51
|
Martínez-Rojas VA, Barragán-Iglesias P, Rocha-González HI, Murbartián J, Granados-Soto V. Role of TRPV1 and ASIC3 in formalin-induced secondary allodynia and hyperalgesia. Pharmacol Rep 2014; 66:964-71. [PMID: 25443722 DOI: 10.1016/j.pharep.2014.06.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 04/02/2014] [Accepted: 06/05/2014] [Indexed: 01/18/2023]
Abstract
BACKGROUND In the present study we determined the role of transient receptor potential V1 channel (TRPV1) and acid-sensing ion channel 3 (ASIC3) in chronic nociception. METHODS 1% formalin was used to produce long-lasting secondary allodynia and hyperalgesia in rats. Western blot was used to determine TRPV1 and ASIC3 expression in dorsal root ganglia. RESULTS Peripheral ipsilateral, but not contralateral, pre-treatment (-10min) with the TRPV1 receptor antagonists capsazepine (0.03-0.3μM/paw) and A-784168 (0.01-1μM/paw) prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in the ipsilateral and contralateral paws. Likewise, peripheral ipsilateral, but not contralateral, pre-treatment with the non-selective and selective ASIC3 blocker benzamil (0.1-10μM/paw) and APETx2 (0.02-2μM/paw), respectively, prevented 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. Peripheral ipsilateral post-treatment (day 6 after formalin injection) with capsazepine (0.03-0.3μM/paw) and A-784168 (0.01-1μM/paw) reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. In addition, peripheral ipsilateral post-treatment with benzamil (0.1-10μM/paw) and APETx2 (0.02-2μM/paw), respectively, reversed 1% formalin-induced secondary mechanical allodynia and hyperalgesia in both paws. TRPV1 and ASIC3 proteins were expressed in dorsal root ganglion in normal conditions, and 1% formalin injection increased expression of both proteins in this location at 1 and 6 days compared to naive rats. CONCLUSIONS Data suggest that TRPV1 and ASIC3 participate in the development and maintenance of long-lasting secondary allodynia and hyperalgesia induced by formalin in rats. The use of TRPV1 and ASIC3 antagonists by peripheral administration could prove useful to treat chronic pain.
Collapse
Affiliation(s)
- Vladimir A Martínez-Rojas
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico
| | - Paulino Barragán-Iglesias
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico
| | - Héctor I Rocha-González
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, México, D.F., Mexico
| | - Janet Murbartián
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados (Cinvestav), Sede Sur., México, D.F., Mexico.
| |
Collapse
|
52
|
Abstract
The discovery of new drug targets represents a real opportunity for developing fresh strategies against pain. Ion channels are interesting targets because they are directly involved in the detection and the transmission of noxious stimuli by sensory fibres of the peripheral nervous system and by neurons of the spinal cord. Acid-Sensing Ion Channels (ASICs) have emerged as important players in the pain pathway. They are neuronal, voltage-independent depolarizing sodium channels activated by extracellular protons. The ASIC family comprises several subunits that need to associate into homo- or hetero-trimers to form a functional channel. The ASIC1 and ASIC3 isoforms are particularly important in sensory neurons, whereas ASIC1a, alone or in association with ASIC2, is essential in the central nervous system. The potent analgesic effects associated with their inhibition in animals (which can be comparable to those of morphine) and data suggesting a role in human pain illustrate the therapeutic potential of these channels.
Collapse
Affiliation(s)
- Eric Lingueglia
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des Lucioles, Sophia Antipolis, 06560 Valbonne, France - Université de Nice-Sophia Antipolis, 660 route des Lucioles, 06560 Valbonne, France - LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| |
Collapse
|
53
|
Gong W, Kolker SJ, Usachev Y, Walder RY, Boyle DL, Firestein GS, Sluka KA. Acid-sensing ion channel 3 decreases phosphorylation of extracellular signal-regulated kinases and induces synoviocyte cell death by increasing intracellular calcium. Arthritis Res Ther 2014; 16:R121. [PMID: 24923411 PMCID: PMC4095605 DOI: 10.1186/ar4577] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Accepted: 05/20/2014] [Indexed: 12/14/2022] Open
Abstract
Introduction Acid-sensing ion channel 3 (ASIC3) is expressed in synoviocytes, activated by decreases in pH, and reduces inflammation in animal models of inflammatory arthritis. The purpose of the current study was to characterize potential mechanisms underlying the control of inflammation by ASIC3 in fibroblast-like synoviocytes (FLS). Methods Experiments were performed in cultured FLS from wild-type (WT) and ASIC3-/- mice, ASIC1-/- mice, and people with rheumatoid arthritis. We assessed the effects of acidic pH with and without interleukin-1β on FLS and the role of ASICs in modulating intracellular calcium [Ca2+]i, mitogen activated kinase (MAP kinase) expression, and cell death. [Ca2+]i was assessed by fluorescent calcium imaging, MAP kinases were measured by Western Blots; ASIC, cytokine and protease mRNA expression were measured by quantitative PCR and cell death was measured with a LIVE/DEAD assay. Results Acidic pH increased [Ca2+]i and decreased p-ERK expression in WT FLS; these effects were significantly smaller in ASIC3-/- FLS and were prevented by blockade of [Ca2+]i. Blockade of protein phosphatase 2A (PP2A) prevented the pH-induced decreases in p-ERK. In WT FLS, IL-1β increases ASIC3 mRNA, and when combined with acidic pH enhances [Ca2+]i, p-ERK, IL-6 and metalloprotienase mRNA, and cell death. Inhibitors of [Ca2+]i and ERK prevented cell death induced by pH 6.0 in combination with IL-1β in WT FLS. Conclusions Decreased pH activates ASIC3 resulting in increased [Ca2+]i, and decreased p-ERK. Under inflammatory conditions, acidic pH results in enhanced [Ca2+]i and phosphorylation of extracellular signal-regulated kinase that leads to cell death. Thus, activation of ASIC3 on FLS by acidic pH from an inflamed joint could limit synovial proliferation resulting in reduced accumulation of inflammatory mediators and subsequent joint damage.
