51
|
FOXO transcription factors protect against the diet-induced fatty liver disease. Sci Rep 2017; 7:44597. [PMID: 28300161 PMCID: PMC5353679 DOI: 10.1038/srep44597] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 02/10/2017] [Indexed: 12/19/2022] Open
Abstract
Forkhead O transcription factors (FOXOs) have been implicated in glucose and lipid homeostasis; however, the role of FOXOs in the development of nonalcoholic fatty liver disease (NAFLD) is not well understood. In this study, we designed experiments to examine the effects of two different diets-very high fat diet (HFD) and moderately high fat plus cholesterol diet (HFC)-on wildtype (WT) and liver-specific Foxo1/3/4 triple knockout mice (LTKO). Both diets induced severe hepatic steatosis in the LTKO mice as compared to WT controls. However, the HFC diet led to more severe liver injury and fibrosis compared to the HFD diet. At the molecular levels, hepatic Foxo1/3/4 deficiency triggered a significant increase in the expression of inflammatory and fibrotic genes including Emr1, Ccl2, Col1a1, Tgfb, Pdgfrb, and Timp1. Thus, our data suggest that FOXO transcription factors play a salutary role in the protection against the diet-induced fatty liver disease.
Collapse
|
52
|
Cytochrome P450-2E1 promotes fast food-mediated hepatic fibrosis. Sci Rep 2017; 7:39764. [PMID: 28051126 PMCID: PMC5209674 DOI: 10.1038/srep39764] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/28/2016] [Indexed: 02/08/2023] Open
Abstract
Cytochrome P450-2E1 (CYP2E1) increases oxidative stress. High hepatic cholesterol causes non-alcoholic steatohepatitis (NASH) and fibrosis. Thus, we aimed to study the role of CYP2E1 in promoting liver fibrosis by high cholesterol-containing fast-food (FF). Male wild-type (WT) and Cyp2e1-null mice were fed standard chow or FF for 2, 12, and 24 weeks. Various parameters of liver fibrosis and potential mechanisms such as oxidative and endoplasmic reticulum (ER) stress, inflammation, and insulin resistance (IR) were studied. Indirect calorimetry was also used to determine metabolic parameters. Liver histology showed that only WT fed FF (WT-FF) developed NASH and fibrosis. Hepatic levels of fibrosis protein markers were significantly increased in WT-FF. The nitroxidative stress marker iNOS, but not CYP2E1, was significantly elevated only in FF-fed WT. Serum endotoxin, TLR-4 levels, and inflammatory markers were highest in WT-FF. FAS, PPAR-α, PPAR-γ, and CB1-R were markedly altered in WT-FF. Electron microscopy and immunoblot analyses showed significantly higher levels of ER stress in FF-fed WT. Indirect calorimetry showed that Cyp2e1-null-mice fed FF exhibited consistently higher total energy expenditure (TEE) than their corresponding WT. These results demonstrate that CYP2E1 is important in fast food-mediated liver fibrosis by promoting nitroxidative and ER stress, endotoxemia, inflammation, IR, and low TEE.
Collapse
|
53
|
Amano Y, Shimizu F, Yasuno H, Harada A, Tsuchiya S, Isono O, Nagabukuro H, Tozawa R. Non-alcoholic steatohepatitis-associated hepatic fibrosis and hepatocellular carcinoma in a combined mouse model of genetic modification and dietary challenge. Hepatol Res 2017; 47:103-115. [PMID: 26992446 DOI: 10.1111/hepr.12709] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/13/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022]
Abstract
AIM Experimental models of non-alcoholic steatohepatitis (NASH) are still required for understanding the pathophysiology of this disease. This study aimed to examine whether disease progression is accelerated by combining dyslipidemic genetic modification and dietary challenges and develop NASH-associated hepatic fibrosis, cirrhosis, and carcinoma in a short period. METHODS Low-density lipoprotein receptor knockout mice were fed a modified choline-deficient amino acid-defined diet, including 1 w/w% cholesterol and 41 kcal% fat, and was comprehensively profiled over 1 year. RESULTS Microvesicular and macrovesicular steatosis in the liver was observed from the first week after starting the modified choline-deficient amino acid-defined diet. Macrovesicular steatosis was exacerbated with time and was observed in almost all hepatocytes at week 8, but slightly decreased at week 16. Infiltration of macrophages and neutrophils, and upregulation of hepatic inflammatory cytokines such as tumor necrosis factor-α and interleukin-1β were also observed from week 1. Plasma hepatic transaminase activities were increased at week 1, reached a peak at week 4, and gradually decreased thereafter. In parallel with increases in hepatic gene expression of collagen-I, the hepatic fibrosis area expanded after week 4 and massively spread all over the liver by week 8. Hepatocellular hyperplasia was observed from week 24. Hepatocellular adenoma and carcinoma were observed from week 31 and 39, respectively. CONCLUSION These results suggest that, in a rodent NASH model with the combination of genetic modification and dietary challenges, hepatic steatosis, inflammatory cell infiltration and hepatic injury, hepatic fibrosis, hepatocellular hyperplasia, adenoma, and carcinoma can be developed in a relatively short period.
