51
|
Sifre V, Ten-Esteve A, Serra CI, Soler C, Alberich-Bayarri Á, Segarra S, Martí-Bonmatí L. Knee Cartilage and Subchondral Bone Evaluations by Magnetic Resonance Imaging Correlate with Histological Biomarkers in an Osteoarthritis Rabbit Model. Cartilage 2022; 13:19476035221118166. [PMID: 36004407 PMCID: PMC9421031 DOI: 10.1177/19476035221118166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
OBJECTIVE To evaluate pathological changes in cartilage and subchondral bone MRI biomarkers in a rabbit model of osteoarthritis (OA) and correlate these with histological variations. DESIGN Transection of the anterior cruciate ligament was performed on the right knee of eighteen 12-week-old New Zealand white rabbits to induce OA. 3-Tesla MR images were obtained from 18 healthy control knees (left) and 18 knees with OA (right). Imaging biomarkers included volume, thickness, T1 and T2* cartilage parametric maps, and several subchondral bone features: bone volume to total volume ratio, trabecular thickness, trabecular spacing, trabecular number (TbN), 2D and 3D fractal dimensions, and quality of trabecular score (QTS). Microscopic analysis of the lateral femoral condyles was set as the ground truth. RESULTS When healthy and osteoarthritic knees were compared, significant differences were seen in the T1 and T2* values of the femur and tibia cartilage and in the subchondral bone volume to total volume, TbN, and QTS of both the lateral and medial aspects of the femur and tibia. Histological findings revealed significant osteoarthritic changes between healthy and osteoarthritic knees in stain, structure, chondrocyte density, total score, and subchondral bone biomarker levels. A positive correlation was found between histological staining, structure, chondrocyte density, and total score variables in T1 and T2* cartilage biomarkers. A negative correlation was observed between histological subchondral bone variables and magnetic resonance D2D and QTS biomarkers. CONCLUSION Quantification of several cartilage and subchondral bone imaging biomarkers in a rabbit model of OA allows the detection of significant changes, which are correlated with histological findings.
Collapse
Affiliation(s)
- Vicente Sifre
- Programa de Doctorado en Ciencias de la Vida y del Medio Natural, Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain,Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain,Vicente Sifre, Programa de Doctorado en Ciencias de la vida y del medio natural, Escuela de Doctorado, Universidad Católica de Valencia San Vicente Mártir, Avenida Pérez Galdós 51, Valencia 46018, Spain.
| | - Amadeo Ten-Esteve
- Biomedical Imaging Research Group (GIBI230-PREBI), La Fe Health Research Institute and Imaging La Fe node at Distributed Network for Biomedical Imaging, Unique Scientific and Technical Infrastructures, Valencia, Spain
| | - C. Iván Serra
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Carme Soler
- Hospital Veterinario UCV, Departamento de Medicina y Cirugía Animal, Facultad de Veterinaria y Ciencias Experimentales, Universidad Católica de Valencia San Vicente Mártir, Valencia, Spain
| | - Ángel Alberich-Bayarri
- Biomedical Imaging Research Group (GIBI230-PREBI), La Fe Health Research Institute and Imaging La Fe node at Distributed Network for Biomedical Imaging, Unique Scientific and Technical Infrastructures, Valencia, Spain,Quantitative Imaging Biomarkers in Medicine, QUIBIM SL, Valencia, Spain
| | | | - Luis Martí-Bonmatí
- Biomedical Imaging Research Group (GIBI230-PREBI), La Fe Health Research Institute and Imaging La Fe node at Distributed Network for Biomedical Imaging, Unique Scientific and Technical Infrastructures, Valencia, Spain
| |
Collapse
|
52
|
Wu G, Ma F, Liu Z, Liu J, Xue Y, Zhang M, Wen C, Tang B, Lin L. Hybrid composites with magnesium-containing glycosaminoglycans as a chondroconducive matrix for osteoarthritic cartilage repair. Int J Biol Macromol 2022; 220:1104-1113. [PMID: 35981680 DOI: 10.1016/j.ijbiomac.2022.08.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/29/2022] [Accepted: 08/10/2022] [Indexed: 11/25/2022]
Abstract
The alteration of the extracellular matrix (ECM) homeostasis plays an important role in the development of osteoarthritis (OA). The pathological changes of OA are mainly manifested in the large reduction of components in ECM, like type II collagen and aggrecan, especially hyaluronic acid and chondroitin sulfate and often accompanied by inflammation. Rebuilding ECM and inhibiting inflammation may reverse OA progression. In this work, we developed new magnesium-containing glycosaminoglycans (Mg-GAGs), to create a positive ECM condition for promoting cartilage regeneration and alleviating OA. In vitro results suggested that the introduction of Mg-GAGs contributed to promoting chondrocyte proliferation and facilitated upregulating chondrogenic genes and suppressed inflammation-related factors. Moreover, Mg-GAGs exhibited positive effects on suppressing synovial inflammation, reducing chondrocyte apoptosis and preserving the subchondral bone in the ACLT-induced OA rabbit model. This study provides new insight into ECM-based therapeutic strategy and opens a new avenue for the development of novel OA treatment.
Collapse
Affiliation(s)
- Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Orthopedics, Southern University of Science and Technology Hospital, Shenzhen, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Fenbo Ma
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jiayi Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yizhebang Xue
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Mengdi Zhang
- Department of Sports Medicine, Peking University Shenzhen Hospital, Shenzhen, Guangdong, PR China
| | - Chunyi Wen
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
53
|
Delbaldo C, Tschon M, Martini L, Fini M, Codispoti G. Benefits of Applying Nanotechnologies to Hydrogels in Efficacy Tests in Osteoarthritis Models-A Systematic Review of Preclinical Studies. Int J Mol Sci 2022; 23:ijms23158236. [PMID: 35897805 PMCID: PMC9368605 DOI: 10.3390/ijms23158236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/21/2022] [Accepted: 07/24/2022] [Indexed: 12/09/2022] Open
Abstract
Osteoarthritis (OA) is a severe musculoskeletal disease with an increasing incidence in the worldwide population. Recent research has focused on the development of innovative strategies to prevent articular cartilage damage and slow down OA progression, and nanotechnologies applied to hydrogels have gained particular interest. The aim of this systematic review is to investigate the state of the art on preclinical in vitro and in vivo efficacy studies applying nanotechnologies to hydrogels in OA models to elucidate the benefits of their applications. Three databases were consulted for eligible papers. The inclusion criteria were in vitro and in vivo preclinical studies, using OA cells or OA animal models, and testing hydrogels and nanoparticles (NPs) over the last ten years. Data extraction and quality assessment were performed. Eleven papers were included. In vitro studies evidenced that NP-gels do not impact on cell viability and do not cause inflammation in OA cell phenotypes. In vivo research on rodents showed that these treatments could increase drug retention in joints, reducing inflammation and preventing articular cartilage damage. Nanotechnologies in preclinical efficacy tests are still new and require extensive studies and technical hits to determine the efficacy, safety, fate, and localization of NPs for translation into an effective therapy for OA patients.
Collapse
|
54
|
Wang L, Zhao L, Shen L, Fang Q, Yang Z, Wang R, Wu Q, Xie Y. Comparison of the effects of autologous and allogeneic purified platelet-rich plasma on cartilage damage in a rabbit model of knee osteoarthritis. Front Surg 2022; 9:911468. [PMID: 35910465 PMCID: PMC9334772 DOI: 10.3389/fsurg.2022.911468] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 06/28/2022] [Indexed: 11/29/2022] Open
Abstract
Background Purified platelet-rich plasma (P-PRP) is gradually being used in the treatment of osteoarthritis (OA), and its sources are mainly divided into autologous and allogeneic blood. However, it is unclear whether autologous PRP is more effective or allogeneic PRP is superior. Objective In this study, autologous and allogeneic P-PRP was injected at early stage of KOA in rabbits, and then the differences in the efficacy of the two P-PRPs against KOA were compared from several perspectives, including pathological histology and immunohistochemistry. Method Experimental rabbits were divided into normal group (n = 8), model group (n = 8), autologous P-PRP group (n = 8), and allogeneic P-PRP group (n = 8) using a random number table method. The normal and model groups did not receive any treatment, and the autologous P-PRP and allogeneic P-PRP groups received intra-articular injections of autologous and allogeneic P-PRP, respectively, to observe the changes in the gross specimens of the knee joints of the experimental rabbits in each group. The histopathological changes of chondrocytes were also observed by HE-stained sections of articular cartilage, and the expression of chondrocytes Bone morphogenetic protein-2 (BMP-2) and Sox9 were detected by immunohistochemistry. Results Compared with the allogeneic P-PRP group, the differences were statistically significant (P < 0.05) in the gross specimens and pathological histological findings in the autologous PRP group. Immunohistochemical results showed that the expression of BMP-2 and Sox9 was elevated in both the autologous P-PRP group and the allogeneic P-PRP group compared with the model group, and the expression of BMP-2 was higher in the autologous P-PRP group than in the allogeneic P-PRP group, with a statistically significant difference (P < 0.05), while there was no difference in the expression of Sox9 between the two groups (P > 0.05). Conclusion Intra-articular injection of autologous P-PRP activated the expression of BMP-2 and Sox9 in chondrocytes and effectively improved KOA cartilage repair and reduced bone redundancy and joint fluid formation, and its efficacy was superior to that of intra-articular injection of allogeneic P-PRP.
Collapse
Affiliation(s)
- Lingling Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Luting Zhao
- Department of Rehabilitation Medicine, The First People’s Hospital of Ziyang, Ziyang, China
| | - Lianwei Shen
- Department of Rehabilitation Medicine, The Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
- Department of Rehabilitation Medicine, Shandong University Cheeloo College of Medicine, Jinan, China; Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qilin Fang
- Department of Rehabilitation Medicine, The First People’s Hospital of Ziyang, Ziyang, China
| | - Zhenglei Yang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Rongrong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Qing Wu
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Correspondence: Qing Wu Yulei Xie
| | - Yulei Xie
- Department of Rehabilitation Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Faculty of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Correspondence: Qing Wu Yulei Xie
| |
Collapse
|
55
|
Liu NQ, Chen S, Geng D, Lei J, Zhang J, Li L, Lin Y, Ouyang Y, Shkhyan R, Van Handel B, Bian F, Mkaratigwa T, Chai Y, Evseenko D. Local Drug-Induced Modulation of gp130 Receptor Signaling Delays Disease Progression in a Pig Model of Temporo-Mandibular Joint Osteoarthritis. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2022.937819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Temporomandibular joint disorders (TMJs) are a multifaceted group of chronic disorders characterized by stiffness in the jaw, limited jaw mobility and pain when opening or closing the mouth. TMJs are relatively common, with incidence rates in the range of 5–12%, with nearly twice as many women as men being affected. One of the primary causes of TMJs is a degenerative disease of joints, such as osteoarthritis (OA), characterized by progressive loss of cartilage which causes stiffness, swelling, and pain. Currently, there are no disease-modifying agents on the market for OA. We have recently discovered a small molecule, R805 acting as a modulator of glycoprotein 130 (gp130) receptor for IL-6 family of cytokines. R805 enables regenerative outputs of endogenous joint stem and progenitor cells through immunomodulation in the joint microenvironment by reducing the levels of destructive cytokines and supporting chondrocyte survival and anabolism. Extensive testing has shown R805 to be safe at doses far above the therapeutic level. Here, we have conducted a pivotal efficacy study in our newly-established pig model of TMJ post-traumatic OA. IA injection of R805 has shown a highly significant reduction of articular cartilage degeneration, reduced synovitis and degenerative changes in subchondral bone in the mandibular condyle compared to the vehicle-treated group. These data will support additional pre-clinical development of R805 as a first-in-class injectable therapeutic for TMJ osteoarthritis.
Collapse
|
56
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 139] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
57
|
Keita-Alassane S, Otis C, Bouet E, Guillot M, Frezier M, Delsart A, Moreau M, Bédard A, Gaumond I, Pelletier JP, Martel-Pelletier J, Beaudry F, Lussier B, Lecomte R, Marchand S, Troncy E. Estrogenic impregnation alters pain expression: analysis through functional neuropeptidomics in a surgical rat model of osteoarthritis. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2022; 395:703-715. [PMID: 35318491 DOI: 10.1007/s00210-022-02231-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/11/2022] [Indexed: 12/20/2022]
Abstract
PURPOSE Several observational studies suggest that estrogens could bias pain perception. To evaluate the influence of estrogenic impregnation on pain expression, a prospective, randomized, controlled, blinded study was conducted in a Sprague-Dawley rat model of surgically induced osteoarthritis (OA). METHODS Female rats were ovariectomized and pre-emptive 17β-estradiol (0.025 mg, 90-day release time) or placebo pellets were installed subcutaneously during the OVX procedures. Thirty-five days after, OA was surgically induced on both 17β-estradiol (OA-E) and placebo (OA-P) groups. Mechanical hypersensitivity was assessed by static weight-bearing (SWB) and paw withdrawal threshold (PWT) tests. Mass spectrometry coupled with high-performance liquid chromatography (HPLC-MS) was performed to quantify the spinal pronociceptive neuropeptides substance P (SP), calcitonin gene-related peptide (CGRP), bradykinin (BK), somatostatin (SST), and dynorphin-A (Dyn-A). RESULTS Compared to control, ovariectomized rats presented higher SP (P = 0.009) and CGRP (P = 0.017) concentrations. OA induction increased the spinal level of SP (+ 33%, P < 0.020) and decreased the release of BK (- 20%, (P < 0.037)). The OA-E rats at functional assessment put more % body weight on the affected hind limb than OA-P rats at D7 (P = 0.027) and D56 (P = 0.033), and showed higher PWT at D56 (P = 0.009), suggesting an analgesic and anti-allodynic effect of 17β-estradiol. Interestingly, the 17β-estradiol treatment counteracted the increase of spinal concentration of Dyn-A (P < 0.016) and CGRP (P < 0.018). CONCLUSION These results clearly indicate that 17β-estradiol interfers with the development of central sensitization and confirm that gender dimorphism should be considered when looking at pain evaluation.
Collapse
Affiliation(s)
- Sokhna Keita-Alassane
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Colombe Otis
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Emilie Bouet
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Martin Guillot
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Marilyn Frezier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Aliénor Delsart
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
| | - Maxim Moreau
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Agathe Bédard
- Charles River Laboratories Montreal ULC, Senneville, QC, Canada
| | - Isabelle Gaumond
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Johanne Martel-Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Francis Beaudry
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Bertrand Lussier
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Serge Marchand
- Département de Chirurgie, Département d'anesthésie, Faculté de Médecine Et Des Sciences de La Santé, Université de Sherbrooke, Sherbrooke, QC, Canada
- Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada
| | - Eric Troncy
- Research Group in Animal Pharmacology of Quebec (GREPAQ), Department of Veterinary Biomedicine, Faculty of Veterinary Medicine, Université de Montréal, Saint Hyacinthe, QC, Canada.
