51
|
Chai YD, Pang YL, Lim S, Chong WC, Lai CW, Abdullah AZ. Recent Progress on Tailoring the Biomass-Derived Cellulose Hybrid Composite Photocatalysts. Polymers (Basel) 2022; 14:5244. [PMID: 36501638 PMCID: PMC9736154 DOI: 10.3390/polym14235244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022] Open
Abstract
Biomass-derived cellulose hybrid composite materials are promising for application in the field of photocatalysis due to their excellent properties. The excellent properties between biomass-derived cellulose and photocatalyst materials was induced by biocompatibility and high hydrophilicity of the cellulose components. Biomass-derived cellulose exhibited huge amount of electron-rich hydroxyl group which could promote superior interaction with the photocatalyst. Hence, the original sources and types of cellulose, synthesizing methods, and fabrication cellulose composites together with applications are reviewed in this paper. Different types of biomasses such as biochar, activated carbon (AC), cellulose, chitosan, and chitin were discussed. Cellulose is categorized as plant cellulose, bacterial cellulose, algae cellulose, and tunicate cellulose. The extraction and purification steps of cellulose were explained in detail. Next, the common photocatalyst nanomaterials including titanium dioxide (TiO2), zinc oxide (ZnO), graphitic carbon nitride (g-C3N4), and graphene, were introduced based on their distinct structures, advantages, and limitations in water treatment applications. The synthesizing method of TiO2-based photocatalyst includes hydrothermal synthesis, sol-gel synthesis, and chemical vapor deposition synthesis. Different synthesizing methods contribute toward different TiO2 forms in terms of structural phases and surface morphology. The fabrication and performance of cellulose composite catalysts give readers a better understanding of the incorporation of cellulose in the development of sustainable and robust photocatalysts. The modifications including metal doping, non-metal doping, and metal-organic frameworks (MOFs) showed improvements on the degradation performance of cellulose composite catalysts. The information and evidence on the fabrication techniques of biomass-derived cellulose hybrid photocatalyst and its recent application in the field of water treatment were reviewed thoroughly in this review paper.
Collapse
Affiliation(s)
- Yi Ding Chai
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Yean Ling Pang
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Steven Lim
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Woon Chan Chong
- Department of Chemical Engineering, Lee Kong Chian Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
- Centre for Photonics and Advanced Materials Research, Universiti Tunku Abdul Rahman, Kajang 43000, Malaysia
| | - Chin Wei Lai
- Nanotechnology & Catalysis Research Centre (NANOCAT), Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia
| | | |
Collapse
|
52
|
Sun Y, Xu W, Jiang C, Zhou T, Wang Q, A L. Gold nanoparticle decoration potentiate the antibacterial enhancement of TiO 2 nanotubes via sonodynamic therapy against peri-implant infections. Front Bioeng Biotechnol 2022; 10:1074083. [PMID: 36466357 PMCID: PMC9713247 DOI: 10.3389/fbioe.2022.1074083] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/07/2022] [Indexed: 09/22/2023] Open
Abstract
Inflammatory damage from bacterial biofilms usually causes the failure of tooth implantation. A promising solution for this challenge is to use an implant surface with a long-term, in-depth and efficient antibacterial feature. In this study, we developed an ultrasound-enhanced antibacterial implant surface based on Au nanoparticle modified TiO2 nanotubes (AuNPs-TNTs). As an artificial tooth surface, films based on AuNPs-TNTs showed excellent biocompatibility. Importantly, compared to bare titania surface, a larger amount of reactive oxygen radicals was generated on AuNPs-TNTs under an ultrasound treatment. For a proof-of-concept application, Porphyromonas gingivalis (P. gingivalis) was used as the model bacteria; the as-proposed AuNPs-TNTs exhibited significantly enhanced antibacterial activity under a simple ultrasound treatment. This antibacterial film offers a new way to design the surface of an artificial implant coating for resolving the bacterial infection induced failure of dental implants.
Collapse
Affiliation(s)
- Yue Sun
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| | - Wenzhou Xu
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Cong Jiang
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Tianyu Zhou
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Qiqi Wang
- Department of Periodontology, School and Hospital of Stomatology, Jilin University, Changchun, China
| | - Lan A
- Department of Oral Implantology, School and Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Sciences and Technology for Stomatology Nanoengineering, Changchun, China
| |
Collapse
|
53
|
Mazhar F, Kausar A, Iqbal M. Photocatalytic hydrogen generation using TiO 2: a state-of-the-art review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Abstract
This review is focusing on photocatalytic hydrogen (H2) production as a viable fuel. The limitations of different production methods for H2 generation and the importance of photocatalytic process are discussed, which renders this process as highly promising to meet the future energy crises. TiO2 is one of most effective material to generate the H2 via photocatalytic processes. Therefore, advantages of the catalyst over other semiconductors have been thoroughly analyzed. Starting from synthesis of TiO2 and factors affecting the whole process of photocatalytic H2 production have been discussed. Modifications for improvement in TiO2 and the photocatalytic reaction are critically reviewed as well as the mechanism of TiO2 modification has been described. Metal doping, non-metal doping, impurity addition and defect introduction processes have been analyzed and the comparison of experimental results is developed based on H2 production efficiency. A critical review of the literature from 2004 to 2021 concludes that H2 production as fuel using TiO2 photocatalytic method is efficient and environment friendly, which have potential for practical applications for H2 generation.