Collapse
|
54
|
Cuesta A, Del Valle ME, García-Suárez O, Viña E, Cabo R, Vázquez G, Cobo JL, Murcia A, Alvarez-Vega M, García-Cosamalón J, Vega JA. Acid-sensing ion channels in healthy and degenerated human intervertebral disc. Connect Tissue Res 2014; 55:197-204. [PMID: 24432912 DOI: 10.3109/03008207.2014.884083] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Acid-sensing ion channels (ASICs) are a family of H(+)-gated voltage-insensitive ion channels that respond to extracellular acidification by regulating transmembrane Ca(2+) flux. Moreover, ASICs can also be gated by mechanical forces and may function as mechanosensors. The cells of the intervertebral disc (IVD) have an unusual acidic and hyperosmotic microenvironment. Changes in the pH and osmolarity determine the viability of IVD cells and the composition of the extracellular matrix, and both are the basis of IVD degeneration. In this study, the expression of ASICs (ASIC1, ASIC2, ASIC3 and ASIC4) mRNAs and proteins in human healthy and degenerated IVD was evaluated by quantitative reverse transcription-quantitative polymerase chain reaction and Western blot. The distribution of ASIC proteins was determined by immunohistochemistry. The mRNAs for all ASICs were detected in normal human IVD, and significantly increased levels were found in degenerated IVD. Western blots demonstrated the presence of proteins with estimated molecular weights of approximately 68-72 kDa. In both the annulus fibrosus (AF) and nucleus pulposus (NP) of normal IVD, ASIC2 is the most frequently expressed ASIC followed by ASIC3, ASIC1 and ASIC4. In the AF of degenerated IVD, there was a significant increase in the number of ASIC1 and ASIC4 positive cells, whereas in the NP, we found significant increase of expression of ASIC1, ASIC2 and ASIC3. These results describe the occurrence and localization of different ASICs in human healthy IVD, and their increased expression in degenerated IVD, thus suggesting that ASICs may be involved in IVD degeneration.
Collapse
|
55
|
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW. Calcium-permeable ion channels in pain signaling. Physiol Rev 2014; 94:81-140. [PMID: 24382884 DOI: 10.1152/physrev.00023.2013] [Citation(s) in RCA: 240] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The detection and processing of painful stimuli in afferent sensory neurons is critically dependent on a wide range of different types of voltage- and ligand-gated ion channels, including sodium, calcium, and TRP channels, to name a few. The functions of these channels include the detection of mechanical and chemical insults, the generation of action potentials and regulation of neuronal firing patterns, the initiation of neurotransmitter release at dorsal horn synapses, and the ensuing activation of spinal cord neurons that project to pain centers in the brain. Long-term changes in ion channel expression and function are thought to contribute to chronic pain states. Many of the channels involved in the afferent pain pathway are permeable to calcium ions, suggesting a role in cell signaling beyond the mere generation of electrical activity. In this article, we provide a broad overview of different calcium-permeable ion channels in the afferent pain pathway and their role in pain pathophysiology.
Collapse
|
56
|
Noël J, Salinas M, Baron A, Diochot S, Deval E, Lingueglia E. Current perspectives on acid-sensing ion channels: new advances and therapeutic implications. Expert Rev Clin Pharmacol 2014; 3:331-46. [DOI: 10.1586/ecp.10.13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
57
|
Effect of deep tissue incision on pH responses of afferent fibers and dorsal root ganglia innervating muscle. Anesthesiology 2013; 119:1186-97. [PMID: 23732174 DOI: 10.1097/aln.0b013e31829bd791] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Understanding the mechanisms underlying deep tissue pain in the postoperative period is critical to improve therapies. Using the in vitro plantar flexor digitorum brevis muscle-nerve preparation and patch clamp recordings from cultured dorsal root ganglia neurons innervating incised and unincised muscle, the authors investigated responses to various pH changes. METHODS Incision including the plantar flexor digitorum brevis muscle or sham operation was made in the rat hind paw. On postoperative day 1, in vitro single-fiber recording was undertaken. On the basis of previous studies, the authors recorded from at least 40 fibers per group. Also DiI-labeled dorsal root ganglia innervating muscle from rats undergoing incision and a sham operation were cultured and tested for acid responses, using whole cell patch clamp recordings. RESULTS The prevalence of responsive group IV afferents to lactic acid pH 6.5 in the incision group (15 of 67; 22.3%) was greater than that in the control group (2 of 35; 5.7%; P=0.022). In dorsal root ganglia neurons innervating muscle, incision increased mean current amplitudes of acid-evoked currents; the acid-sensing ion channel blocker, amiloride 300 μM, inhibited more than 75% of the acid-evoked current, whereas, the transient receptor vanilloid receptor 1 blocker (AMG9810 1 μM) did not cause significant inhibition. CONCLUSION The authors' experiments demonstrated that incision increases the responses of flexor digitorum brevis muscle afferent fibers to weak acid solutions, and increased acid-evoked currents in dorsal root ganglia innervating muscle. The authors' data suggest that up-regulation of acid-sensing ion channels might underlie this increased chemosensitivity caused by surgery.
Collapse
|
58
|
Chu XP, Grasing KA, Wang JQ. Acid-sensing ion channels contribute to neurotoxicity. Transl Stroke Res 2013; 5:69-78. [PMID: 24323724 DOI: 10.1007/s12975-013-0305-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/06/2013] [Accepted: 11/04/2013] [Indexed: 12/13/2022]
Abstract
Acidosis that occurs under pathological conditions not only affects intracellular signaling molecules, but also directly activates a unique family of ligand-gated ion channels: acid-sensing ion channels (ASICs). ASICs are widely expressed throughout the central and peripheral nervous systems and play roles in pain sensation, learning and memory, and fear conditioning. Overactivation of ASICs contributes to neurodegenerative diseases such as ischemic brain/spinal cord injury, multiple sclerosis, Parkinson's disease, and Huntington's disease. Thus, targeting ASICs might be a potential therapeutic strategy for these conditions. This mini-review focuses on the electrophysiology and pharmacology of ASICs and roles of ASICs in neuronal toxicity.
