51
|
Kang DH, Kim GW. Changes in Diffuse Tensor Imaging and Therapeutic Effect of Repetitive Transcranial Magnetic Stimulation in Traumatic Brain Injury with Central Pain. Brain Sci 2020; 10:brainsci10120929. [PMID: 33276440 PMCID: PMC7759834 DOI: 10.3390/brainsci10120929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/22/2020] [Accepted: 11/25/2020] [Indexed: 12/21/2022] Open
Abstract
Post-trauma chronic pain characterized by central pain is a symptom following traumatic brain injury (TBI). Studies on the effect of repetitive transcranial magnetic stimulation (rTMS) on central pain and the association between central pain and spinothalamic tract (STT) have been reported, but few studies have examined the effect of rTMS in patients with mild TBI with central pain through changes in diffusion tensor imaging (DTI)-based metrics of STT before and after rTMS. This case series aimed to investigate the therapeutic effect of rTMS in TBI with central pain and the changes in diffusion tensor imaging (DTI)-based metrics of the spinothalamic tract (STT) before and after rTMS. This study included four patients who complained of severe pain in the left or right side of the body below the neck area after a car accident. We performed numeric rating scale (NRS), bedside sensory examination, electrodiagnostic study, and DTI-based metrics of the STT before and after rTMS. According to the guidelines of the diagnosis and grading for neuropathic pain, all patients had neuropathic pain corresponding to “probable grade.” In all patients, rTMS was applied to the contralateral M1 cortex on the more painful side. There were no medication changes and other interventions during the rTMS. After rTMS, NRS decreased, bed sensory testing improved, and DTI-based STT metrics increased in all patients compared to before rTMS.
Collapse
Affiliation(s)
- Dong-Ha Kang
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea;
- Research Institute of Clinical Medicine of Jeonbuk National University—Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
- Correspondence: ; Tel.: +82-10-5279-1421
| |
Collapse
|
52
|
Tu Y, Cao J, Bi Y, Hu L. Magnetic resonance imaging for chronic pain: diagnosis, manipulation, and biomarkers. SCIENCE CHINA-LIFE SCIENCES 2020; 64:879-896. [PMID: 33247802 DOI: 10.1007/s11427-020-1822-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/15/2020] [Indexed: 12/16/2022]
Abstract
Pain is a multidimensional subjective experience with biological, psychological, and social factors. Whereas acute pain can be a warning signal for the body to avoid excessive injury, long-term and ongoing pain may be developed as chronic pain. There are more than 100 million people in China living with chronic pain, which has raised a huge socioeconomic burden. Studying the mechanisms of pain and developing effective analgesia approaches are important for basic and clinical research. Recently, with the development of brain imaging and data analytical approaches, the neural mechanisms of chronic pain have been widely studied. In the first part of this review, we briefly introduced the magnetic resonance imaging and conventional analytical approaches for brain imaging data. Then, we reviewed brain alterations caused by several chronic pain disorders, including localized and widespread primary pain, primary headaches and orofacial pain, musculoskeletal pain, and neuropathic pain, and present meta-analytical results to show brain regions associated with the pathophysiology of chronic pain. Next, we reviewed brain changes induced by pain interventions, such as pharmacotherapy, neuromodulation, and acupuncture. Lastly, we reviewed emerging studies that combined advanced machine learning and neuroimaging techniques to identify diagnostic, prognostic, and predictive biomarkers in chronic pain patients.
Collapse
Affiliation(s)
- Yiheng Tu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jin Cao
- Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, 02129, USA
| | - Yanzhi Bi
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, 100101, China. .,Department of Psychology, University of Chinese Academy of Sciences, Beijing, 100101, China. .,Department of Pain Management, The State Key Clinical Specialty in Pain Medicine, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China.
| |
Collapse
|
53
|
Gatzinsky K, Bergh C, Liljegren A, Silander H, Samuelsson J, Svanberg T, Samuelsson O. Repetitive transcranial magnetic stimulation of the primary motor cortex in management of chronic neuropathic pain: a systematic review. Scand J Pain 2020; 21:8-21. [PMID: 32892189 DOI: 10.1515/sjpain-2020-0054] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Repetitive transcranial magnetic stimulation (rTMS) of the primary motor cortex (M1) with frequencies 5-20 Hz is an expanding non-invasive treatment for chronic neuropathic pain (NP). Outcome data, however, show considerable inhomogeneity with concern to the levels of effect due to the great diversity of treated conditions. The aim of this review was to survey the literature regarding the efficacy and safety of M1 rTMS, and the accuracy to predict a positive response to epidural motor cortex stimulation (MCS) which is supposed to give a more longstanding pain relief. METHODS A systematic literature search was conducted up to June 2019 in accordance with the PRISMA guidelines. We used the PICO Model to define two specific clinical questions: (1) Does rTMS of M1 relieve NP better than sham treatment? (2) Can the response to rTMS be used to predict the effect of epidural MCS? After article selection, data extraction, and study quality assessment, the certainty of evidence of treatment effect was defined using the GRADE system. RESULTS Data on 5-20 Hz (high-frequency) rTMS vs. sham was extracted from 24 blinded randomised controlled trials which were of varying quality, investigated highly heterogeneous pain conditions, and used excessively variable stimulation parameters. The difference in pain relief between active and sham stimulation was statistically significant in 9 of 11 studies using single-session rTMS, and in 9 of 13 studies using multiple sessions. Baseline data could be extracted from 6 single and 12 multiple session trials with a weighted mean pain reduction induced by active rTMS, compared to baseline, of -19% for single sessions, -32% for multiple sessions with follow-up <30 days, and -24% for multiple sessions with follow-up ≥30 days after the last stimulation session. For single sessions the weighted mean difference in pain reduction between active rTMS and sham was 15 percentage points, for multiple sessions the difference was 22 percentage points for follow-ups <30 days, and 15 percentage points for follow-ups ≥30 days. Four studies reported data that could be used to evaluate the accuracy of rTMS to predict response to MCS, showing a specificity of 60-100%, and a positive predictive value of 75-100%. No serious adverse events were reported. CONCLUSIONS rTMS targeting M1 can result in significant reduction of chronic NP which, however, is transient and shows a great heterogeneity between studies; very low certainty of evidence for single sessions and low for multiple sessions. Multiple sessions of rTMS can maintain a more longstanding effect. rTMS seems to be a fairly good predictor of a positive response to epidural MCS and may be used to select patients for implantation of permanent epidural electrodes. More studies are needed to manifest the use of rTMS for this purpose. Pain relief outcomes in a longer perspective, and outcome variables other than pain reduction need to be addressed more consistently in future studies to consolidate the applicability of rTMS in routine clinical practice.
Collapse
Affiliation(s)
- Kliment Gatzinsky
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | - Ann Liljegren
- HTA-centrum of Region Västra Götaland, Göteborg, Sweden
| | - Hans Silander
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Jennifer Samuelsson
- Department of Neurosurgery, Sahlgrenska University Hospital, Göteborg, Sweden
| | | | | |
Collapse
|
54
|
Shen Z, Li Z, Ke J, He C, Liu Z, Zhang D, Zhang Z, Li A, Yang S, Li X, Li R, Zhao K, Ruan Q, Du H, Guo L, Yin F. Effect of non-invasive brain stimulation on neuropathic pain following spinal cord injury: A systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21507. [PMID: 32846761 PMCID: PMC7447445 DOI: 10.1097/md.0000000000021507] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND In recent years, some studies indicated that repetitive transcranial magnetic stimulation (rTMS) could relieve neuropathic pain (NP) following a spinal cord injury (SCI), whereas some studies showed no pain relief effect. In addition, some studies showed the analgesic effect of transcranial direct current stimulation (tDCS) on NP post SCI, whereas other studies showed no effect. METHODS We systematically searched on the PubMed, Web of Science, EMBASE, Medline, Google Scholar for studies exploring the analgesic effect of rTMS or tDCS on NP post SCI until November 2019. Meta-analysis was conducted to summarize results of these studies. RESULTS The present quantitative meta-analysis indicated no significant difference in the effect of treatment on NP following SCI between rTMS and sham rTMS over the motor cortex at about 1 week after the end of the rTMS period (standardized mean difference (SMD) = 2.89, 95% confidence interval (CI) = -0.27 to 6.04). However, the study indicated that rTMS showed significantly better pain relief of treatment compared with sham rTMS between 2 and 6 weeks after the end of the rTMS period (SMD = 3.81, 95%CI: 0.80-7.52). However, no sufficient evidence could be provided to make a meta-analysis for the analgesic effect of tDCS on NP following SCI over the primary motor area (M1). CONCLUSIONS In conclusion, the present meta-analysis suggested that rTMS did not show early analgesic effect on NP after SCI, but showed better middle-term analgesic effect, compared with sham rTMS. More large scale, blinded randomized controlled trials (RCTs) were needed to explore the analgesic effect of rTMS and tDCS on NP following SCI.
Collapse
Affiliation(s)
- Zhubin Shen
- Department of Orthopaedic, China–Japan Union Hospital
| | - Zhongrun Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Junran Ke
- Department of Orthopaedic, China–Japan Union Hospital
| | - Changhao He
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Zhiming Liu
- Department of Orthopaedic, China–Japan Union Hospital
| | - Din Zhang
- Department of Orthopaedic, China–Japan Union Hospital
| | - Zhili Zhang
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Anpei Li
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Shuang Yang
- Department of Orthopaedic, China–Japan Union Hospital
| | - Xiaolong Li
- Department of Orthopaedic, China–Japan Union Hospital
| | - Ran Li
- Department of Orthopaedic, China–Japan Union Hospital
| | - Kunchi Zhao
- Department of Orthopaedic, China–Japan Union Hospital
| | - Qing Ruan
- Department of Orthopaedic, China–Japan Union Hospital
| | - Haiying Du
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Li Guo
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| | - Fei Yin
- Department of Orthopaedic, China–Japan Union Hospital
| |
Collapse
|
55
|
Klírová M, Hejzlar M, Kostýlková L, Mohr P, Rokyta R, Novák T. Prolonged Continuous Theta Burst Stimulation of the Motor Cortex Modulates Cortical Excitability But not Pain Perception. Front Syst Neurosci 2020; 14:27. [PMID: 32670027 PMCID: PMC7326109 DOI: 10.3389/fnsys.2020.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Accepted: 04/28/2020] [Indexed: 11/23/2022] Open
Abstract
Over the past decade, theta-burst stimulation (TBS) has become a focus of interest in neurostimulatory research. Compared to conventional repetitive transcranial magnetic stimulation (rTMS), TBS produces more robust changes in cortical excitability (CE). There is also some evidence of an analgesic effect of the method. Previously published studies have suggested that different TBS parameters elicit opposite effects of TBS on CE. While intermittent TBS (iTBS) facilitates CE, continuous TBS (cTBS) attenuates it. However, prolonged TBS (pTBS) with twice the number of stimuli produces the opposite effect. In a double-blind, placebo-controlled, cross-over study with healthy subjects (n = 24), we investigated the effects of various pTBS (cTBS, iTBS, and placebo TBS) over the right motor cortex on CE and pain perception. Changes in resting motor thresholds (RMTs) and absolute motor-evoked potential (MEP) amplitudes were assessed before and at two time-points (0–5 min; 40–45 min) after pTBS. Tactile and thermal pain thresholds were measured before and 5 min after application. Compared to the placebo, prolonged cTBS (pcTBS) transiently increased MEP amplitudes, while no significant changes were found after prolonged iTBS. However, the facilitation of CE after pcTBS did not induce a parallel analgesic effect. We confirmed that pcTBS with twice the duration converts the conventional inhibitory effect into a facilitatory one. Despite the short-term boost of CE following pcTBS, a corresponding analgesic effect was not demonstrated. Therefore, the results indicate a more complex regulation of pain, which cannot be explained entirely by the modulation of excitability.