Collapse
Affiliation(s)
- Fatima Mazhar
- Department of Chemical Engineering , COMSATS University Islamabad , Lahore , Pakistan
| | - Abida Kausar
- Department of Chemistry , Government College Women University Faisalabad , Faisalabad , Pakistan
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| | - Munawar Iqbal
- Department of Chemistry, Division of Science and Technology , University of Education , Lahore , Pakistan
| |
Collapse
|
54
|
Kubovics M, Silva CG, López-Periago AM, Faria JL, Domingo C. Photocatalytic Hydrogen Production using Porous 3D Graphene-Based Aerogels Supporting Pt/TiO 2 Nanoparticles. Gels 2022; 8:719. [PMID: 36354627 PMCID: PMC9689606 DOI: 10.3390/gels8110719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/27/2022] [Accepted: 11/02/2022] [Indexed: 10/28/2023] Open
Abstract
Composites involving reduced graphene oxide (rGO) aerogels supporting Pt/TiO2 nanoparticles were fabricated using a one-pot supercritical CO2 gelling and drying method, followed by mild reduction under a N2 atmosphere. Electron microscopy images and N2 adsorption/desorption isotherms indicate the formation of 3D monolithic aerogels with a meso/macroporous morphology. A comprehensive evaluation of the synthesized photocatalyst was carried out with a focus on the target application: the photocatalytic production of H2 from methanol in aqueous media. The reaction conditions (water/methanol ratio, catalyst concentration), together with the aerogel composition (Pt/TiO2/rGO ratio) and architecture (size of the aerogel pieces), were the factors that varied in optimizing the process. These experimental parameters influenced the diffusion of the reactants/products inside the aerogel, the permeability of the porous structure, and the light-harvesting properties, all determined in this study towards maximizing H2 production. Using methanol as the sacrificial agent, the measured H2 production rate for the optimized system (18,800 µmolH2h-1gNPs-1) was remarkably higher than the values found in the literature for similar Pt/TiO2/rGO catalysts and reaction media (2000-10,000 µmolH2h-1gNPs-1).
Collapse
Affiliation(s)
- Márta Kubovics
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| | - Cláudia G. Silva
- LSRE-LCM-Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Ana M. López-Periago
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| | - Joaquim L. Faria
- LSRE-LCM-Laboratory of Separation and Reaction Engineering–Laboratory of Catalysis and Materials, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Concepción Domingo
- Instituto de Ciencia de Materiales de Barcelona, CSIC, Campus UAB s/n, 8193 Bellaterra, Spain
| |
Collapse
|
55
|
Ren G, Wei Z, Liu S, Shi M, Li Z, Meng X. Recent review of Bi xMO y (M=V, Mo, W) for photocatalytic CO 2 reduction into solar fuels. CHEMOSPHERE 2022; 307:136026. [PMID: 35973486 DOI: 10.1016/j.chemosphere.2022.136026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
The utilization of solar energy for CO2 conversion not only enables a green and low-carbon recycling of CO2 with renewable energy, but also solves ecological problems. BixMOy (M = V, Mo, W) materials have typical layered structures and unique electronic properties that provide suitable band gaps and potential to meet the basic conditions for CO2 reduction. However, pristine BixMOy faces with problems such as small specific surface area, insufficient active sites, low charge carriers' separation and utilization efficiency. This review comprehensively described the basic principles and reaction pathways of photocatalytic CO2 reduction, and further presented the research progress of BixMOy catalysts in CO2 conversion reactions. In this perspective, we further focus on the design concepts and modification strategies to improve the photocatalytic CO2 reduction activity of BixMOy, such as morphology control, constructing surface vacancies and heterojunction fabrication. Finally, based on representative researches, the present review will be expected to provide updated information and insights for developing advanced BixMOy materials to further improve CO2 reduction activity and selectivity.
Collapse
Affiliation(s)
- Guangmin Ren
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zixuan Wei
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Sitong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Meng Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Zizhen Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xiangchao Meng
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
56
|
Alkanad K, Hezam A, Al-Zaqri N, Bajiri MA, Alnaggar G, Drmosh QA, Almukhlifi HA, Neratur Krishnappagowda L. One-Step Hydrothermal Synthesis of Anatase TiO 2 Nanotubes for Efficient Photocatalytic CO 2 Reduction. ACS OMEGA 2022; 7:38686-38699. [PMID: 36340094 PMCID: PMC9631917 DOI: 10.1021/acsomega.2c04211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 10/03/2022] [Indexed: 05/14/2023]
Abstract
The hydrothermal dissolution-recrystallization process is a key step in the crystal structure of titania-based nanotubes and their composition. This work systematically studies the hydrothermal conditions for directly synthesizing anatase TiO2 nanotubes (ATNTs), which have not been deeply discussed elsewhere. It has been well-known that ATNTs can be synthesized by the calcination of titanate nanotubes. Herein, we found the ATNTs can be directly synthesized by optimizing the reaction temperature and time rather than calcination of titanate nanotubes, where at each temperature, there is a range of reaction times in which ATNTs can be prepared. The effect of NaOH/TiO2 ratio and starting materials was explored, and it was found that ATNTs can be prepared only if the precursor is anatase TiO2, using rutile TiO2 leads to forming titanate nanotubes. As a result, ATNTs produced directly without calcination have excellent photocatalytic CO2 reduction than titanate nanotubes and ATNTs prepared by titanate calcination.