Collapse
Affiliation(s)
- Xiang-Ping Chu
- Departments of Basic Medical Science and Anesthesiology, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Room M3-417, Kansas City, MO, 64108-2792, USA,
| | | | | |
Collapse
|
59
|
Jeong S, Lee SH, Kim YO, Yoon MH. Antinociceptive effects of amiloride and benzamil in neuropathic pain model rats. J Korean Med Sci 2013; 28:1238-43. [PMID: 23960454 PMCID: PMC3744715 DOI: 10.3346/jkms.2013.28.8.1238] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Accepted: 05/22/2013] [Indexed: 12/04/2022] Open
Abstract
Amiloride and benzamil showed antinocicepitve effects in several pain models through the inhibition of acid sensing ion channels (ASICs). However, their role in neuropathic pain has not been investigated. In this study, we investigated the effect of the intrathecal amiloride and benzamil in neuropathic pain model, and also examined the role of ASICs on modulation of neuropathic pain. Neuropathic pain was induced by L4-5 spinal nerve ligation in male Sprague-Dawley rats weighing 100-120 g, and intrathecal catheterization was performed for drug administration. The effects of amiloride and benzamil were measured by the paw-withdrawal threshold to a mechanical stimulus using the up and down method. The expression of ASICs in the spinal cord dorsal horn was also analyzed by RT-PCR. Intrathecal amiloride and benzamil significantly increased the paw withdrawal threshold in spinal nerve-ligated rats (87%±12% and 76%±14%, P=0.007 and 0.012 vs vehicle, respectively). Spinal nerve ligation increased the expression of ASIC3 in the spinal cord dorsal horn (P=0.01), and this increase was inhibited by both amiloride and benzamil (P<0.001 in both). In conclusion, intrathecal amiloride and benzamil display antinociceptive effects in the rat spinal nerve ligation model suggesting they may present an alternative pharmacological tool in the management of neuropathic pain at the spinal level.
Collapse
Affiliation(s)
- Seongtae Jeong
- Department of Anesthesiology and Pain Medicine, Chonnam National University, Medical School, Gwangju, Korea
| | | | | | | |
Collapse
|
60
|
Sluka KA, Rasmussen LA, Edgar MM, O'Donnell JM, Walder RY, Kolker SJ, Boyle DL, Firestein GS. Acid-sensing ion channel 3 deficiency increases inflammation but decreases pain behavior in murine arthritis. ACTA ACUST UNITED AC 2013; 65:1194-202. [PMID: 23335302 DOI: 10.1002/art.37862] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 01/03/2013] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Through its location on nociceptors, acid-sensing ion channel 3 (ASIC-3) is activated by decreases in pH and plays a significant role in musculoskeletal pain. We recently showed that decreases in pH activate ASIC-3 located on fibroblast-like synoviocytes (FLS), which are key cells in the inflammatory process. The purpose of this study was to test whether ASIC-3-deficient mice with arthritis have altered inflammation and pain relative to controls. METHODS Collagen antibody-induced arthritis (CAIA) was generated by injection of an anti-type II collagen antibody cocktail. Inflammation and pain parameters in ASIC-3(-/-) and ASIC-3(+/+) mice were assessed. Disease severity was assessed by determining clinical arthritis scores, measuring joint diameters, analyzing joint histology, and assessing synovial gene expression by quantitative polymerase chain reaction analysis. Cell death was assessed with a Live/Dead assay of FLS in response to decreases in pH. Pain behaviors in the mice were measured by examining withdrawal thresholds in the joints and paws and by measuring their physical activity levels. RESULTS Surprisingly, ASIC-3(-/-) mice with CAIA demonstrated significantly increased joint inflammation, joint destruction, and expression of interleukin-6 (IL-6), matrix metalloproteinase 3 (MMP-3), and MMP-13 in joint tissue as compared to ASIC-3(+/+) mice. ASIC-3(+/+) FLS showed enhanced cell death when exposed to pH 6.0 in the presence of IL-1β, which was abolished in ASIC-3(-/-) FLS. Despite enhanced disease severity, ASIC-3(-/-) mice did not develop mechanical hypersensitivity of the paw and showed greater levels of physical activity. CONCLUSION Our findings are consistent with the hypothesis that ASIC-3 plays a protective role in the inflammatory arthritides by limiting inflammation through enhanced synoviocyte cell death, which reduces disease severity, and through the production of pain, which reduces joint use.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Department of Physical Therapy and Rehabilitation Science, University of Iowa Carver College of Medicine, Iowa City 52242, USA.
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Abstract
Hypoxia represents the lack of oxygen below the basic level, and the range of known channels related to hypoxia is continually increasing. Since abnormal hypoxia initiates pathological processes in numerous diseases via, to a great degree, producing acidic microenvironment, the significance of these channels in this environment has, until now, remained completely unknown. However, recent discovery of acid-sensing ion channels (ASICs) have enhanced our understanding of the hypoxic channelome. They belong to the degenerin/epithelial Na (+) channel family and function once extracellular pH decreases to a certain level. So does the ratiocination emerge that ASICs participate in many hypoxia-induced pathological processes, including pain, apoptosis, malignancy, which all appear to involve them. Since evidence suggests that activity of ASICs is altered under pathological hypoxia, future studies are needed to deeply explore the relationship between ASICs and hypoxia, which may provide a progressive understanding of hypoxic effects in cancer, arthritis, intervertebral disc degeneration, ischemic brain injury and so on.
Collapse
Affiliation(s)
- Guo Yingjun
- Department of Basic Medicine; Qilu Hospital; Shandong University; Ji'nan, Shandong Province, PR China
| | | |
Collapse
|
62
|
|
63
|
Baron A, Diochot S, Salinas M, Deval E, Noël J, Lingueglia E. Venom toxins in the exploration of molecular, physiological and pathophysiological functions of acid-sensing ion channels. Toxicon 2013; 75:187-204. [PMID: 23624383 DOI: 10.1016/j.toxicon.2013.04.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/10/2013] [Indexed: 02/07/2023]
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent proton-gated cation channels that are largely expressed in the nervous system as well as in some non-neuronal tissues. In rodents, six different isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) can associate into homo- or hetero-trimers to form a functional channel. Specific polypeptide toxins targeting ASIC channels have been isolated from the venoms of spider (PcTx1), sea anemone (APETx2) and snakes (MitTx and mambalgins). They exhibit different and sometimes partially overlapping pharmacological profiles and are usually blockers of ASIC channels, except for MitTx, which is a potent activator. This review focuses on the use of these toxins to explore the structure-function relationships, the physiological and the pathophysiological roles of ASIC channels, illustrating at the same time the therapeutic potential of some of these natural compounds.