Collapse
Affiliation(s)
- Monika Klírová
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Martin Hejzlar
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Lenka Kostýlková
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Mohr
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Richard Rokyta
- Department of Normal, Pathological and Clinical Physiology, Third Faculty of Medicine, Charles University, Prague, Czechia
| | - Tomáš Novák
- Clinical Centre, National Institute of Mental Health, Klecany, Czechia.,Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czechia
| |
Collapse
|
56
|
Leung A. Addressing chronic persistent headaches after MTBI as a neuropathic pain state. J Headache Pain 2020; 21:77. [PMID: 32560626 PMCID: PMC7304149 DOI: 10.1186/s10194-020-01133-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/15/2022] Open
Abstract
An increasing number of patients with chronic persistent post-traumatic headache (PPTH) after mild traumatic brain injury (MTBI) are being referred to headache or pain specialists as conventional treatment options for primary headache disorders have not been able to adequately alleviate their debilitating headache symptoms. Evolving clinical and mechanistic evidences support the notation that chronic persistent MTBI related headaches (MTBI-HA) carry the hallmark characteristics of neuropathic pain. Thus, in addition to conventional treatment options applicable to non-traumatic primary headache disorders, other available treatment modalities for neuropathic pain should be considered. In this comprehensive review article, the author reveals the prevalence of MTBI-HA and its clinical manifestation, discusses existing clinical and mechanistic evidence supporting the classification of chronic persistent MTBI-HA as a neuropathic pain state, and explores current available treatment options and future directions of therapeutic research related to MTBI-HA.
Collapse
Affiliation(s)
- Albert Leung
- Department of Anesthesiology, Center for Pain Medicine, UCSD School of Medicine, La Jolla, USA.
- Center for Pain and Headache Research, VA San Diego Healthcare System, 3350 La Jolla Village Drive, San Diego, CA, 92126, USA.
| |
Collapse
|
57
|
Meeker TJ, Jupudi R, Lenz FA, Greenspan JD. New Developments in Non-invasive Brain Stimulation in Chronic Pain. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2020; 8:280-292. [PMID: 33473332 DOI: 10.1007/s40141-020-00260-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Purpose of Review The goal of this review is to present a summary of the recent literature of a non-invasive brain stimulation (NIBS) to alleviate pain in people with chronic pain syndromes. This article reviews the current evidence for the use of transcranial direct current (tDCS) and repetitive transcranial magnetic stimulation (rTMS) to improve outcomes in chronic pain. Finally, we introduce the reader to novel stimulation methods that may improve therapeutic outcomes in chronic pain. Recent Findings While tDCS is approved for treatment of fibromyalgia in Canada and the European Union, no NIBS method is currently approved for chronic pain in the United States. Increasing sample sizes in randomized clinical trials (RCTs) seems the most efficient way to increase confidence in initial promising results. Trends at funding agencies reveal increased interest and support for NIBS such as recent Requests for Application from the National Institutes of Health. NIBS in conjunction with cognitive behavioral therapy and physical therapy may enhance outcomes in chronic pain. Novel stimulation methods, such as transcranial ultrasound stimulation, await rigorous study in chronic pain.
Collapse
Affiliation(s)
- Timothy J Meeker
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA.,Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| | - Rithvic Jupudi
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Frederik A Lenz
- Dept. of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Joel D Greenspan
- Dept. of Neural and Pain Sciences, School of Dentistry, and Center to Advance Chronic Pain Research, Univ. of Maryland Baltimore, Baltimore, MD, USA
| |
Collapse
|
58
|
Leung A, Shirvalkar P, Chen R, Kuluva J, Vaninetti M, Bermudes R, Poree L, Wassermann EM, Kopell B, Levy R. Transcranial Magnetic Stimulation for Pain, Headache, and Comorbid Depression: INS-NANS Expert Consensus Panel Review and Recommendation. Neuromodulation 2020; 23:267-290. [PMID: 32212288 DOI: 10.1111/ner.13094] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/27/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
BACKGROUND While transcranial magnetic stimulation (TMS) has been studied for the treatment of psychiatric disorders, emerging evidence supports its use for pain and headache by stimulating either motor cortex (M1) or dorsolateral prefrontal cortex (DLPFC). However, its clinical implementation is hindered due to a lack of consensus in the quality of clinical evidence and treatment recommendation/guideline(s). Thus, working collaboratively, this multinational multidisciplinary expert panel aims to: 1) assess and rate the existing outcome evidence of TMS in various pain/headache conditions; 2) provide TMS treatment recommendation/guidelines for the evaluated conditions and comorbid depression; and 3) assess the cost-effectiveness and technical issues relevant to the long-term clinical implementation of TMS for pain and headache. METHODS Seven task groups were formed under the guidance of a 5-member steering committee with four task groups assessing the utilization of TMS in the treatment of Neuropathic Pain (NP), Acute Pain, Primary Headache Disorders, and Posttraumatic Brain Injury related Headaches (PTBI-HA), and remaining three assessing the treatment for both pain and comorbid depression, and the cost-effectiveness and technological issues relevant to the treatment. RESULTS The panel rated the overall level of evidence and recommendability for clinical implementation of TMS as: 1) high and extremely/strongly for both NP and PTBI-HA respectively; 2) moderate for postoperative pain and migraine prevention, and recommendable for migraine prevention. While the use of TMS for treating both pain and depression in one setting is clinically and financially sound, more studies are required to fully assess the long-term benefit of the treatment for the two highly comorbid conditions, especially with neuronavigation. CONCLUSIONS After extensive literature review, the panel provided recommendations and treatment guidelines for TMS in managing neuropathic pain and headaches. In addition, the panel also recommended more outcome and cost-effectiveness studies to assess the feasibility of the long-term clinical implementation of the treatment.
Collapse
Affiliation(s)
- Albert Leung
- Professor of Anesthesiology and Pain Medicine, Department of Anesthesiology, Center for Pain Medicine, University of California, San Diego, School of Medicine, La Jolla, CA, USA.,Director, Center for Pain and Headache Research, VA San Diego Healthcare System, La Jolla, CA, USA
| | - Prasad Shirvalkar
- Assistant Professor, Departments of Anesthesiology (Pain Management), Neurology, and Neurosurgery, UCSF School of Medicine, USA
| | - Robert Chen
- Catherine Manson Chair in Movement Disorders, Professor of Medicine (Neurology), University of Toronto, Toronto, Ontario, Canada
| | - Joshua Kuluva
- Neurologist and Psychiatrist, TMS Health Solution, San Francisco, CA, USA
| | - Michael Vaninetti
- Assistant Clinical Professor, Anesthesiology and Pain Medicine, UCSD School of Medicine, La Jolla, CA, USA
| | - Richard Bermudes
- Chief Medical Officer, TMS Health Solutions, Assistant Clinical Professor- Volunteer, Department of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Lawrence Poree
- Professor of Anesthesiology, Director, Neuromodulation Service, Division of Pain Medicine, University of California, San Francisco, School of Medicine, San Francisco, CA, USA
| | - Eric M Wassermann
- Director, Behavioral Neurology Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Brian Kopell
- Professor of Neurosurgery, Mount Sinai Center for Neuromodulation, New York, NY, USA
| | - Robert Levy
- President of International Neuromodulation Society, Editor-in-Chief, Neuromodulation, Boca Raton, FL, USA
| | -
- See Appendix for Complete List of Task Group Members
| |
Collapse
|
59
|
Yang S, Chang MC. Effect of Repetitive Transcranial Magnetic Stimulation on Pain Management: A Systematic Narrative Review. Front Neurol 2020; 11:114. [PMID: 32132973 PMCID: PMC7040236 DOI: 10.3389/fneur.2020.00114] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/31/2020] [Indexed: 12/17/2022] Open
Abstract
Recently, clinicians have been using repetitive transcranial magnetic stimulation (rTMS) for treating various pain conditions. This systematic narrative review aimed to examine the use and efficacy of rTMS for controlling various pain conditions. A PubMed search was conducted for articles that were published until June 7, 2019 and used rTMS for pain alleviation. The key search phrase for identifying potentially relevant articles was (repetitive transcranial magnetic stimulation AND pain). The following inclusion criteria were applied for article selection: (1) patients with pain, (2) rTMS was applied for pain management, and (3) follow-up evaluations were performed after rTMS stimulation to assess the reduction in pain. Review articles were excluded. Overall, 1,030 potentially relevant articles were identified. After reading the titles and abstracts and assessing eligibility based on the full-text articles, 106 publications were finally included in our analysis. Overall, our findings suggested that rTMS is beneficial for treating neuropathic pain of various origins, such as central pain, pain from peripheral nerve disorders, fibromyalgia, and migraine. Although data on the use of rTMS for orofacial pain, including trigeminal neuralgia, phantom pain, low back pain, myofascial pain syndrome, pelvic pain, and complex regional pain syndrome, were promising, there was insufficient evidence to determine the efficacy of rTMS for treating these conditions. Therefore, further studies are needed to validate the effects of rTMS on pain relief in these conditions. Overall, this review will help guide clinicians in making informed decisions regarding whether rTMS is an appropriate option for managing various pain conditions.
