51
|
Zivadinov R, Weinstock-Guttman B, Pirko I. Iron deposition and inflammation in multiple sclerosis. Which one comes first? BMC Neurosci 2011; 12:60. [PMID: 21699686 PMCID: PMC3141571 DOI: 10.1186/1471-2202-12-60] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 06/23/2011] [Indexed: 11/21/2022] Open
Abstract
Whether iron deposition is an epiphenomenon of the multiple sclerosis (MS) disease process or may play a primary role in triggering inflammation and disease development remains unclear at this time, and should be studied at the early stages of disease pathogenesis. However, it is difficult to study the relationship between iron deposition and inflammation in early MS due to the delay between the onset of symptoms and diagnosis, and the poor availability of tissue specimens. In a recent article published in BMC Neuroscience, Williams et al. investigated the relationship between inflammation and iron deposition using an original animal model labeled as "cerebral experimental autoimmune encephalomyelitis", which develops CNS perivascular iron deposits. However, the relative contribution of iron deposition vs. inflammation in the pathogenesis and progression of MS remains unknown. Further studies should establish the association between inflammation, reduced blood flow, iron deposition, microglia activation and neurodegeneration. Creating a representative animal model that can study independently such relationship will be the key factor in this endeavor.
Collapse
Affiliation(s)
- Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, University at Buffalo, Buffalo, NY, USA.
| | | | | |
Collapse
|
52
|
Broadwater L, Pandit A, Azzam S, Clements R, Vadnal J, Sulak M, Yong VW, Freeman EJ, Gregory RB, McDonough J. Analysis of the mitochondrial proteome in multiple sclerosis cortex. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1812:630-41. [PMID: 21295140 PMCID: PMC3074931 DOI: 10.1016/j.bbadis.2011.01.012] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 01/09/2011] [Accepted: 01/25/2011] [Indexed: 12/29/2022]
Abstract
Mitochondrial dysfunction has been proposed to play a role in the neuropathology of multiple sclerosis (MS). Previously, we reported significant alterations in the transcription of nuclear-encoded electron transport chain genes in MS and confirmed translational alterations for components of Complexes I and III that resulted in reductions in their activity. To more thoroughly and efficiently elucidate potential alterations in the expression of mitochondrial and related proteins, we have characterized the mitochondrial proteome in postmortem MS and control cortex using Surface-Enhanced Laser Desorption Ionization Time of Flight Mass Spectrometry (SELDI-TOF-MS). Using principal component analysis (PCA) and hierarchical clustering techniques we were able to analyze the differential patterns of SELDI-TOF spectra to reveal clusters of peaks which distinguished MS from control samples. Four proteins in particular were responsible for distinguishing disease from control. Peptide fingerprint mapping unambiguously identified these differentially expressed proteins. Three proteins identified are involved in respiration including cytochrome c oxidase subunit 5b (COX5b), the brain specific isozyme of creatine kinase, and hemoglobin β-chain. The fourth protein identified was myelin basic protein (MBP). We then investigated whether these alterations were consistent in the experimental autoimmune encephalomyelitis (EAE) mouse model of MS. We found that MBP was similarly altered in EAE but the respiratory proteins were not. These data indicate that while the EAE mouse model may mimic aspects of MS neuropathology which result from inflammatory demyelinating events, there is another distinct mechanism involved in mitochondrial dysfunction in gray matter in MS which is not modeled in EAE.