Collapse
Affiliation(s)
- Yuichiro Amano
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Fumi Shimizu
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hironobu Yasuno
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ayako Harada
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Shuntarou Tsuchiya
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Osamu Isono
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Hiroshi Nagabukuro
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| | - Ryuichi Tozawa
- Pharmaceutical Research Division, Takeda Pharmaceutical Company Limited, Kanagawa, Japan
| |
Collapse
|
54
|
Maher JJ. Modeling fatty liver disease in animals: Is there an optimal approach, and is the effort worthwhile? Hepatology 2016; 64:1398-1400. [PMID: 27639263 PMCID: PMC8207536 DOI: 10.1002/hep.28823] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 08/08/2016] [Indexed: 12/16/2022]
Affiliation(s)
- Jacquelyn J. Maher
- Liver Center and Department of Medicine; University of California, San Francisco; San Francisco CA
| |
Collapse
|
55
|
Rahman K, Desai C, Iyer SS, Thorn NE, Kumar P, Liu Y, Smith T, Neish AS, Li H, Tan S, Wu P, Liu X, Yu Y, Farris AB, Nusrat A, Parkos CA, Anania FA. Loss of Junctional Adhesion Molecule A Promotes Severe Steatohepatitis in Mice on a Diet High in Saturated Fat, Fructose, and Cholesterol. Gastroenterology 2016; 151:733-746.e12. [PMID: 27342212 PMCID: PMC5037035 DOI: 10.1053/j.gastro.2016.06.022] [Citation(s) in RCA: 250] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Revised: 05/19/2016] [Accepted: 06/10/2016] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS There is evidence from clinical studies that compromised intestinal epithelial permeability contributes to the development of nonalcoholic steatohepatitis (NASH), but the exact mechanisms are not clear. Mice with disruption of the gene (F11r) encoding junctional adhesion molecule A (JAM-A) have defects in intestinal epithelial permeability. We used these mice to study how disruption of the intestinal epithelial barrier contributes to NASH. METHODS Male C57BL/6 (control) or F11r(-/-) mice were fed a normal diet or a diet high in saturated fat, fructose, and cholesterol (HFCD) for 8 weeks. Liver and intestinal tissues were collected and analyzed by histology, quantitative reverse-transcription polymerase chain reaction, and flow cytometry. Intestinal epithelial permeability was assessed in mice by measuring permeability to fluorescently labeled dextran. The intestinal microbiota were analyzed using 16S ribosomal RNA sequencing. We also analyzed biopsy specimens from proximal colons of 30 patients with nonalcoholic fatty liver disease (NAFLD) and 19 subjects without NAFLD (controls) undergoing surveillance colonoscopy. RESULTS F11r(-/-) mice fed a HFCD, but not a normal diet, developed histologic and pathologic features of severe NASH including steatosis, lobular inflammation, hepatocellular ballooning, and fibrosis, whereas control mice fed a HFCD developed only modest steatosis. Interestingly, there were no differences in body weight, ratio of liver weight:body weight, or glucose homeostasis between control and F11r(-/-) mice fed a HFCD. In these mice, liver injury was associated with significant increases in mucosal inflammation, tight junction disruption, and intestinal epithelial permeability to bacterial endotoxins, compared with control mice or F11r(-/-) mice fed a normal diet. The HFCD led to a significant increase in inflammatory microbial taxa in F11r(-/-) mice, compared with control mice. Administration of oral antibiotics or sequestration of bacterial endotoxins with sevelamer hydrochloride reduced mucosal inflammation and restored normal liver histology in F11r(-/-) mice fed a HFCD. Protein and transcript levels of JAM-A were significantly lower in the intestinal mucosa of patients with NAFLD than without NAFLD; decreased expression of JAM-A correlated with increased mucosal inflammation. CONCLUSIONS Mice with defects in intestinal epithelial permeability develop more severe steatohepatitis after a HFCD than control mice, and colon tissues from patients with NAFLD have lower levels of JAM-A and higher levels of inflammation than subjects without NAFLD. These findings indicate that intestinal epithelial barrier function and microbial dysbiosis contribute to the development of NASH. Restoration of intestinal barrier integrity and manipulation of gut microbiota might be developed as therapeutic strategies for patients with NASH.