Collapse
Affiliation(s)
- Seoyon Yang
- Department of Rehabilitation Medicine, Ewha Woman's University Seoul Hospital, Ewha Woman's University School of Medicine, Seoul, South Korea
| | - Min Cheol Chang
- Department of Rehabilitation Medicine, College of Medicine, Yeungnam University, Daegu, South Korea
| |
Collapse
|
60
|
Ahmed GM, Maher EA, Elnassag BAEMR, Sayed HM, Kabbash SI. Effects of repetitive transcranial magnetic stimulation versus transcutaneous electrical nerve stimulation to decrease diabetic neuropathic pain. INTERNATIONAL JOURNAL OF THERAPY AND REHABILITATION 2020. [DOI: 10.12968/ijtr.2018.0037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Background/Aims Repetitive transcranial magnetic stimulation and transcutaneous electrical nerve stimulation have been studied repeatedly to reduce diabetic neuropathic pain. The objective of this study was to compare the effects of aerobic training plus one of the treatment therapies on decreasing pain severity in patients with diabetic peripheral neuropathy. Methods A total of 30 patients with diabetic peripheral neuropathy were randomly assigned into two equal groups: group A and group B. Both groups received aerobic training exercises. Group A received repetitive transcranial magnetic stimulation, and Group B received transcutaneous electrical nerve stimulation for 5 consecutive days in 1 week. Outcome measures included pain severity assessment using the Visual Analogue Scale and the serum β-endorphin levels. Results There was a non-significant difference in pre-treatment (P=0.061) and post-treatment (P=0.652) in the Visual Analogue Scale scores between groups. However, β-endorphin levels were significantly different between groups in post- (P=0.015) rather than pre-treatment (P=0.459) levels. A significant moderate correlation between β-endorphin levels and Visual Analogue Scale scores was found in group A (r=−0.6783) at (P=0.008), while it was not significant in group B (r=0.043) at (P=0.883). Conclusions Adding transcutaneous electrical nerve stimulation or repetitive transcranial magnetic stimulation therapies to aerobic training showed similar effects in reducing pain severity in patients with diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Gehan Mousa Ahmed
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Eman Ahmed Maher
- Department of Clinical Neurophysiology, Faculty of Medicine, Cairo University, Cairo, Egypt Acknowledgements The authors would like to thank all patients who participated in this study
| | | | - Hayam Mahmoud Sayed
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| | - Sara Ibrahim Kabbash
- Department of Physical Therapy for Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Cairo, Egypt
| |
Collapse
|
61
|
Chen R. Guideline on therapeutic use of repetitive transcranial magnetic stimulation: Useful but know the methods and limitations. Clin Neurophysiol 2020; 131:461-462. [PMID: 31901450 DOI: 10.1016/j.clinph.2019.11.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto and Krembil Research Institute, University Health Network, 7McL409, 399 Bathurst St, Toronto, Ontario M5T 2S8, Canada.
| |
Collapse
|
62
|
Hamid P, Malik BH, Hussain ML. Noninvasive Transcranial Magnetic Stimulation (TMS) in Chronic Refractory Pain: A Systematic Review. Cureus 2019; 11:e6019. [PMID: 31824787 PMCID: PMC6886641 DOI: 10.7759/cureus.6019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 10/28/2019] [Indexed: 01/25/2023] Open
Abstract
Efficacy and tolerance of pharmacological medications in chronic pain are limited. Therefore, repetitive transcranial magnetic stimulation (rTMS) is regarded as a secure therapeutic option for pain relief, and it was proven to produce an analgesic effect. A wide variety of stimulation parameters can influence its long-lasting antalgic effect. Defining the best stimulation protocol can afford greater uniformity and consistency for considering rTMS as a promising effective tool. We aimed to systematically review and evaluate the current literature on transcranial magnetic stimulation for patients suffering from chronic pain, assess its efficacy, and estimate the best stimulation protocol. The Screened and tested electronic databases comprised PubMed, Ovid Medline, Cochrane database library, and Google scholar from the year 2000 till 2018. The keywords utilizing search terms "Transcranial magnetic stimulation", "chronic pain", "neuropathic pain" were used to study all possible randomized clinical trials about the impact of transcranial magnetic stimulation on long-lasting pain. All articles were judged for the possibility of prejudice using the Cochrane risk of bias tool for data extraction. Search engines produced seventy applicable results. Twelve randomized controlled clinical trials were included involving 350 patients with focal and generalized chronic pain. An existing proof showed a null response of low-frequency rTMS stimulation, rTMS delivered to the dorsolateral prefrontal cortex in chronic pain patients. However, a witnessed pain-killing response was documented when applying active high- frequency TMS on the motor cortex M1 area compared to sham. Pain relief was detected for a short time following the application of active high-frequency motor cortex stimulation in nine clinical trials, and the long-lasting analgesic effect was proved. No side effects were mentioned for the technique. Repetitive TMS can produce clinically meaningful relief from chronic pain, despite positive results, heterogeneity among all studies preclude firm conclusions regarding the optimal target stimulation site and parameters. Further studies are required to minimize bias, enhance performance, and define the best brain stimulation conditions and qualifications to maximize its potency.
Collapse
Affiliation(s)
- Pousette Hamid
- Researcher, California Institute of Behavioral Neuroscience and Psychology, Fairfield, USA
| | - Bilal Haider Malik
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | | |
Collapse
|
63
|
Ashby DM, LeDue J, Murphy TH, McGirr A. Peripheral Nerve Ligation Elicits Widespread Alterations in Cortical Sensory Evoked and Spontaneous Activity. Sci Rep 2019; 9:15341. [PMID: 31653941 PMCID: PMC6814845 DOI: 10.1038/s41598-019-51811-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/08/2019] [Indexed: 12/31/2022] Open
Abstract
Peripheral neuropathies result in adaptation in primary sensory and other regions of cortex, and provide a framework for understanding the localized and widespread adaptations that arise from altered sensation. Mesoscale cortical imaging achieves high temporal resolution of activity using optical sensors of neuronal activity to simultaneously image across a wide expanse of cortex and capture this adaptation using sensory-evoked and spontaneous cortical activity. Saphenous nerve ligation in mouse is an animal model of peripheral neuropathy that produces hyperalgesia circumscribed to the hindlimb. We performed saphenous nerve ligation or sham, followed by mesoscale cortical imaging using voltage sensitive dye (VSD) after ten days. We utilized subcutaneous electrical stimulation at multiple stimulus intensities to characterize sensory responses after ligation or sham, and acquired spontaneous activity to characterize functional connectivity and large scale cortical network reorganization. Relative to sham animals, the primary sensory-evoked response to hindlimb stimulation in ligated animals was unaffected in magnitude at all stimulus intensities. However, we observed a diminished propagating wave of cortical activity at lower stimulus intensities in ligated animals after hindlimb, but not forelimb, sensory stimulation. We simultaneously observed a widespread decrease in cortical functional connectivity, where midline association regions appeared most affected. These results are consistent with localized and broad alterations in intracortical connections in response to a peripheral insult, with implications for novel circuit level understanding and intervention for peripheral neuropathies and other conditions affecting sensation.
Collapse
Affiliation(s)
- Donovan M Ashby
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Jeffrey LeDue
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
| | - Timothy H Murphy
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, Canada
- Department of Psychiatry, University of British Columbia, Vancouver, Canada
| | - Alexander McGirr
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
- Department of Psychiatry, Cumming School of Medicine, University of Calgary, Calgary, Canada.
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Canada.
| |
Collapse
|
64
|
Moisset X, Lanteri-Minet M, Fontaine D. Neurostimulation methods in the treatment of chronic pain. J Neural Transm (Vienna) 2019; 127:673-686. [PMID: 31637517 DOI: 10.1007/s00702-019-02092-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 10/06/2019] [Indexed: 02/07/2023]
Abstract
The goal of this narrative review was to give an up-to-date overview of the peripheral and central neurostimulation methods that can be used to treat chronic pain. Special focus has been given to three pain conditions: neuropathic pain, nociplastic pain and primary headaches. Both non-invasive and invasive techniques are briefly presented together with their pain relief potentials. For non-invasive stimulation techniques, data concerning transcutaneous electrical nerve stimulation (TENS), transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation (rTMS), remote electrical neuromodulation (REN) and vagus nerve stimulation (VNS) are provided. Concerning invasive stimulation techniques, occipital nerve stimulation (ONS), vagus nerve stimulation (VNS), epidural motor cortex stimulation (EMCS), spinal cord stimulation (SCS) and deep brain stimulation (DBS) are presented. The action mode of all these techniques is only partly understood but can be very different from one technique to the other. Patients' selection is still a challenge. Recent consensus-based guidelines for clinical practice are presented when available. The development of closed-loop devices could be of interest in the future, although the clinical benefit over open loop is not proven yet.
Collapse
Affiliation(s)
- X Moisset
- Service de Neurologie, Université Clermont-Auvergne, INSERM, Neuro-Dol, CHU Clermont-Ferrand, Clermont-Ferrand, France.
| | - M Lanteri-Minet
- Pain Department, CHU Nice, FHU InovPain Côte Azur University, Nice, France
- Université Clermont-Auvergne, INSERM, Neuro-Dol, Clermont-Ferrand, France
| | - D Fontaine
- Department of Neurosurgery, Université Côte Azur University, CHU de Nice, FHU InovPain, Nice, France
| |
Collapse
|
65
|
Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W, Pennisi M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 2019. [PMID: 31598137 DOI: 10.1177/1756286419878317.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95125, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
66
|
Fisicaro F, Lanza G, Grasso AA, Pennisi G, Bella R, Paulus W, Pennisi M. Repetitive transcranial magnetic stimulation in stroke rehabilitation: review of the current evidence and pitfalls. Ther Adv Neurol Disord 2019; 12:1756286419878317. [PMID: 31598137 PMCID: PMC6763938 DOI: 10.1177/1756286419878317] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 08/28/2019] [Indexed: 02/05/2023] Open
Abstract
Acute brain ischemia causes changes in several neural networks and related cortico-subcortical excitability, both in the affected area and in the apparently spared contralateral hemisphere. The modulation of these processes through modern techniques of noninvasive brain stimulation, namely repetitive transcranial magnetic stimulation (rTMS), has been proposed as a viable intervention that could promote post-stroke clinical recovery and functional independence. This review provides a comprehensive summary of the current evidence from the literature on the efficacy of rTMS applied to different clinical and rehabilitative aspects of stroke patients. A total of 32 meta-analyses published until July 2019 were selected, focusing on the effects on motor function, manual dexterity, walking and balance, spasticity, dysphagia, aphasia, unilateral neglect, depression, and cognitive function after a stroke. Only conventional rTMS protocols were considered in this review, and meta-analyses focusing on theta burst stimulation only were excluded. Overall, both HF-rTMS and LF-rTMS have been shown to be safe and well-tolerated. In addition, the current literature converges on the positive effect of rTMS in the rehabilitation of all clinical manifestations of stroke, except for spasticity and cognitive impairment, where definitive evidence of efficacy cannot be drawn. However, routine use of a specific paradigm of stimulation cannot be recommended yet due to a significant level of heterogeneity of the studies in terms of protocols to be set and outcome measures that have to be used. Future studies need to preliminarily evaluate the most promising protocols before going on to multicenter studies with large cohorts of patients in order to achieve a definitive translation into daily clinical practice.