Collapse
MESH Headings
- Adult
- Aged
- Aged, 80 and over
- Animals
- Autopsy
- Biomarkers/analysis
- Blotting, Western
- Brain/metabolism
- Brain/pathology
- Case-Control Studies
- Cerebral Cortex/metabolism
- Cerebral Cortex/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/etiology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Fluorescent Antibody Technique
- Glycoproteins/administration & dosage
- Humans
- Immunoprecipitation
- Male
- Mice
- Mice, Inbred C57BL
- Middle Aged
- Multiple Sclerosis/metabolism
- Multiple Sclerosis/pathology
- Myelin Basic Protein/metabolism
- Myelin-Oligodendrocyte Glycoprotein
- Peptide Fragments/administration & dosage
- Peptide Mapping
- Principal Component Analysis
- Proteome/analysis
- Proteomics
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Collapse
Affiliation(s)
- Laurie Broadwater
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Ashish Pandit
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Sausan Azzam
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Robert Clements
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Jonathan Vadnal
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Michael Sulak
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - V. Wee Yong
- Departments of Clinical Neurosciences and Oncology, University of Calgary, Calgary, Alberta, CA T2N 4N1
| | - Ernest J. Freeman
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| | - Roger B. Gregory
- Department of Chemistry and Biochemistry, Kent State University, Kent, Ohio 44242
| | - Jennifer McDonough
- Department of Biological Sciences, Kent State University, Kent, Ohio 44242
| |
Collapse
|
53
|
Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, Lassmann H, Turnbull DM, Mahad DJ. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Ann Neurol 2011; 69:481-92. [PMID: 21446022 PMCID: PMC3580047 DOI: 10.1002/ana.22109] [Citation(s) in RCA: 270] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2010] [Revised: 05/26/2010] [Accepted: 05/28/2010] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Cerebral atrophy is a correlate of clinical progression in multiple sclerosis (MS). Mitochondria are now established to play a part in the pathogenesis of MS. Uniquely, mitochondria harbor their own mitochondrial DNA (mtDNA), essential for maintaining a healthy central nervous system. We explored mitochondrial respiratory chain activity and mtDNA deletions in single neurons from secondary progressive MS (SPMS) cases. METHODS Ninety-eight snap-frozen brain blocks from 13 SPMS cases together with complex IV/complex II histochemistry, immunohistochemistry, laser dissection microscopy, long-range and real-time PCR and sequencing were used to identify and analyze respiratory-deficient neurons devoid of complex IV and with complex II activity. RESULTS The density of respiratory-deficient neurons in SPMS was strikingly in excess of aged controls. The majority of respiratory-deficient neurons were located in layer VI and immediate subcortical white matter (WM) irrespective of lesions. Multiple deletions of mtDNA were apparent throughout the gray matter (GM) in MS. The respiratory-deficient neurons harbored high levels of clonally expanded mtDNA deletions at a single-cell level. Furthermore, there were neurons lacking mtDNA-encoded catalytic subunits of complex IV. mtDNA deletions sufficiently explained the biochemical defect in the majority of respiratory-deficient neurons. INTERPRETATION These findings provide evidence that neurons in MS are respiratory-deficient due to mtDNA deletions, which are extensive in GM and may be induced by inflammation. We propose induced multiple deletions of mtDNA as an important contributor to neurodegeneration in MS.
Collapse
Affiliation(s)
- Graham R Campbell
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle UniversityNewcastle upon Tyne, UK
| | - Iryna Ziabreva
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle UniversityNewcastle upon Tyne, UK
| | - Amy K Reeve
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle UniversityNewcastle upon Tyne, UK
| | - Kim J Krishnan
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle UniversityNewcastle upon Tyne, UK
| | - Richard Reynolds
- Wolfson Neuroscience Laboratories, Imperial College Faculty of MedicineLondon, UK
| | - Owen Howell
- Wolfson Neuroscience Laboratories, Imperial College Faculty of MedicineLondon, UK
| | - Hans Lassmann
- Department of neuroimmunology, Center for Brain Research, Medical University ViennaVienna, Austria
| | - Doug M Turnbull
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle UniversityNewcastle upon Tyne, UK
| | - Don J Mahad
- Institute of Ageing and Health, Mitochondrial Research Group, Newcastle UniversityNewcastle upon Tyne, UK
| |
Collapse
|
54
|
Venkateswaran S, Zheng K, Sacchetti M, Gagne D, Arnold DL, Sadovnick AD, Scherer SW, Banwell B, Bar-Or A, Simon DK. Mitochondrial DNA haplogroups and mutations in children with acquired central demyelination. Neurology 2011; 76:774-80. [PMID: 21288980 DOI: 10.1212/wnl.0b013e31820ee1bb] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE We investigated mitochondrial DNA (mtDNA) variants in children with a first episode of acquired demyelinating syndromes (PD-ADS) of the CNS and their relationship to disease phenotype, including subsequent diagnosis of multiple sclerosis (MS). METHODS This exploratory analysis included the initial 213 children with PD-ADS in the prospective Canadian Pediatric Demyelinating Study and 166 matched healthy sibling controls from the Canadian Autism Genome Project. A total of 31 single nucleotide polymorphisms (SNPs) were analyzed, including haplogroup-defining SNPs and mtDNA variants previously reported to be associated with MS. RESULTS Primary Leber hereditary optic neuropathy (LHON) mutations and other known pathogenic mtDNA mutations were absent in both patients with pediatric acquired demyelinating syndromes and controls. The 13708A haplogroup J-associated variant, previously linked to adult MS, was more frequent among subjects with PD-ADS (13.0%) compared to controls (6.2%; odds ratio [OR] 2.27; 95% confidence interval [CI] 1.06 to 4.83) and haplogroup M was associated with an earlier age at onset of PD-ADS (-1.74 years; 95% CI -3.33 to -0.07). In contrast, the haplogroup cluster UKJT, as well as 3 other SNPs, were each associated with a lower risk of PD-ADS. A total of 33 subjects with PD-ADS were diagnosed with MS during a mean follow-up period of 3.11 ± 1.14 (SD) years. No single SNP was associated with the risk of subsequent diagnosis of MS. However, haplogroup H was associated with an increased risk of MS (OR 2.60; 95% CI 1.21 to 5.55). CONCLUSION These data suggest an association between mtDNA variants and the risk of PD-ADS and of a subsequent MS diagnosis. Replication of these findings in an independent population of subjects with PD-ADS is required.
