·2H2O complex was six-coordinated in nature with a distorted octahedral geometry. Four coordinated nitrogen atoms were from the macrocyclic ring, and two coordinated oxygen atoms were from two amide pendant arms. [Fe(DETA)]2+ exhibited well-resolved sharp proton resonances, whereas very broad proton resonances were observed in the case of [Ni(DETA)]2+ due to the long electronic relaxation times. The CEST peaks for the [Fe(DETA)]2+ complex showed one highly downfield-shifted and intense peak at 84 ppm with another shifted but less intense peak at 28 ppm with good CEST contrast efficiency at body temperature, whereas [Ni(DETA)]2+ showed only one highly shifted intense peak at 78 ppm from the bulk water protons. Potentiometric titrations were performed to determine the protonation constants of the ligand and the thermodynamic stability constant of the [M(DETA)]2+ (M = Fe, Co, Ni, Cu, Zn) species at 25.0 °C and I = 0.15 mol·L-1 NaClO4. Metal exchange studies confirmed the stability of the complexes in acidic medium in the presence of physiologically relevant anions and an equimolar concentration of Zn(II) ions.
Collapse
Affiliation(s)
- Rabindra N Pradhan
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Pietro Irrera
- University of Campania "Luigi Vanvitelli", Caserta81100, Italy
| | - Feriel Romdhane
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Suvam Kumar Panda
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Torino10126, Italy
| | - Julia Torres
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Carlos Kremer
- Área Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Montevideo11800, Uruguay
| | - Anshul Assaiya
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Janesh Kumar
- National Centre for Cell Science, NCCS Complex, Pune University Campus, Ganeshkhind, Pune411 007, India
| | - Akhilesh K Singh
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Bhubaneswar752050, India
| |
Collapse
|
58
|
Shaghaghi M, Cai K. Toward In Vivo MRI of the Tissue Proton Exchange Rate in Humans. BIOSENSORS 2022; 12:bios12100815. [PMID: 36290953 PMCID: PMC9599426 DOI: 10.3390/bios12100815] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/19/2022] [Accepted: 09/29/2022] [Indexed: 05/28/2023]
Abstract
Quantification of proton exchange rate (kex) is a challenge in MR studies. Current techniques either have low resolutions or are dependent on the estimation of parameters that are not measurable. The Omega plot method, on the other hand, provides a direct way for determining kex independent of the agent concentration. However, it cannot be used for in vivo studies without some modification due to the contributions from the water signal. In vivo tissue proton exchange rate (kex) MRI, based on the direct saturation (DS) removed Omega plot, quantifies the weighted average of kex of the endogenous tissue metabolites. This technique has been successfully employed for imaging the variation in the kex of ex vivo phantoms, as well as in vivo human brains in healthy subjects, and stroke or multiple sclerosis (MS) patients. In this paper, we present a brief review of the methods used for kex imaging with a focus on the development of in vivo kex MRI technique based on the DS-removed Omega plot. We then review the recent clinical studies utilizing this technique for better characterizing brain lesions. We also outline technical challenges for the presented technique and discuss its prospects for detecting tissue microenvironmental changes under oxidative stress.
Collapse
Affiliation(s)
- Mehran Shaghaghi
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
59
|
Dwivedi DK, Jagannathan NR. Emerging MR methods for improved diagnosis of prostate cancer by multiparametric MRI. MAGMA (NEW YORK, N.Y.) 2022; 35:587-608. [PMID: 35867236 DOI: 10.1007/s10334-022-01031-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 06/28/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Current challenges of using serum prostate-specific antigen (PSA) level-based screening, such as the increased false positive rate, inability to detect clinically significant prostate cancer (PCa) with random biopsy, multifocality in PCa, and the molecular heterogeneity of PCa, can be addressed by integrating advanced multiparametric MR imaging (mpMRI) approaches into the diagnostic workup of PCa. The standard method for diagnosing PCa is a transrectal ultrasonography (TRUS)-guided systematic prostate biopsy, but it suffers from sampling errors and frequently fails to detect clinically significant PCa. mpMRI not only increases the detection of clinically significant PCa, but it also helps to reduce unnecessary biopsies because of its high negative predictive value. Furthermore, non-Cartesian image acquisition and compressed sensing have resulted in faster MR acquisition with improved signal-to-noise ratio, which can be used in quantitative MRI methods such as dynamic contrast-enhanced (DCE)-MRI. With the growing emphasis on the role of pre-biopsy mpMRI in the evaluation of PCa, there is an increased demand for innovative MRI methods that can improve PCa grading, detect clinically significant PCa, and biopsy guidance. To meet these demands, in addition to routine T1-weighted, T2-weighted, DCE-MRI, diffusion MRI, and MR spectroscopy, several new MR methods such as restriction spectrum imaging, vascular, extracellular, and restricted diffusion for cytometry in tumors (VERDICT) method, hybrid multi-dimensional MRI, luminal water imaging, and MR fingerprinting have been developed for a better characterization of the disease. Further, with the increasing interest in combining MR data with clinical and genomic data, there is a growing interest in utilizing radiomics and radiogenomics approaches. These big data can also be utilized in the development of computer-aided diagnostic tools, including automatic segmentation and the detection of clinically significant PCa using machine learning methods.
Collapse
Affiliation(s)
- Durgesh Kumar Dwivedi
- Department of Radiodiagnosis, King George Medical University, Lucknow, UP, 226 003, India.
| | - Naranamangalam R Jagannathan
- Department of Radiology, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, TN, 603 103, India.
- Department of Radiology, Sri Ramachandra Institute of Higher Education and Research, Chennai, TN, 600 116, India.
- Department of Electrical Engineering, Indian Institute Technology Madras, Chennai, TN, 600 036, India.
| |
Collapse
|
60
|
Zhao Y, Zu Z, Xu J, Gore JC, Does MD, Li J, Gochberg DF. Mapping pH using stimulated echoes formed via chemical exchange. Magn Reson Imaging 2022; 92:100-107. [PMID: 35764217 DOI: 10.1016/j.mri.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/10/2022] [Accepted: 06/22/2022] [Indexed: 12/09/2022]
Abstract
PURPOSE RACETE (refocused acquisition of chemical exchange transferred excitations) is a recently developed approach to imaging solute exchange with water. However, it lacks biophysical specificity, as it is sensitive to exchange rates, relaxation rates, solute concentration, and macromolecular content. We modified this sequence and developed a protocol and corresponding metric with specific sensitivity to the solute exchange rate and hence a means for mapping pH. THEORY AND METHODS RACETE splits the two gradients traditionally used in a stimulated-echo sequence into one applied after exciting solutes and one applied after exciting water, hence requiring exchange for echo formation. In this work, we leverage the dependence of the stimulated-echo signal on the exchange process. By preserving the total irradiation power and using a ratio metric, the other signal dependencies cancel, leaving a specific measure of exchange rate. Additionally, artifacts due to off-resonance excitation of water are addressed using a phase cancelling approach; and a gradient-echo imaging sequence with a variable flip angle excitation is tailored for a fast read-out of RECETE prepared signals. This method is validated using numerical simulations and salicylic acid phantom experiments at 9.4 T. RESULTS Numerical simulations and phantom experiments demonstrate that the ratio-metric is a single-variable function of exchange rate with extremely low dependence on confounding factors. Additionally, artifacts due to direct water excitation are removed and robustness to B0 and B1 inhomogeneities is demonstrated. CONCLUSION The proposed method can be used for fast pH mapping with robustness against the confounding effects that widely exist in other methods.
Collapse
Affiliation(s)
- Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Junzhong Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mark D Does
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jianqi Li
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
61
|
Lorentzian-Corrected Apparent Exchange-Dependent Relaxation (LAREX) Ω-Plot Analysis-An Adaptation for qCEST in a Multi-Pool System: Comprehensive In Silico, In Situ, and In Vivo Studies. Int J Mol Sci 2022; 23:ijms23136920. [PMID: 35805925 PMCID: PMC9266897 DOI: 10.3390/ijms23136920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/05/2022] [Accepted: 06/20/2022] [Indexed: 12/14/2022] Open
Abstract
Based on in silico, in situ, and in vivo studies, this study aims to develop a new method for the quantitative chemical exchange saturation transfer (qCEST) technique considering multi-pool systems. To this end, we extended the state-of-the-art apparent exchange-dependent relaxation (AREX) method with a Lorentzian correction (LAREX). We then validated this new method with in situ and in vivo experiments on human intervertebral discs (IVDs) using the Kendall-Tau correlation coefficient. In the in silico experiments, we observed significant deviations of the AREX method as a function of the underlying exchange rate (kba) and fractional concentration (fb) compared to the ground truth due to the influence of other exchange pools. In comparison to AREX, the LAREX-based Ω-plot approach yielded a substantial improvement. In the subsequent in situ and in vivo experiments on human IVDs, no correlation to the histological reference standard or Pfirrmann classification could be found for the fb (in situ: τ = −0.17 p = 0.51; in vivo: τ = 0.13 p = 0.30) and kba (in situ: τ = 0.042 p = 0.87; in vivo: τ = −0.26 p = 0.04) of Glycosaminoglycan (GAG) with AREX. In contrast, the influence of interfering pools could be corrected by LAREX, and a moderate to strong correlation was observed for the fractional concentration of GAG for both in situ (τ = −0.71 p = 0.005) and in vivo (τ = −0.49 p < 0.001) experiments. The study presented here is the first to introduce a new qCEST method that enables qCEST imaging in systems with multiple proton pools.