Collapse
Affiliation(s)
- Khaled Alkanad
- Department
of Studies in Physics, University of Mysore, Manasagangotri, Mysuru570 006, India
| | - Abdo Hezam
- Leibniz
Institute for Catalysis at the University of Rostock, 18059Rostock, Germany
| | - Nabil Al-Zaqri
- Department
of Chemistry, College of Science, King Saud
University, PO Box 2455, Riyadh11451, Saudi Arabia
| | - Mohammed Abdullah Bajiri
- Department
of Studies and Research in Industrial Chemistry, School of Chemical
Sciences, Kuvempu University, Shankaraghatta577 451, India
| | - Gubran Alnaggar
- Department
of Studies in Chemistry, University of Mysore, Manasagangotri, Mysuru570006, India
| | - Qasem Ahmed Drmosh
- Interdisciplinary
Research Center for Hydrogen and Energy Storage, King Fahd University of Petroleum and Minerals, Dhahran31261, Saudi Arabia
| | - Hanadi A. Almukhlifi
- Department
of Chemistry, Faculty of Science, University
of Tabuk, P.O. Box 741, Tabuk47512, Saudi Arabia
| | | |
Collapse
|
57
|
Ali S, Abdul Nasir J, Nasir Dara R, Rehman Z. Modification strategies of metal oxide photocatalysts for clean energy and environmental applications: A review. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
58
|
Sharma A, Hosseini-Bandegharaei A, Kumar N, Kumar S, Kumari K. Insight into ZnO/carbon hybrid materials for photocatalytic reduction of CO2: An in-depth review. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
59
|
Zamani S, Rahimi MR, Ghaedi M, Dashtian K. WO 3/Ag/ZnO S-scheme heterostructure thin film spinning disc photoreactor for intensified photodegradation of cephalexin antibiotic. CHEMOSPHERE 2022; 307:135812. [PMID: 35963386 DOI: 10.1016/j.chemosphere.2022.135812] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
The presence of antibiotics in wastes and drinking water has led to serious environmental and health concerns, further necessitating the development of an advanced sustainable strategy to eliminate antibiotics from aquatic media. In this context, the present research reports the successful fabrication of a spinning disc photoreactor (SDPR) supported ZnO/Ag/WO3 S-scheme visible-light-driven thin-film photocatalyst to study the degradation of cephalexin (CPX) as a target pollutant under blue light irradiation. The optical, electrochemical and physicochemical characterization of the as-prepared thin-film samples were carried out by XRD, top-view FE-SEM, EDS-mapping, UV-Vis-DRS, contact angle, EIS, transient photocurrent, mott Schottky and AFM techniques. The rod shape morphology of the samples with moderate surface roughness, desirable hydrophobicity, low bandgap and remarkable band structure alignment confirmed the applicability of as-prepared thin-film with an average photon flux of 1.94 × 10-4-8.61 × 10-5 E's m-2 s-1. The use of a rotating catalytic disc impressively declined the photon propagation distance, decremented the probability of light absorption by the solution, and intensified the mass transfer rate. The maximum throughputs of 98.8% efficiencies for CPX degradation were achieved at a rotational speed of 180 rpm, the solution flow rate of 1.0 L min-1, the light intensity of 11 mW cm-2, and initial CPX concentration of 40 mg L-1, illumination time of 80 min, and pH of 6. Damkohler number (Da) value was found to be 1.23 × 10-2 at the optimum conditions, indicating the negligibility of the external mass transfer resistance in the SDPR. The photocatalytic mechanism was elucidated for finding the most operative radical species, suggesting the crucial role of ·O2- in photodegradation of CPX and a drastic improvement of the charge separation by S-scheme heterostructure and facilitation by Ag mediator. Findings indicated that the developed reusable and robust SDPR benefited from an s-scheme photocatalyst can be a promising technology for degradation of the organic compounds.
Collapse
Affiliation(s)
- S Zamani
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran
| | - M R Rahimi
- Process Intensification Laboratory, Department of Chemical Engineering, Yasouj University, Yasouj, 75918-74831, Iran.
| | - M Ghaedi
- Department of Chemistry, Yasouj University, Yasouj, 75918-74831, Iran
| | - K Dashtian
- Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| |
Collapse
|
60
|
Perota G, Zahraie N, Vais RD, Zare M, Sattarahmady N. Au/TiO2 nanocomposite as a triple-sensitizer for 808 and 650 nm phototherapy and sonotherapy: Synergistic therapy of melanoma cancer in vitro. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
61
|
Tian J, Zhang J, Xu B, Chen Q, Huang G, Bi J. An Artificial Photosystem of Metal-Insulator-CTF Nanoarchitectures for Highly Efficient and Selective CO 2 Conversion to CO. CHEMSUSCHEM 2022; 15:e202201107. [PMID: 35841604 DOI: 10.1002/cssc.202201107] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/10/2022] [Indexed: 06/15/2023]
Abstract
It is of pivotal significance to explore robust photocatalysts to promote the photoreduction of CO2 into solar fuels. Herein, an intelligent metal-insulator-semiconductor (MIS) nano-architectural photosystem was constructed by electrostatic self-assembly between cetyltrimethylammonium bromide (CTAB) insulator-capped metal Ni nanoparticles (NPs) and covalent triazine-based frameworks (CTF-1). The metal-insulator-CTF composites unveiled a substantially higher CO evolution rate (1254.15 μmol g-1 h-1 ) compared with primitive CTF-1 (1.08 μmol g-1 h-1 ) and reached considerable selectivity (98.9 %) under visible-light irradiation. The superior photocatalytic CO2 conversion activity over Ni-CTAB-CTF nanoarchitecture could be attributed to the larger surface area, reinforced visible-light response, and CO2 capture capacity. More importantly, the Ni-CTAB-CTF nanoarchitecture endowed the photoexcited electrons on CTF-1 with the ability to tunnel across the thin CTAB insulating layer, directionally migrating to Ni NPs and thereby leading to the efficient separation of photogenerated electrons and holes in the photosystem. In addition, isotope-labeled (13 CO2 ) tracer results verified that the reduction products come from CO2 rather than the decomposition of the photocatalysts. This study opens a new avenue for establishing a highly efficient and selective artificial photosystem for CO2 conversion.
Collapse
Affiliation(s)
- Jinjin Tian
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Jinpeng Zhang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Bin Xu
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Qiaoshan Chen
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Guocheng Huang
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| | - Jinhong Bi
- Department of Environmental Science and Engineering, Fuzhou University, Minhou, Fujian, 350108, P. R. China
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Minhou, Fujian, 350108, P. R. China
| |
Collapse
|
62
|
Preparation and Real World Applications of Titania Composite Materials for Photocatalytic Surface, Air, and Water Purification: State of the Art. INORGANICS 2022. [DOI: 10.3390/inorganics10090139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The semiconducting transition metal oxide TiO2 is a rather cheap and non-toxic material with superior photocatalytic properties. TiO2 thin films and nanoparticles are known to have antibacterial, antiviral, antifungal, antialgal, self, water, and air-cleaning properties under UV or sun light irradiation. Based on these excellent qualities, titania holds great promises in various fields of applications. The vast majority of published field and pilot scale studies are dealing with the modification of building materials or generally focus on air purification. Based on the reviewed papers, for the coating of glass, walls, ceilings, streets, tunnels, and other large surfaces, titania is usually applied by spray-coating due to the scalibility and cost-efficiency of this method compared to alternative coating procedures. In contrast, commercialized applications of titania in medical fields or in water purification are rarely found. Moreover, in many realistic test scenarios it becomes evident that the photocatalytic activity is often significantly lower than in laboratory settings. In this review, we will give an overview on the most relevant real world applications and commonly applied preparation methods for these purposes. We will also look at the relevant bottlenecks such as visible light photocatalytic activity and long-term stability and will make suggestions to overcome these hurdles for a widespread usage of titania as photocalyst.