- Osteoarthritis Research Unit, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC, Canada.
| |
Collapse
|
58
|
Deng Z, Gao X, Utsunomiya H, Arner JW, Ruzbarsky JJ, Huard M, Ravuri S, Philippon MJ, Huard J. Effects of oral losartan administration on homeostasis of articular cartilage and bone in a rabbit model. Bone Rep 2022; 16:101526. [PMID: 35372645 PMCID: PMC8971351 DOI: 10.1016/j.bonr.2022.101526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/26/2022] Open
Abstract
Background and aims Previous work has shown that oral losartan can enhance microfracture-mediated cartilage repair in a rabbit osteochondral defect injury model. In this study, we aimed to determine whether oral losartan would have a detrimental effect on articular cartilage and bone homeostasis in the uninjured sides. Methods New Zealand rabbits were divided into 4 groups including normal uninjured (Normal), contralateral uninjured side of osteochondral defect (Defect), osteochondral defect plus microfracture (Microfracture) and osteochondral defect plus microfracture and losartan oral administration (10 mg/kg/day) (Losartan). Rabbits underwent different surgeries and treatment and were sacrificed at 12 weeks. Both side of the normal group and uninjured side of treatment groups tibias were harvested for Micro-CT and histological analysis for cartilage and bone including H&E staining, Herovici's staining (bone and cartilage) Alcian blue and Safranin O staining (cartilage) as well as immunohistochemistry of losartan related signaling pathways molecules for both cartilage and bone. Results Our results showed losartan oral treatment at 10 mg/kg/day slightly increase Alcian blue positive matrix as well as decrease collagen type 3 in articular cartilage while having no significant effect on articular cartilage structure, cellularity, and other matrix. Losartan treatment also did not affect angiotensin receptor type 1 (AGTR1), angiotensin receptor type 2 (AGTR2) and phosphorylated transforming factor β1 activated kinase 1 (pTAK1) expression level and pattern in the articular cartilage. Furthermore, losartan treatment did not affect microarchitecture of normal cancellous bone and cortical bone of tibias compared to normal and other groups. Losartan treatment slightly increased osteocalcin positive osteoblasts on the surface of cancellous bone and did not affect bone matrix collagen type 1 content and did not change AGTR1, AGTR2 and pTAK1 signal molecule expression. Conclusion Oral losartan used as a microfracture augmentation therapeutic does not have significant effect on uninjured articular cartilage and bone based on our preclinical rabbit model. These results provided further evidence that the current regimen of using losartan as a microfracture augmentation therapeutic is safe with respect to bone and cartilage homeostasis and support clinical trials for its application in human cartilage repair.
Collapse
|
59
|
Improved Joint Health Following Oral Administration of Glycosaminoglycans with Native Type II Collagen in a Rabbit Model of Osteoarthritis. Animals (Basel) 2022; 12:ani12111401. [PMID: 35681865 PMCID: PMC9179918 DOI: 10.3390/ani12111401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Osteoarthritis is an incurable chronic disease. For this reason, new therapies are constantly emerging to improve clinical signs and the quality of life of our pets. Chondroitin sulfate, glucosamine and hyaluronic acid have been proven effective and are the most widely used in many formulations. In the present study, adding native type II collagen to the combination of chondroitin sulfate, glucosamine and hyaluronic acid showed improvements on osteoarthritis progression in an experimental model of osteoarthritis induced by transection of the cranial cruciate ligament of the knee in New Zealand white rabbits. Disease progression was monitored at different time points using magnetic resonance imaging biomarkers, measurement of hyaluronic acid in synovial fluid, and macroscopic and microscopic evaluations of cartilage, synovial membrane and subchondral bone. Overall, our results showed that adding native type II collagen to a combination of glycosaminoglycans allows a significantly slower osteoarthritis progression, compared to glycosaminoglycans alone. Abstract A prospective, experimental, randomized, double blinded study was designed to evaluate the effects of glycosaminoglycans, with or without native type II collagen (NC), in an osteoarthritis model induced by cranial cruciate ligament transection. The following compounds were tested: chondroitin sulfate (CS), glucosamine hydrochloride (GlHCl), hyaluronic acid (HA) and NC. Fifty-four female 12-week-old New Zealand rabbits were classified into three groups: CTR (control–no treatment), CGH (CS + GlHCl + HA) and CGH-NC (CS + GlHCl + HA + NC). Each group was subdivided into three subgroups according to survival times of 24, 56 and 84 days. Over time, all rabbits developed degenerative changes associated with osteoarthritis. CGH-NC showed significantly improved values on macroscopic evaluation, compared to CTR and CGH. Microscopically, significantly better results were seen with CGH and CGH-NC, compared to CTR, and synovial membrane values were significantly better with CGH-NC compared to CGH. A significant improvement in magnetic resonance imaging biomarkers was also observed with CGH-NC in cartilage transversal relaxation time (T2) and subchondral bone D2D fractal dimension in the lateral condyle. In conclusion, our results show beneficial effects on joint health of CGH and CGH-NC and also supports that adding NC to CGH results in even greater efficacy.
Collapse
|
60
|
Senter R, Boyce R, Repic M, Martin EW, Chabicovsky M, Langevin-Carpentier G, Bédard A, Bodick N. Efficacy and Safety of FX201, a Novel Intra-Articular IL-1Ra Gene Therapy for Osteoarthritis Treatment, in a Rat Model. Hum Gene Ther 2022; 33:541-549. [PMID: 34963343 PMCID: PMC9142767 DOI: 10.1089/hum.2021.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/16/2021] [Indexed: 11/22/2022] Open
Abstract
Osteoarthritis (OA) is a disabling, degenerative disease characterized by progressive cartilage and bone damage. There remains a need for local therapies that, following a single injection, can provide long-term pain relief and functional improvement and potentially delay disease progression. FX201 is a novel, intra-articular (IA), interleukin-1 receptor antagonist (IL-1Ra) gene therapy in development for the treatment of OA. In this study, we assessed the efficacy, biodistribution, and safety of helper-dependent adenovirus (HDAd)-ratIL-1Ra, the rat surrogate of FX201, and the biodistribution of FX201, in the anterior cruciate ligament transection (ACLT) rat OA model. A single IA injection of HDAd-ratIL-1Ra administered 7 days post-ACLT mitigated OA-related changes to cartilage, bone, and the synovial membrane at week 12 following surgery. Furthermore, FX201 and HDAd-ratIL-1Ra persisted for at least 92 days in the injected joint and proximal tissues with minimal evidence of vector spreading peripherally. Finally, HDAd-ratIL-1Ra showed a favorable safety profile without any local or systemic adverse effects. In conclusion, HDAd-ratIL-1Ra demonstrated local therapeutic and disease-modifying effects and was well tolerated, supporting further clinical development of FX201.
Collapse
Affiliation(s)
- Rebecca Senter
- Flexion Therapeutics, Inc., Burlington, Massachusetts, USA
| | - Rogely Boyce
- Beechy Ridge ToxPath, LLC, Clay, West Virginia, USA
| | | | | | | | | | | | - Neil Bodick
- Gate Science, Inc., Moultonborough, New Hampshire, USA
| |
Collapse
|
61
|
Bosser C, Auregan JC, Bensidhoum M, Hoc T, Bégué T, Vialle R, Nouguier-Lehon C, Bachy M. Early impairment of cartilage poroelastic properties in an animal model of ACL tear. Orthop Traumatol Surg Res 2022; 108:103116. [PMID: 34666200 DOI: 10.1016/j.otsr.2021.103116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND In more than 50% of cases, anterior cruciate ligament (ACL) lesions lead to post-traumatic osteoarthritis. Ligament reconstruction stabilizes the joint, but the tear seems to impair the poroelasticity of the cartilage: synovial membrane fluid inflammation is observed 3 weeks after tearing. There have been some descriptions of visible cartilage changes, but poroelasticity has never been analyzed at this early stage. The present animal study aimed to determine (1) whether cartilage showed early poroelastic deterioration after ACL tear; (2) whether an impairment correlated with macroscopic changes; and (3) whether cartilage poroelasticity deteriorated over time. HYPOTHESIS In the days following trauma, cartilage poroelasticity is greatly impaired, without macroscopically visible change. MATERIAL AND METHODS ACL tear was surgically induced in 18 New-Zealand rabbits. Cartilage poroelasticity was assessed on indentation-relaxation test in 3 groups: "early", at 2 weeks postoperatively (n=6), "mid-early" at 6 weeks (n=6) and in a non-operated control group ("non-op"). Macroscopic changes were scored in the same groups. RESULTS Poroelastic impairment was greatest at the early time-point (2 weeks). Permeability ranged from a mean 0.08±0.05×10-15 m4/Ns (range, 0.028-0.17) in the "non-op" group to 1.03±0.60×10-15 m4/Ns (range, 0.24-2.15) in the "early" group (p=0.007). Shear modulus ranged from 0.53±0.11MPa (range, 0.36-0.66) to 0.23±0.10MPa (range, 0.12-0.43), respectively (p=0.013). Macroscopic deterioration, on the other hand, differed significantly only between the "mid-early" and the "non-op" groups: p=0.011 for cartilage deterioration and p=0.008 for osteophyte formation. At the "mid-early" time point, poroelastic deterioration was less marked, with 0.33±0.33×10-15 m4/Ns permeability (range, 0.06-1.06) and shear modulus 0.30±0.10MPa (range, 0.13-0.41: respectively p=0.039 and p=0.023 compared to the "non-op" group. DISCUSSION The severe rapid deterioration in poroelasticity following ACL tear in an animal model, as notably seen in increased permeability, corresponds to changes in cartilage microstructure, with easier outflows of interstitial fluid. This mechanical degradation may underlie onset of microcracks within the cartilage, leading to physiological loading that the cartilage by its nature is unable to repair. Further investigations are needed to correlate these experimental data with clinical findings. LEVEL OF EVIDENCE III; comparative study with control group.
Collapse
Affiliation(s)
- Cartherine Bosser
- HealthDataSciences, 45, chemin du Barthélémy, 69260 Charbonnières-les-Bains, France
| | - Jean Charles Auregan
- Université de Paris, B3OA, UMR CNRS 7052, Inserm U1271, 10, avenue de Verdun, 75010 Paris, France; Service d'orthopédie, université Paris-Saclay, AP-HP, Antoine Béclère, 157, rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Morad Bensidhoum
- Université de Paris, B3OA, UMR CNRS 7052, Inserm U1271, 10, avenue de Verdun, 75010 Paris, France
| | - Thierry Hoc
- Université de Paris, B3OA, UMR CNRS 7052, Inserm U1271, 10, avenue de Verdun, 75010 Paris, France; École centrale de Lyon, département de mécanique, MSGMGC, 36, avenue Guy-de-Collongue, 69134 Ecully cedex, France
| | - Thierry Bégué
- Service d'orthopédie, université Paris-Saclay, AP-HP, Antoine Béclère, 157, rue de la Porte-de-Trivaux, 92140 Clamart, France
| | - Raphaël Vialle
- Service de chirurgie orthopédique et réparatrice de l'enfant, AP-HP-Sorbonne université, hôpital Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France
| | - Cécile Nouguier-Lehon
- Université de Lyon, LTDS UMR CNRS 5513, école centrale de Lyon, 36, avenue Guy-de-Collongue, 69134 Ecully cedex, France
| | - Manon Bachy
- Université de Paris, B3OA, UMR CNRS 7052, Inserm U1271, 10, avenue de Verdun, 75010 Paris, France; Service de chirurgie orthopédique et réparatrice de l'enfant, AP-HP-Sorbonne université, hôpital Trousseau, 26, avenue du Docteur-Arnold-Netter, 75012 Paris, France.
| |
Collapse
|
62
|
Hua B, Qiu J, Ye X, Liu X. Intra-articular injection of a novel Wnt pathway inhibitor, SM04690, upregulates Wnt16 expression and reduces disease progression in temporomandibular joint osteoarthritis. Bone 2022; 158:116372. [PMID: 35218985 DOI: 10.1016/j.bone.2022.116372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 11/20/2022]
Abstract
Abnormal Wnt signaling has been shown to be involved in the pathogenesis of temporomandibular joint osteoarthritis (TMJOA). Recent studies demonstrates that SM04690, a small-molecule inhibitor of the Wnt signaling pathway, is able to promote cartilage regeneration in a rat model of knee joint osteoarthritis. However, whether SM04690 has any effect on TMJOA is unknown. Here we first performed partial TMJ discectomy to induce TMJOA in rabbit and rat. Histology, TRAP staining, immunohistochemistry and μCT analysis showed intra-articular injection of SM04690 protected condylar cartilage from degeneration and attenuated abnormal subchondral bone remodeling of TMJ condylar in both rabbit and rat model TMJOA. We isolated and cultured primary condylar chondrocytes for in vitro studies to investigate molecular mechanisms and downstream effects of SM04690. We found that SM04690 inhibited the canonical Wnt pathway, upregulated the expression of Wnt16 and cartilage anabolic factors including COL2A1, SOX9 and aggrecan, suppressed the expression of cartilage catabolic factor MMP13 and protected chondrocytes from TNF-α-induced inflammatory response. Previous studies have identified fibrocartilage stem cells (FCSCs) localized within the TMJ condyle superficial zone niche that regenerate cartilage and repair joint injury. Here we showed that intra-articular injection of SM04690 increased the number of the TMJ condyle superficial zone (SZ) cells in vivo. Further in vitro studies revealed that SM04690 enhanced FCSCs chondrogenesis and formation of cartilaginous-like tissue in pellet cultures. Taken together, our work demonstrates that SM04690 treatment might be able to promote FCSCs chondrogenesis and repair TMJ cartilage, highlighting the therapeutic potential of intra-articular injection of SM04690 in TMJOA.
Collapse
Affiliation(s)
- Bingqiang Hua
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Jin Qiu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoping Ye
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China
| | - Xianwen Liu
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
63
|
Terracciano R, Carcamo-Bahena Y, Royal ALR, Demarchi D, Labis JS, Harris JD, Weiner BK, Gupta N, Filgueira CS. Quantitative high-resolution 7T MRI to assess longitudinal changes in articular cartilage after anterior cruciate ligament injury in a rabbit model of post-traumatic osteoarthritis. OSTEOARTHRITIS AND CARTILAGE OPEN 2022; 4:100259. [DOI: 10.1016/j.ocarto.2022.100259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 02/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
|
64
|
Zaki S, Blaker CL, Little CB. OA foundations - experimental models of osteoarthritis. Osteoarthritis Cartilage 2022; 30:357-380. [PMID: 34536528 DOI: 10.1016/j.joca.2021.03.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 02/02/2023]
Abstract
Osteoarthritis (OA) is increasingly recognised as a disease of diverse phenotypes with variable clinical presentation, progression, and response to therapeutic intervention. This same diversity is readily apparent in the many animal models of OA. However, model selection, study design, and interpretation of resultant findings, are not routinely done in the context of the target human (or veterinary) patient OA sub-population or phenotype. This review discusses the selection and use of animal models of OA in discovery and therapeutic-development research. Beyond evaluation of the different animal models on offer, this review suggests focussing the approach to OA-animal model selection on study objective(s), alignment of available models with OA-patient sub-types, and the resources available to achieve valid and translatable results. How this approach impacts model selection is discussed and an experimental design checklist for selecting the optimal model(s) is proposed. This approach should act as a guide to new researchers and a reminder to those already in the field, as to issues that need to be considered before embarking on in vivo pre-clinical research. The ultimate purpose of using an OA animal model is to provide the best possible evidence if, how, when and where a molecule, pathway, cell or process is important in clinical disease. By definition this requires both model and study outcomes to align with and be predictive of outcomes in patients. Keeping this at the forefront of research using pre-clinical OA models, will go a long way to improving the quality of evidence and its translational value.
Collapse
Affiliation(s)
- S Zaki
- Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Australia; Raymond Purves Bone and Joint Research Laboratory, Australia.
| | - C L Blaker
- Raymond Purves Bone and Joint Research Laboratory, Australia; Murray Maxwell Biomechanics Laboratory, The Kolling Institute, University of Sydney Faculty of Medicine and Health, At Royal North Shore Hospital, Australia.