Collapse
|
62
|
Zakaria ABM, Huang Y, Coman D, Mishra SK, Mihailovic JM, Maritim S, Rojas-Quijano FA, Jurek P, Kiefer GE, Hyder F. Methylated tetra-amide derivatives of paramagnetic complexes for magnetic resonance biosensing with both BIRDS and CEST. NMR IN BIOMEDICINE 2022; 35:e4687. [PMID: 34970801 DOI: 10.1002/nbm.4687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Paramagnetic agents that utilize two mechanisms to provide physiological information by magnetic resonance imaging (MRI) and magnetic resonance spectroscopic imaging (MRSI) are described. MRI with chemical exchange saturation transfer (CEST) takes advantage of the agent's exchangeable protons (e.g., -OH or -NHx , where 2 ≥ x ≥ 1) to create pH contrast. The agent's incorporation of non-exchangeable protons (e.g., -CHy , where 3 ≥ y ≥ 1) makes it possible to map tissue temperature and/or pH using an MRSI method called biosensor imaging of redundant deviation in shifts (BIRDS). Hybrid probes based upon 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetate chelate (DOTA4- ) and its methylated analog (1,4,7,10-tetraazacyclododecane-α, α', α″, α‴-tetramethyl-1,4,7,10-tetraacetate, DOTMA4- ) were synthesized, and modified to create new tetra-amide chelates. Addition of several methyl groups per pendent arm of the symmetrical chelates, positioned proximally and distally to thulium ions (Tm3+ ), gave rise to favorable BIRDS properties (i.e., high signal-to-noise ratio (SNR) from non-exchangeable methyl proton peaks) and CEST responsiveness (i.e., from amide exchangeable protons). Structures of the Tm3+ probes elucidate the influence of methyl group placement on sensor performance. An eight-coordinate geometry with high symmetry was observed for the complexes: Tm-L1 was based on DOTA4- , whereas Tm-L2 and Tm-L3 were based on DOTMA4- , where the latter contained an additional carboxylate at the distal end of each arm. The distance of Tm3+ from terminal methyl carbons is a key determinant for sustaining BIRDS temperature sensitivity without compromising CEST pH contrast; however, water solubility was influenced by introduction of hydrophobic methyl groups and hydrophilic carboxylate. Combined BIRDS and CEST detection of Tm-L2, which features two high-SNR methyl peaks and a strong amide CEST peak, should enable simultaneous temperature and pH measurements for high-resolution molecular imaging in vivo.
Collapse
Affiliation(s)
- Abul B M Zakaria
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Yuegao Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Daniel Coman
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Sandeep K Mishra
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Jelena M Mihailovic
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | - Samuel Maritim
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
| | | | | | | | - Fahmeed Hyder
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut, USA
- Magnetic Resonance Research Center, Yale University, New Haven, Connecticut, USA
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
63
|
Columbus D, Arunachalam V, Glang F, Avram L, Haber S, Zohar A, Zaiss M, Leskes M. Direct Detection of Lithium Exchange across the Solid Electrolyte Interphase by 7Li Chemical Exchange Saturation Transfer. J Am Chem Soc 2022; 144:9836-9844. [PMID: 35635564 PMCID: PMC9185740 DOI: 10.1021/jacs.2c02494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Lithium metal anodes
offer a huge leap in the energy density of
batteries, yet their implementation is limited by solid electrolyte
interphase (SEI) formation and dendrite deposition. A key challenge
in developing electrolytes leading to the SEI with beneficial properties
is the lack of experimental approaches for directly probing the ionic
permeability of the SEI. Here, we introduce lithium chemical exchange
saturation transfer (Li-CEST) as an efficient nuclear magnetic resonance
(NMR) approach for detecting the otherwise invisible process of Li
exchange across the metal–SEI interface. In Li-CEST, the properties
of the undetectable SEI are encoded in the NMR signal of the metal
resonance through their exchange process. We benefit from the high
surface area of lithium dendrites and are able, for the first time,
to detect exchange across solid phases through CEST. Analytical Bloch-McConnell
models allow us to compare the SEI permeability formed in different
electrolytes, making the presented Li-CEST approach a powerful tool
for designing electrolytes for metal-based batteries.
Collapse
Affiliation(s)
- David Columbus
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Vaishali Arunachalam
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Felix Glang
- Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Shira Haber
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Arava Zohar
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| | - Moritz Zaiss
- Magnetic Resonance Center, Max-Planck Institute for Biological Cybernetics, Tübingen 72076, Germany
- Institute of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen 91052, Germany
| | - Michal Leskes
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 761000, Israel
| |
Collapse
|
64
|
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, Bachert P, Blakeley JO, Cai K, Chappell MA, Chen M, Gochberg DF, Goerke S, Heo HY, Jiang S, Jin T, Kim SG, Laterra J, Paech D, Pagel MD, Park JE, Reddy R, Sakata A, Sartoretti-Schefer S, Sherry AD, Smith SA, Stanisz GJ, Sundgren PC, Togao O, Vandsburger M, Wen Z, Wu Y, Zhang Y, Zhu W, Zu Z, van Zijl PCM. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: Application to brain tumors. Magn Reson Med 2022; 88:546-574. [PMID: 35452155 PMCID: PMC9321891 DOI: 10.1002/mrm.29241] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 12/16/2022]
Abstract
Amide proton transfer-weighted (APTw) MR imaging shows promise as a biomarker of brain tumor status. Currently used APTw MRI pulse sequences and protocols vary substantially among different institutes, and there are no agreed-on standards in the imaging community. Therefore, the results acquired from different research centers are difficult to compare, which hampers uniform clinical application and interpretation. This paper reviews current clinical APTw imaging approaches and provides a rationale for optimized APTw brain tumor imaging at 3 T, including specific recommendations for pulse sequences, acquisition protocols, and data processing methods. We expect that these consensus recommendations will become the first broadly accepted guidelines for APTw imaging of brain tumors on 3 T MRI systems from different vendors. This will allow more medical centers to use the same or comparable APTw MRI techniques for the detection, characterization, and monitoring of brain tumors, enabling multi-center trials in larger patient cohorts and, ultimately, routine clinical use.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Moritz Zaiss
- Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Institute of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Sung Soo Ahn
- Department of Radiology and Research Institute of Radiological Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Silvio Aime
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Peter Bachert
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany.,Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Jaishri O Blakeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kejia Cai
- Department of Radiology, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Michael A Chappell
- Mental Health and Clinical Neurosciences and Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Nottingham Biomedical Research Centre, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Beijing, China
| | - Daniel F Gochberg
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Physics, Vanderbilt University, Nashville, Tennessee, USA
| | - Steffen Goerke
- Department of Medical Physics in Radiology, German Cancer Research Center, Heidelberg, Germany
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Tao Jin
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Seong-Gi Kim
- Center for Neuroscience Imaging Research, Institute for Basic Science and Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - John Laterra
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center, Heidelberg, Germany.,Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Mark D Pagel
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ji Eun Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, South Korea
| | - Ravinder Reddy
- Center for Advance Metabolic Imaging in Precision Medicine, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Akihiko Sakata
- Department of Diagnostic Imaging and Nuclear Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | | | - A Dean Sherry
- Advanced Imaging Research Center and Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, Texas, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Greg J Stanisz
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Pia C Sundgren
- Department of Diagnostic Radiology/Clinical Sciences Lund, Lund University, Lund, Sweden.,Lund University Bioimaging Center, Lund University, Lund, Sweden.,Department of Medical Imaging and Physiology, Skåne University Hospital, Lund University, Lund, Sweden
| | - Osamu Togao
- Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | | | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongliang Zu
- Vanderbilt University Institute of Imaging Science (VUIIS), Vanderbilt University Medical Center, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Hugo W. Moser Research Institute at Kennedy Krieger, Baltimore, Maryland, USA
| |
Collapse
|
65
|
Kumar M, Nanga RPR, Verma G, Wilson N, Brisset JC, Nath K, Chawla S. Emerging MR Imaging and Spectroscopic Methods to Study Brain Tumor Metabolism. Front Neurol 2022; 13:789355. [PMID: 35370872 PMCID: PMC8967433 DOI: 10.3389/fneur.2022.789355] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Proton magnetic resonance spectroscopy (1H-MRS) provides a non-invasive biochemical profile of brain tumors. The conventional 1H-MRS methods present a few challenges mainly related to limited spatial coverage and low spatial and spectral resolutions. In the recent past, the advent and development of more sophisticated metabolic imaging and spectroscopic sequences have revolutionized the field of neuro-oncologic metabolomics. In this review article, we will briefly describe the scientific premises of three-dimensional echoplanar spectroscopic imaging (3D-EPSI), two-dimensional correlation spectroscopy (2D-COSY), and chemical exchange saturation technique (CEST) MRI techniques. Several published studies have shown how these emerging techniques can significantly impact the management of patients with glioma by determining histologic grades, molecular profiles, planning treatment strategies, and assessing the therapeutic responses. The purpose of this review article is to summarize the potential clinical applications of these techniques in studying brain tumor metabolism.
Collapse
Affiliation(s)
- Manoj Kumar
- Department of Neuroimaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Bengaluru, India
| | - Ravi Prakash Reddy Nanga
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Neil Wilson
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | | | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
| | - Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Sanjeev Chawla
| |
Collapse
|
66
|
Huang J, Chen Z, Park SW, Lai JHC, Chan KWY. Molecular Imaging of Brain Tumors and Drug Delivery Using CEST MRI: Promises and Challenges. Pharmaceutics 2022; 14:451. [PMID: 35214183 PMCID: PMC8880023 DOI: 10.3390/pharmaceutics14020451] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 12/10/2022] Open
Abstract
Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) detects molecules in their natural forms in a sensitive and non-invasive manner. This makes it a robust approach to assess brain tumors and related molecular alterations using endogenous molecules, such as proteins/peptides, and drugs approved for clinical use. In this review, we will discuss the promises of CEST MRI in the identification of tumors, tumor grading, detecting molecular alterations related to isocitrate dehydrogenase (IDH) and O-6-methylguanine-DNA methyltransferase (MGMT), assessment of treatment effects, and using multiple contrasts of CEST to develop theranostic approaches for cancer treatments. Promising applications include (i) using the CEST contrast of amide protons of proteins/peptides to detect brain tumors, such as glioblastoma multiforme (GBM) and low-grade gliomas; (ii) using multiple CEST contrasts for tumor stratification, and (iii) evaluation of the efficacy of drug delivery without the need of metallic or radioactive labels. These promising applications have raised enthusiasm, however, the use of CEST MRI is not trivial. CEST contrast depends on the pulse sequences, saturation parameters, methods used to analyze the CEST spectrum (i.e., Z-spectrum), and, importantly, how to interpret changes in CEST contrast and related molecular alterations in the brain. Emerging pulse sequence designs and data analysis approaches, including those assisted with deep learning, have enhanced the capability of CEST MRI in detecting molecules in brain tumors. CEST has become a specific marker for tumor grading and has the potential for prognosis and theranostics in brain tumors. With increasing understanding of the technical aspects and associated molecular alterations detected by CEST MRI, this young field is expected to have wide clinical applications in the near future.
Collapse
Affiliation(s)
- Jianpan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Zilin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Se-Weon Park
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
| | - Joseph H. C. Lai
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
| | - Kannie W. Y. Chan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China; (J.H.); (Z.C.); (S.-W.P.); (J.H.C.L.)