Collapse
Affiliation(s)
- Francesco Fisicaro
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Giuseppe Lanza
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Via Santa Sofia, 78, Catania, 95125, Italy
- Department of Neurology IC, Oasi Research Institute – IRCCS, Troina, Italy
| | - Alfio Antonio Grasso
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Giovanni Pennisi
- Department of Surgery and Medical-Surgery Specialties, University of Catania, Catania, Italy
| | - Rita Bella
- Department of Medical and Surgical Sciences and Advanced Technologies, Section of Neurosciences, University of Catania, Catania, Italy
| | - Walter Paulus
- Department of Clinical Neurophysiology, University Medical Center, Georg August University, Göttingen, Germany
| | - Manuela Pennisi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
67
|
Repetitive transcranial magnetic stimulation of the primary motor cortex expedites recovery in the transition from acute to sustained experimental pain: a randomised, controlled study. Pain 2019; 160:2624-2633. [DOI: 10.1097/j.pain.0000000000001656] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
68
|
Terranova C, Rizzo V, Cacciola A, Chillemi G, Calamuneri A, Milardi D, Quartarone A. Is There a Future for Non-invasive Brain Stimulation as a Therapeutic Tool? Front Neurol 2019; 9:1146. [PMID: 30733704 PMCID: PMC6353822 DOI: 10.3389/fneur.2018.01146] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 12/11/2018] [Indexed: 01/11/2023] Open
Abstract
Several techniques and protocols of non-invasive transcranial brain stimulation (NIBS), including transcranial magnetic and electrical stimuli, have been developed in the past decades. These techniques can induce long lasting changes in cortical excitability by promoting synaptic plasticity and thus may represent a therapeutic option in neuropsychiatric disorders. On the other hand, despite these techniques have become popular, the fragility and variability of the after effects are the major challenges that non-invasive transcranial brain stimulation currentlyfaces. Several factors may account for such a variability such as biological variations, measurement reproducibility, and the neuronal state of the stimulated area. One possible strategy, to reduce this variability is to monitor the neuronal state in real time using EEG and trigger TMS pulses only at pre-defined state. In addition, another strategy under study is to use the spaced application of multiple NIBS protocols within a session to improve the reliability and extend the duration of NIBS effects. Further studies, although time consuming, are required for improving the so far limited effect sizes of NIBS protocols for treatment of neurological or psychiatric disorders.
Collapse
Affiliation(s)
- Carmen Terranova
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Vincenzo Rizzo
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Alberto Cacciola
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
| | | | | | | | - Angelo Quartarone
- Department of Biomedical, Dental Sciences and Morphological and Functional Images, University of Messina, Messina, Italy
- IRCCS Centro Neurolesi ‘Bonino Pulejo’, Messina, Italy
| |
Collapse
|
69
|
Latin American and Caribbean consensus on noninvasive central nervous system neuromodulation for chronic pain management (LAC 2-NIN-CP). Pain Rep 2019; 4:e692. [PMID: 30801041 PMCID: PMC6370142 DOI: 10.1097/pr9.0000000000000692] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022] Open
Abstract
Supplemental Digital Content is Available in the Text. Introduction: Chronic pain (CP) is highly prevalent and generally undertreated health condition. Noninvasive brain stimulation may contribute to decrease pain intensity and influence other aspects related to CP. Objective: To provide consensus-based recommendations for the use of noninvasive brain stimulation in clinical practice. Methods: Systematic review of the literature searching for randomized clinical trials followed by consensus panel. Recommendations also involved a cost-estimation study. Results: The systematic review wielded 24 transcranial direct current stimulation (tDCS) and 22 repetitive transcranial magnetic stimulation (rTMS) studies. The following recommendations were provided: (1) Level A for anodal tDCS over the primary motor cortex (M1) in fibromyalgia, and level B for peripheral neuropathic pain, abdominal pain, and migraine; bifrontal (F3/F4) tDCS and M1 high-definition (HD)-tDCS for fibromyalgia; Oz/Cz tDCS for migraine and for secondary benefits such as improvement in quality of life, decrease in anxiety, and increase in pressure pain threshold; (2) level A recommendation for high-frequency (HF) rTMS over M1 for fibromyalgia and neuropathic pain, and level B for myofascial or musculoskeletal pain, complex regional pain syndrome, and migraine; (3) level A recommendation against the use of anodal M1 tDCS for low back pain; and (4) level B recommendation against the use of HF rTMS over the left dorsolateral prefrontal cortex in the control of pain. Conclusion: Transcranial DCS and rTMS are recommended techniques to be used in the control of CP conditions, with low to moderate analgesic effects, and no severe adverse events. These recommendations are based on a systematic review of the literature and a consensus made by experts in the field. Readers should use it as part of the resources available to decision-making.
Collapse
|
70
|
Moisset X, Lefaucheur JP. Non pharmacological treatment for neuropathic pain: Invasive and non-invasive cortical stimulation. Rev Neurol (Paris) 2018; 175:51-58. [PMID: 30322590 DOI: 10.1016/j.neurol.2018.09.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 09/10/2018] [Indexed: 01/10/2023]
Abstract
The use of medications in chronic neuropathic pain may be limited with regard to efficacy and tolerance. Therefore, non-pharmacological approaches, using electrical stimulation of the cortex has been proposed as an alternative. First, in the early nineties, surgically-implanted epidural motor cortex stimulation (EMCS) was proven to be effective to relieve refractory neuropathic pain. Later, non-invasive stimulation techniques were found to produce similar analgesic effects, at least by means of repetitive transcranial magnetic stimulation (rTMS) targeting the primary motor cortex (M1). Following "high-frequency" rTMS (e.g., stimulation frequency ranging from 5 to 20Hz) delivered to the precentral gyrus (e.g., M1 region), it is possible to obtain an analgesic effect via the modulation of several remote brain regions involved in nociceptive information processing or control. This pain reduction can last for weeks beyond the time of the stimulation, especially if repeated sessions are performed, probably related to processes of long-term synaptic plasticity. Transcranial direct current stimulation (tDCS), another form of transcranial stimulation, using low-intensity electrical currents, generally delivered by a pair of large electrodes, has also shown some efficacy to improve patients with chronic pain syndromes. The mechanism of action of tDCS differs from that of EMCS and rTMS, but the cortical target is the same, which is M1. Although the level of evidence of therapeutic efficacy in the context of neuropathic pain is lower for tDCS than for rTMS, interesting perspectives are opened by using at-home tDCS protocols for long-term management. Now, there is a scientific basis for recommending both EMCS and rTMS of M1 to treat refractory chronic neuropathic pain, but their application in clinical practice remains limited due to practical and regulatory issues.
Collapse
Affiliation(s)
- X Moisset
- Inserm, service de neurologie Clermont-Ferrand, université Clermont-Auvergne, Neuro-Dol, CHU Clermont-Ferrand, 63000 Clermont-Ferrand, France.
| | - J-P Lefaucheur
- Service de physiologie, explorations fonctionnelles, EA 4391, faculté de médecine, université Paris Est Créteil, 94000 Créteil, France; Hôpital Henri-Mondor, Assistance publique-Hôpitaux de Paris, 94000 Créteil, France
| |
Collapse
|
71
|
Hsu JH, Daskalakis ZJ, Blumberger DM. An Update on Repetitive Transcranial Magnetic Stimulation for the Treatment of Co-morbid Pain and Depressive Symptoms. Curr Pain Headache Rep 2018; 22:51. [DOI: 10.1007/s11916-018-0703-7] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
72
|
|
73
|
Cervigni M, Onesti E, Ceccanti M, Gori MC, Tartaglia G, Campagna G, Panico G, Vacca L, Cambieri C, Libonati L, Inghilleri M. Repetitive transcranial magnetic stimulation for chronic neuropathic pain in patients with bladder pain syndrome/interstitial cystitis. Neurourol Urodyn 2018; 37:2678-2687. [PMID: 29797500 DOI: 10.1002/nau.23718] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/06/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Mauro Cervigni
- Department of Women's Health and Newborns; Interstitial Cystitis Referral Center; University Hospital Foundation A. Gemelli; Rome Italy
| | - Emanuela Onesti
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| | - Marco Ceccanti
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| | - Maria C. Gori
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| | - Giorgio Tartaglia
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| | - Giuseppe Campagna
- Department of Women's Health and Newborns; Interstitial Cystitis Referral Center; University Hospital Foundation A. Gemelli; Rome Italy
| | - Giovanni Panico
- Department of Women's Health and Newborns; Interstitial Cystitis Referral Center; University Hospital Foundation A. Gemelli; Rome Italy
| | - Lorenzo Vacca
- Department of Women's Health and Newborns; Interstitial Cystitis Referral Center; University Hospital Foundation A. Gemelli; Rome Italy
| | - Chiara Cambieri
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| | - Laura Libonati
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| | - Maurizio Inghilleri
- Department of Human Neuroscience; Rare Neuromuscular Diseases Centre; Sapienza University; Rome Italy
| |
Collapse
|
74
|
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months' duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three 'Summary of findings' tables. MAIN RESULTS We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.rTMSMeta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to < 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).CESFor CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).tDCSAnalysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).Adverse eventsAll forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. AUTHORS' CONCLUSIONS There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Brunel University LondonHealth Economics Research Group, Institute of Environment, Health and Societies, Department of Clinical SciencesKingston LaneUxbridgeMiddlesexUKUB8 3PH
| | - Louise Marston
- University College LondonResearch Department of Primary Care & Population HealthRoyal Free Campus, Rowland HillLondonUKNW3 2PF
| | - Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkLancashireUKL39 4QP
| | - Lorraine H DeSouza
- Brunel University LondonDepartment of Clinical Sciences/Health Ageing Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeMiddlesexUKUB8 3PH
| | - Benedict M Wand
- The University of Notre Dame Australia FremantleSchool of Physiotherapy19 Mouat Street (PO Box 1225)PerthWest AustraliaAustralia6959
| | | |
Collapse
|
75
|
O'Leary VB, O'Connell M, Antyborzec I, Ntziachristos V, Oliver Dolly J, Ovsepian SV. Alleviation of Trigeminal Nociception Using p75 Neurotrophin Receptor Targeted Lentiviral Interference Therapy. Neurotherapeutics 2018; 15:489-499. [PMID: 29427180 PMCID: PMC5935639 DOI: 10.1007/s13311-018-0608-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acute and chronic trigeminal (TG) neuropathies are the cause of considerable distress, with limited treatments available at present. Nociceptive neurons enriched with the vanilloid type 1 receptor (VR1) partake in pain sensation and sensitization in the TG system. While VR1 blockers with anti-nociceptive potential are of substantial medical interest, their use remains limited due to poor selectivity and lack of cell-targeting capabilities. This study describes a methodology for the alleviation of nociception via targeted depletion of VR1 in TG sensory neurons in rats. In cultured TG ganglion neurons, VR1 expression was virtually abolished by lentiviral short hairpin RNA (LV-VR1). By decorating GFP encoding LV (LV-GFP) and LV-VR1 with IgG192 for targeting TG sensory neurons enriched with the p75 neurotrophin receptor (p75NTR), transduction of a reporter GFP and VR1 depletion was achieved after injection of targeted vectors into the whisker pad. In IgG192/LV-VR1-injected rats, the behavioral response to capsaicin exposure as well as Erk 1/2 phosphorylation and VR1 current activation by capsaicin were significantly reduced. This pioneering investigation, thus, provides a proof of principle for a means of attenuating TG nociception, revealing therapeutic potential.