Collapse
|
63
|
Photocatalytic CO2 Conversion Using Anodic TiO2 Nanotube-CuxO Composites. Catalysts 2022. [DOI: 10.3390/catal12091011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Nanosized titanium dioxide (TiO2) is currently being actively studied by the global scientific community, since it has a number of properties that are important from a practical point of view. One of these properties is a large specific surface, which makes this material promising for use in photocatalysts, sensors, solar cells, etc. In this work, we prepared photocatalysts based on TiO2 nanotubes for converting carbon dioxide (CO2) into energy-intensive hydrocarbon compounds. Efficient gas-phase CO2 conversion in the prepared single-walled TiO2 nanotube-CuxO composites was investigated. Parameters of defects (radicals) in composites were studied. Methanol and methane were detected during the CO2 photoreduction process. In single-walled TiO2 nanotubes, only Ti3+/oxygen vacancy defects were detected. The Cu2+ centers and O2− radicals were found in TiO2 nanotube-CuxO composites using the EPR technique. It has been established that copper oxide nanoparticles are present in the TiO2 nanotube-CuxO composites in the form of the CuO phase. A phase transformation of CuO to Cu2O takes place during illumination, as has been shown by EPR spectroscopy. It is shown that defects accumulate photoinduced charge carriers. The mechanism of methane and methanol formation is discussed. The results obtained are completely original and show high promise for the use of TiO2-CuxO nanotube composites as photocatalysts for CO2 conversion into hydrocarbon fuel precursors.
Collapse
|
64
|
Dos Santos Silva D, Villegas AEC, Bonfim RDPF, Salim VMM, De Resende NS. Iron-substituted hydroxyapatite as a potential photocatalyst for selective reduction of CO2 with H2. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
65
|
Mubarak S, Dhamodharan D, Byun HS, Arya S, Pattanayak DK. Effective photoelectrocatalytic reduction of CO2 to formic acid using controllably annealed TiO2 nanoparticles derived from porous structured Ti foil. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.102152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
66
|
Singh T, Sharma S, Singh R, Pal DB, Ahmad I, Alam MM, Singh NL, Srivastava M, Srivastava N. Sustainable approaches towards green synthesis of TiO 2 nanomaterials and their applications in photo-catalysis mediated sensingtomonitor environmental pollutions. LUMINESCENCE 2022. [PMID: 35997211 DOI: 10.1002/bio.4370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 08/16/2022] [Accepted: 08/19/2022] [Indexed: 11/06/2022]
Abstract
Nanomaterials are gaining enormous interests owing to their novel applications that have been explored nearly in every field of our contemporary society. In this scenario, preparations of nanomaterials following green routes have attracted widespread attention in terms of sustainable, reliable and environmentally friendly practice to produce diverse nanostructures. In this review, we summarized the fundamental processes and mechanisms of green synthesis approaches of TiO2 NPs. We explore the role of plants and microbes as natural bioresources to prepare TiO2 NPs. Particularly, focused have been made to explore the potential of TiO2 based nanomaterials to design variety of sensing platforms by exploiting the photo-catalysis efficiency under the influence of light source. Such types of sensing can of massive importance to monitor the environmental pollutions and thereby to invent advanced strategies to remediate hazardous pollutants to offer clean environment.
Collapse
Affiliation(s)
- Tripti Singh
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh, India
| | - Shalini Sharma
- School of Biosciences IMS Ghaziabad UC Campus, Ghaziabad, Uttar Pradesh, India
| | - Rajeev Singh
- Department of Environmental Studies, Satyawati College, University of Delhi, Delhi, India
| | - Dan Bahadur Pal
- Department of Chemical Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Mahtab Alam
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Nand Lal Singh
- Department of chemistry, Banaras Hindu University (BHU), Varanasi, U.P., India
| | - Manish Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| | - Neha Srivastava
- Department of Chemical Engineering and Technology, Indian Institute of Technology (BHU), Varanasi, India
| |
Collapse
|
67
|
Mohamed HH, Youssef TE. Enhanced solar light photocatalytic and antimicrobial activity of green noble metal/TiO 2 nanorods. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Au/TiO2 and Pt/TiO2 nanocomposites have been processed using a green method. Au and Pt colloidal nanoparticles have been primarily synthesized by mixing their corresponding metal ions with an aqueous solution of corn husk extract, followed by anchoring on the as-synthesized TiO2 nanorods. The structural and morphological properties of green-prepared nanomaterials were systematically investigated by various techniques. The UV–VIS absorption measurements confirmed the formation of colloidal Au and Pt with λmax at 550 and 345 nm, respectively. TEM results show anchoring of spherical Au particles (40 nm) on TiO2 nanorods while smaller Pt particles have been observed on Pt/TiO2 composite. It has been shown that the highest visible light harvesting capability was earned for Au/TiO2 composite due to the surface plasmon resonance (SPR) of Au nanoparticles. The photocatalytic and antimicrobial activity of the nanomaterials was investigated for disinfection of Escherichia coli under solar light irradiation. The green synthesized nanocomposites showed enhanced solar light photocatalytic and antimicrobial activity. The best photocatalytic and antimicrobial activity was obtained for Au/TiO2. This evidences the enhanced SPR of Au nanoparticles and hence an enhancement in the solar light accessible by TiO2 so that a higher amount of reactive oxygen species can be generated, which enhances photocatalytic and antibacterial activity.