Collapse
Affiliation(s)
- S Venkateswaran
- Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
van Horssen J, Witte ME, Schreibelt G, de Vries HE. Radical changes in multiple sclerosis pathogenesis. Biochim Biophys Acta Mol Basis Dis 2011; 1812:141-50. [DOI: 10.1016/j.bbadis.2010.06.011] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2009] [Revised: 06/08/2010] [Accepted: 06/16/2010] [Indexed: 12/20/2022]
|
56
|
Fazeli AS, Nasrabadi D, Sanati MH, Pouya A, Ibrahim SM, Baharvand H, Salekdeh GH. Proteome analysis of brain in murine experimental autoimmune encephalomyelitis. Proteomics 2010; 10:2822-32. [PMID: 20540118 DOI: 10.1002/pmic.200900507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Multiple sclerosis is considered a prototype inflammatory autoimmune disorder of the CNS. Experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein is one of the best-characterized animal models of multiple sclerosis. Comprehensive understanding of gene expression in EAE can help identify genes that are important in drug response and pathogenesis. We applied a 2-DE-based proteomics approach to analyze the protein expression pattern of the brain in healthy and EAE samples. Of more than 1000 protein spots we analyzed, 70 showed reproducible and significant changes in EAE compared to controls. Of these, 42 protein spots could be identified using MALDI TOF-TOF-MS. They included mitochondrial and structural proteins as well as proteins involved in ionic and neurotransmitter release, blood barriers, apoptosis, and signal transduction. The possible role of these proteins in the responses of mice to animal models of multiple sclerosis is discussed.
Collapse
Affiliation(s)
- Abolhassan Shahzadeh Fazeli
- Department of Molecular Systems Biology, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | | | | | | | | | | | |
Collapse
|
57
|
Vos M, Lauwers E, Verstreken P. Synaptic mitochondria in synaptic transmission and organization of vesicle pools in health and disease. Front Synaptic Neurosci 2010; 2:139. [PMID: 21423525 PMCID: PMC3059669 DOI: 10.3389/fnsyn.2010.00139] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Accepted: 08/09/2010] [Indexed: 12/21/2022] Open
Abstract
Cell types rich in mitochondria, including neurons, display a high energy demand and a need for calcium buffering. The importance of mitochondria for proper neuronal function is stressed by the occurrence of neurological defects in patients suffering from a great variety of diseases caused by mutations in mitochondrial genes. Genetic and pharmacological evidence also reveal a role of these organelles in various aspects of neuronal physiology and in the pathogenesis of neurodegenerative disorders. Yet the mechanisms by which mitochondria can affect neurotransmission largely remain to be elucidated. In this review we focus on experimental data that suggest a critical function of synaptic mitochondria in the function and organization of synaptic vesicle pools, and in neurotransmitter release during intense neuronal activity. We discuss how calcium handling, ATP production and other mitochondrial mechanisms may influence synaptic vesicle pool organization and synaptic function. Given the link between synaptic mitochondrial function and neuronal communication, efforts toward better understanding mitochondrial biology may lead to novel therapeutic approaches of neurological disorders including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and psychiatric disorders that are at least in part caused by mitochondrial deficits.