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, China
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
- Tung Biomedical Science Centre, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
67
|
Jaroszewicz MJ, Novakovic M, Frydman L. On the potential of Fourier-encoded saturation transfers for sensitizing solid-state magic-angle spinning NMR experiments. J Chem Phys 2022; 156:054201. [DOI: 10.1063/5.0076946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Affiliation(s)
- Michael J. Jaroszewicz
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Mihajlo Novakovic
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
68
|
Pavuluri K, Yang E, Ayyappan V, Sonkar K, Tan Z, Tressler CM, Bo S, Bibic A, Glunde K, McMahon MT. Unlabeled aspirin as an activatable theranostic MRI agent for breast cancer. Theranostics 2022; 12:1937-1951. [PMID: 35198081 PMCID: PMC8825591 DOI: 10.7150/thno.53147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/17/2021] [Indexed: 01/11/2023] Open
Abstract
Rationale: Chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) is emerging as an alternative to gadolinium-based contrast MRI. We have evaluated the possibility of CEST MRI of orthotopic breast tumor xenografts with unlabeled aspirin's conversion to salicylic acid (SA) through various enzymatic activities, most notably inhibition of cyclooxygenase (COX)-1/-2 enzymes. Methods: We measured the COX-1/-2 expression in four breast cancer cell lines by Western Blot analysis and selected the highest and lowest expressing cell lines. We then performed CEST MRI following aspirin treatment to detect SA levels and ELISA to measure levels of downstream prostaglandin E2 (PGE2). We also injected aspirin into the tail vein of mice growing orthotopic tumor xenografts which expressed high and low COX-1/-2 and acquired SA CEST MR images of these tumor xenografts for up to 70 minutes. Tumors were then harvested to perform Western Blot and ELISA experiments to measure COX-1/-2 expression and PGE2 levels, respectively. Results: Western Blots determined that SUM159 cells contained significantly higher COX-1/-2 expression levels than MDA-MB-231 cells, in line with higher levels of downstream PGE2. SA CEST MRI yielded similar contrast at approximately 3% for both cell lines, independent of COX-1/-2 expression level. PGE2 levels decreased by about 50% following aspirin treatment. Results from our mouse study aligned with cultured cells, the overall SA CEST MRI contrast in both MDA-MB-231 and SUM159 tumor xenograft models was 5~8% at one hour post injection. PGE2 levels were ten times higher in SUM159 than MDA-MB-231 and decreased by 50%. The CEST contrast directly depended on the injected dose, with ~6%, ~3% and ~1.5% contrast observed following injection of 100 µL of 300 mM, 200 mM and 150 mM aspirin, respectively. Conclusions: Our data demonstrate the feasibility of using aspirin as a noninvasive activatable CEST MRI contrast agent for breast tumor detection.
Collapse
Affiliation(s)
- KowsalyaDevi Pavuluri
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ethan Yang
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Vinay Ayyappan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Kanchan Sonkar
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Zheqiong Tan
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Medical Laboratory, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Caitlin M. Tressler
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Shaowei Bo
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Adnan Bibic
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| | - Kristine Glunde
- Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
- The Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, MD
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD
| | - Michael T McMahon
- Division of MR Research, The Russell H. Morgan Department of Radiology and Radiological Science; The Johns Hopkins University School of Medicine, Baltimore, MD
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD
| |
Collapse
|
69
|
Berry DBG, Clegg I, Codina A, Lyall CL, Lowe JP, Hintermair U. Convenient and accurate insight into solution-phase equilibria from FlowNMR titrations. REACT CHEM ENG 2022. [DOI: 10.1039/d2re00123c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Solution phase titrations are made easy by multi-nuclear FlowNMR spectroscopy with automated, continuous titre addition to give accurate insights into Brønsted acid/base, hydrogen bonding, Lewis acid/base and metal/ligand binding equilibria under native conditions.
Collapse
Affiliation(s)
- Daniel B. G. Berry
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ian Clegg
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Anna Codina
- Bruker UK Ltd, Banner Lane, CV4 9GH Coventry, UK
| | - Catherine L. Lyall
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - John P. Lowe
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Dynamic Reaction Monitoring Facility, University of Bath, Claverton Down, BA2 7AY Bath, UK
- Centre for Sustainable and Circular Technologies, University of Bath, Claverton Down, BA2 7AY Bath, UK
| |
Collapse
|
70
|
Han P, Cheema K, Lee HL, Zhou Z, Cao T, Ma S, Wang N, Han H, Christodoulou AG, Li D. Whole-brain steady-state CEST at 3 T using MR Multitasking. Magn Reson Med 2021; 87:2363-2371. [PMID: 34843114 DOI: 10.1002/mrm.29109] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To perform fast 3D steady-state CEST (ss-CEST) imaging using MR Multitasking. METHODS A continuous acquisition sequence with repetitive ss-CEST modules was developed. Each ss-CEST module contains a single-lobe Gaussian saturation pulse, followed by a spoiler gradient and eight FLASH readouts (one "training line" + seven "imaging lines"). Three-dimensional Cartesian encoding was used for k-space acquisition. Reconstructed CEST images were quantified with four-pool Lorentzian fitting. RESULTS Steady-state CEST with whole-brain coverage was performed in 5.6 s per saturation frequency offset at the spatial resolution of 1.7 × 1.7 × 3.0 mm3 . The total scan time was 5.5 min for 55 different frequency offsets. Quantitative CEST maps from multipool fitting showed consistent image quality across the volume. CONCLUSION Three-dimensional ss-CEST with whole-brain coverage can be done at 3 T within 5.5 min using MR Multitasking.
Collapse
Affiliation(s)
- Pei Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Karandeep Cheema
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Hsu-Lei Lee
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zhengwei Zhou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Tianle Cao
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Sen Ma
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nan Wang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hui Han
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Anthony G Christodoulou
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Bioengineering, University of California, Los Angeles, California, USA
| |
Collapse
|
71
|
Kim H, Krishnamurthy LC, Sun PZ. Demonstration of fast multi-slice quasi-steady-state chemical exchange saturation transfer (QUASS CEST) human brain imaging at 3T. Magn Reson Med 2021; 87:810-819. [PMID: 34590726 DOI: 10.1002/mrm.29028] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/01/2021] [Accepted: 09/09/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To combine multi-slice chemical exchange saturation transfer (CEST) imaging with quasi-steady-state (QUASS) processing and demonstrate the feasibility of fast QUASS CEST MRI at 3T. METHODS Fast multi-slice echo planar imaging (EPI) CEST imaging was developed with concatenated slice acquisition after single radiofrequency irradiation. The multi-slice CEST signal evolution was described by the spin-lock relaxation during saturation duration (Ts ) and longitudinal relaxation during the relaxation delay time (Td ) and post-label delay (PLD), from which the QUASS CEST was generalized to fast multi-slice acquisition. In addition, numerical simulations, phantom, and normal human subjects scans were performed to compare the conventional apparent and QUASS CEST measurements with different Ts , Td, and PLD. RESULTS The numerical simulation showed that the apparent CEST effect strongly depends on Ts , Td , and PLD, while the QUASS CEST algorithm minimizes such dependences. In the L-carnosine gel phantom, the proposed QUASS CEST effects (2.68 ± 0.12% [mean ± SD]) were higher than the apparent CEST effects (1.85 ± 0.26%, p < 5e-4). In the human brain imaging, Bland-Altman analysis bias of the proposed QUASS CEST effects was much smaller than the PLD-corrected apparent CEST effects (0.03% vs. -0.54%), indicating the proposed fast multi-slice CEST imaging is robust and accurate. CONCLUSIONS The QUASS processing enables fast multi-slice CEST imaging with minimal loss in the measurement of the CEST effect.
Collapse
Affiliation(s)
- Hahnsung Kim
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Lisa C Krishnamurthy
- Center for Visual and Neurocognitive Rehabilitation, Atlanta VA, Decatur, Georgia, USA.,Department of Physics & Astronomy, Georgia State University, Atlanta, Georgia, USA
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
72
|
Pelled G, Salas MM, Han P, Gill HE, Lautenschlager KA, Lai TT, Shawver CM, Hoch MB, Goff BJ, Betts AM, Zhou Z, Lynch C, Schroeder G, Bez M, Maya MM, Bresee C, Gazit Z, McCallin JP, Gazit D, Li D. Intradiscal quantitative chemical exchange saturation transfer MRI signal correlates with discogenic pain in human patients. Sci Rep 2021; 11:19195. [PMID: 34584114 PMCID: PMC8478892 DOI: 10.1038/s41598-021-97672-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/22/2021] [Indexed: 12/13/2022] Open
Abstract
Low back pain (LBP) is often a result of a degenerative process in the intervertebral disc. The precise origin of discogenic pain is diagnosed by the invasive procedure of provocative discography (PD). Previously, we developed quantitative chemical exchange saturation transfer (qCEST) magnetic resonance imaging (MRI) to detect pH as a biomarker for discogenic pain. Based on these findings we initiated a clinical study with the goal to evaluate the correlation between qCEST values and PD results in LBP patients. Twenty five volunteers with chronic low back pain were subjected to T2-weighted (T2w) and qCEST MRI scans followed by PD. A total of 72 discs were analyzed. The average qCEST signal value of painful discs was significantly higher than non-painful discs (p = 0.012). The ratio between qCEST and normalized T2w was found to be significantly higher in painful discs compared to non-painful discs (p = 0.0022). A receiver operating characteristics (ROC) analysis indicated that qCEST/T2w ratio could be used to differentiate between painful and non-painful discs with 78% sensitivity and 81% specificity. The results of the study suggest that qCEST could be used for the diagnosis of discogenic pain, in conjunction with the commonly used T2w scan.