Collapse
Affiliation(s)
- Hanan H. Mohamed
- Department of Chemistry, Faculty of Science, Helwan University, Ain Helwan, Cairo 11795, Egypt
| | - Tamer E. Youssef
- Department of Applied Organic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| |
Collapse
|
68
|
Lin CC, Liu TR, Lin SR, Boopathi KM, Chiang CH, Tzeng WY, Chien WHC, Hsu HS, Luo CW, Tsai HY, Chen HA, Kuo PC, Shiue J, Chiou JW, Pong WF, Chen CC, Chen CW. Spin-Polarized Photocatalytic CO 2 Reduction of Mn-Doped Perovskite Nanoplates. J Am Chem Soc 2022; 144:15718-15726. [PMID: 35975916 DOI: 10.1021/jacs.2c06060] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
"Spin" has been recently reported as an important degree of electronic freedom to improve the performance of electrocatalysts and photocatalysts. This work demonstrates the manipulations of spin-polarized electrons in CsPbBr3 halide perovskite nanoplates (NPLs) to boost the photocatalytic CO2 reduction reaction (CO2RR) efficiencies by doping manganese cations (Mn2+) and applying an external magnetic field. Mn-doped CsPbBr3 (Mn-CsPbBr3) NPLs exhibit an outstanding photocatalytic CO2RR compared to pristine CsPbBr3 NPLs due to creating spin-polarized electrons after Mn doping. Notably, the photocatalytic CO2RR of Mn-CsPbBr3 NPLs is significantly enhanced by applying an external magnetic field. Mn-CsPbBr3 NPLs exhibit 5.7 times improved performance of photocatalytic CO2RR under a magnetic field of 300 mT with a permanent magnet compared to pristine CsPbBr3 NPLs. The corresponding mechanism is systematically investigated by magnetic circular dichroism spectroscopy, ultrafast transient absorption spectroscopy, and density functional theory simulation. The origin of enhanced photocatalytic CO2RR efficiencies of Mn-CsPbBr3 NPLs is due to the increased number of spin-polarized photoexcited carriers by synergistic doping of the magnetic elements and applying a magnetic field, resulting in prolonged carrier lifetime and suppressed charge recombination. Our result shows that manipulating spin-polarized electrons in photocatalytic semiconductors provides an effective strategy to boost photocatalytic CO2RR efficiencies.
Collapse
Affiliation(s)
- Cheng-Chieh Lin
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan.,Molecular Science and Technology Program, Taiwan International Graduate Program (TIGP), Academia Sinica, Taipei 11529, Taiwan
| | - Ting-Ran Liu
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Sin-Rong Lin
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | | | - Chun-Hao Chiang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Yen Tzeng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Wan-Hsiu Chang Chien
- Department of Applied Physics, National Pingtung University, Pingtung 90044, Taiwan
| | - Hua-Shu Hsu
- Department of Applied Physics, National Pingtung University, Pingtung 90044, Taiwan
| | - Chih-Wei Luo
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,Institute of Physics and Center for Emergent Functional Matter Science, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan.,National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Taiwan Consortium of Emergent Crystalline Materials (TCECM), Ministry of Science and Technology, Taipei 10622, Taiwan
| | - Hui-Ying Tsai
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan
| | - Hsin-An Chen
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Pai-Chia Kuo
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Jessie Shiue
- Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan.,Institute of Physics, Academia Sinica, Taipei 11520, Taiwan
| | - Jau-Wern Chiou
- Department of Applied Physics, National University of Kaohsiung, Kaohsiung 81148, Taiwan
| | - Way-Faung Pong
- Department of Physics, Tamkang University, New Taipei City 25137, Taiwan
| | - Chia-Chun Chen
- Department of Chemistry, National Taiwan Normal University, Taipei 11677, Taiwan.,Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei 10617, Taiwan
| | - Chun-Wei Chen
- International Graduate Program of Molecular Science and Technology, National Taiwan University (NTU-MST), Taipei 10617, Taiwan.,Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan.,Center of Atomic Initiative for New Materials (AI-MAT), National Taiwan University (NTU), Taipei 10617, Taiwan.,Center for Condensed Matter Sciences, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
69
|
Weidner E, Karbassiyazdi E, Altaee A, Jesionowski T, Ciesielczyk F. Hybrid Metal Oxide/Biochar Materials for Wastewater Treatment Technology: A Review. ACS OMEGA 2022; 7:27062-27078. [PMID: 35967031 PMCID: PMC9366942 DOI: 10.1021/acsomega.2c02909] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/21/2022] [Indexed: 05/27/2023]
Abstract
This paper discusses the properties of metal oxide/biochar systems for use in wastewater treatment. Titanium, zinc, and iron compounds are most often combined with biochar; therefore, combinations of their oxides with biochar are the focus of this review. The first part of this paper presents the most important information about biochar, including its advantages, disadvantages, and possible modification, emphasizing the incorporation of inorganic oxides into its structure. In the next four sections, systems of biochar combined with TiO2, ZnO, Fe3O4, and other metal oxides are discussed in detail. In the next to last section probable degradation mechanisms are discussed. Literature studies revealed that the dispersion of a metal oxide in a carbonaceous matrix causes the creation or enhancement of surface properties and catalytic or, in some cases, magnetic activity. Addition of metallic species into biochars increases their weight, facilitating their separation by enabling the sedimentation process and thus facilitating the recovery of the materials from the water medium after the purification process. Therefore, materials based on the combination of inorganic oxide and biochar reveal a wide range of possibilities for environmental applications in aquatic media purification.