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratory, Australia.
| |
Collapse
|
65
|
Micro-fragmentation is a valid alternative to cell expansion and enzymatic digestion of adipose tissue for the treatment of knee osteoarthritis: a comparative preclinical study. Knee Surg Sports Traumatol Arthrosc 2022; 30:773-781. [PMID: 33464397 DOI: 10.1007/s00167-020-06373-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
PURPOSE The aim of this study was to compare three procedures to exploit adipose-derived cells for the treatment of osteoarthritis (OA) in a preclinical model, to understand their therapeutic potential and identify the most suitable approach for the clinical application. METHODS Biological samples from adipose tissue, processed by mechanical micro-fragmentation (MF), enzymatic digestion (SVF) or cell expansion (ADSCs), were first characterized in vitro and then used in vivo in a surgically induced OA rabbit model: Group 1-control group (untreated 12 knees/saline 12 knees), Group 2-MF (24 knees), Group 3-SVF (24 knees), Group 4-ADSCs (24 knees). Macroscopic, histological, histomorphometric, immunohistochemical and blood and synovial fluid analyses were evaluated at 2 and 4 months from the treatments. RESULTS Samples obtained by the three procedures yielded 85-95% of viable cells. In vivo assessments showed no significant side effects or inflammatory responses after the injection. The macroscopic Hanashi score did not show significant differences among treated groups and controls. The histopathological evaluation of synovial tissues showed lower signs of synovitis for MF, although the semiquantitative analysis (Krenn score) did not reach statistical significance. Instead, MF showed the best results both in terms of qualitative and semi-quantitative evaluations of articular cartilage, with a more uniform staining, a smoother surface and a significantly better Laverty score (p = 0.004). CONCLUSION MF, SVF, and expanded ADSCs did not elicit significant local or systemic adverse reactions in this preclinical OA model. Among the different methods used to exploit the adipose tissue potential, MF showed the most promising findings in particular in terms of protection of the articular surface from the joint degenerative OA processes. LEVEL OF EVIDENCE Preclinical animal study.
Collapse
|
66
|
Govoni M, Danesi F. Do Pomegranate Hydrolyzable Tannins and Their Derived Metabolites Provide Relief in Osteoarthritis? Findings from a Scoping Review. Molecules 2022; 27:1033. [PMID: 35164312 PMCID: PMC8840395 DOI: 10.3390/molecules27031033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis affecting both the elderly and the middle-aged population. Although various therapeutics have been developed to arrest the structural deterioration of cartilage, the current treatments are limited to delay the progress of OA clinically. Therefore, it is pivotal to study new therapeutic agents for chondroprotection and the prevention of cartilage degeneration. Hydrolyzable tannin (HT)-containing foods aroused considerable interest in recent years for their relevant anti-inflammatory effects. The focus of this scoping review is to provide an overview of the evidence of the therapeutic potential of HTs and their metabolites in preventing or alleviating the course of OA. A broad search of PubMed and Scopus databases on this topic resulted in 156 articles. After the exclusion of reviews and not relevant records, 31 articles were retrieved. Although only some papers did not consider the biotransformation of HTs, most recent studies also have investigated the effect of HT metabolites. Further larger clinical trials, with an in-deep analysis of HT metabolization, are still needed to unravel the potential benefits of these compounds in OA, paving the way towards the development of a dietary strategy for the improvement of pro-inflammatory cytokine-induced chondrocyte dysfunctions and injuries.
Collapse
Affiliation(s)
- Marco Govoni
- Reconstructive Orthopedic Surgery and Innovative Techniques—Musculoskeletal Tissue Bank, IRCCS Istituto Ortopedico Rizzoli, Via G.C. Pupilli 1, 40136 Bologna, Italy;
| | - Francesca Danesi
- Human Nutrition Unit, Department of Agricultural and Food Sciences (DISTAL), University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
67
|
Katyal P, Hettinghouse A, Meleties M, Hasan S, Chen C, Cui M, Sun G, Menon R, Lin B, Regatte R, Montclare JK, Liu CJ. Injectable recombinant block polymer gel for sustained delivery of therapeutic protein in post traumatic osteoarthritis. Biomaterials 2022; 281:121370. [PMID: 35032910 PMCID: PMC9055922 DOI: 10.1016/j.biomaterials.2022.121370] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/06/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
Protein-based biomaterials offer several advantages over synthetic materials, owing to their unique stimuli-responsive properties, biocompatibility and modular nature. Here, we demonstrate that E5C, a recombinant protein block polymer, consisting of five repeats of elastin like polypeptide (E) and a coiled-coil domain of cartilage oligomeric matrix protein (C), is capable of forming a porous networked gel at physiological temperature, making it an excellent candidate for injectable biomaterials. Combination of E5C with Atsttrin, a chondroprotective engineered derivative of anti-inflammatory growth factor progranulin, provides a unique biochemical and biomechanical environment to protect against post-traumatic osteoarthritis (PTOA) onset and progression. E5C gel was demonstrated to provide prolonged release of Atsttrin and inhibit chondrocyte catabolism while facilitating anabolic signaling in vitro. We also provide in vivo evidence that prophylactic and therapeutic application of Atsttrin-loaded E5C gels protected against PTOA onset and progression in a rabbit anterior cruciate ligament transection model. Collectively, we have developed a unique protein-based gel capable of minimally invasive, sustained delivery of prospective therapeutics, particularly the progranulin-derivative Atsttrin, for therapeutic application in OA.
Collapse
Affiliation(s)
- Priya Katyal
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Aubryanna Hettinghouse
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Michael Meleties
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Sadaf Hasan
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Changhong Chen
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Min Cui
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Guodong Sun
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States
| | - Rajiv Menon
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016, United States
| | - Bonnie Lin
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States
| | - Ravinder Regatte
- Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016, United States
| | - Jin Kim Montclare
- Department of Chemical and Biomolecular Engineering, New York University Tandon School of Engineering, Brooklyn, NY 11201, United States; Department of Chemistry, New York University, New York 10003, United States; Department of Radiology, New York University Grossman School of Medicine, New York 10016, United States; Department of Biomaterials, NYU College of Dentistry, New York, NY, 10010, United States.
| | - Chuan-Ju Liu
- Department of Orthopedic Surgery, New York University Grossman School of Medicine, New York, NY 10003, United States; Department of Cell Biology, New York University Grossman School of Medicine, New York, NY, 10016, United States.
| |
Collapse
|
68
|
Orava H, Huang L, Ojanen SP, Mäkelä JT, Finnilä MA, Saarakkala S, Herzog W, Korhonen RK, Töyräs J, Tanska P. Changes in subchondral bone structure and mechanical properties do not substantially affect cartilage mechanical responses – A finite element study. J Mech Behav Biomed Mater 2022; 128:105129. [DOI: 10.1016/j.jmbbm.2022.105129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/19/2021] [Accepted: 02/10/2022] [Indexed: 10/19/2022]
|
69
|
Bowen A, Shamritsky D, Santana J, Porter I, Feldman E, Pownder SL, Koff MF, Hayashi K, Hernandez CJ. Animal Models of Bone Marrow Lesions in Osteoarthritis. JBMR Plus 2022; 6:e10609. [PMID: 35309864 PMCID: PMC8914161 DOI: 10.1002/jbm4.10609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/22/2021] [Accepted: 01/13/2022] [Indexed: 11/08/2022] Open
Abstract
Bone marrow lesions are abnormalities in magnetic resonance images that have been associated with joint pain and osteoarthritis in clinical studies. Increases in the volume of bone marrow lesions have been associated with progression of joint degeneration, leading to the suggestion that bone marrow lesions may be an early indicator of—or even a contributor to—cartilage loss preceding irreversible damage to the joint. Despite evidence that bone marrow lesions play a role in osteoarthritis pathology, very little is known about the natural history of bone marrow lesions and their contribution to joint degeneration. As a result, there are limited data regarding the cell activity within a bone marrow lesion and any associated bone‐cartilage cross‐talk. Animal models provide the best approach for understanding bone marrow lesions at their early, reversible stages. Here, we review the few animal studies of bone marrow lesions. An ideal animal model of a bone marrow lesion occurs in joints large enough to accurately measure bone marrow lesion volume. Additionally, the ideal animal model would facilitate the study of bone‐cartilage cross‐talk by generating the bone marrow lesion immediately adjacent to subchondral bone and would do so without causing direct damage to neighboring soft tissues to isolate the effects of the bone marrow lesion on cartilage loss. Early reports demonstrate the feasibility of such an animal model. Given the irreversible nature of osteoarthritic changes in the joint, factors such as bone marrow lesions that are present early in disease pathogenesis remain an enticing target for new therapeutic approaches. © 2022 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Andrew Bowen
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
| | - David Shamritsky
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
| | - Josue Santana
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
- Meinig School of Biomedical Engineering Cornell University Ithaca New York USA
| | - Ian Porter
- College of Veterinary Medicine Cornell University Ithaca New York
| | - Erica Feldman
- College of Veterinary Medicine Cornell University Ithaca New York
| | | | | | - Kei Hayashi
- College of Veterinary Medicine Cornell University Ithaca New York
| | - Christopher J Hernandez
- Sibley School of Mechanical and Aerospace Engineering Cornell University Ithaca New York USA
- Hospital for Special Surgery New York New York USA
| |
Collapse
|
70
|
Bierbrauer KL, Alasino RV, Barclay FE, Belotti EM, Ortega HH, Beltramo DM. Biocompatible Hydrogel for Intra-Articular Implantation Comprising Cationic and Anionic Polymers of Natural Origin: In Vivo Evaluation in a Rabbit Model. Polymers (Basel) 2021; 13:polym13244426. [PMID: 34960976 PMCID: PMC8707494 DOI: 10.3390/polym13244426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 01/07/2023] Open
Abstract
We describe the functional capability of a cross-linked hydrogel composed of sulfated glycosaminoglycans and a cationic cellulose by conducting trials on experimental animal models using intra-articular implants to treat an articular disease called osteoarthritis. Forty-eight mature New Zealand white rabbits were divided into three experimental groups: A, B, and C. Group A and B underwent unilateral anterior cruciate ligament transection (ACLT) of the right knee. Subsequently, both knees of group A were treated with the injectable formulation under study. Meanwhile, group B was treated with sterile PBS (placebo). The animals of group C were surgically operated in both knees: Commercial hyaluronic acid (HA) was implanted in the left knee, and the formulation under study was implanted in the right knee. After implantation, all specimens underwent several evaluations at 3, 6, and 12 months postoperatively. At 6 months, no significant differences were detected between the right and left knees of the different groups. However, significant differences were observed between both knees at 12 months in group C, with less cartilage damage in the right knees implanted with our hydrogel. Therefore, in vivo studies have demonstrated hydrogel safety, superior permanence, and less cartilage damage for long-term follow up 12 months after implantation for the formulation under study compared with commercial HA.
Collapse
Affiliation(s)
- Karina L. Bierbrauer
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa Maria de Punilla, Córdoba CP 5164, Argentina; (K.L.B.); (R.V.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (E.M.B.); (H.H.O.)
| | - Roxana V. Alasino
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa Maria de Punilla, Córdoba CP 5164, Argentina; (K.L.B.); (R.V.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (E.M.B.); (H.H.O.)
| | - Fernando E. Barclay
- Instituto Argentino de Diagnóstico y Tratamiento SA (IADT) en Ortopedia y Traumatología, Cirugía Artroscópica y Medicina del Deporte, Marcelo T. de Alvear 2346/2400, Buenos Aires C1122AAL, Argentina;
| | - Eduardo M. Belotti
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (E.M.B.); (H.H.O.)
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Esperanza 3080, Argentina
- Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza 3080, Argentina
| | - Hugo H. Ortega
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (E.M.B.); (H.H.O.)
- Centro de Medicina Comparada, Instituto de Ciencias Veterinarias del Litoral (ICiVet-Litoral), Universidad Nacional del Litoral (UNL), Esperanza 3080, Argentina
- Facultad de Ciencias Veterinarias del Litoral, Universidad Nacional del Litoral (UNL), Esperanza 3080, Argentina
| | - Dante M. Beltramo
- Centro de Excelencia en Productos y Procesos de Córdoba, Gobierno de la Provincia de Córdoba, Pabellón CEPROCOR, Santa Maria de Punilla, Córdoba CP 5164, Argentina; (K.L.B.); (R.V.A.)
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Godoy Cruz 2290, Buenos Aires C1425FQB, Argentina; (E.M.B.); (H.H.O.)
- Correspondence: ; Tel.: +54-3541-489651/53 (ext. 143); Fax: +54-3541-488181
| |
Collapse
|
71
|
Nakagawa K, Otsuki S, Murakami T, Okamoto Y, Okuno N, Wakama H, Sezaki S, Ikeda K, Okayoshi T, Neo M. Histological Analysis of the Wrapping Treatment for Meniscal Horizontal Tears in Rabbits. Cartilage 2021; 13:1551S-1561S. [PMID: 31466462 PMCID: PMC8804842 DOI: 10.1177/1947603519870838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE To investigate meniscal regeneration and prevent cartilage degeneration using wrapping treatment for meniscal horizontal tears that have been difficult to repair in rabbits. DESIGN Thirty knees from 15 Japanese white rabbits were divided into the horizontal (horizontal tears) or wrapping (horizontal tears with wrapping treatment) groups. Horizontal tears were created and wrapped with a sheet scaffold containing polyglycolic acid, polylactic acid, and polycaprolactone. The meniscus was stained with Safranin-O/Fast Green and evaluated with modified Pauli scores at 8, 12, and 16 weeks after implantation (n = 5). Cell morphology was determined with hematoxylin and eosin staining. Mature collagen was confirmed with Picrosirius Red staining. Furthermore, immunohistochemical analysis of inducible nitric oxide synthase (iNOS) for inflammation, Ki-67 for proliferation, and type II collagen for regeneration was performed. Medial femoral cartilage was stained with Safranin-O/Fast Green and evaluated with the Osteoarthritis Research Society International score at 8 and 16 weeks. RESULTS The wrapping group had significantly better regeneration than the horizontal group, especially at 16 weeks (P < 0.05). Wrapping treatment induced fibrochondrocyte-like cells at 16 weeks. After wrapping treatment, iNOS was overexpressed at 8 weeks, Ki-67 at 8 and 12 weeks, and type II collagen at 16 weeks. Cartilage degeneration in the wrapping group did not progress significantly compared with that in the horizontal group at 16 weeks (P < 0.05). CONCLUSIONS Wrapping treatment for meniscal horizontal tears induced meniscal regeneration as the sheet scaffold might induce intrinsic and extrinsic repair. Regaining the meniscal function by the wrapping treatment prevented cartilage degeneration.
Collapse
Affiliation(s)
- Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan,Shuhei Otsuki, Department of Orthopedic
Surgery, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki-city, Osaka
569-8686, Japan.
| | - Tomohiko Murakami
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Shunsuke Sezaki
- Department of QOL Research Center
Laboratory, Gunze Limited, Osaka, Japan
| | - Kuniaki Ikeda
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Tomohiro Okayoshi
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka
Medical College, Takatsuki, Osaka, Japan
| |
Collapse
|
72
|
Huang L, Riihioja I, Tanska P, Ojanen S, Palosaari S, Kröger H, Saarakkala SJ, Herzog W, Korhonen RK, Finnilä MAJ. Early changes in osteochondral tissues in a rabbit model of post-traumatic osteoarthritis. J Orthop Res 2021; 39:2556-2567. [PMID: 33580730 DOI: 10.1002/jor.25009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/23/2020] [Accepted: 02/10/2021] [Indexed: 02/04/2023]
Abstract
Concurrent osteoarthritic (OA) manifestations in bone and cartilage are poorly known. To shed light on this issue, this study aims to investigate changes in subchondral bone and articular cartilage at two time points after anterior cruciate ligament transection (ACLT) in a rabbit model. 2 (N = 16) and 8 (N = 10) weeks after ACLT, the subchondral bone structure, cartilage thickness, Osteoarthritis Research Society International (OARSI) score, fixed charged density (FCD), and collagen orientation angle were analyzed. OA related changes were evaluated by comparing the ACLT to the contralateral (C-L) and control knees. Already 2 weeks after ACLT, higher trabecular number in the medial femoral condyle and femoral groove, greater OARSI score in the femoral condyles, and thinner trabeculae in the lateral tibial plateau and femoral groove were observed in ACLT compared to C-L knees. Only minor changes of cartilage collagen orientation in the femoral condyles and femoral groove and smaller FCD in the femoral condyles, medial tibial plateau, femoral groove and patella were observed. 8 weeks post-ACLT, the surgical knees had thinner subchondral plate and trabeculae, and smaller trabecular bone volume fraction in most of the knee locations. OARSI score was greater in the femoral condyle and lateral tibial plateau cartilage. FCD loss was progressive only in the femoral condyle, femoral groove, and patellar cartilage, and minor changes of cartilage collagen orientation angle were present in the femoral condyles, femoral groove, and lateral tibial plateau. We conclude that ACLT induces progressive subchondral bone loss, during which proteoglycan loss occurs followed by their partly recovery, as indicated by FCD results.