Collapse
Affiliation(s)
- Valerie B O'Leary
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Marie O'Connell
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Inga Antyborzec
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany
| | - J Oliver Dolly
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland
| | - Saak V Ovsepian
- International Centre for Neurotherapeutics, Dublin City University, Glasnevin, Dublin 9, Ireland.
- Helmholtz Zentrum München - German Research Center for Environmental Health, Institute for Biological and Medical Imaging, Ingolstaedter Landstrasse 1, 85764, Neuherberg, Germany.
- Faculty for Electrical Engineering and Information Technology, Chair of Biomedical Imaging, Technical University of Munich, Munich, Germany.
| |
Collapse
|
76
|
O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst Rev 2018; 3:CD008208. [PMID: 29547226 PMCID: PMC7039253 DOI: 10.1002/14651858.cd008208.pub4] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND This is an updated version of the original Cochrane Review published in 2010, Issue 9, and last updated in 2014, Issue 4. Non-invasive brain stimulation techniques aim to induce an electrical stimulation of the brain in an attempt to reduce chronic pain by directly altering brain activity. They include repetitive transcranial magnetic stimulation (rTMS), cranial electrotherapy stimulation (CES), transcranial direct current stimulation (tDCS), transcranial random noise stimulation (tRNS) and reduced impedance non-invasive cortical electrostimulation (RINCE). OBJECTIVES To evaluate the efficacy of non-invasive cortical stimulation techniques in the treatment of chronic pain. SEARCH METHODS For this update we searched CENTRAL, MEDLINE, Embase, CINAHL, PsycINFO, LILACS and clinical trials registers from July 2013 to October 2017. SELECTION CRITERIA Randomised and quasi-randomised studies of rTMS, CES, tDCS, RINCE and tRNS if they employed a sham stimulation control group, recruited patients over the age of 18 years with pain of three months' duration or more, and measured pain as an outcome. Outcomes of interest were pain intensity measured using visual analogue scales or numerical rating scales, disability, quality of life and adverse events. DATA COLLECTION AND ANALYSIS Two review authors independently extracted and verified data. Where possible we entered data into meta-analyses, excluding studies judged as high risk of bias. We used the GRADE system to assess the quality of evidence for core comparisons, and created three 'Summary of findings' tables. MAIN RESULTS We included an additional 38 trials (involving 1225 randomised participants) in this update, making a total of 94 trials in the review (involving 2983 randomised participants). This update included a total of 42 rTMS studies, 11 CES, 36 tDCS, two RINCE and two tRNS. One study evaluated both rTMS and tDCS. We judged only four studies as low risk of bias across all key criteria. Using the GRADE criteria we judged the quality of evidence for each outcome, and for all comparisons as low or very low; in large part this was due to issues of blinding and of precision.rTMSMeta-analysis of rTMS studies versus sham for pain intensity at short-term follow-up (0 to < 1 week postintervention), (27 studies, involving 655 participants), demonstrated a small effect with heterogeneity (standardised mean difference (SMD) -0.22, 95% confidence interval (CI) -0.29 to -0.16, low-quality evidence). This equates to a 7% (95% CI 5% to 9%) reduction in pain, or a 0.40 (95% CI 0.53 to 0.32) point reduction on a 0 to 10 pain intensity scale, which does not meet the minimum clinically important difference threshold of 15% or greater. Pre-specified subgroup analyses did not find a difference between low-frequency stimulation (low-quality evidence) and rTMS applied to the prefrontal cortex compared to sham for reducing pain intensity at short-term follow-up (very low-quality evidence). High-frequency stimulation of the motor cortex in single-dose studies was associated with a small short-term reduction in pain intensity at short-term follow-up (low-quality evidence, pooled n = 249, SMD -0.38 95% CI -0.49 to -0.27). This equates to a 12% (95% CI 9% to 16%) reduction in pain, or a 0.77 (95% CI 0.55 to 0.99) point change on a 0 to 10 pain intensity scale, which does not achieve the minimum clinically important difference threshold of 15% or greater. The results from multiple-dose studies were heterogeneous and there was no evidence of an effect in this subgroup (very low-quality evidence). We did not find evidence that rTMS improved disability. Meta-analysis of studies of rTMS versus sham for quality of life (measured using the Fibromyalgia Impact Questionnaire (FIQ) at short-term follow-up demonstrated a positive effect (MD -10.80 95% CI -15.04 to -6.55, low-quality evidence).CESFor CES (five studies, 270 participants) we found no evidence of a difference between active stimulation and sham (SMD -0.24, 95% CI -0.48 to 0.01, low-quality evidence) for pain intensity. We found no evidence relating to the effectiveness of CES on disability. One study (36 participants) of CES versus sham for quality of life (measured using the FIQ) at short-term follow-up demonstrated a positive effect (MD -25.05 95% CI -37.82 to -12.28, very low-quality evidence).tDCSAnalysis of tDCS studies (27 studies, 747 participants) showed heterogeneity and a difference between active and sham stimulation (SMD -0.43 95% CI -0.63 to -0.22, very low-quality evidence) for pain intensity. This equates to a reduction of 0.82 (95% CI 0.42 to 1.2) points, or a percentage change of 17% (95% CI 9% to 25%) of the control group outcome. This point estimate meets our threshold for a minimum clinically important difference, though the lower confidence interval is substantially below that threshold. We found evidence of small study bias in the tDCS analyses. We did not find evidence that tDCS improved disability. Meta-analysis of studies of tDCS versus sham for quality of life (measured using different scales across studies) at short-term follow-up demonstrated a positive effect (SMD 0.66 95% CI 0.21 to 1.11, low-quality evidence).Adverse eventsAll forms of non-invasive brain stimulation and sham stimulation appear to be frequently associated with minor or transient side effects and there were two reported incidences of seizure, both related to the active rTMS intervention in the included studies. However many studies did not adequately report adverse events. AUTHORS' CONCLUSIONS There is very low-quality evidence that single doses of high-frequency rTMS of the motor cortex and tDCS may have short-term effects on chronic pain and quality of life but multiple sources of bias exist that may have influenced the observed effects. We did not find evidence that low-frequency rTMS, rTMS applied to the dorsolateral prefrontal cortex and CES are effective for reducing pain intensity in chronic pain. The broad conclusions of this review have not changed substantially for this update. There remains a need for substantially larger, rigorously designed studies, particularly of longer courses of stimulation. Future evidence may substantially impact upon the presented results.
Collapse
Affiliation(s)
- Neil E O'Connell
- Brunel UniversityDepartment of Clinical Sciences/Health Economics Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeUKUB8 3PH
| | - Louise Marston
- University College LondonResearch Department of Primary Care & Population HealthRoyal Free Campus, Rowland HillLondonUKNW3 2PF
| | - Sally Spencer
- Edge Hill UniversityPostgraduate Medical InstituteSt Helens RoadOrmskirkUKL39 4QP
| | - Lorraine H DeSouza
- Brunel University LondonDepartment of Clinical Sciences/Health Ageing Research Group, Institute of Environment, Health and SocietiesKingston LaneUxbridgeUKUB8 3PH
| | - Benedict M Wand
- The University of Notre Dame AustraliaSchool of Physiotherapy19 Mouat Street (PO Box 1225)FremantleAustralia6959
| |
Collapse
|
77
|
Lavano A, Guzzi G, Chirchiglia D. Cortical neuromodulation for neuropathic pain and Parkinson disease: Where are we? Neurol Neurochir Pol 2018; 52:75-78. [PMID: 29180075 DOI: 10.1016/j.pjnns.2017.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/05/2017] [Indexed: 11/29/2022]
Abstract
Cortex neuromodulation is promising approach for treatment of some neurological conditions, especially neuropathic pain and Parkinson's disease. Effects of non-invasive cortical stimulation are short lived; transcranial direct current stimulation (tDCS) and transcranial alternating current stimulation (tACS) may be useful to assess the suitability for invasive cortical stimulation. Direct cortical stimulation (DCS) is the method able to provide long-lasting effects in treatment of neuropathic pain and some symptoms of Parkinson's disease through the use of totally implantable systems that ensure a chronic stimulation.
