51
|
Chen W, Zou M, Ma X, Lv R, Ding T, Liu D. Co-Encapsulation of EGCG and Quercetin in Liposomes for Optimum Antioxidant Activity. J Food Sci 2018; 84:111-120. [PMID: 30548488 DOI: 10.1111/1750-3841.14405] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 10/25/2018] [Accepted: 11/05/2018] [Indexed: 12/11/2022]
Abstract
Although different delivery systems have been developed to overcome the limits of Epigallocatechin-3-gallate (EGCG) and quercetin in food application, none have referred to their simultaneous encapsulation. In this study, these two polyphenols were successfully co-loaded into liposomes. Under the optimal conditions (lecithin-total polyphenols ratio 25:1, lecithin-cholesterol ratio 6:1, lecithin-Tween 80 ratio 8:1 and ultrasonic time 2 min), the mean size, polydispersity index (PDI) and zeta potential of liposomes were 111.10 ± 0.52 nm, 0.259 ± 0.006 and -19.83 ± 0.45 mV, with an encapsulation efficiency of 64.05 ± 1.56% and 61.73 ± 2.55% for EGCG and quercetin, respectively. After 30-day storage, an increase of 4.05% was observed in the mean size with no significant change (P ≥ 0.05) in the PDI and zeta potential. Moreover, 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay revealed a synergistic antioxidant effect of the two compounds in liposomal system. These results demonstrated that co-encapsulation of EGCG and quercetin enhances their effectiveness. PRACTICAL APPLICATION: EGCG and quercetin are natural polyphenols abound in the human diet with diverse biological activities. These two polyphenols were successfully co-encapsulated into a homogeneous and stable liposomal system. Interestingly, a synergistic antioxidant effect of the two polyphenols was observed due to co-encapsulation. This indicated that the simultaneous delivery of EGCG and quercetin was an attractive approach to improve their functionality for expanding their application in food, cosmetic and pharmaceutical industries.
Collapse
Affiliation(s)
- Weijun Chen
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China
| | - Mingming Zou
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China
| | - Xiaobin Ma
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China
| | - Ruiling Lv
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China
| | - Tian Ding
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China.,Zhejiang Key Lab. for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou, 310058, Zhejiang, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China.,Fuli Inst. of Food Science, Zhejiang Univ., Hangzhou, 310058, Zhejiang, China.,Zhejiang Key Lab. for Agro-Food Processing, Zhejiang R&D Center for Food Technology and Equipment, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
52
|
Lecithin-Stabilized Polymeric Micelles (L sbPMs) for Delivering Quercetin: Pharmacokinetic Studies and Therapeutic Effects of Quercetin Alone and in Combination with Doxorubicin. Sci Rep 2018; 8:17640. [PMID: 30518853 PMCID: PMC6281656 DOI: 10.1038/s41598-018-36162-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 10/31/2018] [Indexed: 02/06/2023] Open
Abstract
In this study, lecithin-stabilized polymeric micelles (LsbPMs) were prepared to load quercetin (QUE) in order to improve its bioavailability and increase its antitumor activity. Its combination with doxorubicin (DOX) to minimize DOX-mediated cardiac toxicity and increase the antitumor activity of QUE-loaded LsbPMs was also examined. LsbPMs were prepared following a previously reported procedure. Results demonstrated that optimal QUE-loaded LsbPMs contained quercetin, D-α-tocopheryl polyethylene glycol succinate, and lecithin at a weight ratio of 6:40:80. Drug-release studies showed that QUE released from LsbPMs followed a controlled release pattern. A cytotoxicity assay revealed that QUE-loaded LsbPMs had significant anticancer activities against MCF-7, SKBR-3, and MDA-MB-231 human breast cancer cells and CT26 mouse colon cancer cells. In animal studies, intravenous administration of QUE-loaded LsbPMs resulted in efficient growth inhibition of CT26 colon cancer cells in a Balb/c mice model. In a pharmacokinetics study compared to free QUE, intravenous and oral administration of QUE-loaded LsbPMs was found to have significantly increased the relative bioavailability to 158% and 360%, respectively, and the absolute bioavailability to 5.13%. The effect of QUE-loaded LsbPMs in combination with DOX resulted in efficient growth inhibition of CT26 colon cancer cells and reduced cardiac toxicity in the Balb/c mice model.
Collapse
|
53
|
Agro-Industrial By-Products and Their Bioactive Compounds—An Ally against Oxidative Stress and Skin Aging. COSMETICS 2018. [DOI: 10.3390/cosmetics5040058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The increased consumer awareness towards hazards related with sun exposure has given a boost in the cosmetics industry and particularly the sun care market. Human skin is continually being threatened by the UV irradiation present in sunlight and acute UV exposure leads to skin photoaging. Cosmetic and/or dermatological applications include several bioactive compounds that contribute to the regulation of epidermal homeostasis by providing protection against solar radiation and improving the antioxidant activity of epidermis. Plant extracts are sources of active ingredients with intense therapeutic properties, and the topical application or oral intake of these compounds could ameliorate skin condition. Nowadays, there is a growing demand for the application of the bioactive agents contained in agro-industrial byproducts in sun care products, since many of them have shown promising properties as skin photoprotectants. However, well-conducted clinical studies are required to prove their safety and efficacy before they could be regularly used. Environmentally friendly extraction and sustainable techniques are therefore under examination for recovering such compounds from agro-industrial byproducts and converting them into innovative high-value natural ingredients used in cosmetic formulations.
Collapse
|
54
|
Zou L, Ding W, Zhang Y, Cheng S, Li F, Ruan R, Wei P, Qiu B. Peptide-modified vemurafenib-loaded liposomes for targeted inhibition of melanoma via the skin. Biomaterials 2018; 182:1-12. [PMID: 30096444 DOI: 10.1016/j.biomaterials.2018.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 07/21/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
Vemurafenib is a chemotherapeutic drug recently approved by the FDA to treat melanoma. Because the drug is usually delivered orally, the route of administration readily causes damage to major organs with limited antitumor efficacy and bioavailability. In this study, we developed a peptide-modified vemurafenib-loaded liposome for the targeted inhibition of subcutaneous melanoma via the skin. First, the peptide-modified vemurafenib-loaded liposomes (Vem-TD-Lip) were prepared and characterized with respect to the size, shape and charge; the loading efficiency of vemurafenib; and the stability. Then, the intracellular uptake of these liposomes, their limited cytotoxicity, the selective inhibition of melanoma cells harboring BRAF mutations, and the liposome permeation ability were confirmed through in vitro experiments. Finally, the safety and antitumor activity of Vem-TD-Lip were evaluated in vivo. The results showed that transdermal delivery of Vem-TD-Lip effectively targeted and inhibited subcutaneous melanoma in male mice, the administration of Vem-TD-Lip through skin was better than that through oral administration and intravenous injection in terms of reducing damage to major organs and enhancing antitumor efficacy, and the peptide TD significantly enhanced the delivery of Vem-TD-Lip across the skin. This work provides a new strategy for delivering vemurafenib to target and inhibit subcutaneous melanoma.