Collapse
Affiliation(s)
- Lingwei Huang
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Ilari Riihioja
- Medical Research Center, Bone and Stem Cell Biology Research Group, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Petri Tanska
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Simo Ojanen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Sanna Palosaari
- Medical Research Center, Bone and Stem Cell Biology Research Group, University of Oulu and Oulu University Hospital, Oulu, Finland.,Cancer and Translational Medicine Research Unit, Anatomy and Cell Biology, Faculty of Medicine, University of Oulu, Oulu, Finland
| | - Heikki Kröger
- Department of Orthopedics, Traumatology and Hand Surgery, Kuopio University Hospital, Kuopio, Finland
| | - Simo J Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Walter Herzog
- Human performance laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada.,Biomechanics Laboratory, School of Sports, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A J Finnilä
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland.,Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
73
|
Liang D, Onodera T, Hamasaki M, Hishimura R, Homan K, Xu L, Tian Y, Kanai S, Iwasaki N. Quantification of Cartilage Surface Degeneration by Curvature Analysis Using 3D Scanning in a Rabbit Model. Cartilage 2021; 13:1734S-1741S. [PMID: 34802259 PMCID: PMC8804731 DOI: 10.1177/19476035211059597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE Accurate analysis to quantify cartilage morphology is critical for evaluating degenerative conditions in osteoarthritis (OA). Three-dimensional (3D) optical scanning provides 3D data for the entire cartilage surface; however, there is no consensus on how to quantify it. Our purpose was to validate a 3D method for evaluating spatiotemporal alterations in degenerative cartilages in a rabbit OA model by analyzing their curvatures at various stages of progression. DESIGN Twelve rabbits underwent anterior cruciate ligament transection (ACLT) unilaterally and were divided into 4 groups: 4 weeks control, 4 weeks OA, 8 weeks control, and 8 weeks OA. 3D scanning, India ink staining, and histological assessments were performed in all groups. In 3D curvature visualization, the surfaces of the condyles were divided into 8 areas. The standard deviations (SD) of mean curvatures from all vertices of condylar surfaces and subareas were calculated. RESULTS Regarding the site of OA change, curvature analysis was consistent with India ink scoring. The SD of mean curvature correlated strongly with the India ink Osteoarthritis Research Society International (OARSI) score. In curvature histograms, the curvature distribution in OA was more scattered than in control. Of the 8 areas, significant OA progression in the posterolateral part of the lateral condyle (L-PL) was observed at 4 weeks. The histology result was consistent with the 3D evaluation in terms of representative section. CONCLUSIONS This study demonstrated that 3D scanning with curvature analysis can quantify the severity of cartilage degeneration objectively. Furthermore, the L-PL was found to be the initial area where OA degeneration occurred in the rabbit ACLT model.
Collapse
Affiliation(s)
- Dawei Liang
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| | - Tomohiro Onodera
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan,Tomohiro Onodera, Department of Orthopaedic
Surgery, Faculty of Medicine, Graduate School of Medicine, Hokkaido University,
Sapporo 060-8648, Japan.
| | - Masanari Hamasaki
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| | - Ryosuke Hishimura
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| | - Kentaro Homan
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| | - Liang Xu
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| | - Yuan Tian
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| | - Satoshi Kanai
- Division of Systems Science and
Informatics, Graduate School of Information Science and Technology, Hokkaido
University, Sapporo, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery,
Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo,
Japan
| |
Collapse
|
74
|
Boissier P, Mainil-Varlet P, Mautone GR. Increasing Concentration of Sinovial: Effect on Cartilage Protection in a Rabbit ACLT Model. Cartilage 2021; 13:185S-195S. [PMID: 32070117 PMCID: PMC8804756 DOI: 10.1177/1947603520905363] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE This study aimed to test the hypothesis that administration of increasing doses of Sinovial (hyaluronic acid [HA]), would exhibit a dose-dependent effect on the prevention of cartilage degradation, without local and systemic toxicity. METHODS Twenty-seven adult rabbits were subjected to anterior cruciate ligament transection (ACLT). Two Sinovial products containing HA concentrations of 1.6% and 2.4% were used as active treatment, and 0.9% saline was used as control and injected intra-articularly 7 days post ACLT. Radiographs were taken prior to surgery, at injection and sacrifice times. After euthanasia, 8 weeks postsurgery, knee joints were observed macroscopically using India ink staining with OARSI (Osteoarthritis Research Society International) scoring and histologically using modified Mankin scoring. The synovial membranes were analyzed using Cake classification. RESULTS No intraoperative complications were observed. One week postinjection, 4 animals in the HA 2.4% group developed subcutaneous nodules that disappeared spontaneously. No inflammation of the synovial membrane was ever observed. The control group exhibited the maximum uptake of India ink 2.22 ± 0.14. HA groups exhibited a dose-dependent (P = 0.02) reduction in India ink uptake: 1.75 ± 0.17 for HA 1.6% and 1.58 ± 0.14 for HA 2.4%. The most marked dose-dependent effect of this study was a reduction of modified Mankin score for HA groups, with the 2.4% treatment achieving a statistically significant improvement as compared with the control group (7.19 ± 0.85 for saline, 4.65 ± 0.66 for HA 1.6%, and 3.53 ± 0.59 for HA 2.4%; P = 0.005). CONCLUSIONS A dose-dependent protective effect on cartilage was observed after injection of both HA solutions.
Collapse
|
75
|
Bradley AE, Wancket LM, Rinke M, Gruebbel MM, Saladino BH, Schafer K, Katsuta O, Garcia B, Chanut F, Hughes K, Nelson K, Himmel L, McInnes E, Schucker A, Uchida K. International Harmonization of Nomenclature and Diagnostic Criteria (INHAND): Nonproliferative and Proliferative Lesions of the Rabbit. J Toxicol Pathol 2021; 34:183S-292S. [PMID: 34712007 PMCID: PMC8544166 DOI: 10.1293/tox.34.183s] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The INHAND (International Harmonization of Nomenclature and Diagnostic Criteria for
Lesions Project (www.toxpath.org/inhand.asp) is a joint initiative of the Societies of
Toxicologic Pathology from Europe (ESTP), Great Britain (BSTP), Japan (JSTP) and North
America (STP) to develop an internationally accepted nomenclature for proliferative and
non-proliferative lesions in laboratory animals. The purpose of this publication is to
provide a standardized nomenclature for classifying microscopic lesions observed in most
tissues and organs from the laboratory rabbit used in nonclinical safety studies. Some of
the lesions are illustrated by color photomicrographs. The standardized nomenclature
presented in this document is also available electronically on the internet
(http://www.goreni.org/). Sources of material included histopathology databases from
government, academia, and industrial laboratories throughout the world. Content includes
spontaneous lesions as well as lesions induced by exposure to test materials. Relevant
infectious and parasitic lesions are included as well. A widely accepted and utilized
international harmonization of nomenclature for lesions in laboratory animals will provide
a common language among regulatory and scientific research organizations in different
countries and increase and enrich international exchanges of information among
toxicologists and pathologists.
Collapse
Affiliation(s)
- Alys E Bradley
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | | | | | | | | | | | | | - Begonya Garcia
- Charles River Laboratories Edinburgh Ltd, Tranent, Scotland, UK
| | - Franck Chanut
- Sanofi, 1 Avenue Pierre Brosselette, 91380 Chilly-Mazarin, France
| | | | | | - Lauren Himmel
- Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Adrienne Schucker
- American Preclinical Services, LLC, 8945 Evergreen Blvd, Minneapolis, MN 55433
| | | |
Collapse
|
76
|
Bi R, Chen K, Wang Y, Luo X, Li Q, Li P, Yin Q, Fan Y, Zhu S. Regulating Fibrocartilage Stem Cells via TNF-α/Nf-κB in TMJ Osteoarthritis. J Dent Res 2021; 101:312-322. [PMID: 34515572 DOI: 10.1177/00220345211037248] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we investigate harnessing fibrocartilage stem cell (FCSC) capacities by regulating tumor necrosis factor α (TNF-α) signaling for cartilage repair in temporomandibular joint osteoarthritis (TMJOA). Stem cell specifics for FCSCs were characterized in the presence of TNF-α. Etanercept as a TNF-α inhibitor and BAY 11-7082 as an Nf-κB inhibitor were used to study TNF-α regulation of FCSCs. Lineage tracing was performed in Gli1-CreERT+;Tmfl/fl mice when etanercept (1 mg/kg, every 3 d) or isometric vehicle was subcutaneously injected to trace specific changes in FCSCs. Surgically induced TMJOA Sprague-Dawley rats were generated with BAY 11-7082 (5 mg/kg, every 3 d) or vehicle subcutaneous injection to investigate the functional role of TNF-α/Nf-κB in TMJOA. Anterior disc displacement (ADD) rabbits were used to analyze the therapeutic effect of etanercept as a TMJOA intra-articular treatment with etanercept (0.02 mg in 100 μL, every 2 wk) or isometric vehicle. In vitro, TNF-α inhibited proliferation of FCSCs and increased FCSC apoptosis. TNF-α activation interfered with osteogenic and chondrogenic differentiation of FCSCs, while etanercept could partially recover FCSC specificity from TNF-α. FCSC lineage tracing in Gli1-CreERT+;Tmfl/fl mice showed that the chondrogenic capacity of Gli1+ cell lineage was markedly suppressed in osteoarthritis cartilage, the phenotype of which could be significantly rescued by etanercept. Specifically blocking the Nf-κB pathway could significantly weaken the regulatory effect of TNF-α on FCSC specificity in vitro and in TMJOA rats in vivo. Finally, intra-articular etanercept treatment efficiently rescued TMJ cartilage degeneration and growth retardation in ADD rabbits. Inhibition of TNF-α signaling reduced Nf-κB transcripts and recovered FCSC specificities. In vivo, etanercept treatment effectively rescued the osteoarthritis phenotype in TMJOA mice and ADD rabbits. These data suggest a novel therapeutic mechanism whereby TNF-α/Nf-κB inhibition promotes FCSC chondrogenic capacity for cartilage transformation in TMJOA.
Collapse
Affiliation(s)
- R Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - K Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - X Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - P Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Q Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Y Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Operative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - S Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
77
|
Sun Y, Huang K, Mo L, Ahmad A, Wang D, Rong Z, Peng H, Cai H, Liu G. Eucommia ulmoides Polysaccharides Attenuate Rabbit Osteoarthritis by Regulating the Function of Macrophages. Front Pharmacol 2021; 12:730557. [PMID: 34421623 PMCID: PMC8377595 DOI: 10.3389/fphar.2021.730557] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 01/15/2023] Open
Abstract
Background and purpose:Eucommia ulmoides polysaccharides (EUP) can regulate the immunity of macrophages, but the functional status of macrophages is related to osteoarthritis and synovial inflammation. The purpose of this study is to explore whether EUP has the effect of inhibiting osteoarthritis and its possible mechanism. Methods: MTT test was used to evaluate the appropriate concentration of EUP and real-time quantitative polymerase chain reaction (RT-qPCR) was conducted to detect the effect of EUP on gene expression in RAW 264.7 cells. The osteoarthritis model was constructed by the anterior cruciate ligament transection (ACLT) in the rabbits. These rabbits were divided into three groups, sham operation group, OA group, and EUP group. The changes in articular cartilage were detected by gross observation and histological staining, and Micro-CT tested subchondral bone. Finally, the changes of macrophages in synovial tissue were studied by immunohistochemistry. Results: The results showed that EUP at the concentration of 50ug/mL and 100ug/mL were beneficial to the proliferation of macrophages. The qPCR results indicated that EUP inhibited the expression of inflammation-related genes IL-6, IL-18 and IL-1β, and promoted the expression of osteogenic and cartilage-related genes BMP-6, Arg-1 and transforming growth factor beta (TGF-β). The results of in vivo experiments suggested that the degree of destruction of articular cartilage in the EUP group was significantly reduced, and the Osteoarthritis Research Society International (OARSI) score was significantly reduced. Compared with the OA group, the subchondral cancellous bone density of the EUP group increased, the number and thickness of trabecular bone increased, and the separation of trabecular bone decreased. Synovial macrophage immunohistochemistry results manifested that EUP, on the one hand, reduced M1 polarized macrophages, on the other hand, accumulated M2 polarized macrophages. Conclusion: EUP can promote articular cartilage repair and subchondral bone reconstruction. The regulation of the polarization state of macrophages may be one of its mechanisms to delay the progression of osteoarthritis.
Collapse
Affiliation(s)
- Yaqiong Sun
- Departments of Imaging, Southern University of Science and Technology Hospital, Shenzhen, China
| | - Kui Huang
- Departments of Orthopedics, The First Hospital of Yangtze University, Jingzhou, China
| | - Linhai Mo
- Department of Orthopaedics, People's Hospital of Jiangyou, Mianyang, China
| | - Akhlaq Ahmad
- The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, The State Key Laboratory of Respiratory Disease, Guangzhou Medical University, Guangzhou, China
| | - Dejia Wang
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Zijie Rong
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Honghui Peng
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Honghua Cai
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| | - Guihua Liu
- Institute of Orthopaedics, Huizhou Municipal Central Hospital, Huizhou, China
| |
Collapse
|
78
|
Bevacizumab Arrests Osteoarthritis Progression in a Rabbit Model: A Dose-Escalation Study. J Clin Med 2021; 10:jcm10132825. [PMID: 34206900 PMCID: PMC8268196 DOI: 10.3390/jcm10132825] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 02/05/2023] Open
Abstract
Cartilage neoangiogenesis holds a prominent role in osteoarthritis (OA) pathogenesis. This study aimed to assess the efficacy bevacizumab, an antibody against vascular endothelial growth factor and inhibitor of angiogenesis, in a rabbit OA model. Animals were divided into four groups: one receiving a sham intra-articular knee injection and three groups undergoing 5, 10, and 20 mg intra-articular bevacizumab injections. The effect of the antibody on articular cartilage and synovium was assessed through histology and quantified with the Osteoarthritis Research Society International (OARSI) scores. Immunohistochemistry was performed to investigate type 2 collagen, aggrecan, and matrix metalloproteinase 13 (MMP-13) expression. Bevacizumab treatment led to a significant reduction of cartilage degeneration and synovial OA changes. Immunohistochemistry revealed significantly lower cartilage MMP-13 expression levels in all experimental groups, with the one receiving 20 mg bevacizumab showing the lowest. The antibody also resulted in increased production of aggrecan and type 2 collagen after administration of 5, 10, and 20 mg. The group treated with 20 mg showed the highest levels of type 2 collagen, while aggrecan content was even higher than in the healthy cartilage. Intra-articular bevacizumab has been demonstrated to effectively arrest OA progression in our model, with 20 mg being the most efficacious dose.