Collapse
Affiliation(s)
- Khalidur Rahman
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia.
| | - Chirayu Desai
- P.D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, Gujarat, India
| | - Smita S Iyer
- Microbiology and Immunology, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Natalie E Thorn
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Pradeep Kumar
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | | | - Tekla Smith
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia
| | - Andrew S Neish
- Department of Pathology and Laboratory Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Hongliang Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shiyun Tan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Pengbo Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxiong Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China; Cardiovascular Research Institute, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuanjie Yu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Alton B Farris
- Department of Pathology and Laboratory Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia
| | - Asma Nusrat
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, The University of Michigan, Ann Arbor, Michigan
| | - Frank A Anania
- Division of Digestive Diseases, Department of Medicine, Yerkes National Primate Center, Emory University, Atlanta, Georgia; Atlanta VA Medical Center, Decatur, Georgia.
| |
Collapse
|
56
|
Rahman K, Liu Y, Kumar P, Smith T, Thorn NE, Farris AB, Anania FA. C/EBP homologous protein modulates liraglutide-mediated attenuation of non-alcoholic steatohepatitis. J Transl Med 2016; 96:895-908. [PMID: 27239734 PMCID: PMC4965279 DOI: 10.1038/labinvest.2016.61] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/15/2016] [Accepted: 04/26/2016] [Indexed: 02/06/2023] Open
Abstract
The CCAAT/enhancer-binding protein (C/EBP) homologous protein (CHOP), a major transcriptional regulator of endoplasmic reticulum (ER) stress-mediated apoptosis, is implicated in lipotoxicity-induced ER stress and hepatocyte apoptosis in non-alcoholic fatty liver disease (NAFLD). We have previously demonstrated that the glucagon-like peptide-1 (GLP-1) agonist, liraglutide, protects steatotic hepatocytes from lipotoxicity-induced apoptosis by improved handling of free fatty acid (FFA)-induced ER stress. In the present study, we investigated whether CHOP is critical for GLP-1-mediated restoration of ER homeostasis and mitigation of hepatocyte apoptosis in a murine model of NASH (non-alcoholic steatohepatitis). Our data show that despite similar caloric intake, CHOP KO (CHOP(-/-)) mice fed a diet high in fat, fructose, and cholesterol (HFCD) for 16 weeks developed more severe histological features of NASH compared with wild-type (WT) controls. Severity of NASH in HFCD-fed CHOP(-/-) mice correlated with significant decrease in peroxisomal β-oxidation, and increased de novo lipogenesis and ER stress-mediated hepatocyte apoptosis. Four weeks of liraglutide treatment markedly attenuated steatohepatitis in HFCD-fed WT mice by improving insulin sensitivity, and suppressing de novo lipogenesis and ER stress-mediated hepatocyte apoptosis. However, in the absence of CHOP, liraglutide did not improve insulin sensitivity, nor suppress peroxisomal β-oxidation or ER stress-mediated hepatocyte apoptosis. Taken together, these data indicate that CHOP protects hepatocytes from HFCD-induced ER stress, and has a significant role in the mechanism of liraglutide-mediated protection against NASH pathogenesis.