Collapse
Affiliation(s)
- Anne Baron
- CNRS, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 06560 Valbonne, France; Université de Nice-Sophia Antipolis, 06560 Valbonne, France; LabEx Ion Channel Science and Therapeutics, 06560 Valbonne, France
| | | | | | | | | | | |
Collapse
|
64
|
Chen CC, Wong CW. Neurosensory mechanotransduction through acid-sensing ion channels. J Cell Mol Med 2013; 17:337-49. [PMID: 23490035 PMCID: PMC3823015 DOI: 10.1111/jcmm.12025] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/28/2012] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-insensitive cation channels responding to extracellular acidification. ASIC proteins have two transmembrane domains and a large extracellular domain. The molecular topology of ASICs is similar to that of the mechanosensory abnormality 4- or 10-proteins expressed in touch receptor neurons and involved in neurosensory mechanotransduction in nematodes. The ASIC proteins are involved in neurosensory mechanotransduction in mammals. The ASIC isoforms are expressed in Merkel cell-neurite complexes, periodontal Ruffini endings and specialized nerve terminals of skin and muscle spindles, so they might participate in mechanosensation. In knockout mouse models, lacking an ASIC isoform produces defects in neurosensory mechanotransduction of tissue such as skin, stomach, colon, aortic arch, venoatrial junction and cochlea. The ASICs are thus implicated in touch, pain, digestive function, baroreception, blood volume control and hearing. However, the role of ASICs in mechanotransduction is still controversial, because we lack evidence that the channels are mechanically sensitive when expressed in heterologous cells. Thus, ASIC channels alone are not sufficient to reconstruct the path of transducing molecules of mechanically activated channels. The mechanotransducers associated with ASICs need further elucidation. In this review, we discuss the expression of ASICs in sensory afferents of mechanoreceptors, findings of knockout studies, technical issues concerning studies of neurosensory mechanotransduction and possible missing links. Also we propose a molecular model and a new approach to disclose the molecular mechanism underlying the neurosensory mechanotransduction.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | | |
Collapse
|
65
|
Izumi M, Ikeuchi M, Ji Q, Tani T. Local ASIC3 modulates pain and disease progression in a rat model of osteoarthritis. J Biomed Sci 2012; 19:77. [PMID: 22909215 PMCID: PMC3520115 DOI: 10.1186/1423-0127-19-77] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Accepted: 08/16/2012] [Indexed: 01/20/2023] Open
Abstract
Background Recent data have suggested a relationship between acute arthritic pain and acid sensing ion channel 3 (ASIC3) on primary afferent fibers innervating joints. The purpose of this study was to clarify the role of ASIC3 in a rat model of osteoarthritis (OA) which is considered a degenerative rather than an inflammatory disease. Methods We induced OA via intra-articular mono-iodoacetate (MIA) injection, and evaluated pain-related behaviors including weight bearing measured with an incapacitance tester and paw withdrawal threshold in a von Frey hair test, histology of affected knee joint, and immunohistochemistry of knee joint afferents. We also assessed the effect of ASIC3 selective peptide blocker (APETx2) on pain behavior, disease progression, and ASIC3 expression in knee joint afferents. Results OA rats showed not only weight-bearing pain but also mechanical hyperalgesia outside the knee joint (secondary hyperalgesia). ASIC3 expression in knee joint afferents was significantly upregulated approximately twofold at Day 14. Continuous intra-articular injections of APETx2 inhibited weight distribution asymmetry and secondary hyperalgesia by attenuating ASIC3 upregulation in knee joint afferents. Histology of ipsilateral knee joint showed APETx2 worked chondroprotectively if administered in the early, but not late phase. Conclusions Local ASIC3 immunoreactive nerve is strongly associated with weight-bearing pain and secondary hyperalgesia in MIA-induced OA model. APETx2 inhibited ASIC3 upregulation in knee joint afferents regardless of the time-point of administration. Furthermore, early administration of APETx2 prevented cartilage damage. APETx2 is a novel, promising drug for OA by relieving pain and inhibiting disease progression.
Collapse
Affiliation(s)
- Masashi Izumi
- Department of Orthopaedic Surgery, Kochi University, Oko-cho Kohasu, Nankoku 783-8505, Japan.
| | | | | | | |
Collapse
|
66
|
Nociceptive sensory innervation of the posterior cruciate ligament in osteoarthritic knees. Arch Orthop Trauma Surg 2012; 132:891-5. [PMID: 22350101 DOI: 10.1007/s00402-012-1478-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Indexed: 10/28/2022]
Abstract
INTRODUCTION Although the posterior cruciate ligament (PCL) is considered to contain not only proprioceptive but also nociceptive sensory fibers, there is a lack of information about nociceptive sensory innervation of the PCL. We hypothesized that the PCL has constant nociceptive sensory innervation, suggesting the possible source of osteoarthritic (OA) knee pain. MATERIALS AND METHODS Innervation of the PCL was examined by immunohistochemistry with particular reference to nociceptive nerve fibers in OA knees. Sensory nerve fibers were semi-quantitatively counted in the PCL of OA knees, comparing with non-OA knees. Protein gene product 9.5 (PGP9.5) as a general neuronal marker and calcitonin gene related peptide (CGRP) as a marker for nociceptive neuron were used. RESULTS The PCLs had constant CGRP-immunoreactive (IR) nerve fibers in both OA and non-OA knees. The difference of the CGRP-IR nerve density between groups did not reach a statistical significance (p = 0.062). For PGP9.5-IR nerve fibers, however, the PCLs in OA knees were statistically less innervated than non-OA knees (p = 0.0009). CONCLUSIONS Our results showed that, in spite of a significant decrease in total innervation in OA knees, the PCLs have constant nociceptive sensory innervation. Although the relationship between the decrease in total innervations in the PCL and OA pathophysiology is still unclear, the PCL is the possible source of OA knee pain. Our results should be taken into account when examining the pain source of the OA knees and handling the PCL during total knee arthroplasty.