Collapse
Affiliation(s)
- Angelo Lavano
- Department of Neurosurgery, University "Magna Graecia" of Catanzaro, Italy.
| | - Giusy Guzzi
- Department of Neurosurgery, University "Magna Graecia" of Catanzaro, Italy
| | | |
Collapse
|
78
|
Dieckmann G, Goyal S, Hamrah P. Neuropathic Corneal Pain: Approaches for Management. Ophthalmology 2017; 124:S34-S47. [PMID: 29055360 DOI: 10.1016/j.ophtha.2017.08.004] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 08/01/2017] [Accepted: 08/02/2017] [Indexed: 01/16/2023] Open
Abstract
Neuropathic pain is caused by a primary lesion or dysfunction of the nervous system and can occur in the cornea. However, neuropathic corneal pain (NCP) is currently an ill-defined disease. Patients with NCP are extremely challenging to manage, and evidence-based clinical recommendations for the management of patients with NCP are scarce. The objectives of this review are to provide guidelines for diagnosis and treatment of patients with NCP and to summarize current evidence-based literature in this area. We performed a systematic literature search of all relevant publications between 1966 and 2017. Treatment recommendations are, in part, based on methodologically sound randomized controlled trials (RCTs), demonstrating superiority to placebo or relevant control treatments, and on the consistency of evidence, degree of efficacy, and safety. In addition, the recommendations include our own extensive experience in the management of these patients over the past decade. A comprehensive algorithm, based on clinical evaluation and complementary tests, is presented for diagnosis and subcategorization of patients with NCP. Recommended first-line topical treatments include neuroregenerative and anti-inflammatory agents, and first-line systemic pharmacotherapy includes tricyclic antidepressants and an anticonvulsant. Second-line oral treatments recommended include an opioid-antagonist and opiate analgesics. Complementary and alternative treatments, such as cardiovascular exercise, acupuncture, omega-3 fatty acid supplementation, and gluten-free diet, may have additional benefits, as do potential noninvasive and invasive procedures in recalcitrant cases. Medication selection should be tailored on an individual basis, considering side effects, comorbidities, and levels of peripheral and centralized pain. Nevertheless, there is an urgent need for long-term studies and RCTs assessing the efficacy of treatments for NCP.
Collapse
Affiliation(s)
- Gabriela Dieckmann
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts; Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | - Sunali Goyal
- Department of Ophthalmology, Jones Eye Institute, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Pedram Hamrah
- Cornea Service, New England Eye Center, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts; Center for Translational Ocular Immunology, Department of Ophthalmology, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
79
|
Dosenovic S, Jelicic Kadic A, Miljanovic M, Biocic M, Boric K, Cavar M, Markovina N, Vucic K, Puljak L. Interventions for Neuropathic Pain. Anesth Analg 2017; 125:643-652. [DOI: 10.1213/ane.0000000000001998] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
80
|
Phielipp NM, Saha U, Sankar T, Yugeta A, Chen R. Safety of repetitive transcranial magnetic stimulation in patients with implanted cortical electrodes. An ex-vivo study and report of a case. Clin Neurophysiol 2017; 128:1109-1115. [DOI: 10.1016/j.clinph.2017.01.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 01/11/2017] [Accepted: 01/26/2017] [Indexed: 11/29/2022]
|
81
|
Leung A, Metzger-Smith V, He Y, Cordero J, Ehlert B, Song D, Lin L, Shahrokh G, Tsai A, Vaninetti M, Rutledge T, Polston G, Sheu R, Lee R. Left Dorsolateral Prefrontal Cortex rTMS in Alleviating MTBI Related Headaches and Depressive Symptoms. Neuromodulation 2017; 21:390-401. [DOI: 10.1111/ner.12615] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/22/2017] [Accepted: 04/10/2017] [Indexed: 12/26/2022]
Affiliation(s)
- Albert Leung
- Department of Anesthesiology; The University of California; San Diego, La Jolla, CA, USA
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | | | - Yifan He
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | - James Cordero
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | - Brandon Ehlert
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | - David Song
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
- Department of Neuroscience; The University of California; San Diego, La Jolla, CA, USA
| | - Lisa Lin
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | | | - Alice Tsai
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | - Michael Vaninetti
- Department of Anesthesiology; The University of California; San Diego, La Jolla, CA, USA
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | - Thomas Rutledge
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
- Department of Psychiatric; The University of California; San Diego, La Jolla, CA, USA
| | - Greg Polston
- Department of Anesthesiology; The University of California; San Diego, La Jolla, CA, USA
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
| | - Robert Sheu
- Naval Medical Center San Diego; San Diego, CA, USA
| | - Roland Lee
- Veteran Affairs San Diego Healthcare System; San Diego, CA, USA
- Department of Radiology; The University of California; San Diego, La Jolla, CA, USA
| |
Collapse
|
82
|
Lindholm P, Lamusuo S, Taiminen T, Virtanen A, Pertovaara A, Forssell H, Hagelberg N, Jääskeläinen S. The analgesic effect of therapeutic rTMS is not mediated or predicted by comorbid psychiatric or sleep disorders. Medicine (Baltimore) 2016; 95:e5231. [PMID: 27858874 PMCID: PMC5591122 DOI: 10.1097/md.0000000000005231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Mechanisms underlying alleviation of neuropathic pain by repetitive transcranial magnetic stimulation (rTMS) of primary motor cortex (M1) and right secondary somatosensory cortex (S2) are only partly known. Patients with chronic neuropathic pain often have comorbidities like depression and sleep problems. Through functional connectivity, rTMS of M1 and S2 may activate dorsolateral prefrontal cortex, the target for treating depression with rTMS. Thus, the analgesic effect of rTMS could be mediated indirectly via improvement of psychiatric comorbidities or sleep. We examined whether rTMS has an independent analgesic effect or whether its clinical benefits depend on effects on mood or sleep. We also evaluated if comorbid psychiatric or sleep disorders predict the treatment outcome. METHODS Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized controlled crossover rTMS study. Patients' psychiatric history was evaluated by a specialist in psychiatry. Intensity and interference of pain, mood, and the quality of sleep and life were evaluated at baseline and after 2 active (primary somatosensory cortex [S1]/M1 and S2) and placebo rTMS treatments. A logistic regression analysis was done to investigate predictors of treatment outcome. RESULTS The analgesic effect of the right S2 stimulation was not associated with improvement of psychiatric conditions or sleep, whereas S1/M1 stimulation improved sleep without significant analgesic effect (P = 0.013-0.046 in sleep scores). Psychiatric and sleep disorders were more common in patients than in the general population (P = 0.000-0.001 in sleep scores), but these comorbidities did not predict the rTMS treatment outcome. CONCLUSION We conclude that rTMS to the right S2 does not exert its beneficial analgesic effects in chronic neuropathic orofacial pain via indirect improvement of comorbid psychiatric or sleep disorders.
Collapse
Affiliation(s)
- Pauliina Lindholm
- Division of Clinical Neuroscience Department of Clinical Neurophysiology Department of Psychiatry, Turku University Hospital, University of Turku, Turku Department of Physiology, Faculty of Medicine, University of Helsinki, Helsinki Institute of Dentistry Pain Clinic, Turku University Hospital, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Cortical neurostimulation for neuropathic pain: state of the art and perspectives. Pain 2016; 157 Suppl 1:S81-S89. [PMID: 26785160 DOI: 10.1097/j.pain.0000000000000401] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The treatment of neuropathic pain by neuromodulation is an objective for more than 40 years in modern clinical practice. With respect to spinal cord and deep brain structures, the cerebral cortex is the most recently evaluated target of invasive neuromodulation therapy for pain. In the early 90s, the first successes of invasive epidural motor cortex stimulation (EMCS) were published. A few years later was developed repetitive transcranial magnetic stimulation (rTMS), a noninvasive stimulation technique. Then, electrical transcranial stimulation returned valid and is currently in full development, with transcranial direct current stimulation (tDCS). Regarding transcranial approaches, the main studied and validated target was still the motor cortex, but other cortical targets are under investigation. The mechanisms of action of these techniques share similarities, especially between EMCS and rTMS, but they also have differences that could justify specific indications and applications. It is therefore important to know the principles and to assess the merit of these techniques on the basis of a rigorous assessment of the results, to avoid fad. Various types of chronic neuropathic pain syndromes can be significantly relieved by EMCS or repeated daily sessions of high-frequency (5-20 Hz) rTMS or anodal tDCS over weeks, at least when pain is lateralized and stimulation is applied to the motor cortex contralateral to pain side. However, cortical stimulation therapy remains to be optimized, especially by improving EMCS electrode design, rTMS targeting, or tDCS montage, to reduce the rate of nonresponders, who do not experience clinically relevant effects of these techniques.
Collapse
|
84
|
Mendes-Filho VA, de Jesus DR, Belmonte-de-Abreu P, Cachoeira CT, Rodrigues Lobato MI. Effects of repetitive transcranial magnetic stimulation over supplementary motor area in patients with schizophrenia with obsessive-compulsive-symptoms: A pilot study. Psychiatry Res 2016; 242:34-38. [PMID: 27254652 DOI: 10.1016/j.psychres.2016.05.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Revised: 04/08/2016] [Accepted: 05/22/2016] [Indexed: 12/26/2022]
Abstract
In patients with schizophrenia, obsessive-compulsive symptoms (OCS) are associated with lower rates of quality of life and polypharmacy. No previous controlled studies have tested the efficacy of repetitive transcranial magnetic stimulation (rTMS) on the treatment of OCS in this population. The present study examined the therapeutic effects of rTMS applied to the supplementary motor area (1Hz, 20min, 20 sessions) on OCS and general symptoms in patients with schizophrenia or schizoaffective disorder, and whether this intervention can produce changes in plasma levels of brain derived neurotrophic factor (BDNF). A double-blind randomized controlled trial was conducted. Active and sham rTMS were delivered to 12 patients (6 on each group). Yale-Brown Obsessive-Compulsive Scale (Y-BOCS) and Brief Psychiatric Rating Scale (BPRS) scores, as well as BDNF levels, were assessed before, after, and 4 weeks after treatment. rTMS did not significantly change the outcomes after treatment and on the follow-up (Y-BOCS: Wald's X(2)=3.172; p=0.205; BPRS: X(2)=1.629; p=0.443; BDNF: X(2)=2.930; p=0.231). There seemed to be a trend towards improvement of BPRS scores 4 weeks after rTMS treatment comparing with sham (Cohen's d=0.875, with 32.9% statistical power). No side effects were reported. Future studies with larger sample sizes are needed.