Collapse
Affiliation(s)
- Gadi Pelled
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA.
| | - Margaux M Salas
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- 59th Medical Wing Air Force, San Antonio, TX, 78236, USA
| | - Pei Han
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Howard E Gill
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Karl A Lautenschlager
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tristan T Lai
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cameron M Shawver
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Matthew B Hoch
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Brandon J Goff
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Aaron M Betts
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zhengwei Zhou
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Cody Lynch
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Grant Schroeder
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Maxim Bez
- Medical Corps, Israel Defense Forces, Tel HaShomer, Israel
| | - Marcel M Maya
- Department of Imaging, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Catherine Bresee
- Biostatistics and Bioinformatics Research Center, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Zulma Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - John P McCallin
- Division of Pain Management, Department of Rehabilitation Medicine, Brooke Army Medical Center, San Antonio, TX, 78234, USA
- Department of Physical Medicine and Rehabilitation, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dan Gazit
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Orthopedics, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Faculty of Dental Medicine, Hebrew University, 91120, Jerusalem, Israel
| | - Debiao Li
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Biomedical Research Imaging Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
73
|
BADE AN, GENDELMAN HE, MCMILLAN J, LIU Y. Chemical exchange saturation transfer for detection of antiretroviral drugs in brain tissue. AIDS 2021; 35:1733-1741. [PMID: 34049358 PMCID: PMC8373768 DOI: 10.1097/qad.0000000000002960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Antiretroviral drug theranostics facilitates the monitoring of biodistribution and efficacy of therapies designed to target HIV type-1 (HIV-1) reservoirs. To this end, we have now deployed intrinsic drug chemical exchange saturation transfer (CEST) contrasts to detect antiretroviral drugs within the central nervous system (CNS). DESIGN AND METHODS CEST effects for lamivudine (3TC) and emtricitabine (FTC) were measured by asymmetric magnetization transfer ratio analyses. The biodistribution of 3TC in different brain sub-regions of C57BL/6 mice treated with lipopolysaccharides was determined using MRI. CEST effects of 3TC protons were quantitated by Lorentzian fitting analysis. 3TC levels in plasma and brain regions were measured using ultraperformance liquid chromatography tandem mass spectrometry to affirm the CEST test results. RESULTS CEST effects of the hydroxyl and amino protons in 3TC and FTC linearly correlated to drug concentrations. 3TC was successfully detected in vivo in brain sub-regions by MRI. The imaging results were validated by measurements of CNS drug concentrations. CONCLUSION CEST contrasts can be used to detect antiretroviral drugs using MRI. Such detection can be used to assess spatial--temporal drug biodistribution. This is most notable within the CNS where drug biodistribution may be more limited with the final goal of better understanding antiretroviral drug-associated efficacy and potential toxicity.
Collapse
Affiliation(s)
- Aditya N. BADE
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Howard E. GENDELMAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - JoEllyn MCMILLAN
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
| | - Yutong LIU
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198 USA
- Department of Radiology, University of Nebraska Medical Center, Omaha, NE 68198 USA
| |
Collapse
|
74
|
Imaging of exercise-induced spinal remodeling in elite rowers. J Sci Med Sport 2021; 25:75-80. [PMID: 34400092 DOI: 10.1016/j.jsams.2021.07.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/29/2021] [Accepted: 07/31/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES As in-vivo knowledge of training-induced remodeling of intervertebral discs (IVD) is scarce, this study assessed how lumbar IVDs change as a function of long-term training in elite athletes and age-matched controls using compositional Magnetic Resonance Imaging (MRI). DESIGN Prospective case-control study. METHODS Prospectively, lumbar spines of 17 elite rowers (ERs) of the German national rowing team (mean age: 23.9 ± 3.3 years) were imaged on a clinical 3.0 T MRI scanner. ERs were imaged twice during the annual training cycle, i.e., at training intensive preseason preparations (t0) and 6 months later during post-competition recovery (t1). Controls (n = 22, mean age: 26.3 ± 1.9 years) were imaged once at corresponding time points (t0: n = 11; t1: n = 11). Segment-wise, the glycosaminoglycan (GAG) content of lumbar IVDs (n = 195) was determined using glycosaminoglycan chemical exchange saturation transfer (gagCEST). Linear mixed models were set up to assess the influence of cohort and other variables on GAG content. RESULTS During preseason, IVD GAG values of ERs were significantly higher than those of controls (ERs(t0): 2.58 ± 0.27% (mean ± standard deviations); controls(t0): 1.43 ± 0.36%; p ≤ 0.001), while during post-competition recovery, such differences were not present anymore (ERs(t1): 2.11 ± 0.18%; controls(t1): 1.89 ± 0.24%; p = 0.362). CONCLUSIONS Professional elite-level rowing is transiently associated with significantly higher gagCEST values, which indicate increased lumbar IVD-GAG content and strong remodeling effects in response to training. Beyond professional rowing, core-strengthening full-body exercise may help to enhance the resilience of the lumbar spine as a potential therapeutic target in treating back pain.
Collapse
|
75
|
Chen L, van Zijl PC, Wei Z, Lu H, Duan W, Wong PC, Li T, Xu J. Early detection of Alzheimer's disease using creatine chemical exchange saturation transfer magnetic resonance imaging. Neuroimage 2021; 236:118071. [PMID: 33878375 PMCID: PMC8321389 DOI: 10.1016/j.neuroimage.2021.118071] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 04/07/2021] [Accepted: 04/11/2021] [Indexed: 01/29/2023] Open
Abstract
Detecting Alzheimer's disease (AD) at an early stage brings a lot of benefits including disease management and actions to slow the progression of the disease. Here, we demonstrate that reduced creatine chemical exchange saturation transfer (CrCEST) contrast has the potential to serve as a new biomarker for early detection of AD. The results on wild type (WT) mice and two age-matched AD models, namely tauopathy (Tau) and Aβ amyloidosis (APP), indicated that CrCEST contrasts of the cortex and corpus callosum in the APP and Tau mice were significantly reduced compared to WT counterpart at an early stage (6-7 months) (p < 0.011). Two main causes of the reduced CrCEST contrast, i.e. cerebral pH and creatine concentration, were investigated. From phantom and hypercapnia experiments, CrCEST showed excellent sensitivity to pH variations. From MRS results, the creatine concentration in WT and AD mouse brain was equivalent, which suggests that the reduced CrCEST contrast was dominated by cerebral pH change involved in the progression of AD. Immunohistochemical analysis revealed that the abnormal cerebral pH in AD mice may relate to neuroinflammation, a known factor that can cause pH reduction.
Collapse
Affiliation(s)
- Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Electronic Science, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, School of Electronic Science and Engineering, National Model Microelectronics College, Xiamen University, Xiamen, China
| | - Peter C.M. van Zijl
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiliang Wei
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenzhen Duan
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Philip C. Wong
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tong Li
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Research Institute, Baltimore, MD, USA
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
76
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
77
|
Chighine K, Léonce E, Boutin C, Desvaux H, Berthault P. 129Xe ultra-fast Z spectroscopy enables micromolar detection of biosensors on a 1 T benchtop spectrometer. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:409-420. [PMID: 37904767 PMCID: PMC10539730 DOI: 10.5194/mr-2-409-2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/31/2021] [Indexed: 11/01/2023]
Abstract
The availability of a benchtop nuclear magnetic resonance (NMR) spectrometer, of low cost and easily transportable, can allow detection of low quantities of biosensors, provided that hyperpolarized species are used. Here we show that the micromolar threshold can easily be reached by employing laser-polarized xenon and cage molecules reversibly hosting it. Indirect detection of caged xenon is made via chemical exchange, using ultra-fast Z spectroscopy based on spatio-temporal encoding. On this non-dedicated low-field spectrometer, several ideas are proposed to improve the signal.
Collapse
Affiliation(s)
- Kévin Chighine
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Estelle Léonce
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Céline Boutin
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Hervé Desvaux
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| | - Patrick Berthault
- Nanosciences et Innovation pour les Matériaux, la Biomédecine et l'Energie, CEA, CNRS, Université Paris-Saclay, 91191, Gif-sur-Yvette, France
| |
Collapse
|
78
|
Cember ATJ, Hariharan H, Kumar D, Nanga RPR, Reddy R. Improved method for post-processing correction of B 1 inhomogeneity in glutamate-weighted CEST images of the human brain. NMR IN BIOMEDICINE 2021; 34:e4503. [PMID: 33749037 DOI: 10.1002/nbm.4503] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/13/2021] [Accepted: 02/14/2021] [Indexed: 06/12/2023]
Abstract
Glutamate-weighted CEST (gluCEST) imaging is nearly unique in its ability to provide non-invasive, spatially resolved measurements of glutamate in vivo. In this article, we present an improved correction for B1 inhomogeneity of gluCEST images of the human brain. Images were obtained on a Siemens 7.0 T Terra outfitted with a single-volume transmit/32-channel receive phased array head coil. Numerical Bloch-McConnell simulations, fitting and data processing were performed using in-house code written in MATLAB and MEX (MATLAB executable). "Calibration" gluCEST data was acquired and fit with a phenomenological functional form first described here. The resulting surfaces were used to correct experimental data in accordance with a newly developed method. Healthy volunteers of varying ages were used for both fitted "calibration" data and corrected "experimental" data. Simulations allowed us to describe the dependence of CEST at 3.0 ppm (gluCEST) on saturation B1 using a new functional form, whose validity was confirmed by successful fitting to real human data. This functional form was used to parameterize surfaces over the space (B1 , T1 ), which could then be used to correct the signal from each pixel. The resulting images show less signal loss in areas of low B1 and greater contrast than those generated using the previously published method. We demonstrate that, using this method with appropriate nominal saturation B1 , the major limitation of correcting for B1 inhomogeneity becomes the effective flip angle of the acquisition module, rather than inability to correct for inhomogeneous saturation. The lower limit of our correction ability with respect to both saturation and acquisition B1 is about 40% of the nominal value. In summary, we demonstrate a more rigorous and successful approach to correcting gluCEST images for B1 inhomogeneity. Limitations of the method and further improvements to enable correction in regions with severe pathology are discussed.
Collapse
Affiliation(s)
- Abigail T J Cember
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Hari Hariharan
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Dushyant Kumar
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravi P R Nanga
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Ravinder Reddy
- Center for Magnetic Resonance and Optical Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
79
|
Laine S, Morfin JF, Galibert M, Aucagne V, Bonnet CS, Tóth É. Lanthanide DO3A-Complexes Bearing Peptide Substrates: The Effect of Peptidic Side Chains on Metal Coordination and Relaxivity. Molecules 2021; 26:2176. [PMID: 33918899 PMCID: PMC8069257 DOI: 10.3390/molecules26082176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/07/2021] [Indexed: 12/22/2022] Open
Abstract
Two DO3A-type ligands conjugated to substrates of urokinase (L3) and caspase-3 (L4) via a propyl-amide linker were synthesized and their lanthanide(III) (Ln3+) complexes studied. A model compound without peptide substrate (L2) and an amine derivative ligand mimicking the state after enzymatic cleavage (L1) were also prepared. Proton Nuclear Magnetic Relaxation Dispersion (NMRD) profiles recorded on the gadolinium(III) (Gd3+) complexes, complemented with the assessment of hydration numbers via luminescence lifetime measurements on the Eu3+ analogues, allowed us to characterize the lanthanide coordination sphere in the chelates. These data suggest that the potential donor groups of the peptide side chains (carboxylate, amine) interfere in metal coordination, leading to non-hydrated LnL3 and LnL4 complexes. Nevertheless, GdL3 and GdL4 retain a relatively high relaxivity due to an important second-sphere contribution generated by the strongly hydrophilic peptide chain. Weak PARACEST effects are detected for the amine-derivative EuL1 and NdL1 chelates. Unfortunately, the GdL3 and GdL4 complexes are not significantly converted by the enzymes. The lack of enzymatic recognition of these complexes can likely be explained by the participation of donor groups from the peptide side chain in metal coordination.