Collapse
|
79
|
Mobasheri A, Im GI, Katz JN, Loughlin J, Kraus VB, Sandell LJ, Berenbaum F, Abramson S, Lotz M, Hochberg M, Pelletier JP, Madry H, Block JA, Lohmander LS, Altman RD. Osteoarthritis Research Society International (OARSI): Past, present and future. OSTEOARTHRITIS AND CARTILAGE OPEN 2021; 3:100146. [PMID: 36474983 PMCID: PMC9718339 DOI: 10.1016/j.ocarto.2021.100146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 11/23/2022] Open
Abstract
We provide a detailed account of the origin and establishment of the Osteoarthritis Research Society International (OARSI) and celebrate its history from inception to the current day. We discuss the mission, vision and strategic objectives of OARSI and how these have developed and evolved over the last 3 decades. We celebrate the achievements of the society as we approach its 30th birthday, honor the entire presidential line and respectfully pay tribute to the past presidents who are no longer with us. We reflect on the strong foundations of our society, OARSI's efforts to disseminate understanding of the health, disability and economic burdens of osteoarthritis (OA) to policymakers, and the exciting initiatives to make the society inclusive and international. We thank our corporate and industrial sponsors, who have supported us over many years, without whom our annual congresses would not have been possible. We celebrate our longstanding strategic partnership with our publisher, Elsevier, and the successful launch of our new journal Osteoarthritis and Cartilage Open, the most significant new development in our dissemination toolbox. For the first time in the history of the organization, our annual congress was cancelled in April 2020 and the 2021 meeting will be virtual. Despite the numerous challenges posed by the ongoing COVID-19 pandemic and the need to adapt quickly to a rapidly changing landscape, we must remain optimistic about the future. We will take advantage of new exciting opportunities to advance our mission and vision to enhance the quality of life of persons with OA.
Collapse
Affiliation(s)
- Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Departments of Orthopaedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Gun-il Im
- Dongguk University, Goyang, South Korea
| | - Jeffrey N. Katz
- Brigham and Women’s Hospital, Harvard Medical School and Harvard Chan School of Public Health, Boston, MA, United States
| | - John Loughlin
- Newcastle University, Biosciences Institute, Newcastle Upon Tyne, United Kingdom
| | | | | | - Francis Berenbaum
- Department of Rheumatology, Sorbonne Université, INSERM CRSA, AP-HP Hopital Saint Antoine, Paris, France
| | - Steve Abramson
- New York University Langone Orthopedic Center, New York, NY, USA
| | - Martin Lotz
- The Scripps Research Institute, La Jolla, CA, USA
| | - Marc Hochberg
- Department of Medicine, Division of Rheumatology and Clinical Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jean-Pierre Pelletier
- Osteoarthritis Research Unit, University of Montreal Hospital Research Centre (CRCHUM), Montreal, Quebec, Canada
| | - Henning Madry
- Department of Orthopaedic Surgery and Center of Experimental Orthopaedics, Saarland University Medical Center, Homburg, Germany
| | - Joel A. Block
- Department of Internal Medicine, Division of Rheumatology, Rush Medical College, Chicago, IL, USA
| | - L. Stefan Lohmander
- Department of Clinical Sciences, Orthopaedics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Roy D. Altman
- Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
80
|
Gullbrand SE, Ashinsky BG, Lai A, Gansau J, Crowley J, Cunha C, Engiles JB, Fusellier M, Muehleman C, Pelletier M, Presciutti S, Schol J, Takeoka Y, Yurube T, Zhang Y, Masuda K, Iatridis JC. Development of a standardized histopathology scoring system for intervertebral disc degeneration and regeneration in rabbit models-An initiative of the ORSspine section. JOR Spine 2021; 4:e1147. [PMID: 34337334 PMCID: PMC8313151 DOI: 10.1002/jsp2.1147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/15/2021] [Accepted: 03/25/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The rabbit lumbar spine is a commonly utilized model for studying intervertebral disc degeneration and for the pre-clinical evaluation of regenerative therapies. Histopathology is the foundation for which alterations to disc morphology and cellularity with degeneration, or following repair or treatment are assessed. Despite this, no standardized histology grading scale has yet been established for the spine field for any of the frequently utilized animal models. AIMS The purpose of this study was to establish a new standardized scoring system to assess disc degeneration and regeneration in the rabbit model. MATERIALS AND METHODS The scoring system was formulated following a review of the literature and a survey of spine researchers. Validation of the scoring system was carried out using images provided by 4 independent laboratories, which were graded by 12 independent graders of varying experience levels. Reliability testing was performed via the computation of intra-class correlation coefficients (ICC) for each category and the total score. The scoring system was then further refined based on the results of the ICC analysis and discussions amongst the authors. RESULTS The final general scoring system involves scoring 7 features (nucleus pulposus shape, area, cellularity and matrix condensation, annulus fibrosus/nucleus pulposus border appearance, annulus fibrosus morphology, and endplate sclerosis/thickening) on a 0 (healthy) to 2 (severe degeneration) scale. ICCs demonstrated overall moderate to good agreement across graders. An addendum to the main scoring system is also included for use in studies evaluating regenerative therapeutics, which involves scoring cell cloning and morphology within the nucleus pulposus and inner annulus fibrosus. DISCUSSION Overall, this new scoring system provides an avenue to improve standardization, allow a more accurate comparison between labs and more robust evaluation of pathophysiology and regenerative treatments across the field. CONCLUSION This study developed a histopathology scoring system for degeneration and regeneration in the rabbit model based on reported practice in the literature, a survey of spine researchers, and validation testing.
Collapse
Affiliation(s)
- Sarah E. Gullbrand
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Beth G. Ashinsky
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | - Alon Lai
- Leni and Peter W. May Department of OrthopaedicsIchan School of MedicineNew YorkNew YorkUSA
| | - Jennifer Gansau
- Leni and Peter W. May Department of OrthopaedicsIchan School of MedicineNew YorkNew YorkUSA
| | - James Crowley
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUNSWSydneyAustralia
| | - Carla Cunha
- i3S ‐ Instituto de Investigação e Inovação em Saúde, INEB ‐ Instituto de Engenharia BiomédicaPortoPortugal
| | - Julie B. Engiles
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Clinical Studies, New Bolton CenterSchool of Veterinary Medicine, University of Pennsylvania, PhiladelphiaPennsylvaniaUSA
| | - Marion Fusellier
- Inserm, UMR 1229, RMeS, Université de Nantes, ONIRISNantesFrance
| | | | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUNSWSydneyAustralia
| | | | - Jordy Schol
- Tokai University School of MedicineIseharaJapan
| | | | | | - Yejia Zhang
- University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Corporal Michael J. Crescenz VA Medical CenterPhiladelphiaPennsylvaniaUSA
| | | | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIchan School of MedicineNew YorkNew YorkUSA
| |
Collapse
|
81
|
Lai A, Gansau J, Gullbrand SE, Crowley J, Cunha C, Dudli S, Engiles JB, Fusellier M, Goncalves RM, Nakashima D, Okewunmi J, Pelletier M, Presciutti SM, Schol J, Takeoka Y, Yang S, Yurube T, Zhang Y, Iatridis JC. Development of a standardized histopathology scoring system for intervertebral disc degeneration in rat models: An initiative of the ORS spine section. JOR Spine 2021; 4:e1150. [PMID: 34337335 PMCID: PMC8313153 DOI: 10.1002/jsp2.1150] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/09/2021] [Accepted: 04/18/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Rats are a widely accepted preclinical model for evaluating intervertebral disc (IVD) degeneration and regeneration. IVD morphology is commonly assessed using histology, which forms the foundation for quantifying the state of IVD degeneration. IVD degeneration severity is evaluated using different grading systems that focus on distinct degenerative features. A standard grading system would facilitate more accurate comparison across laboratories and more robust comparisons of different models and interventions. AIMS This study aimed to develop a histology grading system to quantify IVD degeneration for different rat models. MATERIALS & METHODS This study involved a literature review, a survey of experts in the field, and a validation study using 25 slides that were scored by 15 graders from different international institutes to determine inter- and intra-rater reliability. RESULTS A new IVD degeneration grading system was established and it consists of eight significant degenerative features, including nucleus pulposus (NP) shape, NP area, NP cell number, NP cell morphology, annulus fibrosus (AF) lamellar organization, AF tears/fissures/disruptions, NP-AF border appearance, as well as endplate disruptions/microfractures and osteophyte/ossification. The validation study indicated this system was easily adopted, and able to discern different severities of degenerative changes from different rat IVD degeneration models with high reproducibility for both experienced and inexperienced graders. In addition, a widely-accepted protocol for histological preparation of rat IVD samples based on the survey findings include paraffin embedding, sagittal orientation, section thickness < 10 μm, and staining using H&E and/or SO/FG to facilitate comparison across laboratories. CONCLUSION The proposed histological preparation protocol and grading system provide a platform for more precise comparisons and more robust evaluation of rat IVD degeneration models and interventions across laboratories.
Collapse
Affiliation(s)
- Alon Lai
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Jennifer Gansau
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Sarah E. Gullbrand
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James Crowley
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia
| | - Carla Cunha
- i3S‐Instituto de Investigação e InovaçãoemSaúdeUniversidade do PortoPortoPortugal
| | - Stefan Dudli
- University Clinic of Rheumatology, Center of Experimental RheumatologyBalgrist University Hospital, University of ZurichZurichSwitzerland
| | - Julie B. Engiles
- Department of Pathobiology, New Bolton Center, School of Veterinary MedicineUniversity of PennsylvaniaKennett SquarePennsylvaniaUSA
| | - Marion Fusellier
- Regenerative Medicine and Skeleton, Inserm, UMR 1229, RMeSUniversité de Nantes, ONIRISNantes CedexFrance
| | - Raquel M. Goncalves
- i3S‐Instituto de Investigação e InovaçãoemSaúdeUniversidade do PortoPortoPortugal
- Instituto de CiênciasBiomédicas Abel SalazarUniversidade do PortoPortoPortugal
| | - Daisuke Nakashima
- Department of Orthopaedic SurgeryKeio University School of MedicineTokyoJapan
| | - Jeffrey Okewunmi
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Matthew Pelletier
- Surgical and Orthopaedic Research Laboratories, Prince of Wales Clinical SchoolUniversity of New South WalesSydneyAustralia
| | | | - Jordy Schol
- Department of Orthopaedic Surgery, Surgical ScienceTokai University School of MedicineIseharaJapan
| | - Yoshiki Takeoka
- Department of Orthopaedic SurgeryBrigham and Women's HospitalBostonMassachusettsUSA
| | - Sidong Yang
- Department of Spinal SurgeryThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Takashi Yurube
- Department of Orthopaedic SurgeryKobe University Graduate School of MedicineKobeJapan
| | - Yejia Zhang
- McKay Orthopaedic Research Laboratory, Department of Orthopaedic Surgery Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - James C. Iatridis
- Leni and Peter W. May Department of OrthopaedicsIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| |
Collapse
|
82
|
Li PL, Wang YX, Zhao ZD, Li ZL, Liang JW, Wang Q, Yin BF, Hao RC, Han MY, Ding L, Wu CT, Zhu H. Clinical-grade human dental pulp stem cells suppressed the activation of osteoarthritic macrophages and attenuated cartilaginous damage in a rabbit osteoarthritis model. Stem Cell Res Ther 2021; 12:260. [PMID: 33933140 PMCID: PMC8088312 DOI: 10.1186/s13287-021-02353-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/23/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Although increasing evidence has demonstrated that human dental pulp stem cells (hDPSCs) are efficacious for the clinical treatment of skeletal disorders, the underlying mechanisms remain incompletely understood. Osteoarthritis (OA) is one of the most common degenerative disorders in joints and is characterized by gradual and irreversible cartilaginous tissue damage. Notably, immune factors were newly identified to be closely related to OA development. In this study, we explored the modulatory effects of clinical-grade hDPSCs on osteoarthritic macrophages and their protective effects on cartilaginous tissues in OA joints. METHODS The cell morphology, immunophenotype, and inflammatory factor expression of osteoarthritic macrophages were explored by phase contrast microscope, transmission electron microscopy, immunostaining, flow cytometry, quantitative polymerase chain reaction, and enzyme linked immunosorbent assay, respectively. Additionally, the factors and signaling pathways that suppressed macrophage activation by hDPSCs were determined by enzyme-linked immunosorbent assay and western-blotting. Furthermore, hDPSCs were administered to a rabbit knee OA model via intra-articular injection. Macrophage activation in vivo and cartilaginous tissue damage were also evaluated by pathological analysis. RESULTS We found that hDPSCs markedly inhibited osteoarthritic macrophage activation in vitro. The cell morphology, immunophenotype, and inflammatory factor expression of osteoarthritic macrophages changed into less inflammatory status in the presence of hDPSCs. Mechanistically, we observed that hDPSC-derived hepatocyte growth factor and transforming growth factor β1 mediated the suppressive effects on osteoarthritic macrophages. Moreover, phosphorylation of MAPK pathway proteins contributed to osteoarthritic macrophage activation, and hDPSCs suppressed their activation by partially inactivating those pathways. Most importantly, injected hDPSCs inhibited macrophage activation in osteochondral tissues in a rabbit knee OA model in vivo. Further histological analysis showed that hDPSCs alleviated cartilaginous damage to knee joints. CONCLUSIONS In summary, our findings reveal a novel function for hDPSCs in suppressing osteoarthritic macrophages and suggest that macrophages are efficient cellular targets of hDPSCs for alleviation of cartilaginous damage in OA. hDPSCs treat OA via an osteoarthritic macrophages-dependent mechanisms. hDPSCs suppress the activation of osteoarthritic macrophages in vitro and in vivo and alleviate cartilaginous lesions in OA models.
Collapse
Affiliation(s)
- Pei-Lin Li
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Yu-Xing Wang
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- The Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, People's Republic of China
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, P. R. China
| | - Zhi-Dong Zhao
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, P. R. China
| | - Zhi-Ling Li
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Jia-Wu Liang
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, P. R. China
| | - Qian Wang
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- People's Liberation Army General Hospital, Road Fuxing 28, Beijing, 100853, P. R. China
| | - Bo-Feng Yin
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
| | - Rui-Cong Hao
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
- Graduate School of Anhui Medical University, 81 Meishan Road, Shu Shan Qu, Hefei, 230032, Anhui, P. R. China
| | - Meng-Yue Han
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China
- Graduate School of Anhui Medical University, 81 Meishan Road, Shu Shan Qu, Hefei, 230032, Anhui, P. R. China
| | - Li Ding
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China.
- Medical Center of Air Forces, PLA, Road Fucheng 30, Beijing, 100142, P. R. China.
| | - Chu-Tse Wu
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China.
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
| | - Heng Zhu
- Beijing Institute of Radiation Medicine, Road Taiping 27, Beijing, 100850, P. R. China.
- Beijing Key Laboratory for Radiobiology, Beijing Institute of Radiation Medicine, Beijing, 100850, P. R. China.