Collapse
Affiliation(s)
- Khalidur Rahman
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA,Corresponding Author: Khalidur Rahman, PhD, Assistant Professor of Medicine, Emory University School of Medicine, 615 Michael Street, Suite 201, Atlanta, GA 30322, Phone: 404-712-2867 or 404-727-5638, Fax: 404-727-5767
| | | | - Pradeep Kumar
- Division of Digestive Diseases, Emory University, Atlanta, GA
| | - Tekla Smith
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| | | | - Alton B. Farris
- Department of Pathology, Emory University Hospital, Atlanta, GA
| | - Frank A. Anania
- Division of Digestive Diseases, Emory University, Atlanta, GA,Atlanta VA Medical Center, Decatur, GA
| |
Collapse
|
57
|
Linden MA, Sheldon RD, Meers GM, Ortinau LC, Morris EM, Booth FW, Kanaley JA, Vieira-Potter VJ, Sowers JR, Ibdah JA, Thyfault JP, Laughlin MH, Rector RS. Aerobic exercise training in the treatment of non-alcoholic fatty liver disease related fibrosis. J Physiol 2016; 594:5271-84. [PMID: 27104887 DOI: 10.1113/jp272235] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/13/2016] [Indexed: 12/23/2022] Open
Abstract
KEY POINTS Physiologically relevant rodent models of non-alcoholic steatohepatitis (NASH) that resemble the human condition are limited. Exercise training and energy restriction are first-line recommendations for the treatment of NASH. Hyperphagic Otsuka Long-Evans Tokushima fatty rats fed a western diet high in fat, sucrose and cholesterol for 24 weeks developed a severe NASH with fibrosis phenotype. Moderate intensity exercise training and modest energy restriction provided some improvement in the histological features of NASH that coincided with alterations in markers of hepatic stellate cell activation and extracellular matrix remodelling. The present study highlights the importance of lifestyle modification, including exercise training and energy restriction, in the regulation of advanced liver disease. ABSTRACT The incidence of non-alcoholic steatohepatitis (NASH) is rising but the efficacy of lifestyle modifications to improve NASH-related outcomes remain unclear. We hypothesized that a western diet (WD) would induce NASH in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat and that lifestyle modification would improve this condition. Eight-week-old Long-Evans Tokushima Otsuka (L) and OLETF (O) rats consumed a control diet (10% kcal fat, 3.5% sucrose) or a WD (45% kcal fat, 17% sucrose, 1% cholesterol) for 24 weeks. At 20 weeks of age, additional WD-fed OLETFs were randomized to sedentary (O-SED), food restriction (O-FR; ∼25% kcal reduction vs. O-SED) or exercise training (O-EX; treadmill running 20 m min(-1) with a 15% incline, 60 min day(-1) , 5 days week(-1) ) conditions for 12 weeks. WD induced a NASH phenotype in OLETFs characterized by hepatic fibrosis (collagen 1α1 mRNA and hydroxyproline content), as well as elevated inflammation and non-alcoholic fatty liver disease activity scores, and hepatic stellate cell activation (α-smooth muscle actin) compared to Long-Evans Tokushima Otsuka rats. FR and EX modestly improved NASH-related fibrosis markers (FR: hydroxyproline content, P < 0.01; EX: collagen 1α1 mRNA, P < 0.05; both: fibrosis score, P < 0.01) and inflammation (both: inflammation score; FR: interleukin-1β and tumor necrosis factor α) vs. O-SED. FR reduced hepatic stellate cell activation markers (transforming growth factor-β protein and α-smooth muscle actin mRNA), whereas EX increased the hepatic stellate cell senescence marker CCN1 (P < 0.01 vs. O-SED). Additionally, both FR and EX normalized extracellular matrix remodelling markers to levels similar to L-WD (P > 0.05). Although neither EX nor FR led to complete resolution of the WD-induced NASH phenotype, both independently benefitted liver fibrosis via altered hepatic stellate cell activation and extracellular matrix remodelling.
Collapse
Affiliation(s)
- Melissa A Linden
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Nutrition and Exercise Physiology
| | - Ryan D Sheldon
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Nutrition and Exercise Physiology
| | - Grace M Meers
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Medicine-Division of Gastroenterology and Hepatology
| | | | - E Matthew Morris
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Frank W Booth
- Department of Biomedical Sciences.,Department of Medical Pharmacology and Physiology.,Dalton Cardiovascular Research Centre
| | | | | | - James R Sowers
- Research Service, Harry S Truman Memorial VA Hospital.,Medicine-Division of Endocrinology, University of Missouri, Columbia, MO, USA
| | - Jamal A Ibdah
- Research Service, Harry S Truman Memorial VA Hospital.,Department of Medicine-Division of Gastroenterology and Hepatology.,Department of Medical Pharmacology and Physiology
| | - John P Thyfault
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA.,Kansas City VA Medical Centre, Kansas City, MO, USA
| | | | - R Scott Rector
- Research Service, Harry S Truman Memorial VA Hospital. .,Department of Medicine-Division of Gastroenterology and Hepatology. .,Department of Nutrition and Exercise Physiology.
| |
Collapse
|
58
|
Kanwar P, Kowdley KV. The Metabolic Syndrome and Its Influence on Nonalcoholic Steatohepatitis. Clin Liver Dis 2016; 20:225-43. [PMID: 27063266 DOI: 10.1016/j.cld.2015.10.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Nonalcoholic steatohepatitis (NASH) and the metabolic syndrome (MetS) are highly prevalent in the Western population. Their pathogenesis is closely linked to insulin resistance, which serves as a therapeutic target for the management of these conditions. This review article reviews the research supporting the influence of MetS on NASH and includes studies supporting their similar epidemiology, pathogenesis, and treatment.