Collapse
Affiliation(s)
- Melissa Vos
- Department of Molecular and Developmental Genetics VIB, Leuven, Belgium
| | | | | |
Collapse
|
58
|
Lim CK, Brew BJ, Sundaram G, Guillemin GJ. Understanding the roles of the kynurenine pathway in multiple sclerosis progression. Int J Tryptophan Res 2010; 3:157-67. [PMID: 22084596 PMCID: PMC3195238 DOI: 10.4137/ijtr.s4294] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The kynurenine pathway (KP) is a major degradative pathway of tryptophan ultimately leading to the production of nicotinamide adenine dinucleotide (NAD+) and is also one of the major regulatory mechanisms of the immune response. The KP is known to be involved in several neuroinflammatory disorders including Alzheimer’s disease, amyotrophic lateral sclerosis, AIDS dementia complex, Parkinson’s disease, schizophrenia, Huntington’s disease and brain tumours. However, the KP remains a relatively new topic for the field of multiple sclerosis (MS). Over the last 2–3 years, some evidence has progressively emerged suggesting that the KP is likely to be involved in the pathogenesis of autoimmune diseases especially MS. Some KP modulators are already in clinical trials for other inflammatory diseases and would potentially provide a new and important therapeutic strategy for MS patients. This review summarizes the known relationships between the KP and MS.
Collapse
Affiliation(s)
- Chai K Lim
- Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney 2052, Australia
| | | | | | | |
Collapse
|
59
|
Kiryu-Seo S, Ohno N, Kidd GJ, Komuro H, Trapp BD. Demyelination increases axonal stationary mitochondrial size and the speed of axonal mitochondrial transport. J Neurosci 2010; 30:6658-66. [PMID: 20463228 PMCID: PMC2885867 DOI: 10.1523/jneurosci.5265-09.2010] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Revised: 03/26/2010] [Accepted: 03/30/2010] [Indexed: 01/23/2023] Open
Abstract
Axonal degeneration contributes to permanent neurological disability in inherited and acquired diseases of myelin. Mitochondrial dysfunction has been proposed as a major contributor to this axonal degeneration. It remains to be determined, however, if myelination, demyelination, or remyelination alter the size and distribution of axonal mitochondrial stationary sites or the rates of axonal mitochondrial transport. Using live myelinated rat dorsal root ganglion (DRG) cultures, we investigated whether myelination and lysolecithin-induced demyelination affect axonal mitochondria. Myelination increased the size of axonal stationary mitochondrial sites by 2.3-fold. After demyelination, the size of axonal stationary mitochondrial sites was increased by an additional 2.2-fold and the transport velocity of motile mitochondria was increased by 47%. These measures returned to the levels of myelinated axons after remyelination. Demyelination induced activating transcription factor 3 (ATF3) in DRG neurons. Knockdown of neuronal ATF3 by short hairpin RNA abolished the demyelination-induced increase in axonal mitochondrial transport and increased nitrotyrosine immunoreactivity in axonal mitochondria, suggesting that neuronal ATF3 expression and increased mitochondrial transport protect demyelinated axons from oxidative damage. In response to insufficient ATP production, demyelinated axons increase the size of stationary mitochondrial sites and thereby balance ATP production with the increased energy needs of nerve conduction.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Nobuhiko Ohno
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Grahame J. Kidd
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Hitoshi Komuro
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| | - Bruce D. Trapp
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195
| |
Collapse
|
60
|
Werner SR, Saha JK, Broderick CL, Zhen EY, Higgs RE, Duffin KL, Smith RC. Proteomic analysis of demyelinated and remyelinating brain tissue following dietary cuprizone administration. J Mol Neurosci 2010; 42:210-25. [PMID: 20401640 DOI: 10.1007/s12031-010-9354-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Cuprizone intoxication is a commonly used model of demyelination that allows the temporal separation of demyelination and remyelination. The underlying biochemical alterations leading to demyelination, using this model, remain unclear and may be multifold. Analysis of proteomic changes within the brains of cuprizone-exposed animals may help elucidate key cellular processes. In the current study, we report the results of the liquid chromatography tandem mass spectrometry analysis of total protein from the brain hemispheres of control and toxin-exposed mice at 6 weeks of exposure and after 3 and 6 weeks of recovery to identify protein changes during the remyelination phase. We found that at 6 weeks of cuprizone exposure, myelin proteins were reduced compared to controls and increased throughout the course of recovery, as expected. In contrast, other protein groups, such as proteins related to mitochondrial function, were increased at 6 weeks of treatment compared to untreated controls and returned toward control levels following withdrawal of toxin. These results suggest that a global proteomic analysis of the brain tissue of cuprizone-treated mice can identify changes related to the demyelination/remyelination process.