Collapse
Affiliation(s)
| | | | | | | | | | - Éva Tóth
- Centre de Biophysique Moléculaire, CNRS UPR 4301, Rue Charles Sadron, CEDEX 2, 45071 Orléans, France; (S.L.); (J.-F.M.); (M.G.); (V.A.); (C.S.B.)
| |
Collapse
|
80
|
Zhang XY, Zhai Y, Jin Z, Li C, Sun PZ, Wu Y. Preliminary demonstration of in vivo quasi-steady-state CEST postprocessing-Correction of saturation time and relaxation delay for robust quantification of tumor MT and APT effects. Magn Reson Med 2021; 86:943-953. [PMID: 33723890 DOI: 10.1002/mrm.28764] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/26/2021] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) MRI is versatile for measuring the dilute labile protons and microenvironment properties. However, the use of insufficiently long RF saturation duration (Ts) and relaxation delay (Td) may underestimate the CEST measurement. This study proposed a quasi-steady-state (QUASS) CEST analysis for robust CEST quantification. METHODS The CEST signal evolution was modeled as a function of the longitudinal relaxation rate during Td and spin-lock relaxation rate during Ts, from which the QUASS-CEST effect is derived. Numerical simulation and in vivo rat glioma MRI experiments were conducted at 11.7 T to compare the apparent and QUASS-CEST results obtained under different Ts/Td of 2 seconds/2 seconds and 4 seconds/4 seconds. Magnetization transfer and amide proton transfer effects were resolved using a multipool Lorentzian fitting and evaluated in contralateral normal tissue and tumor regions. RESULTS The simulation showed the dependence of the apparent CEST effect on Ts and Td, and such reliance was mitigated with the QUASS algorithm. Animal experiment results showed that the apparent magnetization transfer and amide proton transfer effects and their contrast between contralateral normal tissue and tumor regions increased substantially with Ts and Td. In comparison, the QUASS magnetization transfer and amide proton transfer effects and their difference between contralateral normal tissue and tumor exhibited little dependence on Ts and Td. In addition, the apparent magnetization transfer and amide proton transfer were significantly smaller than the corresponding QUASS indices (P < .05). CONCLUSION The QUASS-CEST algorithm enables robust CEST quantification and offers a straightforward approach to standardize CEST experiments.
Collapse
Affiliation(s)
- Xiao-Yong Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Yuting Zhai
- Institute of Science and Technology for Brain-Inspired Intelligence, Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Ministry of Education, Fudan University, Shanghai, China
| | - Ziyi Jin
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China.,Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| |
Collapse
|
81
|
Yao J, Wang C, Raymond C, Bergstrom B, Chen X, Das K, Dinh H, Kim ZS, Le AN, Lim MWJ, Pham JAN, Prusan JD, Rao SS, Nathanson DA, Ellingson BM. A physical phantom for amine chemical exchange saturation transfer (CEST) MRI. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2021; 34:569-580. [PMID: 33484366 DOI: 10.1007/s10334-020-00902-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/13/2020] [Accepted: 12/09/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To develop a robust amine chemical exchange saturation transfer (CEST) physical phantom, validate the temporal stability, and create a supporting software for automatic image processing and quality assurance. MATERIALS AND METHODS The phantom was designed as an assembled laser-cut acrylic rack and 18 vials of phantom solutions, prepared with different pHs, glycine concentrations, and gadolinium concentrations. We evaluated glycine concentrations using ultraviolet absorbance for 70 days and measured the pH, relaxation rates, and CEST contrast for 94 days after preparation. We used Spearman's correlation to determine if glycine degraded over time. Linear regression and Bland-Altman analysis were performed between baseline and follow-up measurements of pH and MRI properties. RESULTS No degradation of glycine was observed (p > 0.05). The pH and MRI measurements stayed stable for 3 months and showed high consistency across time points (R2 = 1.00 for pH, R1, R2, and CEST contrast), which was further validated by the Bland-Altman plots. Examples of automatically generated reports are provided. DISCUSSION We designed a physical phantom for amine CEST-MRI, which is easy to assemble and transfer, holds 18 different solutions, and has excellent short-term chemical and MRI stability. We believe this robust phantom will facilitate the development of novel sequences and cross-scanners validations.
Collapse
Affiliation(s)
- Jingwen Yao
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chencai Wang
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Catalina Raymond
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA
| | - Blake Bergstrom
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xing Chen
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kaveri Das
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering Innovation and Design, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Huy Dinh
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe S Kim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Angela N Le
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matthew W J Lim
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane A N Pham
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph D Prusan
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sriram S Rao
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory (BTIL), Center for Computer Vision and Imaging Biomarkers, University of California, Los Angeles, Los Angeles, CA, USA.
- Departments of Radiological Sciences, David Geffen School of Medicine, University of California, Los Angeles, 924 Westwood Blvd., Suite 615, Los Angeles, CA, 90024, USA.
- Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
82
|
Berry DB, Englund EK, Chen S, Frank LR, Ward SR. Medical imaging of tissue engineering and regenerative medicine constructs. Biomater Sci 2021; 9:301-314. [PMID: 32776044 PMCID: PMC8262082 DOI: 10.1039/d0bm00705f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Advancement of tissue engineering and regenerative medicine (TERM) strategies to replicate tissue structure and function has led to the need for noninvasive assessment of key outcome measures of a construct's state, biocompatibility, and function. Histology based approaches are traditionally used in pre-clinical animal experiments, but are not always feasible or practical if a TERM construct is going to be tested for human use. In order to transition these therapies from benchtop to bedside, rigorously validated imaging techniques must be utilized that are sensitive to key outcome measures that fulfill the FDA standards for TERM construct evaluation. This review discusses key outcome measures for TERM constructs and various clinical- and research-based imaging techniques that can be used to assess them. Potential applications and limitations of these techniques are discussed, as well as resources for the processing, analysis, and interpretation of biomedical images.
Collapse
Affiliation(s)
- David B Berry
- Departments of NanoEngineering, University of California, San Diego, USA.
| | | | | | | | | |
Collapse
|
83
|
Wilk B, Wisenberg G, Dharmakumar R, Thiessen JD, Goldhawk DE, Prato FS. Hybrid PET/MR imaging in myocardial inflammation post-myocardial infarction. J Nucl Cardiol 2020; 27:2083-2099. [PMID: 31797321 PMCID: PMC7391987 DOI: 10.1007/s12350-019-01973-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/13/2019] [Accepted: 11/14/2019] [Indexed: 01/24/2023]
Abstract
Hybrid PET/MR imaging is an emerging imaging modality combining positron emission tomography (PET) and magnetic resonance imaging (MRI) in the same system. Since the introduction of clinical PET/MRI in 2011, it has had some impact (e.g., imaging the components of inflammation in myocardial infarction), but its role could be much greater. Many opportunities remain unexplored and will be highlighted in this review. The inflammatory process post-myocardial infarction has many facets at a cellular level which may affect the outcome of the patient, specifically the effects on adverse left ventricular remodeling, and ultimately prognosis. The goal of inflammation imaging is to track the process non-invasively and quantitatively to determine the best therapeutic options for intervention and to monitor those therapies. While PET and MRI, acquired separately, can image aspects of inflammation, hybrid PET/MRI has the potential to advance imaging of myocardial inflammation. This review contains a description of hybrid PET/MRI, its application to inflammation imaging in myocardial infarction and the challenges, constraints, and opportunities in designing data collection protocols. Finally, this review explores opportunities in PET/MRI: improved registration, partial volume correction, machine learning, new approaches in the development of PET and MRI pulse sequences, and the use of novel injection strategies.
Collapse
Affiliation(s)
- B Wilk
- Department of Medical Imaging, Western University, London, Canada.
- Lawson Health Research Institute, London, Canada.
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada.
| | - G Wisenberg
- Department of Medical Imaging, Western University, London, Canada
- MyHealth Centre, Arva, Canada
| | - R Dharmakumar
- Biomedical Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - J D Thiessen
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - D E Goldhawk
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| | - F S Prato
- Department of Medical Imaging, Western University, London, Canada
- Lawson Health Research Institute, London, Canada
- Collaborative Graduate Program in Molecular Imaging, Western University, London, Canada
| |
Collapse
|
84
|
Effectiveness of fat suppression using a water-selective binomial-pulse excitation in chemical exchange saturation transfer (CEST) magnetic resonance imaging. MAGMA (NEW YORK, N.Y.) 2020; 33:809-818. [PMID: 32462557 DOI: 10.1007/s10334-020-00851-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/24/2020] [Accepted: 05/12/2020] [Indexed: 10/24/2022]
Abstract
PURPOSE The purpose of this study was to characterize the individual contribution of multiple fat peaks to the measured chemical exchange saturation transfer (CEST) signal when using water-selective binomial-pulse excitation and to determine the effects of multiple fat peaks in the presence of B0 inhomogeneity. METHODS The excitation profiles of multiple binomial pulses were simulated. A CEST sequence with binomial-pulse excitation and modified point-resolved spectroscopy localization was then applied to the in vivo lumbar spinal vertebrae to determine the signal contributions of three distinct groups of lipid resonances. These confounding signal contributions were measured as a function of the irradiation frequency offset to determine the effect of the multi-peak nature of the fat signal on CEST imaging of exchange sites (at 1.0, 2.0 and 3.5 ppm) and robustness in the presence of B0 inhomogeneity. RESULTS Numerical simulations and in vivo experiments showed that water excitation (WE) using a 1-3-3-1 (WE-4) pulse provided the broadest signal suppression, which provided partial robustness against B0 inhomogeneity effects. Confounding fat signal contributions to the CEST contrasts at 1.0, 2.0 and 3.5 ppm were unavoidable due to the multi-peak nature of the fat signal. However, these CEST sites only suffer from small lipid artifacts with ∆B0 spanning roughly from - 50 to 50 Hz. Especially for the CEST site at 3.5 ppm, the lipid artifacts are smaller than 1% with ∆B0 in this range. CONCLUSION In WE-4-based CEST magnetic resonance imaging, B0 inhomogeneity is the limiting factor for fat suppression. The CEST sites at 1.0, 2.0 ppm and 3.5 ppm unavoidably suffer from lipid artifacts. However, when the ∆B0 is confined to a limited range, these CEST sites are only affected by small lipid artifacts, which may be ignorable in some cases of clinical applications.