- Graduate School of Anhui Medical University, 81 Meishan Road, Shu Shan Qu, Hefei, 230032, Anhui, P. R. China.
| |
Collapse
|
83
|
Engelhardt JP, Schütte A, Hetjens S, Reisig G, Schwarz ML. Resilience to height loss of articular cartilage of osteoarthritic stifle joints of old pigs, compared with healthy cartilage from young pigs in a tribological pin-on-plate exposure, revealing similar friction forces. PLoS One 2021; 16:e0250244. [PMID: 33891624 PMCID: PMC8064609 DOI: 10.1371/journal.pone.0250244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/04/2021] [Indexed: 12/04/2022] Open
Abstract
Introduction We saw a lack of data on the biomechanical behavior of degenerated articular cartilage (OA) compared with that of healthy cartilage, even though the susceptibility to wear and tear of articular cartilage plays a key role in the progression of osteoarthritis (OA). Therefore, we performed a comparison between naturally occurring OA and healthy cartilage from pigs, before and after tribological stress. Aim The aim of the study was to compare OA-cartilage with healthy cartilage and to analyze the resilience to tribological shear stress, which will be measured as height loss (HL), and to friction forces of the cartilage layers. The findings will be substantiated in macro- and microscopical evaluations before and after tribological exposure. Methods We assessed stifle joints of fifteen old and sixteen young pigs from the local abattoir radiologically, macroscopically and histologically to determine possible OA alterations. We put pins from the femoral part of the joints and plates from the corresponding tibial plateaus in a pin-on-plate tribometer under stress for about two hours with about 1108 reciprocating cycles under a pressure of approximately 1 MPa. As a surrogate criterion of wear and tear, the HL was recorded in the tribometer. The heights of the cartilage layers measured before and after the tribological exposure were compared histologically. The condition of the cartilage before and after the tribological exposure was analyzed both macroscopically with an adapted ICRS score and microscopically according to Little et al. (2010). We assessed the friction forces acting between the surfaces of the cartilage pair–specimens. Results Articular cartilage taken from old pigs showed significant degenerative changes compared to that taken from the young animals. The macroscopic and microscopic scores showed strong alterations of the cartilage after the tribological exposure. There was a noticeable HL of the cartilage specimens after the first 100 to 300 cycles. The HL after tribological exposure was lower in the group of the old animals with 0.52 mm ± 0.23 mm than in the group of the young animals with 0.86 mm ± 0.26 mm (p < 0.0001). The data for the HL was validated by the histological height measurements with 0.50 mm ± 0.82 mm for the old and 0.79 mm ±0.53 mm for the young animals (p = 0.133). The friction forces measured at the cartilage of the old animals were 2.25 N ± 1.15 N and 1.89 N ± 1.45 N of the young animals (p = 0.3225). Conclusion Unlike articular cartilage from young pigs, articular cartilage from old pigs showed OA alterations. Tribological shear stress exposure revealed that OA cartilage showed less HL than healthy articular cartilage. Tribological stress exposure in a pin–on–plate tribometer seemed to be an appropriate way to analyze the mechanical stability of articular cartilage, and the applied protocol could reveal weaknesses of the assessed cartilage tissue. Friction and HL seemed to be independent parameters when degenerated and healthy articular cartilage were assessed under tribological exposure in a pin–on- plate tribometer.
Collapse
Affiliation(s)
- Jan P. Engelhardt
- Department of Experimental Orthopedics and Trauma Surgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Andy Schütte
- Department of Experimental Orthopedics and Trauma Surgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Svetlana Hetjens
- Department of Medical Statistics, University Medicine Mannheim, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Gregor Reisig
- Department of Experimental Orthopedics and Trauma Surgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
| | - Markus L. Schwarz
- Department of Experimental Orthopedics and Trauma Surgery, Medical Faculty Mannheim of the University of Heidelberg, Mannheim, Germany
- * E-mail:
| |
Collapse
|
84
|
Fernández-Martín S, González-Cantalapiedra A, Permuy M, García-González M, López-Peña M, Muñoz F. Histomorphometric Quantitative Evaluation of Long-Term Risedronate Use in a Knee Osteoarthritis Rabbit Model. Front Vet Sci 2021; 8:669815. [PMID: 33969044 PMCID: PMC8100024 DOI: 10.3389/fvets.2021.669815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) treatment is a major orthopedic challenge given that there is no ideal drug capable to reverse or stop the progression of the OA. In that regard, bisphosphonates have been proposed as potential disease-modifying drugs due to their possible chondroprotective effect related to obtaining a greater subchondral bone quality. However, their effectiveness in OA is still controversial and additionally, there is little evidence focused on their long-term effect in preclinical studies. The aim of this study was to evaluate the risedronate quantitative effect on articular and subchondral periarticular bone by histomorphometry, in an experimental rabbit model in an advanced stage of OA. Twenty-four adult New Zealand rabbits were included in the study. OA was surgically induced in one randomly chosen knee, using the contralateral as healthy control. Animals were divided into three groups (n = 8): placebo control group, sham surgery group and risedronate-treated group. After 24 weeks of treatment, cartilage and subchondral femorotibial pathology was evaluated by micro-computed tomography (micro-CT) and undecalcified histology. The research results demonstrated that the experimental animal model induced osteoarthritic changes in the operated joints, showing an increased cartilage thickness and fibrillation associated with underlying subchondral bone thinning and decreased trabecular bone quality. These changes were especially highlighted in the medial tibial compartments as a possible response to surgical instability. Regarding the trabecular analysis, significant correlations were found between 2D histomorphometry and 3D imaging micro-CT for the trabecular bone volume, trabecular separation, and the trabecular number. However, these associations were not strongly correlated, obtaining more precise measurements in the micro-CT analysis. Concerning the long-term risedronate treatment, it did not seem to have the capacity to reduce the osteoarthritic hypertrophic cartilage response and failed to diminish the superficial cartilage damage or prevent the trabecular bone loss. This study provides novel information about the quantitative effect of long-term risedronate use on synovial joint tissues.
Collapse
Affiliation(s)
- Silvia Fernández-Martín
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - Antonio González-Cantalapiedra
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - María Permuy
- Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - Mario García-González
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain
| | - Mónica López-Peña
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| | - Fernando Muñoz
- Anatomy, Animal Production and Veterinary Clinical Sciences Department, Veterinary Faculty, Universidade de Santiago de Compostela, Lugo, Spain.,Ibonelab S.L., Laboratory of Biomaterials, Lugo, Spain
| |
Collapse
|
85
|
Wei Q, Kong N, Liu X, Tian R, Jiao M, Li Y, Guan H, Wang K, Yang P. Pirfenidone attenuates synovial fibrosis and postpones the progression of osteoarthritis by anti-fibrotic and anti-inflammatory properties in vivo and in vitro. J Transl Med 2021; 19:157. [PMID: 33874948 PMCID: PMC8054406 DOI: 10.1186/s12967-021-02823-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/09/2021] [Indexed: 12/11/2022] Open
Abstract
Background Osteoarthritis (OA) is a disease of the entire joint involving synovial fibrosis and inflammation. Pathological changes to the synovium can accelerate the progression of OA. Pirfenidone (PFD) is a potent anti-fibrotic drug with additional anti-inflammatory properties. However, the influence of PFD on OA is unknown. Methods Proliferation of human fibroblast-like synoviocytes (FLSs) after treatment with TGF-β1 or PFD was evaluated using a Cell Counting Kit-8 assay and their migration using a Transwell assay. The expression of fibrosis-related genes (COL1A1, TIMP-1, and ACTA-2) and those related to inflammation (IL-6 and TNF-α) was quantified by real-time quantitative PCR. The protein expression levels of COL1A1, α-SMA (coded by ACTA-2), IL-6 and TNF-α were measured by enzyme-linked immunosorbent assay. A rabbit model of OA was established and then PFD was administered by gavage. The expression of genes related to fibrosis (COL1A1, TIMP-1, and ADAM-12) and inflammation (IL-6 and TNF-α) was measured using RNA extracted from the synovium. Synovial tissue was examined histologically after staining with H&E, Masson’s trichrome, and immunofluorescence. Synovitis scores, the volume fraction of collagen, and mean fluorescence intensity were calculated. Degeneration of articular cartilage was analyzed using a Safranin O-fast green stain and OARSI grading. Results The proliferation of FLSs was greatest when induced with 2.5 ng/ml TGF-β1 although it did not promote their migration. Therefore, 2.5 ng/ml TGF-β1 was used to stimulate the FLSs and evaluate the effects of PFD, which inhibited the migration of FLSs at concentrations as low as 1.0 mg/ml. PFD decreased the expression of COL1A1 while TGF-β1 increased both mRNA and protein expression levels of IL-6 but had no effect on α-SMA or TNF-α expression. PFD decreased mRNA expression levels of COL1A1, IL-6, and TNF-α in vivo. H&E staining and synovitis scores indicated that PFD reduced synovial inflammation, while Masson’s trichrome and immunofluorescence staining suggested that PFD decreased synovial fibrosis. Safranin O-Fast Green staining and the OARSI scores demonstrated that PFD delayed the progression of OA. Conclusions PFD attenuated synovial fibrosis and inflammation, and postponed the progression of osteoarthritis in a modified Hulth model of OA in rabbits, which was related to its anti-fibrotic and anti-inflammatory properties.
Collapse
Affiliation(s)
- Qilu Wei
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ning Kong
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Xiaohui Liu
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Run Tian
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Ming Jiao
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Yiyang Li
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Huanshuai Guan
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China
| | - Kunzheng Wang
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| | - Pei Yang
- Bone and Joint Surgery Center, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710004, China.
| |
Collapse
|
86
|
Armstrong AR, Carlson CS, Rendahl AK, Loeser RF. Optimization of histologic grading schemes in spontaneous and surgically-induced murine models of osteoarthritis. Osteoarthritis Cartilage 2021; 29:536-546. [PMID: 33561541 PMCID: PMC8038967 DOI: 10.1016/j.joca.2021.01.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/28/2020] [Accepted: 01/12/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the Osteoarthritis Research Society International (OARSI) and Articular Cartilage Structure (ACS) grading schemes applied to multiple and single sections, along with additional histologic measures, in two mouse models of Osteoarthritis (OA). METHODS Six coronal histologic stifle joint sections were collected from 40 C57BL/6J mice, including aged mice with spontaneous OA (approximately 18 months of age; n = 15) and young (12-week-old) mice that either underwent destabilization of the medial meniscus (DMM) surgery (n = 15) or sham surgery (n = 10). Sections were evaluated with the standard OARSI (0-6) scheme, a modified OARSI scheme, the ACS (0-12) scheme, histomorphometry of cartilage and bone, and scoring of osteophytes (0-3) and synovial hyperplasia (0-3). Principal components analysis (PCA) was used to determine the features explaining the greatest variability among the sections. RESULTS The grading schemes performed similarly when applied to a single mid-coronal section or six total coronal sections per joint. OARSI grading produced similar results when applied to hematoxylin and eosin or toluidine blue-stained sections. Aged mice had higher severity scores in the LTP than DMM mice (mid-coronal OARSI grade aged = 2.3 and DMM = 1.1, p = 0.0006; ACS grade aged = 4.1 and DMM = 1.6, p = 0.0024). PCA resulted in retention of four factors that accounted for 78.4% of the total variance. Factor 1 (36.4%) included the OARSI grade, ACS grade, Toluidine blue grade, articular cartilage area and thickness and the osteophyte grade. CONCLUSIONS Grading of a single mid-coronal section using either the OARSI or ACS schemes combined with osteophyte and histomorphometric measures can consistently define OA severity in mice.
Collapse
Affiliation(s)
- A R Armstrong
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, USA.
| | - C S Carlson
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, USA.
| | - A K Rendahl
- Department of Veterinary and Biomedical Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, USA.
| | - R F Loeser
- Division of Rheumatology, Allergy and Immunology and the Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
87
|
The effect of synovium graft on conjunctiva in rabbit model of dry eye. JOURNAL OF ANIMAL REPRODUCTION AND BIOTECHNOLOGY 2021. [DOI: 10.12750/jarb.36.1.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
88
|
Liu X, Chen R, Jiang L, Li X, Sun Z. Effect of infusion irrigation with different irrigating solutions on transient receptor potential vanilloid 5 and intra-articular inflammation in a post-traumatic osteoarthritis rabbit model. Eur J Med Res 2021; 26:24. [PMID: 33706812 PMCID: PMC7953622 DOI: 10.1186/s40001-021-00491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/01/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The incidence of post-traumatic osteoarthritis (PTOA) after anterior cruciate ligament reconstruction (ACLR) is high, but there is still a lack of intra-operative preventive measures. This study aimed to evaluate the effect of different irrigating solutions continuous irrigation on intra-articular inflammation and cartilage degeneration. METHODS 66 New Zealand rabbits were randomly divided into normal (N) group, no treatment (NT) group, sodium chloride (NaCl) group, magnesium sulfate (MgSO4) group, and calcium chloride (CaCl2) group. The right knee joint of the experimental group was utilized to construct the model of PTOA, and the left side was utilized as the normal control group. At different time points postoperatively, the blood concentration of hemoglobin and Mg2 + , the synovial fluid concentration of IL-1 β, TNF-α, tartrate-resistant acid phosphatase-5b (TRAP-5b), and Type II Collagen, the gene expression of IL-1 β and MMP-3, and the protein expression of TRPV5 and CaM were detected. Pearson's linear correlation was employed to identify the possible relationship between the expression of TRAP-5b and the expression of IL-1β, IL-6, TNF-α, and Type II collagen. The hematoxylin and eosin staining (HE), Masson's trichrome staining, and Alcian blue staining were performed at postoperative 35 days. Osteoarthritis Scoring (OA score) comprised categories including Alcian blue staining, cartilage histology, the cellular density of cartilage, degree of cell disintegration, and formation of chondrocyte cluster were blindly scored by trained researchers at postoperative 35 days. RESULTS There was no statistical difference (P > 0.05) in the hemoglobin concentration between different groups. The concentration of serum Mg2+ in the MgSO4 group was higher than that of the other three groups (P < 0.05) on the same day of operation, then gradually decreased. The expression of IL-1 β, IL-6, and TRAP-5b in synovial fluid increased 5 days after the operation, decreased at 15 days, and then increased again with time in the NT group, NaCl group, and NT group and NaCl group. At 35 days after the operation, the expression of IL-1 β, IL-6, TRAP-5b, and type II collagen in the MgSO4 group were lower than that in the other three groups (except group N) (P < 0.05).The correlation analysis results showed that the TRAP-5b levels correlated positively with IL-1 β, IL-6, TNF-α, and type II collagen concentrations. The histological examination revealed that the surface smoothness of cartilage, the morphology of chondrocytes, the arrangement of collagen fibers, and the density of proteoglycan in the MgSO4 group were better than those in other experimental groups. At 35 days postoperatively, the gene expression of IL-1 β and MMP-3 and the protein expression of CaM and TRPV5 in synovium in the MgSO4 group was lower than that in the NaCl group and CaCl2 group. CONCLUSION Intra-operative irrigation with magnesium sulfate solution can inhibit the inflammatory factors and the expression of TRPV5, which can also reduce collagen loss and delay cartilage degeneration. Therefore, the use of magnesium sulfate in intra-operative irrigation may be an ideal choice to prevent PTOA.