Collapse
Affiliation(s)
- Sean R Werner
- Biotechnology Discovery Research, Eli Lilly and Company, Lilly Research Laboratories, Lilly Corporate Center, Indianapolis, IN 46285, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
Veto S, Acs P, Bauer J, Lassmann H, Berente Z, Setalo G, Borgulya G, Sumegi B, Komoly S, Gallyas F, Illes Z. Inhibiting poly(ADP-ribose) polymerase: a potential therapy against oligodendrocyte death. Brain 2010; 133:822-34. [PMID: 20157013 PMCID: PMC2964508 DOI: 10.1093/brain/awp337] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Oligodendrocyte loss and demyelination are major pathological hallmarks of multiple sclerosis. In pattern III lesions, inflammation is minor in the early stages, and oligodendrocyte apoptosis prevails, which appears to be mediated at least in part through mitochondrial injury. Here, we demonstrate poly(ADP-ribose) polymerase activation and apoptosis inducing factor nuclear translocation within apoptotic oligodendrocytes in such multiple sclerosis lesions. The same morphological and molecular pathology was observed in an experimental model of primary demyelination, induced by the mitochondrial toxin cuprizone. Inhibition of poly(ADP-ribose) polymerase in this model attenuated oligodendrocyte depletion and decreased demyelination. Poly(ADP-ribose) polymerase inhibition suppressed c-Jun N-terminal kinase and p38 mitogen-activated protein kinase phosphorylation, increased the activation of the cytoprotective phosphatidylinositol-3 kinase-Akt pathway and prevented caspase-independent apoptosis inducing factor-mediated apoptosis. Our data indicate that poly(ADP-ribose) polymerase activation plays a crucial role in the pathogenesis of pattern III multiple sclerosis lesions. Since poly(ADP-ribose) polymerase inhibition was also effective in the inflammatory model of multiple sclerosis, it may target all subtypes of multiple sclerosis, either by preventing oligodendrocyte death or attenuating inflammation.
Collapse
Affiliation(s)
- Sara Veto
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Peter Acs
- Department of Neurology, University of Pecs Medical School, Pecs, Hungary
| | - Jan Bauer
- Centre for Brain Research, Medical University of Vienna, Austria
| | - Hans Lassmann
- Centre for Brain Research, Medical University of Vienna, Austria
| | - Zoltan Berente
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Gyorgy Setalo
- Department of Medical Biology, University of Pecs Medical School, Pecs, Hungary
| | - Gabor Borgulya
- 3rd Department of Internal Medicine, Semmelweis University of Budapest, Budapest, Hungary
| | - Balazs Sumegi
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Samuel Komoly
- Department of Neurology, University of Pecs Medical School, Pecs, Hungary
| | - Ferenc Gallyas
- Department of Biochemistry and Medical Chemistry, University of Pecs Medical School, Pecs, Hungary
| | - Zsolt Illes
- Department of Neurology, University of Pecs Medical School, Pecs, Hungary
| |
Collapse
|
62
|
Inglese M, Madelin G, Oesingmann N, Babb JS, Wu W, Stoeckel B, Herbert J, Johnson G. Brain tissue sodium concentration in multiple sclerosis: a sodium imaging study at 3 tesla. ACTA ACUST UNITED AC 2010; 133:847-57. [PMID: 20110245 DOI: 10.1093/brain/awp334] [Citation(s) in RCA: 183] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Neuro-axonal degeneration occurs progressively from the onset of multiple sclerosis and is thought to be a significant cause of increasing clinical disability. Several histopathological studies of multiple sclerosis and experimental autoimmune encephalomyelitis have shown that the accumulation of sodium in axons can promote reverse action of the sodium/calcium exchanger that, in turn, leads to a lethal overload in intra-axonal calcium. We hypothesized that sodium magnetic resonance imaging would provide an indicator of cellular and metabolic integrity and ion homeostasis in patients with multiple sclerosis. Using a three-dimensional radial gradient-echo sequence with short echo time, we performed sodium magnetic resonance imaging at 3 T in 17 patients with relapsing-remitting multiple sclerosis and in 13 normal subjects. The absolute total tissue sodium concentration was measured in lesions and in several areas of normal-appearing white and grey matter in patients, and corresponding areas of white and grey matter in controls. A mixed model analysis of covariance was performed to