Collapse
|
85
|
Patel A, Abozeid SM, Cullen PJ, Morrow JR. Co(II) Macrocyclic Complexes Appended with Fluorophores as paraCEST and cellCEST Agents. Inorg Chem 2020; 59:16531-16544. [PMID: 33138368 DOI: 10.1021/acs.inorgchem.0c02470] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Four high-spin macrocyclic Co(II) complexes with hydroxypropyl or amide pendants and appended coumarin or carbostyril fluorophores were prepared as CEST (chemical exchange saturation transfer) MRI probes. The complexes were studied in solution as paramagnetic CEST (paraCEST) agents and after loading into Saccharomyces cerevisiae yeast cells as cell-based CEST (cellCEST) agents. The fluorophores attached to the complexes through an amide linkage imparted an unusual pH dependence to the paraCEST properties of all four complexes through of ionization of a group that was attributed to the amide NH linker. The furthest shifted CEST peak for the hydroxypropyl-based complexes changed by ∼90 ppm upon increasing the pH from 5 to 7.5. At acidic pH, the Co(II) complexes exhibited three to four CEST peaks with the most highly shifted CEST peak at 200 ppm. The complexes demonstrated substantial paramagnetic water proton shifts which is a requirement for the development of cellCEST agents. The large shift in the proton resonance was attributed to an inner-sphere water at neutral pH, as shown by variable temperature 17O NMR spectroscopy studies. Labeling of yeast with one of these paraCEST agents was optimized with fluorescence microscopy and validated by using ICP mass spectrometry quantitation of cobalt. A weak asymmetry in the Z-spectra was observed in the yeast labeled with a Co(II) complex, toward a cellCEST effect, although the Co(II) complexes were toxic to the cells at the concentrations necessary for observation of cellCEST.
Collapse
Affiliation(s)
- Akanksha Patel
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Samira M Abozeid
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Paul J Cullen
- Department of Biological Sciences, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| | - Janet R Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, New York 14260, United States
| |
Collapse
|
86
|
Shin SH, Wendland MF, Vandsburger MH. Delayed urea differential enhancement CEST (dudeCEST)-MRI with T 1 correction for monitoring renal urea handling. Magn Reson Med 2020; 85:2791-2804. [PMID: 33180343 DOI: 10.1002/mrm.28583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022]
Abstract
PURPOSE We demonstrate a method of delayed urea differential enhancement CEST for probing urea recycling action of the kidney using expanded multi-pool Lorentzian fitting and apparent exchange-dependent relaxation compensation. METHODS T1 correction of urea CEST contrast by apparent exchange-dependent relaxation was tested in phantoms. Nine mice were scanned at 7 Tesla following intraperitoneal injection of 2M 150 μL urea, and later saline. T1 maps and Z-spectra were acquired before and 20 and 40 min postinjection. Z-spectra were fit to a 7-pool Lorentzian model for CEST quantification and compared to urea assay of kidney homogenate. Renal injury was induced by aristolochic acid in 7 mice, and the same scan protocol was performed. RESULTS Apparent exchange-dependent relaxation corrected for variable T1 times in phantoms. Urea CEST contrast at +1 ppm increased significantly at both time points following urea injection in the inner medulla and papilla. When normalizing the postinjection urea CEST contrast to the corresponding baseline value, both urea and saline injection resulted in identical fold changes in urea CEST contrast. Urea assay of kidney homogenate showed a significant correlation to both apparent exchange-dependent relaxation (R2 = 0.4687, P = .0017) and non-T1 -corrected Lorentzian amplitudes (R2 = 0.4964, P = .0011). Renal injury resulted in increased T1 time in the cortex and reduced CEST contrast change upon urea and saline infusion. CONCLUSION Delayed urea enhancement following infusion can provide insight into renal urea handling. In addition, changes in CEST contrast at 1.0 ppm following saline infusion may provide insight into renal function.
Collapse
Affiliation(s)
- Soo Hyun Shin
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| | - Michael F Wendland
- Berkeley Preclinical Imaging Core (BPIC), University of California, Berkeley, Berkeley, California, USA
| | - Moriel H Vandsburger
- Department of Bioengineering, University of California, Berkeley, Berkeley, California, USA
| |
Collapse
|
87
|
Hoefemann M, Döring A, Fichtner ND, Kreis R. Combining chemical exchange saturation transfer and 1 H magnetic resonance spectroscopy for simultaneous determination of metabolite concentrations and effects of magnetization exchange. Magn Reson Med 2020; 85:1766-1782. [PMID: 33151011 PMCID: PMC7821128 DOI: 10.1002/mrm.28574] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/21/2022]
Abstract
Purpose A new sequence combining chemical‐exchange saturation‐transfer (CEST) with traditional MRS is used to simultaneously determine metabolite content and effects of magnetization exchange. Methods A CEST saturation block consisting of a train of RF‐pulses is placed before a metabolite‐cycled semi‐LASER single‐voxel spectroscopy sequence. The saturation parameters are adjustable to allow optimization of the saturation for a specific target. Data were collected in brain from 20 subjects in experiments with different B1‐settings (0.4‐2.0 µT) on a 3T MR scanner. CEST Z‐spectra were calculated from water intensities and fitted with a multi‐pool Lorentzian model. Interrelated metabolite spectra were fitted in fitting tool for arrays of interrelated datasets (FiTAID). Results Evaluation of traditional Z‐spectra from water revealed exchange effects from amides, amines, and hydroxyls as well as an upfield nuclear Overhauser effect. The magnetization transfer effect was evaluated on metabolites and macromolecules for the whole spectral range and for the different B1 levels. A correction scheme for direct saturation on metabolites is proposed. Both magnetization‐transfer and direct saturation proved to differ for individual metabolites. Conclusion Using non‐water‐suppressed spectroscopy offers time‐saving simultaneous recording of the traditional CEST Z‐spectrum from water and the metabolite spectrum under frequency‐selective saturation. In addition, exchange and magnetization‐transfer effects on metabolites and macromolecules can be detected, which might offer additional possibilities for quantification or give further insight into the composition of the traditional CEST Z‐spectrum. Apparent magnetization‐transfer effects on macromolecular signals in the 1H‐MR spectrum have been found. Detailed knowledge of magnetization‐transfer effects is also relevant for judging the influence of water‐suppression on the quantification of metabolite signals.
Collapse
Affiliation(s)
- Maike Hoefemann
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - André Döring
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Nicole Damara Fichtner
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland.,Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland.,University of British Columbia, Vancouver, Canada
| | - Roland Kreis
- Departments of Radiology and Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
88
|
Rodríguez-Rodríguez A, Zaiss M, Esteban-Gómez D, Angelovski G, Platas-Iglesias C. Paramagnetic chemical exchange saturation transfer agents and their perspectives for application in magnetic resonance imaging. INT REV PHYS CHEM 2020. [DOI: 10.1080/0144235x.2020.1823167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Aurora Rodríguez-Rodríguez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Moritz Zaiss
- Department of Neuroradiology, University Clinic Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - David Esteban-Gómez
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| | - Goran Angelovski
- MR Neuroimaging Agents, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Lab of Molecular and Cellular Neuroimaging, International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Science (CAS), Shanghai, P.R. China
| | - Carlos Platas-Iglesias
- Departamento de Química, Facultade de Ciencias & Centro de Investigacións Científicas Avanzadas (CICA), Universidade da Coruña, 15071 A Coruña, Spain
| |
Collapse
|
89
|
Demetriou E, Kujawa A, Golay X. Pulse sequences for measuring exchange rates between proton species: From unlocalised NMR spectroscopy to chemical exchange saturation transfer imaging. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 120-121:25-71. [PMID: 33198968 DOI: 10.1016/j.pnmrs.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 06/27/2020] [Accepted: 06/30/2020] [Indexed: 06/11/2023]
Abstract
Within the field of NMR spectroscopy, the study of chemical exchange processes through saturation transfer techniques has a long history. In the context of MRI, chemical exchange techniques have been adapted to increase the sensitivity of imaging to small fractions of exchangeable protons, including the labile protons of amines, amides and hydroxyls. The MR contrast is generated by frequency-selective irradiation of the labile protons, which results in a reduction of the water signal associated with transfer of the labile protons' saturated magnetization to the protons of the surrounding free water. The signal intensity depends on the rate of chemical exchange and the concentration of labile protons as well as on the properties of the irradiation field. This methodology is referred to as CEST (chemical exchange saturation transfer) imaging. Applications of CEST include imaging of molecules with short transverse relaxation times and mapping of physiological parameters such as pH, temperature, buffer concentration and chemical composition due to the dependency of this chemical exchange effect on all these parameters. This article aims to describe these effects both theoretically and experimentally. In depth analysis and mathematical modelling are provided for all pulse sequences designed to date to measure the chemical exchange rate. Importantly, it has become clear that the background signal from semi-solid protons and the presence of the Nuclear Overhauser Effect (NOE), either through direct dipole-dipole mechanisms or through exchange-relayed signals, complicates the analysis of CEST effects. Therefore, advanced methods to suppress these confounding factors have been developed, and these are also reviewed. Finally, the experimental work conducted both in vitro and in vivo is discussed and the progress of CEST imaging towards clinical practice is presented.