Collapse
Affiliation(s)
- Pushpjeet Kanwar
- Department of Gastroenterology and Hepatology, New York Methodist Hospital, 506, 6th Street, Brooklyn, NY 11215, USA
| | - Kris V Kowdley
- Department of Transplant Hepatology, Swedish Medical Center, 1101, Madison Street, Suite 200, Seattle, WA 98104, USA.
| |
Collapse
|
59
|
Lemche E, Chaban OS, Lemche AV. Neuroendocrinological and Epigenetic Mechanisms Subserving Autonomic Imbalance and HPA Dysfunction in the Metabolic Syndrome. Front Neurosci 2016; 10:142. [PMID: 27147943 PMCID: PMC4830841 DOI: 10.3389/fnins.2016.00142] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 03/21/2016] [Indexed: 12/18/2022] Open
Abstract
Impact of environmental stress upon pathophysiology of the metabolic syndrome (MetS) has been substantiated by epidemiological, psychophysiological, and endocrinological studies. This review discusses recent advances in the understanding of causative roles of nutritional factors, sympathomedullo-adrenal (SMA) and hypothalamic-pituitary adrenocortical (HPA) axes, and adipose tissue chronic low-grade inflammation processes in MetS. Disturbances in the neuroendocrine systems for leptin, melanocortin, and neuropeptide Y (NPY)/agouti-related protein systems have been found resulting directly in MetS-like conditions. The review identifies candidate risk genes from factors shown critical for the functioning of each of these neuroendocrine signaling cascades. In its meta-analytic part, recent studies in epigenetic modification (histone methylation, acetylation, phosphorylation, ubiquitination) and posttranscriptional gene regulation by microRNAs are evaluated. Several studies suggest modification mechanisms of early life stress (ELS) and diet-induced obesity (DIO) programming in the hypothalamic regions with populations of POMC-expressing neurons. Epigenetic modifications were found in cortisol (here HSD11B1 expression), melanocortin, leptin, NPY, and adiponectin genes. With respect to adiposity genes, epigenetic modifications were documented for fat mass gene cluster APOA1/C3/A4/A5, and the lipolysis gene LIPE. With regard to inflammatory, immune and subcellular metabolism, PPARG, NKBF1, TNFA, TCF7C2, and those genes expressing cytochrome P450 family enzymes involved in steroidogenesis and in hepatic lipoproteins were documented for epigenetic modifications.
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London London, UK
| | - Oleg S Chaban
- Section of Psychosomatic Medicine, Bogomolets National Medical University Kiev, Ukraine
| | - Alexandra V Lemche
- Department of Medical Science, Institute of Clinical Research Berlin, Germany
| |
Collapse
|
60
|
Pierce AA, Duwaerts CC, Soon RK, Siao K, Grenert JP, Fitch M, Hellerstein MK, Beysen C, Turner SM, Maher JJ. Isocaloric manipulation of macronutrients within a high-carbohydrate/moderate-fat diet induces unique effects on hepatic lipogenesis, steatosis and liver injury. J Nutr Biochem 2015; 29:12-20. [PMID: 26895660 DOI: 10.1016/j.jnutbio.2015.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/05/2015] [Accepted: 10/30/2015] [Indexed: 12/19/2022]
Abstract
Diets containing excess carbohydrate and fat promote hepatic steatosis and steatohepatitis in mice. Little is known, however, about the impact of specific carbohydrate/fat combinations on liver outcome. This study was designed to determine whether high-energy diets with identical caloric density but different carbohydrate and fat composition have unique effects on the liver. Four experimental diets were formulated with 60%kcal carbohydrate and 20%kcal fat, each in nearly pure form from a single source: starch-oleate, starch-palmitate, sucrose-oleate and sucrose-palmitate. The diets were fed to mice for 3 or 12 weeks for analysis of lipid metabolism and liver injury. All mice developed hepatic steatosis over 12 weeks, but mice fed the sucrose-palmitate diet accumulated more hepatic lipid than those in the other three experimental groups. The exaggerated lipid accumulation in sucrose-palmitate-fed mice was attributable to a disproportionate rise in hepatic de novo lipogenesis. These mice accrued more hepatic palmitate and exhibited more evidence of liver injury than any of the other experimental groups. Interestingly, lipogenic gene expression in mice fed the custom diets did not correlate with actual de novo lipogenesis. In addition, de novo lipogenesis rose in all mice between 3 and 12 weeks, without feedback inhibition from hepatic steatosis. The pairing of simple sugar (sucrose) and saturated fat (palmitate) in a high-carbohydrate/moderate-fat diet induces more de novo lipogenesis and liver injury than other carbohydrate/fat combinations. Diet-induced liver injury correlates positively with hepatic de novo lipogenesis and is not predictable by isolated analysis of lipogenic gene expression.