compare regional tissue sodium concentration levels in patients and controls. Spearman correlations were used to determine the association of regional tissue sodium concentration levels in T(2)- and T(1)-weighted lesions with measures of normalized whole brain and grey and white matter volumes, and with expanded disability status scale scores. In patients, tissue sodium concentration levels were found to be elevated in acute and chronic lesions compared to areas of normal-appearing white matter (P < 0.0001). The tissue sodium concentration levels in areas of normal-appearing white matter were significantly higher than those in corresponding white matter regions in healthy controls (P < 0.0001). The tissue sodium concentration value averaged over lesions and over regions of normal-appearing white and grey matter was positively associated with T(2)-weighted (P < or = 0.001 for all) and T(1)-weighted (P < or = 0.006 for all) lesion volumes. In patients, only the tissue sodium concentration value averaged over regions of normal-appearing grey matter was negatively associated with the normalized grey matter volume (P = 0.0009). Finally, the expanded disability status scale score showed a mild, positive association with the mean tissue sodium concentration value in chronic lesions (P = 0.002), in regions of normal-appearing white matter (P = 0.004) and normal-appearing grey matter (P = 0.002). This study shows the feasibility of using in vivo sodium magnetic resonance imaging at 3 T in patients with multiple sclerosis. Our findings suggest that the abnormal values of the tissue sodium concentration in patients with relapsing-remitting multiple sclerosis might reflect changes in cellular composition of the lesions and/or changes in cellular and metabolic integrity. Sodium magnetic resonance imaging has the potential to provide insight into the pathophysiological mechanisms of tissue injury when correlation with histopathology becomes available.
Collapse
Affiliation(s)
- M Inglese
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, 4th floor, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
63
|
Regenold WT, Phatak P, Makley MJ, Stone RD, Kling MA. Cerebrospinal fluid evidence of increased extra-mitochondrial glucose metabolism implicates mitochondrial dysfunction in multiple sclerosis disease progression. J Neurol Sci 2008; 275:106-12. [PMID: 18783801 PMCID: PMC2584157 DOI: 10.1016/j.jns.2008.07.032] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Revised: 07/22/2008] [Accepted: 07/31/2008] [Indexed: 11/25/2022]
Abstract
In contrast to relapse, the mechanisms of multiple sclerosis (MS) disease progression are less understood and appear not to be exclusively inflammatory in nature. In this pilot study we investigated the relationship between disturbed CNS energy metabolism and MS disease progression. We tested the hypothesis that cerebrospinal fluid (CSF) concentrations of sorbitol, fructose, and lactate, all metabolites of extra-mitochondrial glucose metabolism, would be elevated in secondary progressive (SP) MS patients and would be associated with worsening neurologic disability. We measured metabolite concentrations by gas chromatographic/mass spectrometric and enzymatic methods in archived CSF samples from 85 MS patients [31 relapsing-remitting (RR) and 54 SP patients] and 18 healthy controls. We found that concentrations of all three metabolites, but not concentrations of glucose or myoinositol, were significantly increased in CSF from SP and, to a lesser degree, RR patients, compared to controls. Furthermore, CSF concentrations of sorbitol and fructose (polyol pathway metabolites), but not lactate (anaerobic glycolysis metabolite), correlated positively and significantly with Expanded Disability Status Scale (EDSS) score, an index of neurologic disability in MS patients. We conclude that extra-mitochondrial glucose metabolism is increased in MS patients and is associated with disease progression evidenced by increasing EDSS score. As extra-mitochondrial glucose metabolism increases with impaired mitochondrial metabolism of glucose, these findings implicate mitochondrial dysfunction in the pathogenesis of MS disease progression. CSF metabolic profiling may be useful in clarifying the role of mitochondrial pathology in progression and in targeting and monitoring therapies for disease progression that aim to preserve or boost mitochondrial glucose metabolism.