Collapse
Affiliation(s)
- Lili Zou
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China; Guangdong Institute of Medical Instruments & National Engineering Research Center for Healthcare Devices, Guangzhou, Guangdong 510500, China
| | - Weiping Ding
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Yuanyuan Zhang
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Shaohui Cheng
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Critical Care Medicine, Anhui Provincial Hospital, Hefei, Anhui 230001, China
| | - Fenfen Li
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Renquan Ruan
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Pengfei Wei
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, Anhui 230027, China; School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Bensheng Qiu
- Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui 230027, China; Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui 230027, China
| |
Collapse
|
55
|
Galangin-loaded, liver targeting liposomes: Optimization and hepatoprotective efficacy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
56
|
Azzi J, Jraij A, Auezova L, Fourmentin S, Greige-Gerges H. Novel findings for quercetin encapsulation and preservation with cyclodextrins, liposomes, and drug-in-cyclodextrin-in-liposomes. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.03.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
57
|
Ramkanth S, Chetty CM, Sudhakar Y, Thiruvengadarajan V, Anitha P, Gopinath C. Development, characterization & invivo evaluation of proniosomal based transdermal delivery system of Atenolol. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2018. [DOI: 10.1016/j.fjps.2017.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
58
|
Hatahet T, Morille M, Hommoss A, Devoisselle J, Müller R, Bégu S. Liposomes, lipid nanocapsules and smartCrystals®: A comparative study for an effective quercetin delivery to the skin. Int J Pharm 2018; 542:176-185. [DOI: 10.1016/j.ijpharm.2018.03.019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/12/2018] [Accepted: 03/12/2018] [Indexed: 02/07/2023]
|
59
|
Abdulbaqi IM, Darwis Y, Assi RA, Khan NAK. Transethosomal gels as carriers for the transdermal delivery of colchicine: statistical optimization, characterization, and ex vivo evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:795-813. [PMID: 29670336 PMCID: PMC5898596 DOI: 10.2147/dddt.s158018] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Introduction Colchicine is used for the treatment of gout, pseudo-gout, familial Mediterranean fever, and many other illnesses. Its oral administration is associated with poor bioavailability and severe gastrointestinal side effects. The drug is also known to have a low therapeutic index. Thus to overcome these drawbacks, the transdermal delivery of colchicine was investigated using transethosomal gels as potential carriers. Methods Colchicine-loaded transethosomes (TEs) were prepared by the cold method and statistically optimized using three sets of 24 factorial design experiments. The optimized formulations were incorporated into Carbopol 940® gel base. The prepared colchicine-loaded transethosomal gels were further characterized for vesicular size, dispersity, zeta potential, drug content, pH, viscosity, yield, rheological behavior, and ex vivo skin permeation through Sprague Dawley rats’ back skin. Results The results showed that the colchicine-loaded TEs had aspherical irregular shape, nanometric size range, and high entrapment efficiency. All the formulated gels exhibited non-Newtonian plastic flow without thixotropy. Colchicine-loaded transethosomal gels were able to significantly enhance the skin permeation parameters of the drug in comparison to the non-ethosomal gel. Conclusion These findings suggested that the transethosomal gels are promising carriers for the transdermal delivery of colchicine, providing an alternative route for drug administration.
Collapse
Affiliation(s)
- Ibrahim M Abdulbaqi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Yusrida Darwis
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | - Reem Abou Assi
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Minden, Penang, Malaysia
| | | |
Collapse
|
60
|
Iqbal B, Ali J, Baboota S. Recent advances and development in epidermal and dermal drug deposition enhancement technology. Int J Dermatol 2018; 57:646-660. [DOI: 10.1111/ijd.13902] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/13/2023]
Affiliation(s)
- Babar Iqbal
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Javed Ali
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| | - Sanjula Baboota
- Department of Pharmaceutics; School of Pharmaceutical Education and Research; Jamia Hamdard; New Delhi India
| |
Collapse
|
61
|
Ioele G, De Luca M, Garofalo A, Ragno G. Photosensitive drugs: a review on their photoprotection by liposomes and cyclodextrins. Drug Deliv 2017; 24:33-44. [PMID: 29069944 PMCID: PMC8812581 DOI: 10.1080/10717544.2017.1386733] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Affiliation(s)
- Giuseppina Ioele
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Michele De Luca
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Antonio Garofalo
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| | - Gaetano Ragno
- Department of Pharmacy and Health and Nutrition Sciences, University of Calabria, Rende (CS), Italy
| |
Collapse
|
62
|
Hussain A, Singh S, Sharma D, Webster TJ, Shafaat K, Faruk A. Elastic liposomes as novel carriers: recent advances in drug delivery. Int J Nanomedicine 2017; 12:5087-5108. [PMID: 28761343 PMCID: PMC5522681 DOI: 10.2147/ijn.s138267] [Citation(s) in RCA: 127] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Elastic liposomes (EL) are some of the most versatile deformable vesicular carriers that comprise physiologically biocompatible lipids and surfactants for the delivery of numerous challenging molecules and have marked advantages over other colloidal systems. They have been investigated for a wide range of applications in pharmaceutical technology through topical, transdermal, nasal, and oral routes for efficient and effective drug delivery. Increased drug encapsulation efficiency, enhanced drug permeation and penetration into or across the skin, and ultradeformability have led to widespread interest in ELs to modulate drug release, permeation, and drug action more efficiently than conventional drug-release vehicles. This review provides insights into the versatile role that ELs play in the delivery of numerous drugs and biomolecules by improving drug release, permeation, and penetration across the skin as well as stability. Furthermore, it provides future directions that should ensure the widespread use of ELs across all medical fields.