Collapse
Affiliation(s)
- Eleni Demetriou
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Aaron Kujawa
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| | - Xavier Golay
- Brain Repair & Rehabilitation, Institute of Neurology, University College London, United Kingdom.
| |
Collapse
|
90
|
Li S, Chan P, Li C, Chen H, Chen M, Su W, Li K, Lu N, Yu L, Chu D, Wu PY. Changes of Amide Proton Transfer Imaging in Multiple System Atrophy Parkinsonism Type. Front Aging Neurosci 2020; 12:572421. [PMID: 33192464 PMCID: PMC7556302 DOI: 10.3389/fnagi.2020.572421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/02/2020] [Indexed: 12/11/2022] Open
Abstract
Multiple system atrophy (MSA), an atypical parkinsonism of alpha-synucleinopathies, has no specific biomarker of diagnosis. According to different combinations of symptoms, MSA can be classified as parkinsonism-type MSA (MSA-P) and cerebellar-type MSA (MSA-C; Watanabe et al., 2018). Amide proton transfer (APT) imaging is by far the most studied chemical exchange saturation transfer imaging for its sensitivity to mobile protons and peptides in tissues. We hypothesize that APT imaging may be a feasible biomarker of MSA-P. Twenty MSA-P patients and 20 age-matched normal controls were enrolled in this study and underwent MR exams on a 3.0-T MR scanner. Magnetization transfer spectra at 3.5 ppm were acquired at two transverse slices of the head, including the midbrain and the basal ganglia. Mann-Whitney U test was used to compare the asymmetrical magnetization transfer ratio (MTRasym) difference between MSA-P patients and normal controls. The APT MTRasym values of MSA patients in the red nucleus (RN) (SN; P = 0.000), substantia nigra (P = 0.000), thalamus (P = 0.000), and putamen (P = 0.013) were significantly higher than those in normal controls. There was a negative correlation between APT MTRasym and the score of part III of the Unified Parkinson Disease Rating Scale (R = -0.338, P = 0.044) in the putamen, while there was a positive correlation between the APT MTRasym and the rate of motor symptom progression (R = 0.406, P = 0.017) in the RN. These findings suggest that APT MTRasym changes are found and may be of value in the diagnosis of MSA-P.
Collapse
Affiliation(s)
- Shuhua Li
- Department of Neurobiology and Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Piu Chan
- Department of Neurobiology and Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Chunmei Li
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Haibo Chen
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Min Chen
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Wen Su
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Kai Li
- Department of Neurology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Na Lu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China.,Graduate School of Peking Union Medical College, Beijing, China
| | - Lu Yu
- Department of Radiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Defa Chu
- Department of Statistics, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, Beijing, China
| |
Collapse
|
91
|
Liu R, Zhang H, Qian Y, Hsu YC, Fu C, Sun Y, Wu D, Zhang Y. Frequency-stabilized chemical exchange saturation transfer imaging with real-time free-induction-decay readout. Magn Reson Med 2020; 85:1322-1334. [PMID: 32970882 DOI: 10.1002/mrm.28513] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 01/19/2023]
Abstract
PURPOSE To correct the temporal B0 drift in chemical exchange saturation transfer (CEST) imaging in real-time with extra free-induction-decay (FID) readout. THEORY AND METHODS The frequency stabilization module of the recently proposed frequency-stabilized CEST (FS-CEST) sequence was further simplified by replacing the original three k-space lines of gradient-echo (GRE) readout with a single k-space line of FID readout. The B0 drift was quantified using the phase difference between the odd and even parts of the FID signal in the frequency stabilization module and then used to update the B0 frequency in the succeeding modules. The proposed FS-CEST sequence with FID readout (FID FS-CEST) was validated in phantoms and 16 human subjects on cross-vendor scanners. RESULTS In the Siemens experiments, the FID FS-CEST sequence successfully corrected the user-induced B0 drift, generating consistent amide proton transfer-weighted (APTw) images and magnetization transfer ratio asymmetry (MTRasym ) spectra with those from the non-frequency-stabilized CEST (NFS-CEST) sequence without B0 drift. In the Philips experiments, the FID FS-CEST sequence produced more stable APTw images and MTRasym spectra than the NFS-CEST sequence in the presence of practical B0 drift. Quantitatively, the SD of the APTw signal values in the deep gray matter from 15 subjects was 0.26% for the FID FS-CEST sequence compared to 1.03% for the NFS-CEST sequences, with the fluctuations reduced by nearly three-quarters. CONCLUSIONS The proposed FS-CEST sequence with FID readout can effectively correct the temporal B0 drift on cross-vendor scanners.
Collapse
Affiliation(s)
- Ruibin Liu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxi Zhang
- Department of Radiology, Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yue Qian
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yi-Cheng Hsu
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Caixia Fu
- Siemens Shenzhen Magnetic Resonance Ltd., Shenzhen, China
| | - Yi Sun
- MR Collaboration, Siemens Healthcare Ltd., Shanghai, China
| | - Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yi Zhang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
92
|
Abrar DB, Schleich C, Tsiami S, Müller-Lutz A, Radke KL, Holthausen N, Frenken M, Boschheidgen M, Antoch G, Mucke J, Sewerin P, Braun J, Nebelung S, Baraliakos X. Functional MR imaging beyond structure and inflammation-radiographic axial spondyloarthritis is associated with proteoglycan depletion of the lumbar spine. Arthritis Res Ther 2020; 22:219. [PMID: 32943084 PMCID: PMC7499866 DOI: 10.1186/s13075-020-02312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/07/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To compare the glycosaminoglycan (GAG) content of lumbar intervertebral disks (IVDs) of patients with ankylosing spondylitis (AS) and healthy volunteers and to investigate the association of GAG depletion and disease-related clinical and imaging features. METHODS Lumbar spines of 50 AS patients (mean age 50 ± 10.5 years) and 30 age-matched volunteers were studied with 3-T magnetic resonance imaging (MRI) and conventional radiographs (CR). The MRI protocol included high-resolution morphological sequences and the compositional GAG chemical exchange saturation transfer imaging technique (gagCEST). Morphological images were analyzed by three raters for inflammatory activity, fat deposition, disk degeneration, and structural changes on CR. Clinical and serological measures included the Bath AS Disease Activity (BASDAI) and Bath AS Function (BASFI) Indices and C-reactive protein (CRP) levels. GagCEST values of both groups were compared using a linear mixed model. Kendall-Tau correlation analyses were performed. RESULTS GagCEST values were significantly lower in AS patients (2.0 ± 1.7%) vs. healthy volunteers (2.4 ± 1.8%), p = 0.001. Small, yet significant correlations were found between gagCEST values and CRP levels (τ = - 0.14, p = 0.007), BASFI (τ = - 0.18, p < 0.001) and presence of syndesmophytes (τ = - 0.17, p = 0.001). No significant correlations were found with BASDAI, inflammation, and fat deposition MRI scores. CONCLUSIONS Lumbar spines of r-AS patients undergo significant GAG depletion, independently associated with syndesmophyte formation, functional disability, and increased serological inflammation markers. Beyond establishing a pathophysiological role of the cartilage in AS, these findings suggest that gagCEST imaging may have an adjunct confirmatory role in the assessment of disease-related pathological MRI findings in axial spondyloarthritis. TRIAL REGISTRATION 3980 ( https://studienregister.med.uni-duesseldorf.de ).
Collapse
Affiliation(s)
- Daniel B Abrar
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany.
| | - Christoph Schleich
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Styliani Tsiami
- Rheumazentrum Ruhrgebiet Herne, Ruhr University Bochum, Claudiusstr. 45, 44649, Herne, Germany
| | - Anja Müller-Lutz
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Karl Ludger Radke
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Neela Holthausen
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Miriam Frenken
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Matthias Boschheidgen
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Gerald Antoch
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Johanna Mucke
- Policlinic and Hiller Research Unit of Rheumatology, UKD, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Philipp Sewerin
- Policlinic and Hiller Research Unit of Rheumatology, UKD, Heinrich Heine University Düsseldorf, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Juergen Braun
- Rheumazentrum Ruhrgebiet Herne, Ruhr University Bochum, Claudiusstr. 45, 44649, Herne, Germany
| | - Sven Nebelung
- Department of Diagnostic and Interventional Radiology, University Düsseldorf, Medical Faculty, 40225, Düsseldorf, Germany
| | - Xenofon Baraliakos
- Rheumazentrum Ruhrgebiet Herne, Ruhr University Bochum, Claudiusstr. 45, 44649, Herne, Germany
| |
Collapse
|
93
|
Novel proton exchange rate MRI presents unique contrast in brains of ischemic stroke patients. J Neurosci Methods 2020; 346:108926. [PMID: 32896540 DOI: 10.1016/j.jneumeth.2020.108926] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/23/2020] [Accepted: 08/31/2020] [Indexed: 01/03/2023]
Abstract
BACKGROUND To map and quantify the proton exchange rate (kex) of brain tissues using improved omega plots in ischemic stroke patients and to investigate whether kex can serve as a potential endogenous surrogate imaging biomarker for detecting the metabolic state and the pathologic changes due to ischemic stroke. NEW METHOD Three sets of Z-spectra were acquired from seventeen ischemic stroke patients using a spin echo-echo planar imaging sequence with pre-saturation chemical exchange saturation transfer (CEST) pulse at B1 of 1.5, 2.5, and 3.5 μT, respectively. Pixel-wise kex was calculated from improved omega plot of water direct saturation (DS)-removed Z-spectral signals. RESULTS The derived kex maps can differentiate infarcts from contralateral normal brain tissues with significantly increased signal (893 ± 52 s-1vs. 739 ± 34 s-1, P < 0.001). COMPARISON WITH EXISTING METHOD(S) The kex maps were found to be different from conventional contrasts from diffusion-weighted imaging (DWI), CEST, and semi-solid magnetization transfer (MT) MRI. In brief, kex MRI showed larger lesion areas than DWI with different degrees and different lesion contrast compared to CEST and MT. CONCLUSIONS In this preliminary translational research, the kex MRI based on DS-removed omega plots has been demonstrated for in vivo imaging of clinical ischemic stroke patients. As a noninvasive and unique MRI contrast, kex MRI at 3 T may serve as a potential surrogate imaging biomarker for the metabolic changes of stroke and help for monitoring the evolution and the treatment of stroke.
Collapse
|
94
|
Dubini RCA, Schön A, Müller M, Carell T, Rovó P. Impact of 5-formylcytosine on the melting kinetics of DNA by 1H NMR chemical exchange. Nucleic Acids Res 2020; 48:8796-8807. [PMID: 32652019 PMCID: PMC7470965 DOI: 10.1093/nar/gkaa589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 07/02/2020] [Indexed: 12/23/2022] Open
Abstract
5-Formylcytosine (5fC) is a chemically edited, naturally occurring nucleobase which appears in the context of modified DNA strands. The understanding of the impact of 5fC on dsDNA physical properties is to date limited. In this work, we applied temperature-dependent 1H Chemical Exchange Saturation Transfer (CEST) NMR experiments to non-invasively and site-specifically measure the thermodynamic and kinetic influence of formylated cytosine nucleobase on the melting process involving dsDNA. Incorporation of 5fC within symmetrically positioned CpG sites destabilizes the whole dsDNA structure-as witnessed from the ∼2°C decrease in the melting temperature and 5-10 kJ mol-1 decrease in ΔG°-and affects the kinetic rates of association and dissociation. We observed an up to ∼5-fold enhancement of the dsDNA dissociation and an up to ∼3-fold reduction in ssDNA association rate constants, over multiple temperatures and for several proton reporters. Eyring and van't Hoff analysis proved that the destabilization is not localized, instead all base-pairs are affected and the transition states resembles the single-stranded conformation. These results advance our knowledge about the role of 5fC as a semi-permanent epigenetic modification and assist in the understanding of its interactions with reader proteins.