Collapse
Affiliation(s)
- Ewelina Weidner
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Elika Karbassiyazdi
- University
of Technology Sydney, School of Civil
and Environmental Engineering, Centre of Green Technology, 15 Broadway, Ultimo
NSW Sydney, New South Wales 2007, Australia
| | - Ali Altaee
- University
of Technology Sydney, School of Civil
and Environmental Engineering, Centre of Green Technology, 15 Broadway, Ultimo
NSW Sydney, New South Wales 2007, Australia
| | - Teofil Jesionowski
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| | - Filip Ciesielczyk
- Poznan
University of Technology, Faculty of Chemical
Technology, Institute of Chemical Technology and Engineering, Berdychowo 4, PL-60965 Poznan, Poland
| |
Collapse
|
70
|
Lin S, Zhang T, Xu T, Fuyang C. Preparation of Ni/Ce Composite Photocatalytic CO
2
Heterojunction by Treating Electroplating Nickel Wastewater. ChemistrySelect 2022. [DOI: 10.1002/slct.202200817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shengnan Lin
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education School of Metallurgy Northeastern University Wenhua Road Liaoning Shenyang 110819 China
| | - Tingan Zhang
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education School of Metallurgy Northeastern University Wenhua Road Liaoning Shenyang 110819 China
| | - Taiyu Xu
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education School of Metallurgy Northeastern University Wenhua Road Liaoning Shenyang 110819 China
| | - Chengzhen Fuyang
- Key Laboratory of Ecological Metallurgy of Multi-metal Intergrown Ores of Ministry of Education School of Metallurgy Northeastern University Wenhua Road Liaoning Shenyang 110819 China
| |
Collapse
|
71
|
Exploring CO2 Bio-Mitigation via a Biophotocatalytic/Biomagnetic System for Wastewater Treatment and Biogas Production. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146840] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Carbon dioxide (CO2) emissions from fossil fuels have led industries to seek cheaper carbon abatement technologies to mitigate environmental pollution. Herein, the effect of a magnetic photocatalyst (Fe-TiO2) on biogas production in anaerobic digestion (AD) of wastewater was investigated with three bioreactors coupled with UV-light (18 W). Three experimental setups defined as the control (AD system with no Fe-TiO2), biophotoreactor (BP), and biophotomagnetic (BPM) systems were operated at a mesophilic temperature (35 ± 5 °C) for a hydraulic retention time (HRT) of 30 days. The control system (ADs) had no Fe-TiO2 additives. The BPMs with 2 g Fe-TiO2 were exposed to a magnetic field, whereas the BPs were not. The removal rate of the chemical oxygen demand (COD), volatile solids (VS), and total solids (TS), together with biogas production and composition were monitored for each reactor. The degree of degradation of 75% COD was observed for the BPMs at a pH of 6.5 followed by the BPs (65% COD) and the ADs (45% COD). The results showed that the rate of degradation of COD had a direct correlation with the cumulative biogas production of the BPMs (1330 mL/d) > BPs (1125 mL/d) > AD (625 mL/d). This finding supports the use of biophotomagnetic systems (BPMs) in wastewater treatment for resource recovery and CO2 reduction (0.64 kg CO2/L) as an eco-friendly technology.
Collapse
|
72
|
Silerio-Vázquez F, Alarcón-Herrera MT, Proal-Nájera JB. Solar heterogeneous photocatalytic degradation of phenol on TiO 2/quartz and TiO 2/calcite: a statistical and kinetic approach on comparative efficiencies towards a TiO 2/glass system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:42319-42330. [PMID: 35224700 DOI: 10.1007/s11356-022-19379-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Phenol is a widely used synthetic organic compound, which according to global estimations, is discharged into the environment at a rate of 10 tons/year through industrial waste. Phenol is a recalcitrant pollutant, and human exposure to water containing phenolic substances can lead to health issues. It has been found both in drinking water and wastewater. Solar heterogeneous photocatalytic phenol degradation, measured through chemical oxygen demand, was performed on a thin film tilted plate reactor with TiO2 immobilized onto different support materials. A full factorial experimental design (4 × 3 × 3) was carried out to statistically evaluate if the independent variables' effects were significant. Four advanced oxidation processes (photolysis, photolysis + H2O2, heterogeneous photocatalysis, and heterogeneous photocatalysis + H2O2), three support materials (quartz, calcite, and glass), and three pH levels (3, 5.4, and 9) were evaluated. Reaction kinetics were fitted to the pseudo-first-order reaction rate and data was analyzed with an ANCOVA and means test, considering solar light intensity as a covariate. Photolysis/calcite at pH 5.4 and heterogeneous photocatalysis + H2O2/glass plate at pH 3 gave the best results, with a reaction rate constant kph = 3.047 × 10-3 min-1 and kphC = 4.498 × 10-3 min-1, respectively. The three independent variables and their interactions had a significant effect in the phenol degradation (p < 0.05).
Collapse
Affiliation(s)
- Felipe Silerio-Vázquez
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P. 34147, Durango, México
| | - María T Alarcón-Herrera
- Departamento de Ingeniería Sustentable, Centro de Investigación en Materiales Avanzados, S.C. Calle CIMAV 110, Colonia 15 de mayo, C.P. 34147, Durango, México
| | - José Bernardo Proal-Nájera
- Instituto Politécnico Nacional, CIIDIR-Durango, Calle Sigma 119, Fraccionamiento 20 de Noviembre II, C. P. 34220, Durango, México.