Collapse
Affiliation(s)
- Xinghui Liu
- Department of Anatomy, Hubei University of Medicine, Shiyan, 442000 Hubei China
| | - Rong Chen
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| | - Liangbo Jiang
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| | - Xiangwei Li
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| | - Zhibo Sun
- Department of Traumatic Orthopedics, RenminHospital, Hubei University of Medicine, No.39 Chaoyang Road, Maojian District, Shiyan, 442000 Hubei China
| |
Collapse
|
89
|
Ikeda K, Otsuki S, Okuno N, Sezaki S, Nakagawa K, Miyamoto Y, Okamoto Y, Wakama H, Okayoshi T, Neo M. Development of a novel meniscal sheet scaffold and its effectiveness for meniscal regeneration in a rabbit defect model. J Biomater Appl 2021; 36:517-527. [PMID: 33691527 DOI: 10.1177/08853282211000523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study evaluated the biomechanical strength of a novel two-layer meniscal sheet scaffold (MSS) consisting of polyglycolic acid and poly-Llactic acid/caprolactone and investigated meniscal healing using wrapping treatment for meniscal defect model in a rabbit. The ultimate failure load of the MSS was determined using a tensile testing machine, in vitro. A 2-mm cylindrical defects were created at the medial meniscus of rabbit knees (n = 40). Each knee was assigned to one of two groups. The defect group was not treated and the MSS group underwent wrapping treatment with MSS. Menisci were harvested at 2, 4, 8, and 12 weeks post-implantation. The regenerated meniscus and defect size were evaluated using macrophotographs. Ishida scores for regenerated tissue were determined using Safranin-O/Fast Green staining. Immunohistochemical analysis of Ki-67 for cell proliferation, anti-type I and II collagen antibodies for structure of the regenerated tissue was elucidated. Medial femoral cartilage was stained with Safranin-O/Fast Green and evaluated with Osteoarthritis Research Society International (OARSI) scores. The strength of MSS was maintained over 90% from initial time point to 4 weeks after hydrolysis and over 60% of the strength remained at 8 weeks. The surface area of the meniscus was larger and the defect size smaller in the MSS group than in the defect group at 8 and 12 weeks. Ishida scores revealed that the MSS group improved significantly compared to that of the defect group at all postsurgery time points evaluated. Ki-67 positive cell ratio was significantly higher in the MSS group. OARSI score of the defect group was significantly higher and the defect group showed progressive degeneration in the articular cartilage from 8 to 12 weeks. Overall, wrapping meniscus defects with MSS was useful for accelerating meniscal healing from an early stage and beneficial for tissue regeneration and promoting extracellular matrix maturation.
Collapse
Affiliation(s)
- Kuniaki Ikeda
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | | | - Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yuki Miyamoto
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiro Okayoshi
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| |
Collapse
|
90
|
Wang AT, Zhao M, Feng Y, Jia H, Zhang L, Yu H, Li Z, Han Z, Han Z. Multifaceted Optimization of MSC-Based Formulation upon Sodium Iodoacetate-Induced Osteoarthritis Models by Combining Advantageous HA/PG Hydrogel and Fluorescent Tracer. Stem Cells Int 2021; 2021:1-13. [DOI: 10.1155/2021/8827212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023] Open
Abstract
Owing to the boundedness of conventional remedies upon articular cartilage for self-rehabilitation and the incrementally senior citizens, the incidence of osteoarthritis (OA) is increasing worldwide. Empirical studies have revealed the advantageous and promising potentials of mesenchymal stem/stromal cells (MSCs) on the refractory OA, whereas the deficiency of systematic and detailed exploration of MSC-based therapy largely hampers the large-scale applications in regenerative medicine. Herein, we initially utilized the monosodium iodoacetate- (MIA-) induced OA rabbit models and investigated the therapeutic effect of human umbilical cord-derived UC-MSCs at serial dose gradients with the splendid hyaluronic acid and/or propylene glycol hydrogels (HA, HA/PG), respectively. Afterwards, we turned to a dual-luciferase reporter tracing system and evaluated the spatiotemporal distribution and metabolokinetics of bifluorescence expressing UC-MSCs (BF-MSCs) in OA rats. Of the aforementioned trials, we verified that the combination of HA/PG and middle-dose MSCs (
cells/ml) eventually manifested the optimal efficacy on OA rabbits. Furthermore, with the aid of the bioluminescence imaging (BLI) technology for dynamic in vitro and in vivo tracking, we intuitively delineated the spatiotemporal distribution and therapeutic process of BF-MSCs in OA rats, which substantially confirmed the reinforcement of HA/PG on BF-MSCs for OA treatment. Collectively, our data conformably demonstrated that the middle dose of UC-MSCs combined with HA/PG hydrogel was sufficient for optimal MSC-based formulation for blocking OA progression and promoting cartilage repair, which supplied overwhelming new references and enlightened MSC-based therapeutic strategies for cartilage defects.
Collapse
Affiliation(s)
- Ai-tong Wang
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
| | - Meng Zhao
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
| | - Ying Feng
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
| | - Honghong Jia
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
| | - Leisheng Zhang
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao 334000, China
| | - Hao Yu
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
| | - Zongjin Li
- The Postdoctoral Research Station, School of Medicine, Nankai University, Tianjin, China
| | - Zhibo Han
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zhongchao Han
- Cell Products of National Engineering Center & National Stem Cell Engineering Research Center, Tianjin IMCELL Stem Cell and Gene Technology Co., Ltd., Tianjin, China
- Precision Medicine Division, Health-Biotech (Tianjin) Stem Cell Research Institute Co., Ltd., Tianjin 301700, China
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood Disease, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Jiangxi Research Center of Stem Cell Engineering, Jiangxi Health-Biotech Stem Cell Technology Co., Ltd., Shangrao 334000, China
| |
Collapse
|
91
|
Iturriaga V, Vásquez B, Bornhardt T, Del Sol M. Effects of low and high molecular weight hyaluronic acid on the osteoarthritic temporomandibular joint in rabbit. Clin Oral Investig 2021; 25:4507-4518. [PMID: 33392807 DOI: 10.1007/s00784-020-03763-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVE To compare the effect between intra-articular infiltration of low molecular weight (LMW-HA) and high molecular weight hyaluronic acid (HMW-HA) on the histopathological characteristics of the cartilage and disc of the temporomandibular joint (TMJ) osteoarthritis (OA) induced in rabbits. MATERIAL AND METHODS An experimental study was conducted on 38 rabbit TMJs. The effect of different hyaluronic acids was compared at 30 and 135 days. Histopathological analysis was performed. Cartilage damage was assessed with the OARSI scale. RESULTS The severity of the induced OA according to OARSI was 3.4 degrees in the mandibular condyle (MC) and 3.2 in the mandibular fossa (MF); the articular disc (AD) presented disorganization of the collagen fibers, with randomly arranged hypertrophic chondrocytes. At 30 days, untreated TMJs worsened. TMJ treated with LMW-HA reduced its severity to 1.5 degrees in MC and 1.6 in MF, the AD presented histological aspects within normal limits. TMJ treated with HMW-HA presented 2.4 degrees in MC and 2.2 in MF, the AD maintained characteristics similar to the group with OA. At 135 days, all groups worsened. CONCLUSION Exogenous HA is effective in the management of TMJ-OA induced in rabbits, showing cartilage and articular disc repair at 30 days. The LMW-HA group had better effects on joint tissue than HMW-HA 30 days after treatment. However, at 135 days, both groups presented regression of joint tissue repair. CLINICAL RELEVANCE HA is effective in the anti-arthritic treatment of TMJ-OA induced in rabbits; LMW-HA shows better results in cartilage and articular disc repair than HMW-HA.
Collapse
Affiliation(s)
- Veronica Iturriaga
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Bélgica Vásquez
- Faculty of Health Sciences, Universidad de Tarapacá, Avenida 18 de Septiembre #2222, Arica, Chile.
| | - Thomas Bornhardt
- Department of Integral Adult Care Dentistry, Temporomandibular Disorder and Orofacial Pain Program, Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco, Chile
| | - Mariano Del Sol
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Doctoral Program in Morphological Sciences, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
92
|
Okuno N, Otsuki S, Aoyama J, Nakagawa K, Murakami T, Ikeda K, Hirose Y, Wakama H, Okayoshi T, Okamoto Y, Hirano Y, Neo M. Feasibility of a self-assembling peptide hydrogel scaffold for meniscal defect: An in vivo study in a rabbit model. J Orthop Res 2021; 39:165-176. [PMID: 32852842 DOI: 10.1002/jor.24841] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 06/19/2020] [Accepted: 08/18/2020] [Indexed: 02/04/2023]
Abstract
The inner avascular zone of the meniscus has limited healing capacity as the area is poorly vascularized. Although peptide hydrogels have been reported to regenerate bone and cartilage, their effect on meniscus regeneration remains unknown. We tested whether the self-assembling peptide hydrogel scaffold KI24RGDS stays in the meniscal lesion and facilitates meniscal repair and regeneration in an induced rabbit meniscal defect model. Full-thickness (2.0 mm diameter) cylindrical defects were introduced into the inner avascular zones of the anterior portions of the medial menisci of rabbit knees (n = 40). Right knee defects were left empty (control group) while the left knee defects were transplanted with peptide hydrogel (KI24RGDS group). Macroscopic meniscus scores were significantly higher in the KI24RGDS group than in the control group at 2, 4, and 8 weeks after surgery. Histological examinations including quantitative and qualitative scores indicated that compared with the control group, the reparative tissue in the meniscus was significantly enhanced in the KI24RGDS group at 2, 4, 8, and 12 weeks after surgery. Immunohistochemical staining showed that the reparative tissue induced by KI24RGDS at 12 weeks postimplantation was positive for Type I and II collagen. KI24RGDS is highly biocompatible and biodegradable, with strong stiffness, and a three dimensional structure mimicking native extracellular matrix and RGDS sequences that enhance cell adhesion and proliferation. This in vivo study demonstrated that KI24RGDS remained in the meniscal lesion and facilitated the repair and regeneration in a rabbit meniscal defect model.
Collapse
Affiliation(s)
- Nobuhiro Okuno
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Shuhei Otsuki
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Jo Aoyama
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Kosuke Nakagawa
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiko Murakami
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Kuniaki Ikeda
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | | | - Hitoshi Wakama
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Tomohiro Okayoshi
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshinori Okamoto
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| | - Yoshiaki Hirano
- Department of Chemistry and Materials Engineering, Faculty of Chemistry, Materials, and Bioengineering, Kansai University, Osaka, Japan
| | - Masashi Neo
- Department of Orthopedic Surgery, Osaka Medical College, Osaka, Japan
| |
Collapse
|
93
|
Huang K, Cai HL, Zhang PL, Wu LD. Comparison between two rabbit models of posttraumatic osteoarthritis: A longitudinal tear in the medial meniscus and anterior cruciate ligament transection. J Orthop Res 2020; 38:2721-2730. [PMID: 32129514 DOI: 10.1002/jor.24645] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/21/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
Animal osteoarthritis (OA) models have been developed to understand OA progression and evaluate new OA therapies. However, individual variations in joint lesions remain a critical problem in most current OA models. We established a novel rabbit model by creating a longitudinal tear in the medial meniscus body that was reproducible and similar to posttraumatic biomechanical disturbances in human OA. New Zealand rabbits underwent surgery and were assessed for 9 weeks. The rabbits were randomized into the sham control, medial meniscal tear (MMT), and anterior cruciate ligament transection (ACLT) groups. The animals were sacrificed at 4, 6, and 9 weeks posttreatment. The knee joints were harvested for histological and gene expression assessments. Both the MMT and ACLT procedures led to time-dependent degenerative changes in the femoral condyle cartilage. At each time point, the MMT group cartilage showed more severe degenerative changes than did the ACLT group cartilage. Consistently, inflammatory cytokine and catabolic gene expression were significantly higher, and anabolic gene expression was significantly lower in the MMT group than in the ACLT group. MMT treatment caused more severe structural damage to the cartilage and higher catabolic gene expression levels than the ACLT model at each time point. The MMT model may be highly beneficial in investigating posttraumatic OA (PTOA) development, especially PTOA from a meniscal injury. The MMT model replicated key features of human PTOA, including meniscal lesions, inflammatory responses, and the progression to osteoarthritic cartilage degeneration, thereby providing an exciting new avenue for translating promising treatments to clinical practice.
Collapse
Affiliation(s)
- Kai Huang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Hai-Li Cai
- Department of Ultrasound, The 903rd Hospital of PLA, Hangzhou, China
| | - Peng-Li Zhang
- Department of Orthopedic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou, China
| | - Li-Dong Wu
- Department of Orthopedic Surgery, The Second Hospital of Medical College, Zhejiang University, Hangzhou, China
| |
Collapse
|
94
|
Rebai MA, Sahnoun N, Abdelhedi O, Keskes K, Charfi S, Slimi F, Frikha R, Keskes H. Animal models of osteoarthritis: characterization of a model induced by Mono-Iodo-Acetate injected in rabbits. Libyan J Med 2020; 15:1753943. [PMID: 32281500 PMCID: PMC7178858 DOI: 10.1080/19932820.2020.1753943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 03/30/2020] [Indexed: 11/04/2022] Open
Abstract
Knee Osteoarthritis is a considerable public health concern, both in terms of life quality and treatment financial impacts. To investigate this disease, animal models are deemed a promising alternative. In fact, although a perfect model is generally farfetched, the creation of models that simulate human disease as accurately as possible remains an important research stake. This study aims to highlight the usefulness of the model induced by injected Mono-Iodo-Acetate and to standardize it for the rabbit species. Osteoarthritis was induced by an infra-patellar injection of 0.2 ml of an MIA solution in the left knee of 24 female New Zealand rabbits. The right knee served as a control by receiving an injection of physiological serum. The rabbits were divided into 4 groups of 6 individuals each according to the dose of MIA received per knee. All rabbits were euthanized 30 days after the injection. After sacrifice, the knees were carefully dissected and macroscopic and microscopic scores of cartilage, meniscal and synovial lesions were attributed to each group. Our study followed the laboratory animal care and management guideline published in 2017 by the Canadian Council of Animal Care. The control knees of all rabbits showed no macroscopic or microscopic lesions. The macroscopic lesions: osteophytes, meniscal lesions, fibrillation and erosion of the cartilage and microscopic lesions: disorganization of the chondrocytes, decrease in proteoglycans and synovial inflammation clinically diagnosed in human pathology were all detected and were similarly reproducible among the knees of the same group. Through this work, we highlighted the merits of the arthritis model induced by MIA, namely its simulation of several aspects of human pathology. Further advantages are low cost, speed, reproducibility. This model notably avoids delicate and risky surgical operations.
Collapse
Affiliation(s)
- Mohamed Ali Rebai
- Research Laboratory Cell Therapy and Experimental Musculoskeletal System LR 18SP11, Medecine University Sfax, Tunisia
| | - Nizar Sahnoun
- Department of Orthopedic Surgery and Traumatology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Oussema Abdelhedi
- Research Laboratory Cell Therapy and Experimental Musculoskeletal System LR 18SP11, Medecine University Sfax, Tunisia
| | - Khaled Keskes
- Department of Orthopedic Surgery and Traumatology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Slim Charfi
- Department of Pathology, Habib Bourguiba University Hospital, Sfax, Tunisia
| | - Fathia Slimi
- Biology department, Science University, Sfax, Tunisia
| | - Rim Frikha
- Department of Genetics, Hedi Chaker University Hospital, Sfax, Tunisia
| | - Hassib Keskes
- Research Laboratory Cell Therapy and Experimental Musculoskeletal System LR 18SP11, Medecine University Sfax, Tunisia
- Department of Orthopedic Surgery and Traumatology, Habib Bourguiba University Hospital, Sfax, Tunisia
| |
Collapse
|
95
|
Malek S, Weng HY, Martinson SA, Rochat MC, Béraud R, Riley CB. Evaluation of serum MMP-2 and MMP-3, synovial fluid IL-8, MCP-1, and KC concentrations as biomarkers of stifle osteoarthritis associated with naturally occurring cranial cruciate ligament rupture in dogs. PLoS One 2020; 15:e0242614. [PMID: 33211763 PMCID: PMC7676649 DOI: 10.1371/journal.pone.0242614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 11/06/2020] [Indexed: 11/19/2022] Open
Abstract
The purpose of this study was to evaluate matrix metalloproteinases (MMP) -2 and MMP-3 in serum, and keratinocyte-derived chemoattractant (KC), interleukin 8 (IL-8) and monocyte chemoattractant 1 (MCP-1) in synovial fluid (SF) as stifle osteoarthritis (OA) biomarkers in dogs. Dogs with naturally occurring cranial cruciate ligament (CrCL) rupture (OA group) and healthy controls were recruited. Stifles with CrCL deficiency were surgically stabilized. Serum, SF, and synovial biopsy samples were collected from the OA group preoperatively, whereas samples were collected once from control dogs. A blinded veterinary pathologist graded synovial biopsies. Serum and SF analyses were performed using xMAP technology. General linear regression was used for statistical comparisons of serum biomarkers, and mixed linear regression for SF biomarkers and temporal concentration changes. The overall discriminative ability was quantified using area under curve (AUC). Spearman's correlation coefficient was used to assess correlations between synovial histology grades and the biomarkers. Samples from 62 dogs in the OA group and 50 controls were included. The MMP-2 and MMP-3 concentrations between the OA and control groups were not significantly different, and both with an AUC indicating a poor discriminative ability. All three SF biomarker concentrations were significantly different between the OA group and controls (P <0.05). The MCP-1 was the only biomarker showing an acceptable discriminative performance with an AUC of 0.91 (95% confidence interval: 0.83-0.98). The sum of the inflammatory infiltrate score was significantly correlated with all three SF biomarkers (P <0.01). Summed synovial stroma, and all scores combined were significantly correlated with IL-8 and MCP-1 concentrations (P <0.003), and the summed synoviocyte scores were significantly correlated with MCP-1 concentrations (P <0.001). Correlations between MCP-1 concentrations and synovial histopathologic grading and its discriminative ability suggest its potential as a synovitis biomarker in canine stifle OA associated with CrCL rupture.