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.,Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India
| | - Sima Singh
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Kausar Shafaat
- Faculty of Pharmacy, Sachchidananda Sinha College, Aurangabad, Bihar, India
| | - Abdul Faruk
- Department of Pharmaceutical Sciences, Hemwati Nandan Bahuguna Garhwal University, Srinagar, Uttarakhand, India
| |
Collapse
|
63
|
Chen R, Li R, Liu Q, Bai C, Qin B, Ma Y, Han J. Ultradeformable Liposomes: a Novel Vesicular Carrier For Enhanced Transdermal Delivery of Procyanidins: Effect of Surfactants on the Formation, Stability, and Transdermal Delivery. AAPS PharmSciTech 2017; 18:1823-1832. [PMID: 27834056 DOI: 10.1208/s12249-016-0661-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/31/2016] [Indexed: 11/30/2022] Open
Abstract
The aims of this work were to develop a novel vesicular carrier, procyanidins, ultradeformable liposomes (PUDLs), to expand the applications for procyanidins, and increase their stability and transdermal delivery. In this study, we prepared procyanidins ultradeformable liposomes using thin film hydration method and evaluated their encapsulation efficiency, vesicle deformability, storage stability, and skin permeation in vitro. The influence of different surfactants on the properties of PUDLs was also investigated. The results obtained showed that the PUDLs containing Tween 80 had a high entrapment efficiency (80.27 ± 0.99%), a small particle size (140.6 ± 19 nm), high elasticity, and prolonged drug release. Compared with procyanidins solution, the stability of procyanidins in PUDLs improved significantly when stored at 4, 25, and 30°C. The penetration rate of PUDLs was 6.25-fold greater than that of procyanidins solution. Finally, the results of our study suggested that PUDLs could increase the transdermal flux, prolong the release and improve the stability of procyanidins, and could serve as an effective dermal delivery system for procyanidins.
Collapse
|
64
|
Encapsulation of lutein in liposomes using supercritical carbon dioxide. Food Res Int 2017; 100:168-179. [PMID: 28873676 DOI: 10.1016/j.foodres.2017.06.055] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/19/2017] [Accepted: 06/21/2017] [Indexed: 11/23/2022]
Abstract
Liposomes loaded with lutein were prepared utilizing supercritical carbon dioxide (SC-CO2). The effects of pressure, depressurization rate, temperature and lutein-to-lipid ratio on particle size distribution, zeta potential, encapsulation efficiency (EE), bioactive loading, morphology, phase transition and crystallinity were investigated. Liposomes prepared by the SC-CO2 method had a particle size of 147.6±1.9nm-195.4±2.3nm, an encapsulation efficiency of 56.7±0.7%-97.0±0.8% and a zeta potential of -54.5±1.2mV to -61.7±0.6mV. A higher pressure (200-300bar) and depressurization rate (90-200bar/min) promoted a higher encapsulation of lutein whereas the lutein-to-lipid ratio had the dominant effect on the morphology of vesicles along with size distribution and EE. X-ray diffraction data implied a substantial drop in the crystallinity of lutein upon its redistribution in the liposome membranes. Differential scanning calorimetry indicated a broadened phase transition upon the simultaneous rearrangement of lutein and phospholipid molecules into liposomal vesicles. The SC-CO2 method resulted in particle characteristics highly associated with the ability of CO2 to disperse phospholipids and lutein molecules. It offers a promising approach to use dense phase CO2 to homogenize hydrophobic or amphiphilic aggregates suspended in an aqueous medium and regulate the vesicular characteristics via pressure and depressurization rate. The SC-CO2 method has potential for scalable production of liposomal nanovesicles with desirable characteristics and free of organic solvents.
Collapse
|
65
|
Ahad A, Al-Saleh AA, Al-Mohizea AM, Al-Jenoobi FI, Raish M, Yassin AEB, Alam MA. Formulation and characterization of Phospholipon 90 G and tween 80 based transfersomes for transdermal delivery of eprosartan mesylate. Pharm Dev Technol 2017; 23:787-793. [DOI: 10.1080/10837450.2017.1330345] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulmohsen A. Al-Saleh
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M. Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Alaa Eldeen B. Yassin
- Pharmaceutical Sciences Department, College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard, Health Affairs, Riyadh, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
66
|
Avadhani KS, Manikkath J, Tiwari M, Chandrasekhar M, Godavarthi A, Vidya SM, Hariharapura RC, Kalthur G, Udupa N, Mutalik S. Skin delivery of epigallocatechin-3-gallate (EGCG) and hyaluronic acid loaded nano-transfersomes for antioxidant and anti-aging effects in UV radiation induced skin damage. Drug Deliv 2017; 24:61-74. [PMID: 28155509 PMCID: PMC8253143 DOI: 10.1080/10717544.2016.1228718] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The present work attempts to develop and statistically optimize transfersomes containing EGCG and hyaluronic acid to synergize the UV radiation-protective ability of both compounds, along with imparting antioxidant and anti-aging effects. Transfersomes were prepared by thin film hydration technique, using soy phosphatidylcholine and sodium cholate, combined with high-pressure homogenization. They were characterized with respect to size, polydispersity index, zeta potential, morphology, entrapment efficiency, Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), X-ray Diffraction (XRD), in vitro antioxidant activity and ex vivo skin permeation studies. Cell viability, lipid peroxidation, intracellular ROS levels and expression of MMPs (2 and 9) were determined in human keratinocyte cell lines (HaCaT). The composition of the transfersomes was statistically optimized by Design of Experiments using Box–Behnken design with four factors at three levels. The optimized transfersome formulation showed vesicle size, polydispersity index and zeta potential of 101.2 ± 6.0 nm, 0.245 ± 0.069 and −44.8 ± 5.24 mV, respectively. FTIR and DSC showed no interaction between EGCG and the selected excipients. XRD results revealed no form conversion of EGCG in its transfersomal form. The optimized transfersomes were found to increase the cell viability and reduce the lipid peroxidation, intracellular ROS and expression of MMPs in HaCaT cells. The optimized transfersomal formulation of EGCG and HA exhibited considerably higher skin permeation and deposition of EGCG than that observed with plain EGCG. The results underline the potential application of the developed transfersomes in sunscreen cream/lotions for improvement of UV radiation-protection along with deriving antioxidant and anti-aging effects.