| |
Collapse
|
73
|
Liu J, Li P, Bi J, Zhu Q, Han B. Design and Preparation of Electrocatalysts by Electrodeposition for CO
2
Reduction. Chemistry 2022; 28:e202200242. [DOI: 10.1002/chem.202200242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Indexed: 02/05/2023]
Affiliation(s)
- Jiyuan Liu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Pengsong Li
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiahui Bi
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Qinggong Zhu
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Buxing Han
- Beijing National Laboratory for Molecular Sciences Key Laboratory of Colloid and Interface and Thermodynamics Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
74
|
Comparative Efficiencies for Phenol Degradation on Solar Heterogeneous Photocatalytic Reactors: Flat Plate and Compound Parabolic Collector. Catalysts 2022. [DOI: 10.3390/catal12060575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Phenol is a recalcitrant anthropogenic compound whose presence has been reported in both wastewater and drinking water; human exposure to phenolic substances can lead to health problems. The degradation of phenol (measured as COD decrease) through solar heterogeneous photocatalysis with immobilized TiO2 was performed in two different reactors: a flat-plate reactor (FPR) and a compound parabolic collector (CPC). A 23 full factorial experimental design was followed. The variables were the presence of TiO2, H2O2 addition, and the type of reactor. Data were fitted to the pseudo-first-order reaction-rate-kinetics model. The rate constant for photocatalytic phenol degradation with 1 mM of H2O2 was 6.6 × 10−3 min−1 for the FPR and 5.9 × 10−3 min−1 in the CPC. The calculated figures of merit were analyzed with a MANCOVA, with UV fluence as a covariate. An ANCOVA showed that the type of reactor, H2O2 addition, or fluence had no statistically significant effect on the results, but there was for the presence of TiO2. According to the MANCOVA, fluence and TiO2 presence were significant (p < 0.05). The CPC was on average 17.4% more efficient than the FPR when it came to collector area per order (ACO) by heterogeneous photocatalysis and 1 mM H2O2 addition.
Collapse
|
75
|
Wang L, Huang Z, Yang X, Rogée L, Huang X, Zhang X, Lau SP. Review on optofluidic microreactors for photocatalysis. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Four interrelated issues have been arising with the development of modern industry, namely environmental pollution, the energy crisis, the greenhouse effect and the global food crisis. Photocatalysis is one of the most promising methods to solve them in the future. To promote high photocatalytic reaction efficiency and utilize solar energy to its fullest, a well-designed photoreactor is vital. Photocatalytic optofluidic microreactors, a promising technology that brings the merits of microfluidics to photocatalysis, offer the advantages of a large surface-to-volume ratio, a short molecular diffusion length and high reaction efficiency, providing a potential method for mitigating the aforementioned crises in the future. Although various photocatalytic optofluidic microreactors have been reported, a comprehensive review of microreactors applied to these four fields is still lacking. In this paper, we review the typical design and development of photocatalytic microreactors in the fields of water purification, water splitting, CO2 fixation and coenzyme regeneration in the past few years. As the most promising tool for solar energy utilization, we believe that the increasing innovation of photocatalytic optofluidic microreactors will drive rapid development of related fields in the future.
Collapse
Affiliation(s)
- Lei Wang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Ziyu Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xiaohui Yang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Lukas Rogée
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Xiaowen Huang
- Department of Bioengineering , State Key Laboratory of Biobased Material and Green Papermaking, School of Food Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) , Jinan 250353 , China
| | - Xuming Zhang
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| | - Shu Ping Lau
- Department of Applied Physics , The Hong Kong Polytechnic University , Hong Kong , P.R. China
| |
Collapse
|
76
|
Yang Y, Chai Z, Qin X, Zhang Z, Muhetaer A, Wang C, Huang H, Yang C, Ma D, Li Q, Xu D. Light‐Induced Redox Looping of a Rhodium/Ce
x
WO
3
Photocatalyst for Highly Active and Robust Dry Reforming of Methane. Angew Chem Int Ed Engl 2022; 61:e202200567. [DOI: 10.1002/anie.202200567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Yuying Yang
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhigang Chai
- Department of Chemistry Ångström Laboratory Uppsala University 75121 Uppsala Sweden
- Current address: State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering Beijing University of Chemical Technology Beijing 100029 China
| | - Xuetao Qin
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Zhenzhen Zhang
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Aidaer Muhetaer
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Cong Wang
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Hanlin Huang
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Chaoran Yang
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Ding Ma
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Qi Li
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| | - Dongsheng Xu
- Beijng National Laboratory for Molecular Sciences State Key laboratory for Structural Chemistry of Unstable Species College of Chemistry and Molecular Engineering Peking University Beijing 100871 China
| |
Collapse
|
77
|
Matter F, Niederberger M. The Importance of the Macroscopic Geometry in Gas-Phase Photocatalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105363. [PMID: 35243811 PMCID: PMC9069382 DOI: 10.1002/advs.202105363] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Indexed: 05/04/2023]
Abstract
Photocatalysis has the potential to make a major technological contribution to solving pressing environmental and energy problems. There are many strategies for improving photocatalysts, such as tuning the composition to optimize visible light absorption, charge separation, and surface chemistry, ensuring high crystallinity, and controlling particle size and shape to increase overall surface area and exploit the reactivity of individual crystal facets. These processes mainly affect the nanoscale and are therefore summarized as nanostructuring. In comparison, microstructuring is performed on a larger size scale and is mainly concerned with particle assembly and thin film preparation. Interestingly, most structuring efforts stop at this point, and there are very few examples of geometry optimization on a millimeter or even centimeter scale. However, the recent work on nanoparticle-based aerogel monoliths has shown that this size range also offers great potential for improving the photocatalytic performance of materials, especially when the macroscopic geometry of the monolith is matched to the design of the photoreactor. This review article is dedicated to this aspect and addresses some issues and open questions that arise when working with macroscopically large photocatalysts. Guidelines are provided that could help develop novel and efficient photocatalysts with a truly 3D architecture.