Collapse
|
67
|
Abstract
The epithelial Na(+) channel (ENaC) and acid-sensitive ion channel (ASIC) branches of the ENaC/degenerin superfamily of cation channels have drawn increasing attention as potential therapeutic targets in a variety of diseases and conditions. Originally thought to be solely expressed in fluid absorptive epithelia and in neurons, it has become apparent that members of this family exhibit nearly ubiquitous expression. Therapeutic opportunities range from hypertension, due to the role of ENaC in maintaining whole body salt and water homeostasis, to anxiety disorders and pain associated with ASIC activity. As a physiologist intrigued by the fundamental mechanics of salt and water transport, it was natural that Dale Benos, to whom this series of reviews is dedicated, should have been at the forefront of research into the amiloride-sensitive sodium channel. The cloning of ENaC and subsequently the ASIC channels has revealed a far wider role for this channel family than was previously imagined. In this review, we will discuss the known and potential roles of ENaC and ASIC subunits in the wide variety of pathologies in which these channels have been implicated. Some of these, such as the role of ENaC in Liddle's syndrome are well established, others less so; however, all are related in that the fundamental defect is due to inappropriate channel activity.
Collapse
Affiliation(s)
- Yawar J Qadri
- Department of Physiology and Biophysics, University of Alabama at Birmingham, AL 35294, USA
| | | | | |
Collapse
|
68
|
Blockade of acid-sensing ion channels protects articular chondrocytes from acid-induced apoptotic injury. Inflamm Res 2012; 61:327-35. [DOI: 10.1007/s00011-011-0414-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Revised: 11/28/2011] [Accepted: 12/05/2011] [Indexed: 01/28/2023] Open
|
69
|
ASICs Do Not Play a Role in Maintaining Hyperalgesia Induced by Repeated Intramuscular Acid Injections. PAIN RESEARCH AND TREATMENT 2011; 2012:817347. [PMID: 22191025 PMCID: PMC3236358 DOI: 10.1155/2012/817347] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 08/29/2011] [Accepted: 09/04/2011] [Indexed: 11/30/2022]
Abstract
Repeated intramuscular acid injections produce long-lasting mechanical hyperalgesia that depends on activation of ASICs. The present study investigated if pH-activated currents in sensory neurons innervating muscle were altered in response to repeated acid injections, and if blockade of ASICs reverses existing hyperalgesia. In muscle sensory neurons, the mean acid-evoked current amplitudes and the biophysical properties of the ASIC-like currents were unchanged following acidic saline injections when compared to neutral pH saline injections or uninjected controls. Moreover, increased mechanical sensitivity of the muscle and paw after the second acid injection was unaffected by local blockade of ASICs (A-317567) in the muscle. As a control, electron microscopic analysis showed that the tibial nerve was undamaged after acid injections. Our previous studies demonstrated that ASICs are important in the development of hyperalgesia to repeated acid injections. However, the current data suggest that ASICs are not involved in maintaining hyperalgesia to repeated intramuscular acid injections.
Collapse
|
70
|
Chen WH, Hsieh CL, Huang CP, Lin TJ, Tzen JT, Ho TY, Lin YW. Acid-sensing ion channel 3 mediates peripheral anti-hyperalgesia effects of acupuncture in mice inflammatory pain. J Biomed Sci 2011; 18:82. [PMID: 22070775 PMCID: PMC3233511 DOI: 10.1186/1423-0127-18-82] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 11/09/2011] [Indexed: 12/11/2022] Open
Abstract
Background Peripheral tissue inflammation initiates hyperalgesia accompanied by tissue acidosis, nociceptor activation, and inflammation mediators. Recent studies have suggested a significantly increased expression of acid-sensing ion channel 3 (ASIC3) in both carrageenan- and complete Freund's adjuvant (CFA)-induced inflammation. This study tested the hypothesis that acupuncture is curative for mechanical hyperalgesia induced by peripheral inflammation. Methods Here we used mechanical stimuli to assess behavioral responses in paw and muscle inflammation induced by carrageenan or CFA. We also used immunohistochemistry staining and western blot methodology to evaluate the expression of ASIC3 in dorsal root ganglion (DRG) neurons. Results In comparison with the control, the inflammation group showed significant mechanical hyperalgesia with both intraplantar carrageenan and CFA-induced inflammation. Interestingly, both carrageenan- and CFA-induced hyperalgesia were accompanied by ASIC3 up-regulation in DRG neurons. Furthermore, electroacupuncture (EA) at the ST36 rescued mechanical hyperalgesia through down-regulation of ASIC3 overexpression in both carrageenan- and CFA-induced inflammation. Conclusions In addition, electrical stimulation at the ST36 acupoint can relieve mechanical hyperalgesia by attenuating ASIC3 overexpression.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- College of Agriculture and Natural Resources, Graduate Institute of Biotechnology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | |
Collapse
|
71
|
Walder RY, Gautam M, Wilson SP, Benson CJ, Sluka KA. Selective targeting of ASIC3 using artificial miRNAs inhibits primary and secondary hyperalgesia after muscle inflammation. Pain 2011; 152:2348-2356. [PMID: 21843914 DOI: 10.1016/j.pain.2011.06.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/14/2011] [Accepted: 06/28/2011] [Indexed: 12/11/2022]
Abstract
Acid-sensing ion channels (ASICs) are activated by acidic pH and may play a significant role in the development of hyperalgesia. Earlier studies show ASIC3 is important for induction of hyperalgesia after muscle insult using ASIC3-/- mice. ASIC3-/- mice lack ASIC3 throughout the body, and the distribution and composition of ASICs could be different from wild-type mice. We therefore tested whether knockdown of ASIC3 in primary afferents innervating muscle of adult wild-type mice prevented development of hyperalgesia to muscle inflammation. We cloned and characterized artificial miRNAs (miR-ASIC3) directed against mouse ASIC3 (mASIC3) to downregulate ASIC3 expression in vitro and in vivo. In CHO-K1 cells transfected with mASIC3 cDNA in culture, the miR-ASIC3 constructs inhibited protein expression of mASIC3 and acidic pH-evoked currents and had no effect on protein expression or acidic pH-evoked currents of ASIC1a. When miR-ASIC3 was used in vivo, delivered into the muscle of mice using a herpes simplex viral vector, both muscle and paw mechanical hyperalgesia were reduced after carrageenan-induced muscle inflammation. ASIC3 mRNA in DRG and protein levels in muscle were decreased in vivo by miR-ASIC3. In CHO-K1 cells co-transfected with ASIC1a and ASIC3, miR-ASIC3 reduced the amplitude of acidic pH-evoked currents, suggesting an overall inhibition in the surface expression of heteromeric ASIC3-containing channels. Our results show, for the first time, that reducing ASIC3 in vivo in primary afferent fibers innervating muscle prevents the development of inflammatory hyperalgesia in wild-type mice, and thus, may have applications in the treatment of musculoskeletal pain in humans.