Collapse
Affiliation(s)
- Andrew A Pierce
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Caroline C Duwaerts
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Russell K Soon
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Kevin Siao
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - James P Grenert
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Pathology, University of California San Francisco, San Francisco, CA 94143-0410, USA
| | - Mark Fitch
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; KineMed, Inc., Emeryville, CA 94608, USA
| | - Marc K Hellerstein
- Department of Nutritional Sciences and Toxicology, University of California Berkeley, Berkeley, CA 94720, USA; KineMed, Inc., Emeryville, CA 94608, USA
| | | | | | - Jacquelyn J Maher
- Liver Center, University of California San Francisco, San Francisco, CA 94143, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143-0410, USA.
| |
Collapse
|
61
|
Li S, Zeng XY, Zhou X, Wang H, Jo E, Robinson SR, Xu A, Ye JM. Dietary cholesterol induces hepatic inflammation and blunts mitochondrial function in the liver of high-fat-fed mice. J Nutr Biochem 2015; 27:96-103. [PMID: 26391864 DOI: 10.1016/j.jnutbio.2015.08.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Revised: 08/14/2015] [Accepted: 08/18/2015] [Indexed: 12/15/2022]
Abstract
The present study investigated the role of dietary cholesterol and fat in the development of nonalcoholic fatty liver disease, a common liver disease in metabolic disorders. Mice were fed a diet of regular chow (CH), chow supplemented with 0.2% w/w cholesterol (CHC), high fat (HF, 45kcal%) or HF with cholesterol (HFC) for 17weeks. While both HF and HFC groups displayed hepatic steatosis and metabolic syndrome, only HFC group developed the phenotype of liver injury, as indicated by an increase in plasma level of alanine transaminase (ALT, by 50-80%). There were ~2-fold increases in mRNA expression of tumor necrosis factor α, interleukin 1β and monocyte chemotactic protein 1 in the liver of HFC-fed mice (vs. HF) but no endoplasmic reticulum stress or oxidative stress was observed. Furthermore, cholesterol suppressed HF-induced increase of peroxisome proliferator-activated receptor γ coactivator 1α and mitochondrial transcription factor A expression and blunted fatty acid oxidation. Interestingly, after switching HFC to HF diet for 5weeks, the increases in plasma ALT and liver inflammatory markers were abolished but the blunted of mitochondrial function remained. These findings suggest that cholesterol plays a critical role in the conversion of a simple fatty liver toward nonalcoholic steatohepatitis possibly by activation of inflammatory pathways together with retarded mitochondrial function.
Collapse
Affiliation(s)
- Songpei Li
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiao-Yi Zeng
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Xiu Zhou
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Hao Wang
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Eunjung Jo
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Stephen R Robinson
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia
| | - Aimin Xu
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Medicine, the University of Hong Kong, Hong Kong, China
| | - Ji-Ming Ye
- Health Innovations Research Institute and School of Health Sciences, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
62
|
Recent insights on the role of cholesterol in non-alcoholic fatty liver disease. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1765-78. [DOI: 10.1016/j.bbadis.2015.05.015] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/25/2015] [Accepted: 05/27/2015] [Indexed: 12/18/2022]
|
63
|
Effects of glucomannan/spirulina-surimi on liver oxidation and inflammation in Zucker rats fed atherogenic diets. J Physiol Biochem 2015; 71:611-22. [DOI: 10.1007/s13105-015-0425-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 07/22/2015] [Indexed: 01/17/2023]
|
64
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|