Collapse
Affiliation(s)
- Kiran S Avadhani
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Jyothsna Manikkath
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Mradul Tiwari
- b Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Misra Chandrasekhar
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Ashok Godavarthi
- c Radiant Research Services Pvt. Ltd, Peenya Industrial Area , Bangalore , India
| | - Shimoga M Vidya
- d Department of Biotechnology , NMAM Institute of Technology, Nitte University , Nitte , India , and
| | - Raghu C Hariharapura
- b Department of Pharmaceutical Biotechnology , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Guruprasad Kalthur
- e Department of Clinical Embryology , Kasturba Medical College, Manipal University , Manipal , India
| | - Nayanabhirama Udupa
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| | - Srinivas Mutalik
- a Department of Pharmaceutics , Manipal College of Pharmaceutical Sciences, Manipal University , Manipal , India
| |
Collapse
|
67
|
Wang Y, Wang S, Firempong CK, Zhang H, Wang M, Zhang Y, Zhu Y, Yu J, Xu X. Enhanced Solubility and Bioavailability of Naringenin via Liposomal Nanoformulation: Preparation and In Vitro and In Vivo Evaluations. AAPS PharmSciTech 2017; 18:586-594. [PMID: 27151135 DOI: 10.1208/s12249-016-0537-8] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/18/2016] [Indexed: 11/30/2022] Open
Abstract
This study was aimed at preparing orally administered naringenin-loaded liposome for pharmacokinetic and tissue distribution studies in animal models. The liposomal system, consisting of phospholipid, cholesterol, sodium cholate, and isopropyl myristate, was prepared using the thin-film hydration method. Physicochemical characterization of naringenin-loaded liposome such as particle size, zeta potential, and encapsulation efficiency produced 70.53 ± 1.71 nm, -37.4 ± 7.3 mV, and 72.2 ± 0.8%, respectively. The in vitro release profile of naringenin from the formulation in three different media (HCl solution, pH 1.2; acetate buffer solution, pH 4.5; phosphate buffer solution, pH 6.8) was significantly higher than the free drug. The in vivo studies also revealed an increase in AUC of the naringenin-loaded liposome from 16648.48 to 223754.0 ng·mL-1 h as compared with the free naringenin. Thus, approximately 13.44-fold increase in relative bioavailability was observed in mice after oral administration. The tissue distribution further showed that the formulation was very predominant in the liver. These findings therefore indicated that the liposomal formulation significantly improved the solubility and oral bioavailability of naringenin, thus leading to wider clinical applications.
Collapse
|
68
|
Jia HJ, Jia FY, Zhu BJ, Zhang WP. Preparation and characterization of glycyrrhetinic-acid loaded PEG-modified liposome based on PEG-7 glyceryl cocoate. EUR J LIPID SCI TECH 2017. [DOI: 10.1002/ejlt.201600010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong-Jiao Jia
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| | - Fang-Ya Jia
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| | - Bi-Jun Zhu
- Biomedical Research Center; Affiliated Zhongshan Hospital Fudan University; Shanghai P. R. China
| | - Wan-Ping Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai P. R. China
| |
Collapse
|
69
|
Dermal quercetin lipid nanocapsules: Influence of the formulation on antioxidant activity and cellular protection against hydrogen peroxide. Int J Pharm 2017; 518:167-176. [DOI: 10.1016/j.ijpharm.2016.12.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Revised: 12/10/2016] [Accepted: 12/17/2016] [Indexed: 01/13/2023]
|
70
|
Jain S, Patel N, Shah MK, Khatri P, Vora N. Recent Advances in Lipid-Based Vesicles and Particulate Carriers for Topical and Transdermal Application. J Pharm Sci 2016; 106:423-445. [PMID: 27865609 DOI: 10.1016/j.xphs.2016.10.001] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 10/02/2016] [Accepted: 10/03/2016] [Indexed: 12/12/2022]
Abstract
In the recent decade, skin delivery (topical and transdermal) has gained an unprecedented popularity, especially due to increased incidences of chronic skin diseases, demand for targeted and patient compliant delivery, and interest in life cycle management strategies among pharmaceutical companies. Literature review of recent publications indicates that among various skin delivery systems, lipid-based delivery systems (vesicular carriers and lipid particulate systems) have been the most successful. Vesicular carriers consist of liposomes, ultradeformable liposomes, and ethosomes, while lipid particulate systems consist of lipospheres, solid lipid nanoparticles, and nanostructured lipid carriers. These systems can increase the skin drug transport by improving drug solubilization in the formulation, drug partitioning into the skin, and fluidizing skin lipids. Considering that lipid-based delivery systems are regarded as safe and efficient, they are proving to be an attractive delivery strategy for the pharmaceutical as well as cosmeceutical drug substances. However, development of these delivery systems requires comprehensive understanding of physicochemical characteristics of drug and delivery carriers, formulation and process variables, mechanism of skin delivery, recent technological advancements, specific limitations, and regulatory considerations. Therefore, this review article encompasses recent research advances addressing the aforementioned issues.
Collapse
Affiliation(s)
- Shashank Jain
- Department of Product Development, G & W Labs, 101 Coolidge Street, South Plainfield, New Jersey 07080.