Collapse
Affiliation(s)
- Roxanne Y Walder
- Physical Therapy and Rehabilitation Sciences Graduate Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA Neuroscience Graduate Program, Pain Research Program, The University of Iowa, Iowa City, IA, USA Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA Department of Internal Medicine, Pain Research Program, Roy J. and Lucille A. Carver College of Medicine, The University of Iowa, Iowa City, IA, USA
| | | | | | | | | |
Collapse
|
72
|
Abstract
Iatrogenic pain consecutive to a large number of surgical procedures has become a growing health concern. The etiology and pathophysiology of postoperative pain are still poorly understood, but hydrogen ions appear to be important in this process. We have investigated the role of peripheral acid-sensing ion channels (ASICs), which form depolarizing channels activated by extracellular protons, in a rat model of postoperative pain (i.e., hindpaw skin/muscle incision). We report high levels of ASIC-type currents (∼ 77%) in sensory neurons innervating the hindpaw muscles, with a prevalence of ASIC3-like currents. The ASIC3 protein is largely expressed in lumbar DRG neurons innervating the plantar muscle, and its mRNA and protein levels are increased by plantar incision 24 h after surgery. Pharmacological inhibition of ASIC3 channels with the specific toxin APETx2 or in vivo knockdown of ASIC3 subunit by small interfering RNA led to a significant reduction of postoperative spontaneous, thermal, and postural pain behaviors (spontaneous flinching, heat hyperalgesia, and weight bearing). ASIC3 appears to have an important role in deep tissue but also affects prolonged pain evoked by skin incision alone. The specific homomeric ASIC1a blocker PcTx1 has no effect on spontaneous flinching, when applied peripherally. Together, these data demonstrate a significant role for peripheral ASIC3-containing channels in postoperative pain.
Collapse
|
73
|
Li WG, Xu TL. ASIC3 channels in multimodal sensory perception. ACS Chem Neurosci 2011; 2:26-37. [PMID: 22778854 DOI: 10.1021/cn100094b] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Accepted: 11/05/2010] [Indexed: 02/06/2023] Open
Abstract
Acid-sensing ion channels (ASICs), which are members of the sodium-selective cation channels belonging to the epithelial sodium channel/degenerin (ENaC/DEG) family, act as membrane-bound receptors for extracellular protons as well as nonproton ligands. At least five ASIC subunits have been identified in mammalian neurons, which form both homotrimeric and heterotrimeric channels. The highly proton sensitive ASIC3 channels are predominantly distributed in peripheral sensory neurons, correlating with their roles in multimodal sensory perception, including nociception, mechanosensation, and chemosensation. Different from other ASIC subunit composing ion channels, ASIC3 channels can mediate a sustained window current in response to mild extracellular acidosis (pH 7.3-6.7), which often occurs accompanied by many sensory stimuli. Furthermore, recent evidence indicates that the sustained component of ASIC3 currents can be enhanced by nonproton ligands including the endogenous metabolite agmatine. In this review, we first summarize the growing body of evidence for the involvement of ASIC3 channels in multimodal sensory perception and then discuss the potential mechanisms underlying ASIC3 activation and mediation of sensory perception, with a special emphasis on its role in nociception. We conclude that ASIC3 activation and modulation by diverse sensory stimuli represent a new avenue for understanding the role of ASIC3 channels in sensory perception. Furthermore, the emerging implications of ASIC3 channels in multiple sensory dysfunctions including nociception allow the development of new pharmacotherapy.
Collapse
Affiliation(s)
- Wei-Guang Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tian-Le Xu
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
74
|
Abstract
All animals use a sophisticated array of receptor proteins to sense their external and internal environments. Major advances have been made in recent years in understanding the molecular and genetic bases for sensory transduction in diverse modalities, indicating that both metabotropic and ionotropic pathways are important in sensory functions. Here, I review the historical background and recent advances in understanding the roles of a relatively newly discovered family of receptors, the degenerin/epithelial sodium channels (DEG/ENaC). These animal-specific cation channels show a remarkable sequence and functional diversity in different species and seem to exert their functions in diverse sensory modalities. Functions for DEG/ENaC channels have been implicated in mechanosensation as well as chemosensory transduction pathways. In spite of overall sequence diversity, all family members share a unique protein topology that includes just two transmembrane domains and an unusually large and highly structured extracellular domain, that seem to be essential for both their mechanical and chemical sensory functions. This review will discuss many of the recent discoveries and controversies associated with sensory function of DEG/ENaC channels in both vertebrate and invertebrate model systems, covering the role of family members in taste, mechanosensation, and pain.
Collapse
|
75
|
Li WG, Yu Y, Zhang ZD, Cao H, Xu TL. ASIC3 channels integrate agmatine and multiple inflammatory signals through the nonproton ligand sensing domain. Mol Pain 2010; 6:88. [PMID: 21143836 PMCID: PMC3017031 DOI: 10.1186/1744-8069-6-88] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 12/08/2010] [Indexed: 01/15/2023] Open
Abstract
Background Acid-sensing ion channels (ASICs) have long been known to sense extracellular protons and contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ), to identify a novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with GMQ, the arginine metabolite agmatine (AGM) may be an endogenous nonproton ligand for ASIC3 channels. Results Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among arginine metabolites, only AGM and its analog arcaine (ARC) activated ASIC3 channels at neutral pH in a sustained manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA), lactic acid and reduced extracellular Ca2+. AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an ASIC3-dependent manner. Conclusions Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.