Collapse
Affiliation(s)
- Sarah Malek
- Department of Veterinary Clinical Sciences, Purdue University School of Veterinary Medicine, West Lafayette, Indiana, United States of America
- * E-mail:
| | - Hsin-Yi Weng
- Department of Comparative Pathobiology, Purdue University School of Veterinary Medicine, West Lafayette, Indiana, United States of America
| | - Shannon A. Martinson
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Mark C. Rochat
- Department of Veterinary Clinical Sciences, Purdue University School of Veterinary Medicine, West Lafayette, Indiana, United States of America
| | - Romain Béraud
- Centre Vétérinaire Daubigny, Quebec City, Quebec, Canada
| | | |
Collapse
|
96
|
Fernández-Martín S, Permuy M, López-Peña M, Muñoz F, González-Cantalapiedra A. No Effect of Long-Term Risedronate Use on Cartilage and Subchondral Bone in an Experimental Rabbit Model of Osteoarthritis. Front Vet Sci 2020; 7:576212. [PMID: 33240955 PMCID: PMC7667022 DOI: 10.3389/fvets.2020.576212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Osteoarthritis (OA) is the most prevalent degenerative joint disease in animals and humans. It is characterized by pain, articular cartilage damage and joint stiffness. It has been suggested that the status of the subchondral bone compartment plays an important role in the initiation and progression of OA. Bisphosphonates have been proposed as a potential disease-modifying treatment for OA, however their effectiveness is not yet clear. Twenty-four male adult New Zealand rabbits were used to evaluate the effects of risedronate on the subchondral bone quality and cartilage degradation in a long-term model of experimentally induced OA. Animals underwent an anterior cruciate ligament transection and partial medial meniscectomy or sham operation in only one knee, which was randomly chosen, using the contralateral as healthy control. Animals were divided into three groups (n = 8): untreated control group and sham surgery control group; both groups received only vehicle; and risedronate group, treated with 2.5 mg orally weekly for 24 weeks. Stifle joints were harvested and scanned using a high-resolution micro-CT to evaluate the subchondral plate and trabecular bone changes. The macroscopic evaluation and histological analysis were determined using an adapted Osteoarthritis Research Society International scoring scheme to assess the cartilage degeneration. The lateral and medial femoral condyle and tibial plateau were evaluated. Additionally, the histological synovial membrane assessment was carried out. Sample analysis showed that the experimental model induced osteoarthritic changes in the operated joints, whereas in sham-operated rabbits, almost no histological changes were observed on articular cartilage surfaces. In terms of macroscopic and histological analyses, risedronate-treated animals did not show improved cartilage health compared with untreated operated rabbits, but a slightly anti-inflammatory activity was observed in the synovial membrane. Risedronate administration showed a slight tendency to increase subchondral bone plate thickness in lateral compartments but, it did not show conservation of periarticular bone and was not be able to suppress the osteophyte formation. In conclusion, long-term risedronate use did not demonstrate a positive effect on reducing the cartilage damage, and failed to prevent the subchondral bone changes and osteophytogenesis in an experimental rabbit model of OA.
Collapse
Affiliation(s)
- Silvia Fernández-Martín
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | - María Permuy
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | - Mónica López-Peña
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | - Fernando Muñoz
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| | - Antonio González-Cantalapiedra
- Department of Anatomy, Animal Production and Veterinary Clinical Sciences, Veterinary Faculty, Universidad de Santiago de Compostela, Lugo, Spain
| |
Collapse
|
97
|
Oláh T, Michaelis JC, Cai X, Cucchiarini M, Madry H. Comparative anatomy and morphology of the knee in translational models for articular cartilage disorders. Part II: Small animals. Ann Anat 2020; 234:151630. [PMID: 33129976 DOI: 10.1016/j.aanat.2020.151630] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/26/2022]
Abstract
BACKGROUND Small animal models are critical to model the complex disease mechanisms affecting a functional joint leading to articular cartilage disorders. They are advantageous for several reasons and significantly contributed to the understanding of the mechanisms of cartilage diseases among which osteoarthritis. METHODS Literature search in Pubmed. RESULTS AND DISCUSSION This narrative review summarizes the most relevant anatomical structural and functional characteristics of the knee (stifle) joints of the major small animal species, including mice, rats, guinea pigs, and rabbits compared with humans. Specific characteristics of each species, including kinematical gait parameters are provided and compared with the human situation. When placed in a proper context respecting their challenges and limitations, small animal models are important and appropriate models for articular cartilage disorders.
Collapse
Affiliation(s)
- Tamás Oláh
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | | | - Xiaoyu Cai
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University, Homburg, Germany; Department of Orthopaedic Surgery, Saarland University Medical Center, Homburg, Germany.
| |
Collapse
|
98
|
Feng M, Peng H, Yao R, Zhang Z, Mao G, Yu H, Qiu Y. Inhibition of cellular communication network factor 1 (CCN1)-driven senescence slows down cartilage inflammaging and osteoarthritis. Bone 2020; 139:115522. [PMID: 32622876 DOI: 10.1016/j.bone.2020.115522] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 12/23/2022]
Abstract
OBJECTIVE To explore the role of cellular communication network factor 1 (CCN1) in cartilage inflammaging and osteoarthritis (OA) pathogenesis in the isolated primary human chondrocytes in vitro, cartilage explants ex vivo, and a pre-clinical mice model. METHODS Recombinant human CCN1 stimulation and small interfering RNA inhibition were conducted in human chondrocytes. The RNA was extracted to quantify catabolic targets and pro-inflammatory genes and the proteins were probed with specific antibodies. IL-1β and IL-6 were monitored by ELISA. IHC was performed to evaluate important hypertrophic hallmarks and catabolic markers. The effects of Tanshinone IIA on chondrocytes were investigated in both time-dependent and dose-dependent processes. Cartilage explants were cultured in growth medium and further treated with Tanshinone IIA. The intra-articular injection was performed in 13 months old C57BL/6J mice. Safranin O and fast green staining were performed to evaluate the histological change of cartilage followed by a semi-quantitative analysis using the OARSI scoring system. RESULTS RNA and protein levels of CCN1 increased in an age-dependent manner compared to young donors. Increased CCN1 expression was also found in the damaged area compared to the non-lesion area which correlated with the advanced pathological change in human OA. The overexpression of CCN1 promoted chondrocytes senescence, while the down-regulation of CCN1 by small interfering RNA reduced CCN1 production and limited inflammation secretion suggesting that CCN1 was a possible novel target to intervene OA. Inhibition of CCN1 by using Tanshinone IIA could reduce SASP components in a dose- and time-dependent manner. Additionally, our data showed that Tanshinone IIA was able to preserve articular cartilage integrity, suppress CCN1 production, and inhibit SASP factors in human cartilage explants and in aged mice model. CONCLUSION This study showed that CCN1 signaling aggravated cartilage inflammaing and matrix degradation. Collectively, our findings showed new insight into repurposing Tanshinone IIA for slowing down OA advancement in human and mice by inhibiting the CCN1 axis.
Collapse
Affiliation(s)
- Meng Feng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| | - Hang Peng
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Ricky Yao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China; Department of Orthopedics, University of Virginia, Charlottesville 22908, USA
| | - Zhifeng Zhang
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China; Department of Joint Surgery, the Second Affiliated Hospital of Inner Mongolia Medical University, 010030 Hohhot, People's Republic of China
| | - Genwen Mao
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Haiquan Yu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China
| | - Yusheng Qiu
- Department of Orthopedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, People's Republic of China.
| |
Collapse
|
99
|
Kajabi AW, Casula V, Ojanen S, Finnilä MA, Herzog W, Saarakkala S, Korhonen RK, Nissi MJ, Nieminen MT. Multiparametric MR imaging reveals early cartilage degeneration at 2 and 8 weeks after ACL transection in a rabbit model. J Orthop Res 2020; 38:1974-1986. [PMID: 32129515 DOI: 10.1002/jor.24644] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 01/20/2020] [Accepted: 02/29/2020] [Indexed: 02/04/2023]
Abstract
In this study, the rabbit model with anterior cruciate ligament transection (ACLT) was used to investigate early degenerative changes in cartilage using multiparametric quantitative magnetic resonance imaging (qMRI). ACLT was surgically induced in the knees of skeletally mature New Zealand White rabbits (n = 14). ACL transected and contralateral knee compartments-medial femur, lateral femur, medial tibia, and lateral tibia-were harvested 2 (n = 8) and 8 weeks (n = 6) postsurgery. Twelve age-matched nonoperated rabbits served as control. qMRI was conducted at 9.4 T and included relaxation times T1 , T2 , continuous-wave T1ρ (CWT1ρ ), adiabatic T1ρ (AdT1ρ ), adiabatic T2ρ (AdT2ρ ), and relaxation along a fictitious field (TRAFF ). For reference, quantitative histology and biomechanical measurements were carried out. Posttraumatic changes were primarily noted in the superficial half of the cartilage. Prolonged T1 , T2 , CWT1ρ , and AdT1ρ were observed in the lateral femur 2 and 8 weeks post-ACLT, compared with the corresponding control and contralateral groups (P < .05). Collagen orientation was significantly altered in the lateral femur at 2 weeks post-ACLT compared with the corresponding control group. In the medial femur, all the studied relaxation time parameters, except TRAFF , were increased 8 weeks post-ACLT, as compared with the corresponding contralateral and control groups (P < .05). Similarly, significant proteoglycan loss was observed in the medial femur at 8 weeks following surgery (P < .05). Multiparametric MRI demonstrated early degenerative changes primarily in the superficial cartilage with T1 , T2 , CWT1ρ , and AdT1ρ sensitive to cartilage changes at 2 weeks after surgery.
Collapse
Affiliation(s)
- Abdul Wahed Kajabi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Victor Casula
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland
| | - Simo Ojanen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko A Finnilä
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Walter Herzog
- Human Performance Laboratory, Faculty of Kinesiology, University of Calgary, Calgary, Alberta, Canada
| | - Simo Saarakkala
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| | - Rami K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Mikko J Nissi
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Department of Applied Physics, University of Eastern Finland, Kuopio, Finland
| | - Miika T Nieminen
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, University of Oulu and Oulu University Hospital, Oulu, Finland.,Department of Diagnostic Radiology, Oulu University Hospital, Oulu, Finland
| |
Collapse
|
100
|
Li Y, Chen M, Zhou W, Gao S, Luo X, Peng L, Yan J, Wang P, Li Q, Zheng Y, Liu S, Cheng Y, Guo Q. Cell-free 3D wet-electrospun PCL/silk fibroin/Sr 2+ scaffold promotes successful total meniscus regeneration in a rabbit model. Acta Biomater 2020; 113:196-209. [PMID: 32561472 DOI: 10.1016/j.actbio.2020.06.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/06/2020] [Accepted: 06/10/2020] [Indexed: 01/09/2023]
Abstract
Considering the intrinsic poor self-healing capacity of meniscus, tissue engineering has become a new direction for the treatment of meniscus lesions. However, disturbed by mechanical stability and biocompatibility, most meniscus implants fail to relieve symptoms and prevent the development of osteoarthritis. The goal of this study was to develop a potential meniscal substitute for clinical application. Here, silk fibroin with good mechanical performance and biocompatibility, and strontium ion acting as bioactive factor, were incorporated with Ɛ-Polycaprolactone to fabricate a meniscus scaffold (SP-Sr). By the wet-electrospun method, the 3D SP-Sr provided suitable pore size (100-200 μm) and enough mechanical support (61.6 ± 2.9 MPa for tensile modulus and 0.11 ± 0.03 MPa for compressive modulus). Moreover, after addition of Sr2+, the SP-Sr seeded by rabbit adipose tissue-derived stromal cells (rADSCs) showed the highest secretion with 2.61- and 2.98-fold increase in collagen and aggrecan, respectively, compared with SF/PCL group. And the extracellular matrix related genes expression in SP-Sr also showed upregulation results. Particularly, the expression of the collagen II gene, which played a crucial role in the formation of meniscal inner avascular region, showed a 9-fold increase in SP-Sr compared with pure PCL group. Furthermore, the MRI results of SP-Sr implanted in rabbits with total meniscectomy for 6 months demonstrated effective prevention of meniscus extrusion and relieving joint space narrowing compared with meniscectomy group. And the effects of cartilage protection and delaying osteoarthritis development were confirmed by Pathological examination. Especially, after 6-month implantation, the neo-menisci showed similar structural constituent and mechanical performance. STATEMENT OF SIGNIFICANCE: Meniscus regeneration faces great challenge due to the meniscus having limited healing potential owing to its anisotropic structure, its hypocellularity and hypovascularity. The present tissue engineering solutions have failed to maintain the biological function for meniscus reconstruction in vivo because of fragile and poor biocompatible materials, leading to long-term joint degeneration. The goal of this study was to develop a meniscal substitute potential for clinical application. Here, silk fibroin and strontium were incorporated with Ɛ-Polycaprolactone by wet-electrospinning method to fabricate a meniscus scaffold (SP-Sr). The 6-month implantation results revealed that SP-Sr scaffold was effective in preventing meniscus extrusion, cartilage protection and delaying osteoarthritis development, and the regenerated menisci showed similar structural constituent and mechanical performance.
Collapse
Affiliation(s)
- Yangyang Li
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Mingxue Chen
- Department of Orthopedic Surgery, Beijing Jishuitan Hospital, Fourth Clinical College of Peking University, No. 31 Xinjiekou East Street, Xicheng District, Beijing 100035, China
| | - Wenhao Zhou
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Shuang Gao
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Xujiang Luo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Liqing Peng
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Jianglong Yan
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Pei Wang
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China
| | - Qiyao Li
- Department of Biomedical Engineering, Materials Research Institute, Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yufeng Zheng
- Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Shuyun Liu
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| | - Yan Cheng
- Center for Biomedical Materials and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Haidian District Chengfu Road No.205, Beijing 100871, China.
| | - Quanyi Guo
- Institute of Orthopedics, Beijing Key Lab of Regenerative Medicine in Orthopedics, Key Lab of Musculoskeletal Trauma & War Injuries in PLA, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|