Collapse
Affiliation(s)
- Vauto Alves Mendes-Filho
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre (UFRGS), Rio Grande do Sul, Brazil.
| | - Danilo Rocha de Jesus
- Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - Paulo Belmonte-de-Abreu
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre (UFRGS), Rio Grande do Sul, Brazil
| | - Carolina Tosetto Cachoeira
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre (UFRGS), Rio Grande do Sul, Brazil
| | - Maria Inês Rodrigues Lobato
- Hospital de Clínicas de Porto Alegre (HCPA), Universidade Federal do Rio Grande do Sul, Porto Alegre (UFRGS), Rio Grande do Sul, Brazil
| |
Collapse
|
85
|
Ambriz-Tututi M, Alvarado-Reynoso B, Drucker-Colín R. Analgesic effect of repetitive transcranial magnetic stimulation (rTMS) in patients with chronic low back pain. Bioelectromagnetics 2016; 37:527-535. [DOI: 10.1002/bem.22001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/06/2016] [Indexed: 01/20/2023]
Affiliation(s)
- Mónica Ambriz-Tututi
- Hospital General Ajusco Medio “Dra. Obdulia Rodriguez Rodriguez”; Unidad de Trastornos de Movimiento y Sueño; Ciudad de México Mexico
| | - Beatriz Alvarado-Reynoso
- Hospital General Ajusco Medio “Dra. Obdulia Rodriguez Rodriguez”; Unidad de Trastornos de Movimiento y Sueño; Ciudad de México Mexico
| | - René Drucker-Colín
- Departamento de Neuropatología Molecular; Instituto de Fisiología Celular; Universidad Nacional Autónoma de México; Ciudad de México Mexico
| |
Collapse
|
86
|
Malavera A, Silva FA, Fregni F, Carrillo S, Garcia RG. Repetitive Transcranial Magnetic Stimulation for Phantom Limb Pain in Land Mine Victims: A Double-Blinded, Randomized, Sham-Controlled Trial. THE JOURNAL OF PAIN 2016; 17:911-8. [PMID: 27260638 PMCID: PMC4969102 DOI: 10.1016/j.jpain.2016.05.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 04/21/2016] [Accepted: 05/06/2016] [Indexed: 02/07/2023]
Abstract
UNLABELLED We evaluated the effects of repetitive transcranial magnetic stimulation (rTMS) in the treatment of phantom limb pain (PLP) in land mine victims. Fifty-four patients with PLP were enrolled in a randomized, double-blinded, placebo-controlled, parallel group single-center trial. The intervention consisted of real or sham rTMS of M1 contralateral to the amputated leg. rTMS was given in series of 20 trains of 6-second duration (54-second intertrain, intensity 90% of motor threshold) at a stimulation rate of 10 Hz (1,200 pulses), 20 minutes per day, during 10 days. For the control group, a sham coil was used. The administration of active rTMS induced a significantly greater reduction in pain intensity (visual analogue scale scores) 15 days after treatment compared with sham stimulation (-53.38 ± 53.12% vs -22.93 ± 57.16%; mean between-group difference = 30.44%, 95% confidence interval, .30-60.58; P = .03). This effect was not significant 30 days after treatment. In addition, 19 subjects (70.3%) attained a clinically significant pain reduction (>30%) in the active group compared with 11 in the sham group (40.7%) 15 days after treatment (P = .03). The administration of 10 Hz rTMS on the contralateral primary motor cortex for 2 weeks in traumatic amputees with PLP induced significant clinical improvement in pain. PERSPECTIVE High-frequency rTMS on the contralateral primary motor cortex of traumatic amputees induced a clinically significant pain reduction up to 15 days after treatment without any major secondary effect. These results indicate that rTMS is a safe and effective therapy in patients with PLP caused by land mine explosions.
Collapse
Affiliation(s)
- Alejandra Malavera
- Neurovascular Science Group, Fundación Cardiovascular de Colombia, Floridablanca, Colombia; Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Federico Arturo Silva
- Neurovascular Science Group, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Felipe Fregni
- Spaulding Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, Massachusetts
| | - Sandra Carrillo
- Neurovascular Science Group, Fundación Cardiovascular de Colombia, Floridablanca, Colombia
| | - Ronald G Garcia
- Neurovascular Science Group, Fundación Cardiovascular de Colombia, Floridablanca, Colombia; MASIRA Research Institute, School of Medicine, Universidad de Santander, Bucaramanga, Colombia; Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
87
|
Repetitive transcranial magnetic stimulation and transcranial direct-current stimulation in neuropathic pain due to radiculopathy. Pain 2016; 157:1224-1231. [DOI: 10.1097/j.pain.0000000000000510] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
88
|
Abstract
Recognizing that electrically stimulating the motor cortex could relieve chronic pain sparked development of noninvasive technologies. In transcranial magnetic stimulation (TMS), electromagnetic coils held against the scalp influence underlying cortical firing. Multiday repetitive transcranial magnetic stimulation (rTMS) can induce long-lasting, potentially therapeutic brain plasticity. Nearby ferromagnetic or electronic implants are contraindications. Adverse effects are minimal, primarily headaches. Single provoked seizures are very rare. Transcranial magnetic stimulation devices are marketed for depression and migraine in the United States and for various indications elsewhere. Although multiple studies report that high-frequency rTMS of the motor cortex reduces neuropathic pain, their quality has been insufficient to support Food and Drug Administration application. Harvard's Radcliffe Institute therefore sponsored a workshop to solicit advice from experts in TMS, pain research, and clinical trials. They recommended that researchers standardize and document all TMS parameters and improve strategies for sham and double blinding. Subjects should have common well-characterized pain conditions amenable to motor cortex rTMS and studies should be adequately powered. They recommended standardized assessment tools (eg, NIH's PROMIS) plus validated condition-specific instruments and consensus-recommended metrics (eg, IMMPACT). Outcomes should include pain intensity and qualities, patient and clinician impression of change, and proportions achieving 30% and 50% pain relief. Secondary outcomes could include function, mood, sleep, and/or quality of life. Minimum required elements include sample sources, sizes, and demographics, recruitment methods, inclusion and exclusion criteria, baseline and posttreatment means and SD, adverse effects, safety concerns, discontinuations, and medication-usage records. Outcomes should be monitored for at least 3 months after initiation with prespecified statistical analyses. Multigroup collaborations or registry studies may be needed for pivotal trials.
Collapse
|
89
|
Parallels between phantom pain and tinnitus. Med Hypotheses 2016; 91:95-97. [PMID: 27142154 DOI: 10.1016/j.mehy.2016.04.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 04/13/2016] [Indexed: 01/23/2023]
Abstract
Phantom pain and tinnitus are diseases that cause patients great discomfort. Both are phantom sensations that have many connections with cerebral structures, but their underlying mechanisms are not fully understood. Several therapies have been suggested for these conditions over the years, but there is still no consensus on how to treat either one. Comparison of these two phenomena reveals many similarities, including what is known about their underlying mechanisms, associated brain areas, and responses to therapeutic agents and methods. These similarities need to be evaluated in greater depth, as this could improve our understanding of tinnitus and phantom pain, and thereby improve management strategies for these conditions.
Collapse
|
90
|
Analgesic effects of navigated motor cortex rTMS in patients with chronic neuropathic pain. Eur J Pain 2016; 20:1413-22. [DOI: 10.1002/ejp.864] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/11/2016] [Indexed: 12/12/2022]
|
91
|
Onesti E, Gori MC, Frasca V, Inghilleri M. Transcranial magnetic stimulation as a new tool to control pain perception. World J Anesthesiol 2016; 5:15-27. [DOI: 10.5313/wja.v5.i1.15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2015] [Revised: 10/07/2015] [Accepted: 12/15/2015] [Indexed: 02/06/2023] Open
Abstract
Treatment for chronic pain is frequently unsuccessful or characterized by side-effects. The high-frequency repetitive transcranial magnetic stimulation (HF-rTMS) has been suggested in the management of refractory chronic pain. Various studies have shown that HF-rTMS sessions of long-duration applied at primary motor cortex induce pain relief through mechanisms of plastic changes. Efficacy of rTMS mostly depends on stimulation parameters, but this aspect requires better characterization. A rationale to target other cortical areas exists. Current data are promising, but a careful analysis of stimulation settings and maintenance treatment design are need.
Collapse
|
92
|
Pommier B, Créac'h C, Beauvieux V, Nuti C, Vassal F, Peyron R. Robot-guided neuronavigated rTMS as an alternative therapy for central (neuropathic) pain: Clinical experience and long-term follow-up. Eur J Pain 2016; 20:907-16. [DOI: 10.1002/ejp.815] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/24/2023]
Affiliation(s)
- B. Pommier
- Service de Neurochirurgie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| | - C. Créac'h
- Service de Neurologie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Centre Stéphanois de la douleur, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| | - V. Beauvieux
- Centre Stéphanois de la douleur, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
| | - C. Nuti
- Service de Neurochirurgie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| | - F. Vassal
- Service de Neurochirurgie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
| | - R. Peyron
- Service de Neurologie, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Centre Stéphanois de la douleur, Hôpital Nord; Centre Hospitalier Régional Universitaire de Saint-Etienne; France
- Inserm U1028; Université Claude Bernard Lyon1; France
- CRNL; Université Jean Monnet; Saint-Etienne France
| |
Collapse
|
93
|
Abstract
The richly innervated corneal tissue is one of the most powerful pain generators in the body. Corneal neuropathic pain results from dysfunctional nerves causing perceptions such as burning, stinging, eye-ache, and pain. Various inflammatory diseases, neurological diseases, and surgical interventions can be the underlying cause of corneal neuropathic pain. Recent efforts have been made by the scientific community to elucidate the pathophysiology and neurobiology of pain resulting from initially protective physiological reflexes, to a more persistent chronic state. The goal of this clinical review is to briefly summarize the pathophysiology of neuropathic corneal pain, describe how to systematically approach the diagnosis of these patients, and finally summarizing our experience with current therapeutic approaches for the treatment of corneal neuropathic pain.