Collapse
Affiliation(s)
- Wei-Guang Li
- Institute of Neuroscience and State Key Laboratory of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
76
|
Deval E, Gasull X, Noël J, Salinas M, Baron A, Diochot S, Lingueglia E. Acid-sensing ion channels (ASICs): pharmacology and implication in pain. Pharmacol Ther 2010; 128:549-58. [PMID: 20807551 DOI: 10.1016/j.pharmthera.2010.08.006] [Citation(s) in RCA: 243] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue acidosis is a common feature of many painful conditions. Protons are indeed among the first factors released by injured tissues, inducing a local pH fall that depolarizes peripheral free terminals of nociceptors and leads to pain. ASICs are excitatory cation channels directly gated by extracellular protons that are expressed in the nervous system. In sensory neurons, they act as "chemo-electrical" transducers and are involved in somatic and visceral nociception. Two highly specific inhibitory peptides isolated from animal venoms have considerably helped in the understanding of the physiological roles of these channels in pain. At the peripheral level, ASIC3 is important for inflammatory pain. Its expression and its activity are potentiated by several pain mediators present in the "inflammatory soup" that sensitize nociceptors. ASICs have also been involved in some aspects of mechanosensation and mechanonociception, notably in the gastrointestinal tract, but the underlying mechanisms remain to be determined. At the central level, ASIC1a is largely expressed in spinal cord neurons where it has been proposed to participate in the processing of noxious stimuli and in central sensitization. Blocking ASIC1a in the spinal cord also produces a potent analgesia in a broad range of pain conditions through activation of the opiate system. Targeting ASIC channels at different levels of the nervous system could therefore be an interesting strategy for the relief of pain.
Collapse
Affiliation(s)
- Emmanuel Deval
- Institut de Pharmacologie Moléculaire et Cellulaire (IPMC), UMR 6097 CNRS/Université de Nice-Sophia Antipolis (UNS), 660, route des Lucioles, 06560 Valbonne, France.
| | | | | | | | | | | | | |
Collapse
|
77
|
Gautam M, Benson CJ, Sluka KA. Increased response of muscle sensory neurons to decreases in pH after muscle inflammation. Neuroscience 2010; 170:893-900. [PMID: 20691768 DOI: 10.1016/j.neuroscience.2010.08.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 07/27/2010] [Accepted: 08/02/2010] [Indexed: 12/28/2022]
Abstract
Acid sensing ion channels (ASIC) are found in sensory neurons, including those that innervate muscle tissue. After peripheral inflammation there is an increase in proton concentration in the inflamed tissue, which likely activates ASICs. Previous studies from our laboratory in an animal model of muscle inflammation show that hyperalgesia does not occur in ASIC3 and ASIC1 knockout mice. Therefore, in the present study we investigated if pH activated currents in sensory neurons innervating muscle are altered after induction of muscle inflammation. Sensory neurons innervating mouse (C57/Bl6) muscle were retrogradely labeled with 1,1-dioctadecyl-3,3,3,3 tetramethylindocarbocyanine perchlorate (DiI). Two weeks after injection of DiI, mice were injected with 3% carrageenan to induce inflammation (n=8; 74 neurons) or pH 7.2 saline (n=5; 40 neurons, control) into the gastrocnemius muscle. 24 h later sensory neurons from L4-L6 dorsal root ganglia (DRG) were isolated and cultured. The following day the DRG neuron cultures were tested for responses to pH by whole-cell patch-clamp technique. Approximately 40% of neurons responded to pH 5 with an inward rapidly desensitizing current consistent with ASIC channels in both groups. The mean pH-evoked current amplitudes were significantly increased in muscle sensory neurons from inflamed mice (pH 5.0, 3602 ± 470 pA) in comparison to the controls (pH 7.4, 1964 ± 370 pA). In addition, the biophysical properties of ASIC-like currents were altered after inflammation. Changes in ASIC channels result in enhanced responsiveness to decreases in pH, and likely contribute to the increased hyperalgesia observed after muscle inflammation.
Collapse
Affiliation(s)
- M Gautam
- Graduate Program in Physical Therapy and Rehabilitation Science, 1-242 Medical Education Building, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
78
|
Gong K, Yue Y, Zou X, Li D, Lin Q. Minocycline inhibits the enhancement of antidromic primary afferent stimulation-evoked vasodilation following intradermal capsaicin injection. Neurosci Lett 2010; 482:177-81. [PMID: 20654697 DOI: 10.1016/j.neulet.2010.07.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 07/06/2010] [Accepted: 07/13/2010] [Indexed: 02/07/2023]
Abstract
Neurogenic inflammation is induced by inflammatory mediators released in peripheral tissue from primary afferent nociceptors. Our previous studies suggest that neurogenic inflammation induced by intradermal injection of capsaicin results from the enhancement of dorsal root reflexes (DRRs), which involve antidromic activation of dorsal root ganglion (DRG) neurons. Numerous studies have reported the important role of glial modulation in pain. However, it remains unclear whether glial cells participate in the process of neurogenic inflammation-induced pain. Here we tested the role of DRG satellite glial cells (SGCs) in this process in anesthetized rats by administration of a glial inhibitor, minocycline. Electrical stimuli (ES, frequency 10 Hz; duration 1 ms; strength 3 mA) were applied to the cut distal ends of the L4-5 dorsal roots. The stimuli evoked antidromic action potentials designed to mimic DRRs. Local cutaneous blood flow in the hindpaw was measured using a Doppler flow meter. Antidromic ES for 10 min evoked a significant vasodilation that could be inhibited dose-dependently by local administration of the calcitonin gene-related peptide receptor antagonist, CGRP8-37. Pretreatment with capsaicin intradermally injected into the hindpaw 2h before the ES enhanced greatly the vasodilation evoked by antidromic ES, and this enhancement could be reversed by minocycline pretreatment. Our findings support the view that neurogenic inflammation following capsaicin injection involves antidromic activation of DRG neurons via the generation of DRRs. Inhibition of neurogenic inflammation by minocycline is suggested to be associated with its inhibitory effect on SGCs that are possibly activated following capsaicin injection.