Collapse
Affiliation(s)
- Romeo C A Dubini
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| | - Alexander Schön
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Markus Müller
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Thomas Carell
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
| | - Petra Rovó
- Faculty of Chemistry and Pharmacy, Department of Chemistry, Ludwig-Maximilians-Universität München, Butenandtstraße 5-13, 81377 Munich, Germany
- Center for Nanoscience (CeNS), Faculty of Physics, Ludwig-Maximilians-Universität München, Schellingstraße 4, 80799 Munich, Germany
| |
Collapse
|
95
|
Kwiatkowski G, Kozerke S. Accelerating CEST MRI in the mouse brain at 9.4 T by exploiting sparsity in the Z-spectrum domain. NMR IN BIOMEDICINE 2020; 33:e4360. [PMID: 32621367 DOI: 10.1002/nbm.4360] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/20/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) is an MR contrast modality offering an enhanced sensitivity for the detection of dilute metabolites with exchangeable protons. Quantitative analysis requires the acquisition of a number of images (usually between 20 and 50 RF offsets) per Z-spectrum, leading to long acquisition times of the order of 5-40 min in practice. In this work, we explore the possibility of employing sparsity in the Z-spectrum domain (irradiation offset dimension) to provide an accelerated acquisition scheme without compromising the quality of reconstructed CEST spectra. METHOD AND THEORY Ex vivo and in vivo data were acquired on an experimental, small animal 9.4 T system. Three different reconstruction methods were tested: k-Z SPARSE, k-Z SLR and k-Z principal component analysis (PCA) using retrospective undersampling with net acceleration factors R = 2, 3, 5. The quality of the reconstructed data was compared with respect to CEST spectra and full magnetization transfer ratio (MTR) asymmetry maps. RESULTS In both phantom and in vivo data, CEST spectra and the resulting MTR asymmetry maps were reconstructed without significant deterioration in data quality. For a low acceleration factor (R = 2, 3) all applied methods resulted in similar data quality, while for high acceleration factor (R = 5) only k-Z PCA and k-Z SLR could be used. Loss in spatial resolution was observed in reconstruction with k-Z PCA for all acceleration factors. An example of prospective undersampling with acceleration factor R = 3 and k-Z PCA reconstruction demonstrates improved CEST maps when compared with fully sampled data acquisition with either three times longer scan duration or threefold prolonged acquisition window per frequency offset. CONCLUSION The acquisition time of CEST spectra can be significantly accelerated by exploiting the sparsity of the Z-domain. For prospective and retrospective analysis using k-Z PCA, an acceleration factor of up to R = 3 can be used without significant loss in data quality.
Collapse
Affiliation(s)
- Grzegorz Kwiatkowski
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sebastian Kozerke
- Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
96
|
Snyder EM, Chowdhury MSI, Morrow JR. Co(II) and Fe(II) triazole-appended 4,10-diaza-15-crown-5-ether Macrocyclic complexes for CEST MRI applications. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
97
|
Ceramic resonators for targeted clinical magnetic resonance imaging of the breast. Nat Commun 2020; 11:3840. [PMID: 32737293 PMCID: PMC7395080 DOI: 10.1038/s41467-020-17598-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 06/25/2020] [Indexed: 12/02/2022] Open
Abstract
Currently, human magnetic resonance (MR) examinations are becoming highly specialized with a pre-defined and often relatively small target in the body. Conventionally, clinical MR equipment is designed to be universal that compromises its efficiency for small targets. Here, we present a concept for targeted clinical magnetic resonance imaging (MRI), which can be directly integrated into the existing clinical MR systems, and demonstrate its feasibility for breast imaging. The concept comprises spatial redistribution and passive focusing of the radiofrequency magnetic flux with the aid of an artificial resonator to maximize the efficiency of a conventional MR system for the area of interest. The approach offers the prospect of a targeted MRI and brings novel opportunities for high quality specialized MR examinations within any existing MR system. Here, the authors present a concept for targeted clinical magnetic resonance imaging for relatively small targets in the body. They use an artificial resonator for spatial redistribution and passive focusing of the radiofrequency magnetic flux and demonstrate feasibility for targeted breast imaging.
Collapse
|
98
|
Wang Y, Chen JF, Li P, Gao JH. Quantifying the fractional concentrations and exchange rates of small-linewidth CEST agents using the QUCESOP method under multi-solute conditions in MRI signals. Magn Reson Med 2020; 85:268-280. [PMID: 32726502 DOI: 10.1002/mrm.28436] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/22/2020] [Accepted: 06/25/2020] [Indexed: 11/09/2022]
Abstract
PURPOSE To develop a novel method for quantifying the fractional concentration (fb ) and the exchange rate (kb ) of a specific small-linewidth chemical exchange saturation transfer (CEST) solute in the presence of other unknown CEST solutes. THEORY AND METHODS A simplified R1ρ model was proposed assuming a small linewidth of the specific solute and a linear approximation of the other solutes' contribution to R1ρ . Two modes of CEST data acquisition, using various saturation offsets and various saturation powers, were used. The fb and kb of the specific solute could be fitted using the proposed model. In MRI experiments, using either single-solute or multi-solute phantoms with various creatine concentrations and pHs, the fb and kb values of creatine were calculated for each phantom; the fb and kb values of phosphocreatine in rats' skeletal muscles were also evaluated. RESULTS The fitted fb value of creatine from the phantoms were in excellent agreement. The fitted kb value of creatine from the phantoms coincides with that from the literature, as do the fb and kb values of phosphocreatine in skeletal muscles. CONCLUSION The proposed approach enables us to quantify the fb and kb values of a specific small-linewidth solute in the presence of other unknown solutes.
Collapse
Affiliation(s)
- Yi Wang
- Public Health Science and Engineering College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin-Fang Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Pengyu Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei Province, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China
| |
Collapse
|
99
|
Detection of early cartilage degeneration in the tibiotalar joint using 3 T gagCEST imaging: a feasibility study. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2020; 34:249-260. [PMID: 32725359 PMCID: PMC8018923 DOI: 10.1007/s10334-020-00868-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To establish and optimize a stable 3 Tesla (T) glycosaminoglycan chemical exchange saturation transfer (gagCEST) imaging protocol for assessing the articular cartilage of the tibiotalar joint in healthy volunteers and patients after a sustained injury to the ankle. METHODS Using Bloch-McConnell simulations, we optimized the sequence protocol for a 3 T MRI scanner for maximum gagCEST effect size within a clinically feasible time frame of less than 07:30 min. This protocol was then used to analyze the gagCEST effect of the articular cartilage of the tibiotalar joint of 17 healthy volunteers and five patients with osteochondral lesions of the talus following ankle trauma. Reproducibility was tested with the intraclass correlation coefficient. RESULTS The mean magnetization transfer ratio asymmetry (MTRasym), i.e., the gagCEST effect size, was significantly lower in patients than in healthy volunteers (0.34 ± 1.9% vs. 1.49 ± 0.11%; p < 0.001 [linear mixed model]). Intra- and inter-rater reproducibility was excellent with an average measure intraclass correlation coefficient (ICC) of 0.97 and a single measure ICC of 0.91 (p < 0.01). DISCUSSION In this feasibility study, pre-morphological tibiotalar joint cartilage damage was quantitatively assessable on the basis of the optimized 3 T gagCEST imaging protocol that allowed stable quantification gagCEST effect sizes across a wide range of health and disease in clinically feasible acquisition times.
Collapse
|
100
|
Abozeid SM, Asik D, Sokolow GE, Lovell JF, Nazarenko AY, Morrow JR. Co II Complexes as Liposomal CEST Agents. Angew Chem Int Ed Engl 2020; 59:12093-12097. [PMID: 32330368 PMCID: PMC7502271 DOI: 10.1002/anie.202003479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Indexed: 12/23/2022]
Abstract
Three paramagnetic CoII macrocyclic complexes containing 2-hydroxypropyl pendant groups, 1,1',1'',1'''-(1,4,8,11-tetraazacyclotetradecane-1,4,8,11-tetrayl)tetrakis- (propan-2-ol) ([Co(L1)]2+ , 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(propan-2-ol) ([Co(L2)]2+ ), and 1,1'-(4,11-dibenzyl-1,4,8,11-tetraazacyclotetradecane-1,8-diyl)bis(octadecan-2-ol) ([Co(L3)]2+ ) were synthesized to prepare transition metal liposomal chemical exchange saturation transfer (lipoCEST) agents. In solution, ([Co(L1)]2+ ) forms two isomers as shown by 1 H NMR spectroscopy. X-ray crystallographic studies show one isomer with 1,8-pendants in cis-configuration and a second isomer with 1,4-pendants in trans-configuration. The [Co(L2)]2+ complex has 1,8-pendants in a cis-configuration. Remarkably, the paramagnetic-induced shift of water 1 H NMR resonances in the presence of the [Co(L1)]2+ complex is as large as that observed for one of the most effective LnIII water proton shift agents. Incorporation of [Co(L1)]2+ into the liposome aqueous core, followed by dialysis against a solution of 300 mOsm L-1 produces a CEST peak at 3.5 ppm. Incorporation of the amphiphilic [Co(L3)]2+ complex into the liposome bilayer produces a more highly shifted CEST peak at -13 ppm. Taken together, these data demonstrate the feasibility of preparing CoII lipoCEST agents.
Collapse
Affiliation(s)
- Samira M. Abozeid
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Didar Asik
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Gregory E. Sokolow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Jonathan F. Lovell
- Department of Biomedical Engineering, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| | - Alexander Y. Nazarenko
- Chemistry Department, SUNY College at Buffalo, 1300 Elmwood Avenue, Buffalo, NY 14222, United States
| | - Janet R. Morrow
- Department of Chemistry, University at Buffalo, the State University of New York, Amherst, NY 14260, United States
| |
Collapse
|