Collapse
Affiliation(s)
- Sunali Goyal
- Cornea & Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School Boston MA
| | - Pedram Hamrah
- Cornea & Refractive Surgery Service, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School Boston MA
- Ocular Surface Imaging Center, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School Boston MA
| |
Collapse
|
94
|
Leung A, Shukla S, Fallah A, Song D, Lin L, Golshan S, Tsai A, Jak A, Polston G, Lee R. Repetitive Transcranial Magnetic Stimulation in Managing Mild Traumatic Brain Injury-Related Headaches. Neuromodulation 2015; 19:133-41. [DOI: 10.1111/ner.12364] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/07/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023]
Affiliation(s)
- Albert Leung
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Shivshil Shukla
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Amir Fallah
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - David Song
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Lisa Lin
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Shahrokh Golshan
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
- Biostatistics Core; Veterans Medical Research Foundation; San Diego CA USA
| | - Alice Tsai
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Amy Jak
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Greg Polston
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| | - Roland Lee
- Veteran Administration San Diego Healthcare System; La Jolla CA USA
| |
Collapse
|
95
|
Pessoa BL, Escudeiro G, Nascimento OJM. Emerging Treatments for Neuropathic Pain. Curr Pain Headache Rep 2015; 19:56. [DOI: 10.1007/s11916-015-0530-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
96
|
Hassan MA, Fraser M, Conway BA, Allan DB, Vuckovic A. The mechanism of neurofeedback training for treatment of central neuropathic pain in paraplegia: a pilot study. BMC Neurol 2015; 15:200. [PMID: 26462651 PMCID: PMC4604632 DOI: 10.1186/s12883-015-0445-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 09/29/2015] [Indexed: 01/30/2023] Open
Abstract
Background Central neuropathic pain has a prevalence of 40 % in patients with spinal cord injury. Electroencephalography (EEG) studies showed that this type of pain has identifiable signatures, that could potentially be targeted by a neuromodulation therapy. The aim of the study was to investigate the putative mechanism of neurofeedback training on central neuropathic pain and its underlying brain signatures in patients with chronic paraplegia. Methods Patients’ EEG activity was modulated from the sensory-motor cortex, electrode location C3/Cz/C4/P4 in up to 40 training sessions Results. Six out of seven patients reported immediate reduction of pain during neurofeedback training. Best results were achieved with suppressing Ɵ and higher β (20–30 Hz) power and reinforcing α power at C4. Four patients reported clinically significant long-term reduction of pain (>30 %) which lasted at least a month beyond the therapy. EEG during neurofeedback revealed a wide spread modulation of power in all three frequency bands accompanied with changes in the coherence most notable in the beta band. The standardized low resolution electromagnetic tomography analysis of EEG before and after neurofeedback therapy showed the statistically significant reduction of power in beta frequency band in all tested patients. Areas with reduced power included the Dorsolateral Prefrontal Cortex, the Anterior Cingulate Cortex and the Insular Cortex. Conclusions Neurofeedback training produces both immediate and longer term reduction of central neuropathic pain that is accompanied with a measurable short and long term modulation of cortical activity. Controlled trials are required to confirm the efficacy of this neurofeedback protocol on treatment of pain. The study is a registered UKCRN clinical trial Nr 9824.
Collapse
Affiliation(s)
- Muhammad Abul Hassan
- Rehabilitation Engineering and Assistive technologies, Biomedical Engineering Research Division, University of Glasgow, Glasgow, UK. .,Department of Biomedical Engineering, NED University of Engineering and Technology, Karachi, Pakistan.
| | - Matthew Fraser
- Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK.
| | - Bernard A Conway
- Department of Biomedical Engineering, University of Strathclyde, Strathclyde, UK.
| | - David B Allan
- Queen Elizabeth National Spinal Injuries Unit, Southern General Hospital, Glasgow, UK.
| | - Aleksandra Vuckovic
- Rehabilitation Engineering and Assistive technologies, Biomedical Engineering Research Division, University of Glasgow, Glasgow, UK. .,Biomedical Engineering Research Division, School of Engineering, University of Glasgow, James Watt building (south), G12 8QQ, Glasgow, UK.
| |
Collapse
|
97
|
Koski L, Kolivakis T, Yu C, Chen JK, Delaney S, Ptito A. Noninvasive brain stimulation for persistent postconcussion symptoms in mild traumatic brain injury. J Neurotrauma 2015; 32:38-44. [PMID: 24955920 DOI: 10.1089/neu.2014.3449] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mild traumatic brain injury (mTBI) is typically followed by various postconcussive symptoms (PCS), including headache, depression, and cognitive deficits. In 15-25% of cases, PCS persists beyond the usual 3-month recovery period, interfering with activities of daily living and responding poorly to pharmacotherapy. We tested the safety, tolerability, and efficacy of repetitive transcranial magnetic stimulation (rTMS) over the left dorsolateral prefrontal cortex (DLPFC) for alleviating PCS. Fifteen eligible patients with mTBI and PCS > 3 months postinjury consented to 20 sessions of rTMS (20 × 5-sec trains; 10 Hz at 110% threshold), with clinical and functional magnetic resonance imaging (fMRI) assessments before and after intervention and clinical assessment at 3-month follow-up. Primary outcomes were tolerability, safety, and efficacy, as measured with the PCS Scale. Secondary outcomes included the Cognitive Symptoms Questionnaire, neuropsychological test performance, and working memory task-associated activity as assessed with fMRI. Twelve patients completed all sessions. Three withdrew because of worsening symptoms or for an unrelated event. Stimulation intensity was increased gradually across sessions, and all subjects tolerated the protocol by the sixth session. Commonly reported side effects among completers were increased headache (n = 3) and greater sleep disturbance (n = 3). Participants also reported positive outcomes such as less sleep disturbance (n = 3), and better mental focus (n = 3). On average, PCS scores declined by 14.6 points (p = 0.009) and fMRI task-related activation peaks in the DLPFC increased after rTMS. rTMS is safe, tolerated by most patients with mTBI, and associated with both a reduction in severity of PCS and an increase in task-related activations in DLPFC. Assessment of this intervention in a randomized, control trial is warranted.
Collapse
Affiliation(s)
- Lisa Koski
- 1 Department of Psychology, McGill University Health Center (MUHC), Department of Neurology/Neurosurgery and Department of Psychology, McGill University, and Mental Illness and Addiction Axis, Research Institute of the MUHC, McGill University , Montreal, Quebec, Canada
| | | | | | | | | | | |
Collapse
|
98
|
Tracking trauma-induced structural and functional changes above the level of spinal cord injury. Curr Opin Neurol 2015; 28:365-72. [DOI: 10.1097/wco.0000000000000224] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
99
|
Lindholm P, Lamusuo S, Taiminen T, Pesonen U, Lahti A, Virtanen A, Forssell H, Hietala J, Hagelberg N, Pertovaara A, Parkkola R, Jääskeläinen S. Right secondary somatosensory cortex-a promising novel target for the treatment of drug-resistant neuropathic orofacial pain with repetitive transcranial magnetic stimulation. Pain 2015; 156:1276-1283. [PMID: 25830924 DOI: 10.1097/j.pain.0000000000000175] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
High-frequency repetitive transcranial magnetic stimulation (rTMS) of the motor cortex has analgesic effect; however, the efficacy of other cortical targets and the mode of action remain unclear. We examined the effects of rTMS in neuropathic orofacial pain, and compared 2 cortical targets against placebo. Furthermore, as dopaminergic mechanisms modulate pain responses, we assessed the influence of the functional DRD2 gene polymorphism (957C>T) and the catechol-O-methyltransferase (COMT) Val158Met polymorphism on the analgesic effect of rTMS. Sixteen patients with chronic drug-resistant neuropathic orofacial pain participated in this randomized, placebo-controlled, crossover study. Navigated high-frequency rTMS was given to the sensorimotor (S1/M1) and the right secondary somatosensory (S2) cortices. All subjects were genotyped for the DRD2 957C>T and COMT Val158Met polymorphisms. Pain, mood, and quality of life were monitored throughout the study. The numerical rating scale pain scores were significantly lower after the S2 stimulation than after the S1/M1 (P = 0.0071) or the sham (P = 0.0187) stimulations. The Brief Pain Inventory scores were also lower 3 to 5 days after the S2 stimulation than those at pretreatment baseline (P = 0.0127 for the intensity of pain and P = 0.0074 for the interference of pain) or after the S1/M1 (P = 0.001 and P = 0.0001) and sham (P = 0.0491 and P = 0.0359) stimulations. No correlations were found between the genetic polymorphisms and the analgesic effect in the present small clinical sample. The right S2 cortex is a promising new target for the treatment of neuropathic orofacial pain with high-frequency rTMS.
Collapse
Affiliation(s)
- Pauliina Lindholm
- Department of Neurology, Turku University Hospital, Salo Hospital, University of Turku, Turku, Finland Departments of Clinical Neurophysiology, and Psychiatry, Turku University Hospital, University of Turku, Turku, Finland Department of Pharmacology, Drug Development and Therapeutics, University of Turku, Turku, Finland Department of Statistics, University of Turku, Turku, Finland Institute of Dentistry, University of Turku, Turku, Finland Pain Clinic, Turku University Hospital, University of Turku, Turku, Finland Department of Physiology, Institute of Biomedicine, University of Helsinki, Helsinki, Finland Department of Diagnostic Radiology, Turku University Hospital, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Leung A, Shukla S, Lee J, Metzger-Smith V, He Y, Chen J, Golshan S. Effect of low frequency transcutaneous magnetic stimulation on sensory and motor transmission. Bioelectromagnetics 2015; 36:410-9. [PMID: 25989482 DOI: 10.1002/bem.21921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/05/2015] [Indexed: 11/06/2022]
Abstract
Peripheral nerve injury diminishes fast conducting large myelinated afferent fibers transmission but enhances smaller pain transmitting fibers firing. This aberrant afferent neuronal behavior contributes to development of chronic post-traumatic peripheral neuropathic pain (PTP-NP). Non-invasive dynamic magnetic flux stimulation has been implicated in treating PTP-NP, a condition currently not adequately addressed by other therapies including transcutaneous electrical nerve stimulation (TENS). The current study assessed the effect of low frequency transcutaneous magnetic stimulation (LFTMS) on peripheral sensory thresholds, nerve conduction properties, and TENS induced fast afferent slowing effect as measured by motor and sensory conduction studies in the ulnar nerve. Results indicated sham LFTMS with TENS (Sham + TENS) significantly (P = 0.02 and 0.007, respectively) reduces sensory conduction velocity (CV) and increases sensory onset latency (OL), and motor peak latency (PL) whereas, real LFTMS with TENS (Real + TENS) reverses effects of TENS on sensory CV and OL, and significantly (P = 0.036) increases the sensory PL. LFTMS alone significantly (P < 0.05) elevates sensory PL and onset-to-peak latency. LFTMS appears to reverse TENS slowing effect on fast conducting fibers and casts a selective peripheral modulatory effect on slow conducting pain afferent fibers.
Collapse
Affiliation(s)
- Albert Leung
- Department of Anesthesiology, University of California, School of Medicine, San Diego, California.,Veterans Administration San Diego Healthcare System (California), San Diego, California
| | - Shivshil Shukla
- Department of Anesthesiology, University of California, School of Medicine, San Diego, California.,Veterans Administration San Diego Healthcare System (California), San Diego, California
| | | | | | - Yifan He
- University of California, San Diego, California
| | - Jeffrey Chen
- Department of Anesthesiology, University of California, School of Medicine, San Diego, California.,Veterans Administration San Diego Healthcare System (California), San Diego, California
| | - Shahrokh Golshan
- Department of Psychiatry, University of California, School of Medicine, San Diego, California
| |
Collapse
|