| | - Niketkumar Patel
- Charles River Laboratories Contract Manufacturing PA, LLC, Boothwyn, Pennsylvania 19061
| | - Mansi K Shah
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Pinak Khatri
- Department of Product Development, G & W PA Laboratories, Sellersville, Pennsylvania 18960
| | - Namrata Vora
- Department of Formulation Development, Capsugel Dosage Form Solutions Division, Xcelience, Tampa, Florida 33634
| |
Collapse
|
71
|
Hatahet T, Morille M, Hommoss A, Devoisselle J, Müller R, Bégu S. Quercetin topical application, from conventional dosage forms to nanodosage forms. Eur J Pharm Biopharm 2016; 108:41-53. [DOI: 10.1016/j.ejpb.2016.08.011] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
|
72
|
Recent expansion of pharmaceutical nanotechnologies and targeting strategies in the field of phytopharmaceuticals for the delivery of herbal extracts and bioactives. J Control Release 2016; 241:110-124. [DOI: 10.1016/j.jconrel.2016.09.017] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/18/2022]
|
73
|
Ren J, Fang Z, Jiang L, Du Q. Quercetin-containing self-assemble proliposome preparation and evaluation. J Liposome Res 2016; 27:335-342. [DOI: 10.1080/08982104.2016.1239635] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Jin Ren
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China,
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, and
| | - Zhengjie Fang
- Department of Analysis and Test, Xuzhou Center for Products Quality Supervision and Inspection, Xuzhou, China
| | - Liqun Jiang
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China,
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, and
| | - Qian Du
- Department of Pharmacy, Xuzhou Medical University, Xuzhou, China,
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China, and
| |
Collapse
|
74
|
Guo Y, Shen LX, Lu YF, Li HY, Min K, Li LF, Yu CY, Zheng X. Preparation of Rutin-liposome Drug Delivery Systems and Evaluation on Their in vitro Antioxidant Activity. CHINESE HERBAL MEDICINES 2016. [DOI: 10.1016/s1674-6384(16)60065-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
75
|
Dario MF, Oliveira CA, Cordeiro LR, Rosado C, Mariz IDFA, Maçôas E, Santos MSC, Minas da Piedade ME, Baby AR, Velasco MVR. Stability and safety of quercetin-loaded cationic nanoemulsion: In vitro and in vivo assessments. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
76
|
Lipid based noninvasive vesicular formulation of cytarabine: Nanodeformable liposomes. Eur J Pharm Sci 2016; 88:83-90. [DOI: 10.1016/j.ejps.2016.04.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/11/2016] [Accepted: 04/03/2016] [Indexed: 11/18/2022]
|
77
|
González-Rodríguez ML, Arroyo CM, Cózar-Bernal MJ, González-R PL, León JM, Calle M, Canca D, Rabasco AM. Deformability properties of timolol-loaded transfersomes based on the extrusion mechanism. Statistical optimization of the process. Drug Dev Ind Pharm 2016; 42:1683-94. [PMID: 26981839 DOI: 10.3109/03639045.2016.1165691] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The purpose of this work was to analyze the deformability properties of different timolol maleate (TM)-loaded transfersomes by extrusion. This was performed because elastic liposomes may contribute to the elevation of amount and rate of drug permeation through the corneal membrane. This paper describes the optimization of a transfersome formulation by use of Taguchi orthogonal experimental design and two different statistical analysis approaches were utilized. The amount of cholesterol (F1), the amount of edge-activator (F2), the distribution of the drug into the vesicle (F3), the addition of stearylamine (F4) and the type of edge-activator (F5) were selected as causal factors. The deformability index, the phosphorous recovery, the vesicle size, the polydispersity index, the zeta potential and percentage of drug entrapped were fixed as the dependent variables and these responses were evaluated for each formulation. Two different statistical analysis approaches were applied. The better statistical approach was determined by comparing their prediction errors, where regression analysis provided better optimized responses than marginal means. From the study, an optimized formulation of TM-loaded transfersomes was prepared and obtained for the proposed ophthalmic delivery for the treatment of open angle glaucoma. It was found that the lipid to surfactant ratio and type of surfactant are the main key factors for determining the flexibility of the bilayer of transfersomes. From in vitro permeation studies, we can conclude that TM-loaded transfersomes may enhance the corneal transmittance and improve the bioavailability of conventional TM delivery.
Collapse
Affiliation(s)
- M L González-Rodríguez
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - C M Arroyo
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - M J Cózar-Bernal
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| | - P L González-R
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - J M León
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - M Calle
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - D Canca
- b Department of Industrial Management, School of Engineering , Universidad de Sevilla , Seville , Spain
| | - A M Rabasco
- a Department of Pharmaceutical Technology, Faculty of Pharmacy , Universidad de Sevilla , Seville , Spain
| |
Collapse
|
78
|
Hatahet T, Morille M, Hommoss A, Dorandeu C, Müller RH, Bégu S. Dermal quercetin smartCrystals®: Formulation development, antioxidant activity and cellular safety. Eur J Pharm Biopharm 2016; 102:51-63. [PMID: 26948977 DOI: 10.1016/j.ejpb.2016.03.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Revised: 02/25/2016] [Accepted: 03/02/2016] [Indexed: 02/03/2023]
Abstract
Flavonoids are natural plant pigments, which possess high antioxidative and antiradical activities. However, their poor water solubility led to a limited bioavailability. To overcome this major hurdle, quercetin nanocrystals were produced implementing smartCrystals® technology. This process combines bead milling and subsequent high-pressure homogenization at relatively low pressure (300bar). To test the possibility to develop a dermal formulation from quercetin smartCrystals®, quercetin nanosuspensions were admixed to Lutrol® F127 and hydroxythylcellulose nonionic gels. The physicochemical properties (morphology, size and charge), saturation solubility, dissolution velocity and the antioxidant properties (DPPH assay) as well as the cellular interaction of the produced quercetin smartCrystals® were studied and compared to crude quercetin powder. Quercetin smartCrystals® showed a strong increase in the saturation solubility and the dissolution velocity (7.6 fold). SmartCrystals® loaded or not into gels proved to be physically stable over a period of three months at 25°C. Interestingly, in vitro DPPH assay confirmed the preservation of quercetin antioxidative properties after nanonization. In parallel, the nanocrystalline form did not display cellular toxicity, even at high concentration (50μg/ml), as assayed on an epithelial cell line (VERO cells). In addition, the nanocrystalline form confirmed a protective activity for VERO cells against hydrogen peroxide induced toxicity in vitro. This new formulation presents a promising approach to deliver quercetin efficiently to skin in well-tolerated formulations.