Collapse
Affiliation(s)
- Kerui Gong
- Department of Psychology, University of Texas at Arlington, TX 76019, USA
| | | | | | | | | |
Collapse
|
79
|
Jiang Q, Papasian CJ, Wang JQ, Xiong ZG, Chu XP. Inhibitory regulation of acid-sensing ion channel 3 by zinc. Neuroscience 2010; 169:574-83. [PMID: 20580786 DOI: 10.1016/j.neuroscience.2010.05.043] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2010] [Revised: 05/14/2010] [Accepted: 05/18/2010] [Indexed: 02/03/2023]
Abstract
Acid-sensing ion channel 3 (ASIC3) is a proton-gated, voltage-insensitive Na(+) channel that is expressed primarily in peripheral sensory neurons and plays an important role in pain perception, particularly as a pH sensor following cardiac ischemia. We previously reported that ASIC3 currents are not affected by zinc at nanomolar concentrations. In this study, we examined the potential role of micromolar zinc in the regulation of ASIC3. In CHO cells expressing ASIC3, we found that ASIC3 currents triggered by dropping the pH from 7.4 to 6.0 were inhibited by pretreatment with zinc in a concentration-dependent manner; the half-maximum inhibitory concentration of zinc was 61 muM. ASIC currents activated by a relatively small drop in pH from 7.4 to 7.2 or 7.0 were also subject to inhibition by zinc. The inhibition was fast and pH independent, and occurred within a relatively narrow range of zinc concentrations between 30 and 300 muM. Further, increasing extracellular Ca(2+) concentrations from 2 to 10 mM failed to affect inhibition of ASIC3 currents by zinc. Experimentally elevating intracellular zinc levels did not affect the inhibition of ASIC3 currents by equal concentrations of extracellular zinc, and modification of cysteine or histidine residues had no effect on the inhibition of ASIC3 currents by zinc. These collective results suggest that zinc is an important regulator of ASIC3 at physiological concentrations, that zinc inhibits ASIC3 in a pH- and Ca(2+)-independent manner, and that inhibition of ASIC3 currents is dependent upon the interaction of zinc with extracellular domain(s) of ASIC3.
Collapse
Affiliation(s)
- Q Jiang
- Department of Basic Medical Science, School of Medicine, University of Missouri-Kansas City, 2411 Holmes Street, Kansas City, MO 64108, USA
| | | | | | | | | |
Collapse
|
80
|
Gu Q, Lee LY. Acid-Sensing Ion Channels and Pain. Pharmaceuticals (Basel) 2010; 3:1411-1425. [PMID: 27713310 PMCID: PMC4033989 DOI: 10.3390/ph3051411] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Revised: 04/14/2010] [Accepted: 05/07/2010] [Indexed: 12/19/2022] Open
Abstract
Pathophysiological conditions such as inflammation, ischemia, infection and tissue injury can all evoke pain, and each is accompanied by local acidosis. Acid sensing ion channels (ASICs) are proton-gated cation channels expressed in both central and peripheral nervous systems. Increasing evidence suggests that ASICs represent essential sensors for tissue acidosis-related pain. This review provides an update on the role of ASICs in pain sensation and discusses their therapeutic potential for pain management.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| | - Lu-Yuan Lee
- Department of Physiology, University of Kentucky Medical Center, 800 Rose Street, Lexington, KY 40536-0298, USA.
| |
Collapse
|
81
|
Kolker SJ, Walder RY, Usachev Y, Hillman J, Boyle DL, Firestein GS, Sluka KA. Acid-sensing ion channel 3 expressed in type B synoviocytes and chondrocytes modulates hyaluronan expression and release. Ann Rheum Dis 2010; 69:903-9. [PMID: 19933746 PMCID: PMC3476728 DOI: 10.1136/ard.2009.117168] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
BACKGROUND Rheumatoid arthritis is an inflammatory disease marked by intra-articular decreases in pH, aberrant hyaluronan regulation and destruction of bone and cartilage. Acid-sensing ion channels (ASICs) are the primary acid sensors in the nervous system, particularly in sensory neurons and are important in nociception. ASIC3 was recently discovered in synoviocytes, non-neuronal joint cells critical to the inflammatory process. OBJECTIVES To investigate the role of ASIC3 in joint tissue, specifically the relationship between ASIC3 and hyaluronan and the response to decreased pH. METHODS Histochemical methods were used to compare morphology, hyaluronan expression and ASIC3 expression in ASIC3+/+ and ASIC3-/- mouse knee joints. Isolated fibroblast-like synoviocytes (FLS) were used to examine hyaluronan release and intracellular calcium in response to decreases in pH. RESULTS In tissue sections from ASIC3+/+ mice, ASIC3 localised to articular cartilage, growth plate, meniscus and type B synoviocytes. In cultured FLS, ASIC3 mRNA and protein was also expressed. In FLS cultures, pH 5.5 increased hyaluronan release in ASIC3+/+ FLS, but not ASIC3-/- FLS. In FLS from ASIC3+/+ mice, approximately 50% of cells (25/53) increased intracellular calcium while only 24% (14/59) showed an increase in ASIC3-/- FLS. Of the cells that responded to pH 5.5, there was significantly less intracellular calcium increases in ASIC3-/- FLS compared to ASIC3+/+ FLS. CONCLUSION ASIC3 may serve as a pH sensor in synoviocytes and be important for modulation of expression of hyaluronan within joint tissue.
Collapse
Affiliation(s)
- S J Kolker
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| | - R Y Walder
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| | - Y Usachev
- Department of Pharmacology, Pain Research Program, University of Iowa, Iowa, USA
| | - J Hillman
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - D L Boyle
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - G S Firestein
- Division of Rheumatology, Allergy and Immunology, University of California, San Diego School of Medicine, La Jolla, California, USA
| | - K A Sluka
- Graduate Program in Physical Therapy and Rehabilitation Science, Pain Research Program, University of Iowa, Iowa, USA
| |
Collapse
|
82
|
Sluka KA, Winter OC, Wemmie JA. Acid-sensing ion channels: A new target for pain and CNS diseases. CURRENT OPINION IN DRUG DISCOVERY & DEVELOPMENT 2009; 12:693-704. [PMID: 19736627 PMCID: PMC3494879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Low pH in tissue can evoke pain in animals and humans, and is an important factor in hyperalgesia. Research has also implicated acidosis in psychiatric and neurological diseases. One emerging class of pH-detecting receptors is that of the acid-sensing ion channels (ASICs). Advances in ASIC research have improved the understanding of the role played by pH dynamics in physiological and pathophysiological processes. Increasing evidence suggests that targeting ASICs with pharmacological agents may offer an effective and novel approach for treating pain and diseases of the CNS. However, the development of pharmaceuticals that target ASICs and are suitable for clinical use remains an obstacle. This review provides an update on ASICs and their potential for therapeutic modification in pain and CNS diseases.
Collapse
Affiliation(s)
- Kathleen A Sluka
- Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Olivia C Winter
- Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| | - John A Wemmie
- Roy J and Lucille A Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, 52242, USA
| |
Collapse
|