Collapse
Affiliation(s)
- William T Regenold
- University of Maryland School of Medicine, Department of Psychiatry, Division of Geriatric Psychiatry, Baltimore, MD 21201, USA.
| | | | | | | | | |
Collapse
|
64
|
Blokhin A, Vyshkina T, Komoly S, Kalman B. Lack of mitochondrial DNA deletions in lesions of multiple sclerosis. Neuromolecular Med 2008; 10:187-94. [PMID: 18286391 DOI: 10.1007/s12017-008-8025-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
OBJECTIVE To test if mitochondrial (mt)DNA deletions accumulate in brains of patients with multiple sclerosis (MS). BACKGROUND Previous studies demonstrated an accumulation of oxidative damage to mtDNA and decreased activity of mitochondrial enzymes in lesions of MS, where activated immune cells produce increased amounts of reactive oxygen species and nitric oxide. The unknown link between oxidative damage and decreased activity of mitochondrial enzymes may be the accumulation of deletions in mtDNA molecules. mtDNA deletions in the brain have been associated with neurodegeneration and aging. METHODS mtDNA deletions were quantified by using real-time PCR in laser-dissected, COX-positive and COX-negative single neuronal and glial cells from frozen postmortem brain tissue specimens including normal appearing gray (NAGM) and white matter (NAWM) regions and chronic active plaques of MS patients, and gray matter (GM) and white matter (WM) regions of age-matched controls. Three patients with advance Alzheimer's and Parkinson's diseases were included as positive controls. The proportion of deleted mtDNA molecules was correlated with pathology and age. RESULTS We detected no pathology-related accumulation of mtDNA deletions when comparisons were made among NAGM, NAWM, and plaque of MS brains, or between NAGM-GM and NAWM-WM of patients and age-matched controls. However, an accumulation of mtDNA deletions was noted in non-neurological controls beyond 60 years of age and in patients with Alzheimer's and Parkinson's diseases. As expected, the rate of mtDNA deletions was higher in COX- than in COX+ cells. CONCLUSION While aging and neurodegeneration in PD and AD are associated with accumulation of COX- cells and mtDNA deletions, the pathology of MS is not.
Collapse
|
65
|
Abstract
Neurodegeneration develops in association with inflammation and demyelination in multiple sclerosis. Available data suggest that the progressive neuroaxonal loss begins in the earliest stages of the disease and underlies the accumulation of clinical disability. The loss of neurons and their processes is driven by a complex molecular mechanism involving cellular and humoral immune histotoxicity, demyelination, reduced neurotrophic support, metabolic impairment, and altered intracellular processes. Here we survey available data concerning the role of autoreactive immunoglobulins in neurotoxicity. A better understanding of molecular pathways leading to immune-mediated neurodegeneration may have key importance in the successful treatment of the disease.
Collapse
|
66
|
Mahad D, Ziabreva I, Lassmann H, Turnbull D. Mitochondrial defects in acute multiple sclerosis lesions. Brain 2008; 131:1722-35. [PMID: 18515320 PMCID: PMC2442422 DOI: 10.1093/brain/awn105] [Citation(s) in RCA: 307] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Revised: 04/25/2008] [Accepted: 05/01/2008] [Indexed: 01/03/2023] Open
Abstract
Multiple sclerosis is a chronic inflammatory disease, which leads to focal plaques of demyelination and tissue injury in the CNS. The structural and immunopathological patterns of demyelination suggest that different immune mechanisms may be involved in tissue damage. In a subtype of lesions, which are mainly found in patients with acute fulminant multiple sclerosis with Balo's type concentric sclerosis and in a subset of early relapsing remitting multiple sclerosis, the initial myelin changes closely resemble those seen in white matter stroke (WMS), suggesting a hypoxia-like tissue injury. Since mitochondrial injury may be involved in the pathogenesis of such lesions, we analysed a number of mitochondrial respiratory chain proteins in active lesions from acute multiple sclerosis and from WMS using immunohistochemistry. Functionally important defects of mitochondrial respiratory chain complex IV [cytochrome c oxidase (COX)] including its catalytic component (COX-I) are present in Pattern III but not in Pattern II multiple sclerosis lesions. The lack of immunohistochemically detected COX-I is apparent in oligodendrocytes, hypertrophied astrocytes and axons, but not in microglia. The profile of immunohistochemically detected mitochondrial respiratory chain complex subunits differs between multiple sclerosis and WMS. The findings suggest that hypoxia-like tissue injury in Pattern III multiple sclerosis lesions may be due to mitochondrial impairment.