Collapse
Affiliation(s)
- T Hatahet
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - M Morille
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - A Hommoss
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and NutriCosmetics, Free University of Berlin, Kelchstr. 31, Berlin 12169, Germany
| | - C Dorandeu
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France
| | - R H Müller
- Institute of Pharmacy, Department of Pharmaceutics, Biopharmaceutics and NutriCosmetics, Free University of Berlin, Kelchstr. 31, Berlin 12169, Germany
| | - S Bégu
- Institut Charles Gerhardt Montpellier, UMR 5253 CNRS-ENSCM-UM, Equipe Matériaux Avancés pour la Catalyse et la Santé, 8 rue de l'Ecole Normale, 34296 Montpellier Cedex 5, France.
| |
Collapse
|
79
|
Photoprotection by dietary phenolics against melanogenesis induced by UVA through Nrf2-dependent antioxidant responses. Redox Biol 2015; 8:79-90. [PMID: 26765101 PMCID: PMC4712325 DOI: 10.1016/j.redox.2015.12.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 12/11/2022] Open
Abstract
Dietary phenolics may play a protective role in UV-mediated skin pigmentation through their antioxidant and UV-absorbing actions. In this study, we investigated whether genetic silencing of Nrf2, regulating the transcription of antioxidant genes, affected melanogenesis in primary human epidermal melanocytes (HEMn) and B16F10 melanoma cells subjected to UVA (8 J/cm2) exposure. Then, we explored the antimelanogenic actions of phenolics; caffeic acid (CA) and ferulic acid (FA) providing partial UVA protection; quercetin (QU) and rutin (RU) providing strong UVA protection and; avobenzone (AV), an efficient UVA filter, in association with modulation of Nrf2-mediated antioxidant defenses in response to UVA insults in B16F10 cells. Upon oxidative insults, Nrf2 silencing promoted melanogenesis in both HEMn and B16F10 cells irradiated with UVA. Stimulation of melanogenesis by UVA correlated with increased ROS and oxidative DNA damage (8-OHdG), GSH depletion as well as a transient downregulation of Nrf2 nuclear translocation and of Nrf2-ARE signaling in B16F10 cells. All test compounds exerted antimelanogenic effects with respect to their abilities to reverse UVA-mediated oxidative damage as well as downregulation of Nrf2 activity and its target antioxidants (GCLC, GST and NQO1) in B16F10 cells. In conclusion, defective Nrf2 may promote melanogenesis under UVA irradiation through oxidative stress mechanisms. Compounds with antioxidant and/or UVA absorption properties could protect against UVA-induced melanogenesis through indirect regulatory effect on Nrf2-ARE pathway. Depletion of Nrf2 could stimulate melanogenesis under UVA-mediated oxidative stress. UVA caused time-course changes of Nrf2 activity and its target antioxidants. Phenolics could inhibit UVA-induced melanogenesis through modulation of Nrf2 pathway.
Collapse
|
80
|
Zhou W, Cai B, Shan J, Wang S, Di L. Discovery and Current Status of Evaluation System of Bioavailability and Related Pharmaceutical Technologies for Traditional Chinese Medicines--Flos Lonicerae Japonicae--Fructus Forsythiae Herb Couples as an Example. Int J Mol Sci 2015; 16:28812-40. [PMID: 26690115 PMCID: PMC4691079 DOI: 10.3390/ijms161226132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 12/22/2022] Open
Abstract
Traditional Chinese medicines (TCMs) have attracted extensive interest throughout the world due to their long history of health protection and disease control, and the internalization of TCM preparations or patented drugs has been considered a wind vane in the process of TCM modernization. However, multi-target effects, caused by multiple components in TCMs, hinder not only the construction of the quality evaluation system (bioavailability), but also the application of pharmaceutical technologies, which results in the poor efficacy in clinical practice. This review describes the methods in the literature as well as in our thoughts about how to identify the marker components, establish the evaluation system of bioavailability, and improve the bioavailability in TCM preparations. We expect that the current study will be positive and informative.
Collapse
Affiliation(s)
- Wei Zhou
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
- Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing 210023, China.
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Baochang Cai
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Nanjing Haichang Chinese Medicine Group Co., Ltd., Nanjing 210023, China.
| | - Jinjun Shan
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Shouchuan Wang
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Liuqing Di
- College of pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
- Jiangsu Engineering Research Center for Efficient Delivery System of TCM, Nanjing 210023, China.
- Nanjing Engineering Research Center for Industrialization of Chinese Medicine Pellets, Nanjing 210023, China.
- Jiangsu Key Laboratory of Pediatric Respiratory Disease, Institute of Pediatrics, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
81
|
Rembiesa J, Gari H, Engblom J, Ruzgas T. Amperometric monitoring of quercetin permeation through skin membranes. Int J Pharm 2015; 496:636-43. [DOI: 10.1016/j.ijpharm.2015.10.073] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
|
82
|
Yang G, Zhao Y, Zhang Y, Dang B, Liu Y, Feng N. Enhanced oral bioavailability of silymarin using liposomes containing a bile salt: preparation by supercritical fluid technology and evaluation in vitro and in vivo. Int J Nanomedicine 2015; 10:6633-44. [PMID: 26543366 PMCID: PMC4622520 DOI: 10.2147/ijn.s92665] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The aim of this investigation was to develop a procedure to improve the dissolution and bioavailability of silymarin (SM) by using bile salt-containing liposomes that were prepared by supercritical fluid technology (ie, solution-enhanced dispersion by supercritical fluids [SEDS]). The process for the preparation of SM-loaded liposomes containing a bile salt (SM-Lip-SEDS) was optimized using a central composite design of response surface methodology with the ratio of SM to phospholipids (w/w), flow rate of solution (mL/min), and pressure (MPa) as independent variables. Particle size, entrapment efficiency (EE), and drug loading (DL) were dependent variables for optimization of the process and formulation variables. The particle size, zeta potential, EE, and DL of the optimized SM-Lip-SEDS were 160.5 nm, −62.3 mV, 91.4%, and 4.73%, respectively. Two other methods to produce SM liposomes were compared to the SEDS method. The liposomes obtained by the SEDS method exhibited the highest EE and DL, smallest particle size, and best stability compared to liposomes produced by the thin-film dispersion and reversed-phase evaporation methods. Compared to the SM powder, SM-Lip-SEDS showed increased in vitro drug release. The in vivo AUC0−t of SM-Lip-SEDS was 4.8-fold higher than that of the SM powder. These results illustrate that liposomes containing a bile salt can be used to enhance the oral bioavailability of SM and that supercritical fluid technology is suitable for the preparation of liposomes.
Collapse
Affiliation(s)
- Gang Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Yaping Zhao
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Yongtai Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Beilei Dang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Ying Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, People's Republic of China
| |
Collapse
|
83
|
Integration of Quercetin-Iron Complexes into Phosphatidylcholine or Phosphatidylethanolamine Liposomes. Appl Biochem Biotechnol 2015; 176:1904-13. [PMID: 26047928 DOI: 10.1007/s12010-015-1686-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/25/2015] [Indexed: 12/19/2022]
Abstract
It is well known that flavonoids can chelate transition metals. Flavonoid-metal complexes exhibit a high antioxidative and therapeutic potential. However, the complexes are frequently hydrophobic ones and low soluble in water, which restricts their medical applications. Integration of these complexes into liposomes may increase their bioavailability and therapeutic effect. Here, we studied the interaction of quercetin-iron complexes with dimyristoylphosphatidylcholine (DMPC) or palmitoyl-oleoyl phosphatidylethanolamine (POPE) multilamellar liposomes. Differential scanning calorimetry (DSC) and freeze-fracture electron microscopy revealed that quercetin-iron complexes did not interact with liposomes. Quercetin however could penetrate lipid bilayers, when added to liposomes at a temperature above lipid melting. Iron cations added later penetrated into the lipid bilayers and produced complexes with quercetin in the liposomes. The quercetin-iron entry in POPE liposomes was improved when the suspension was heated above the temperature of the bilayer-hexagonal HII phase transition of the lipid. The approach proposed facilitates the integration of quercetin-iron complexes into liposomes and may promote their use in medicine.
Collapse
|
84
|
Rigon RB, Oyafuso MH, Fujimura AT, Gonçalez ML, do Prado AH, Gremião MPD, Chorilli M. Nanotechnology-Based Drug Delivery Systems for Melanoma Antitumoral Therapy: A Review. BIOMED RESEARCH INTERNATIONAL 2015; 2015:841817. [PMID: 26078967 PMCID: PMC4442269 DOI: 10.1155/2015/841817] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/06/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
Abstract
Melanoma (MEL) is a less common type of skin cancer, but it is more aggressive with a high mortality rate. The World Cancer Research Fund International (GLOBOCAN 2012) estimates that there were 230,000 new cases of MEL in the world in 2012. Conventional MEL treatment includes surgery and chemotherapy, but many of the chemotherapeutic agents used present undesirable properties. Drug delivery systems are an alternative strategy by which to carry antineoplastic agents. Encapsulated drugs are advantageous due to such properties as high stability, better bioavailability, controlled drug release, a long blood circulation time, selective organ or tissue distribution, a lower total required dose, and minimal toxic side effects. This review of scientific research supports applying a nanotechnology-based drug delivery system for MEL therapy.
Collapse
Affiliation(s)
- Roberta Balansin Rigon
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Márcia Helena Oyafuso
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Andressa Terumi Fujimura
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Maíra Lima Gonçalez
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Alice Haddad do Prado
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Maria Palmira Daflon Gremião
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| | - Marlus Chorilli
- School of Pharmaceutical Sciences, Department of Drug and Medicines, São Paulo State University, 14801-902 Araraquara, SP, Brazil
| |
Collapse
|
85
|
Guo F, Wang J, Ma M, Tan F, Li N. Skin targeted lipid vesicles as novel nano-carrier of ketoconazole: characterization, in vitro and in vivo evaluation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:175. [PMID: 25825320 DOI: 10.1007/s10856-015-5487-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 02/09/2015] [Indexed: 06/04/2023]
Abstract
Liposomal carriers for topical drug delivery have been studied since the 1980s and have evoked a considerable interest. However, the conventional liposomes do not deeply penetrate into the skin and remain confined to the outer layer of SC. In order to increase skin targeting of ketoconazole (KCZ), a hydrophobic broad-spectrum antifungal agent, this study describes novel lipid vesicles as nano-carriers for topical delivery. In this paper, lipid vesicular systems including conventional liposomes (CL), ethosomes, deformable liposomes (DL) and ethanol-containing deformable liposomes (DEL) were prepared as nano-carriers for KCZ, respectively. Sodium dodecyl sulfate [SDS, 0.08 % (W/V)] was used as edge activator for DL and DEL preparation. Characterization of the vesicles was based on particle size, zeta potential, entrapment efficiency and transmission electron microscopy (TEM). In addition, in vitro permeation profile was obtained using vertical diffusion Franz cells by porcine skin. The in vivo accumulation of KCZ was also evaluated in rat skin. Confocal microscopy was performed to visualize the penetration of fluorescently labeled vesicles into skin. All of the lipid vesicles showed almost spherical structures with low polydispersity index (PDI < 0.3) and nano-metric size (no more than 160 nm). The results demonstrated that DEL dramatically improved both in vitro and in vivo skin deposition compared to the CLs (P < 0.05), which was further confirmed by confocal laser scanning microscopy study. In vivo pharmacodynamic studies showed DEL improved antifungal activity against Candida albicans in shorter duration of time. Therefore, based on present study, the novel nano-carrier DEL capable of enhancing skin target effect and forming a micro drug-depot could serve as an effective skin targeting delivery for KCZ as an anti-fungal agent in local therapy.
Collapse
Affiliation(s)
- Fang Guo
- Tianjin Key Laboratory of Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | | | | | | | | |
Collapse
|
86
|
Li Y, Zhou S, Li J, Sun Y, Hasimu H, Liu R, Zhang T. Quercetin protects human brain microvascular endothelial cells from fibrillar β-amyloid1-40-induced toxicity. Acta Pharm Sin B 2015; 5:47-54. [PMID: 26579424 PMCID: PMC4629123 DOI: 10.1016/j.apsb.2014.12.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/05/2014] [Accepted: 12/10/2014] [Indexed: 12/15/2022] Open
Abstract
Amyloid beta-peptides (Aβ) are known to undergo active transport across the blood-brain barrier, and cerebral amyloid angiopathy has been shown to be a prominent feature in the majority of Alzheimer׳s disease. Quercetin is a natural flavonoid molecule and has been demonstrated to have potent neuroprotective effects, but its protective effect on endothelial cells under Aβ-damaged condition is unclear. In the present study, the protective effects of quercetin on brain microvascular endothelial cells injured by fibrillar Aβ1–40 (fAβ1–40) were observed. The results show that fAβ1–40-induced cytotoxicity in human brain microvascular endothelial cells (hBMECs) can be relieved by quercetin treatment. Quercetin increases cell viability, reduces the release of lactate dehydrogenase, and relieves nuclear condensation. Quercetin also alleviates intracellular reactive oxygen species generation and increases superoxide dismutase activity. Moreover, it strengthens the barrier integrity through the preservation of the transendothelial electrical resistance value, the relief of aggravated permeability, and the increase of characteristic enzyme levels after being exposed to fAβ1–40. In conclusion, quercetin protects hBMECs from fAβ1–40-induced toxicity.