Collapse
Affiliation(s)
- Don Mahad
- The Mitochondrial Research Group, University of Newcastle upon Tyne, UK and Centre for Brain Research, Medical University of Vienna, Austria
| | - Iryna Ziabreva
- The Mitochondrial Research Group, University of Newcastle upon Tyne, UK and Centre for Brain Research, Medical University of Vienna, Austria
| | - Hans Lassmann
- The Mitochondrial Research Group, University of Newcastle upon Tyne, UK and Centre for Brain Research, Medical University of Vienna, Austria
| | - Douglas Turnbull
- The Mitochondrial Research Group, University of Newcastle upon Tyne, UK and Centre for Brain Research, Medical University of Vienna, Austria
| |
Collapse
|
67
|
Variations in Mitochondrial DNA Copy Numbers in MS Brains. J Mol Neurosci 2008; 35:283-7. [DOI: 10.1007/s12031-008-9115-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2008] [Accepted: 05/29/2008] [Indexed: 12/22/2022]
|
68
|
|
69
|
Smerjac SM, Bizzozero OA. Cytoskeletal protein carbonylation and degradation in experimental autoimmune encephalomyelitis. J Neurochem 2008; 105:763-72. [PMID: 18088377 PMCID: PMC3599778 DOI: 10.1111/j.1471-4159.2007.05178.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein carbonylation, the non-enzymatic addition of aldehydes or ketones to specific amino acid residues, has been implicated in the pathophysiology of multiple sclerosis. In this study, we investigated whether protein carbonyls also accumulate in the spinal cord of Lewis rats with acute experimental autoimmune encephalomyelitis (EAE). Western blots analysis after derivatization with dinitrophenyl hydrazine (oxyblot) showed elevated protein carbonylation at the time of maximal clinical disability. During the same period glutathione levels were substantially reduced, suggesting a causal relationship between these two markers. In contrast, lipid peroxidation products accumulated in EAE spinal cord well before the appearance of neurological symptoms. Carbonyl staining was not restricted to inflammatory lesions but present throughout the spinal cord particularly in neuronal cell bodies and axons. By 2-dimensional-oxyblot, we identified several cytoskeletal proteins, including beta-actin, glial acidic fibrillary protein, and the neurofilament proteins as the major targets of carbonylation. These findings were confirmed by pull-down experiments, which also showed an increase in the number of carbonylated beta-actin molecules and a decrease in that of oxidized neurofilament proteins in EAE. These data suggest the possibility that oxidation targets neurofilament proteins for degradation, which may contribute to axonal pathology observed in multiple sclerosis and EAE.
Collapse
Affiliation(s)
- Suzanne M Smerjac
- Department of Cell Biology and Physiology, University of New Mexico - Health Sciences Center, Albuquerque, New Mexico 87131, USA
| | | |
Collapse
|
70
|
Shao L, Martin MV, Watson SJ, Schatzberg A, Akil H, Myers RM, Jones EG, Bunney WE, Vawter MP. Mitochondrial involvement in psychiatric disorders. Ann Med 2008; 40:281-95. [PMID: 18428021 PMCID: PMC3098560 DOI: 10.1080/07853890801923753] [Citation(s) in RCA: 229] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Recent findings of mitochondrial abnormalities in brains from subjects with neurological disorders have led to a renewed search for mitochondrial abnormalities in psychiatric disorders. A growing body of evidence suggests that there is mitochondrial dysfunction in schizophrenia, bipolar disorder, and major depressive disorder, including evidence from electron microscopy, imaging, gene expression, genotyping, and sequencing studies. Specific evidence of dysfunction such as increased common deletion and decreased gene expression in mitochondria in psychiatric illnesses suggests that direct examination of mitochondrial DNA from postmortem brain cells may provide further details of mitochondrial alterations in psychiatric disorders.
Collapse
Affiliation(s)
- Ling Shao
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| | - Maureen V. Martin
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| | - Stanley J. Watson
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor MI, USA
| | - Alan Schatzberg
- Department of Psychiatry, Stanford University, Palo Alto CA, USA
| | - Huda Akil
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor MI, USA
| | - Richard M. Myers
- Stanford Human Genome Center, Stanford University, Palo Alto CA, USA
| | - Edward G. Jones
- Neuroscience Center, University of California, Davis, Davis, CA, USA
| | - William E. Bunney
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| | - Marquis P. Vawter
- Department of Psychiatry & Human Behavior, University of California, Irvine, Irvine CA, USA
| |
Collapse
|