Collapse
|
87
|
Manca ML, Castangia I, Caddeo C, Pando D, Escribano E, Valenti D, Lampis S, Zaru M, Fadda AM, Manconi M. Improvement of quercetin protective effect against oxidative stress skin damages by incorporation in nanovesicles. Colloids Surf B Biointerfaces 2014; 123:566-74. [PMID: 25444664 DOI: 10.1016/j.colsurfb.2014.09.059] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 09/09/2014] [Accepted: 09/28/2014] [Indexed: 01/12/2023]
Abstract
Quercetin was incorporated in glycerosomes, new phospholipid-glycerol vesicles, and their protective effect against oxidative stress skin damages was extensively evaluated. In particular, the concentration-dependent effect of glycerol (from 10 to 50%) on vesicle suitability as cutaneous carriers of quercetin was carefully assessed. All vesicles were unilamellar and small in size (∼80-110 nm), as confirmed by cryo-TEM observation, with a drug incorporation efficiency ranging between 81 and 91%. SAXS studies, performed to investigate the bilayer arrangement, indicated a strong, dose-dependent interaction of glycerol with the polar portions of the phospholipid molecules, while quercetin did not significantly change the bilayer packing. In vitro studies on newborn pig skin underlined the concentration-dependent ability of glycerosomes to promote quercetin accumulation in the different layers, also confirmed by confocal microscopic observation of skin treated with fluorescent vesicles. Quercetin incorporated into liposomal and glycerosomal nanoformulations showed a strong ability to scavenge free radicals (DPPH test) and protect human keratinocytes in vitro against hydrogen peroxide damage. Moreover, quercetin-loaded vesicles were avidly taken up by keratinocytes in vitro. Overall, results indicate 40 and 50% glycerosomes as promising nanosystems for the improvement of cutaneous quercetin delivery and keratinocyte protection against oxidative stress damage.
Collapse
Affiliation(s)
- Maria Letizia Manca
- Dept. Scienze della Vita e dell'Ambiente, CNBS, University of Cagliari, Cagliari, Italy.
| | - Ines Castangia
- Dept. Scienze della Vita e dell'Ambiente, CNBS, University of Cagliari, Cagliari, Italy
| | - Carla Caddeo
- Dept. Scienze della Vita e dell'Ambiente, CNBS, University of Cagliari, Cagliari, Italy
| | - Daniel Pando
- Department Ingeniería Química y Tecnología del Medio Ambiente, University of Oviedo, Oviedo, Spain
| | - Elvira Escribano
- Biopharmaceutics and Pharmacokinetics Unit, Institute for Nanoscience and Nanotechnology, University of Barcelona, Barcelona, Spain
| | - Donatella Valenti
- Dept. Scienze della Vita e dell'Ambiente, CNBS, University of Cagliari, Cagliari, Italy
| | - Sandrina Lampis
- Dept. Scienze Chimiche e Geologiche, CNBS and CSGI, University of Cagliari, Monserrato (CA), Italy
| | - Marco Zaru
- Prigen srl, Sardegna Ricerche Ed. 3, Pula (Cagliari) 09010, Italy
| | - Anna Maria Fadda
- Dept. Scienze della Vita e dell'Ambiente, CNBS, University of Cagliari, Cagliari, Italy
| | - Maria Manconi
- Dept. Scienze della Vita e dell'Ambiente, CNBS, University of Cagliari, Cagliari, Italy
| |
Collapse
|
88
|
Rahmanian N, Hamishehkar H, Dolatabadi JEN, Arsalani N. Nano graphene oxide: a novel carrier for oral delivery of flavonoids. Colloids Surf B Biointerfaces 2014; 123:331-8. [PMID: 25282100 DOI: 10.1016/j.colsurfb.2014.09.036] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 09/14/2014] [Accepted: 09/16/2014] [Indexed: 11/16/2022]
Abstract
The interesting physical and chemical properties of graphene oxide (GO) have led to much excitement among biomedical scientists in recent years. It is known that many potent, often aromatic medicines are water insoluble, and this has hindered their administration to treat diseases. Nano GO was synthesized and investigated for its biological application as a carrier for quercetin, a focused bioactive flavonoid widely used as a health supplement and a drug candidate. Different techniques were used to fully evaluate the synthesis, cytotoxicity, and quercetin loading capacity of nano GO. AFM and TEM results confirmed the preparation of planar nanoparticles without aggregation which was verified by reported size results (30 nm) obtained with a particle size analyzer. FTIR and DSC results proved the drug-carrier interaction. In vitro cytotoxicity assays showed that nano GO had no cytotoxicity on A549 cells in different amounts after incubation for 72 h, confirming its suitability as a drug carrier. Our results showed that nano GO can be proposed as a new carrier due to its small size, large specific surface area, low cost, and useful non-covalent interactions with aromatic low-soluble flavonoids such as quercetin. Moreover, it may find widespread applications in biomedicine.
Collapse
Affiliation(s)
- Nazanin Rahmanian
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Nasser Arsalani
- Research Laboratory of Polymer, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
89
|
Wang J, Guo F, Ma M, Lei M, Tan F, Li N. Nanovesicular system containing tretinoin for dermal targeting delivery and rosacea treatment: a comparison of hexosomes, glycerosomes and ethosomes. RSC Adv 2014. [DOI: 10.1039/c4ra08488h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
90
|
Paleco R, Vučen SR, Crean AM, Moore A, Scalia S. Enhancement of the in vitro penetration of quercetin through pig skin by combined microneedles and lipid microparticles. Int J Pharm 2014; 472:206-13. [DOI: 10.1016/j.ijpharm.2014.06.010] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 01/03/2023]
|
91
|
Abd El-Alim S, Kassem A, Basha M. Proniosomes as a novel drug carrier system for buccal delivery of benzocaine. J Drug Deliv Sci Technol 2014. [DOI: 10.1016/s1773-2247(14)50087-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|