Collapse
Affiliation(s)
- Fabian Matter
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| | - Markus Niederberger
- Laboratory for Multifunctional MaterialsDepartment of MaterialsETH ZurichVladimir‐Prelog‐Weg 5Zurich8093Switzerland
| |
Collapse
|
78
|
Rajput RB, Jamble SN, Kale RB. A review on TiO 2/SnO 2 heterostructures as a photocatalyst for the degradation of dyes and organic pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114533. [PMID: 35121365 DOI: 10.1016/j.jenvman.2022.114533] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 06/14/2023]
Abstract
Industrialization, civilization and human activities have all grown steadily in recent years. As a result, small and large industries discharge many organic pollutants into the environment and contribute to environmental pollution. These compounds are quite stable and challenging to break down over time, posing a long-term risk. The heterogeneous advanced oxidation processes technology has gained tremendous attention. It depends on the light-induced formation of e-/h+ pairs, which combine with water and aqueous oxygen to generate highly reactive hydroxyl radicals that degrade the organic pollutants in a solution and convert them ultimately into non-toxic products. In this paper, the synergetic impact of TiO2-SnO2 coupling with other semiconductor materials and their photodegradation performance on toxic contaminants in an aqueous medium has been reviewed. In addition, multiple approaches for the synthesis of TiO2-SnO2 photocatalysts have been discussed. Among them, hydrothermal, sol-gel, electrospinning, precipitation and even their combination are extensively used to synthesize various forms of nanostructures. These techniques demonstrate better tunability for visible absorption, suppression of e-/h+ pair recombination and enhanced e-/h+ separation to improve photocatalytic performance. This paper also summarises the role of different operating factors such as catalyst loading, pH, pollutants variation concentration, various light sources and oxidizing agents on the photodegradation of organic pollutants.
Collapse
Affiliation(s)
- Rekha B Rajput
- Department of Physics, The Institute of Science, Madam Cama Road, Mumbai, India.
| | - Shweta N Jamble
- Department of Physics, The Institute of Science, Madam Cama Road, Mumbai, India
| | - Rohidas B Kale
- Department of Physics, The Institute of Science, Madam Cama Road, Mumbai, India.
| |
Collapse
|
79
|
Copper decorated indium oxide rods for photocatalytic CO2 conversion under simulated sun light. J CO2 UTIL 2022. [DOI: 10.1016/j.jcou.2022.101909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
80
|
Yang Y, Chai Z, Qin X, Zhang Z, Muhetaer A, Wang C, Huang H, Yang C, Ma D, Li Q, Xu D. Light‐Induced Redox Looping of a Rhodium/ CexWO3 Photocatalyst for Highly Active and Robust Dry Reforming of Methane. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuying Yang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Zhigang Chai
- Uppsala University: Uppsala Universitet Department of Chemistry SWEDEN
| | - Xuetao Qin
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Zhenzhen Zhang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Aidaer Muhetaer
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Cong Wang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Hanlin Huang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Chaoran Yang
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Ding Ma
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Qi Li
- Peking University College of Chemistry and Molecular Engineering CHINA
| | - Dongsheng Xu
- Peking University College of Chemistry and Molecular Engineering Chengfu Road No.292 100871 Beijing CHINA
| |
Collapse
|
81
|
Conte F, Villa A, Prati L, Pirola C, Bennici S, Ramis G, Rossetti I. Effect of Metal Cocatalysts and Operating Conditions on the Product Distribution and the Productivity of the CO 2 Photoreduction. Ind Eng Chem Res 2022; 61:2963-2972. [PMID: 35264822 PMCID: PMC8895397 DOI: 10.1021/acs.iecr.1c02514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/15/2022] [Accepted: 01/21/2022] [Indexed: 12/02/2022]
Abstract
The CO2 photoreduction is a promising way to convert one of the most abundant greenhouse gases to valuable chemicals. The photoreduction in the liquid phase is limited by the low solubility of CO2 in water, but this point is overcome here by using an innovative photoreactor, which allows one to work up to pressures of 20 bar, improving the overall productivity. The photoreduction was performed in the presence of Na2SO3 and using in primis commercial titanium dioxide (P25) and a set of titania catalysts functionalized by surface deposition of either monometallic or bimetallic cocatalysts. The gaseous products were hydrogen and traces of CO, while, in the liquid phase, formic acid/formate, formaldehyde and methanol were quantitatively detected. The pH was observed to shift the products distribution. A neutral environment led mainly to hydrogen and methanol, while, at pH 14, formate was the most abundant compound. The trend for monometallic cocatalysts showed enhanced productivity when using noble metals (i.e., gold and platinum). In order to limit the cost of the catalytic material, bimetallic cocatalysts were explored, adding titania with Au+Ag or Au+Pt. This may open to the possibility of performing the reaction with a smaller amount of the most expensive metals. In the end, we have expressed some conclusions on the cost of the photocatalysts here employed, to support the overall feasibility assessment of the process.
Collapse
Affiliation(s)
- Francesco Conte
- Dip.
Chimica, Università degli Studi di
Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Alberto Villa
- Dip.
Chimica, Università degli Studi di
Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Laura Prati
- Dip.
Chimica, Università degli Studi di
Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Carlo Pirola
- Dip.
Chimica, Università degli Studi di
Milano, via C. Golgi 19, 20133 Milan, Italy
| | - Simona Bennici
- Institut
de Science des Matériaux de Mulhouse (IS2M), Université de Haute-Alsace, CNRS, IS2M UMR 7361, F-68100, Mulhouse, France
| | - Gianguido Ramis
- Dip.
Ing. Chimica, Civile ed Ambientale, Università
degli Studi di Genova and INSTM Unit Genova, via all’Opera Pia 15A, 16145 Genoa, Italy
| | - Ilenia Rossetti
- Dip.
Chimica, Università degli Studi di
Milano, via C. Golgi 19, 20133 Milan, Italy
| |
Collapse
|
82
|
Quyen TTB, My NNT, Pham DT, Thien DVH. Synthesis of TiO2 nanosheets/graphene quantum dots and its application for detection of Hydrogen Peroxide by photoluminescence spectroscopy. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
83
|
Hydrothermally synthesized strontium-modified ZnO hierarchical nanostructured photocatalyst for second-generation fluoroquinolone degradation. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02414-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
84
|
Lu X, Tan JZY, Maroto-Valer MM. Investigation of CO2 Photoreduction in an Annular Fluidized Bed Photoreactor by MP-PIC Simulation. Ind Eng Chem Res 2022; 61:3123-3136. [PMID: 35431432 PMCID: PMC9007463 DOI: 10.1021/acs.iecr.1c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/29/2022]
Abstract
![]()
Carbon dioxide (CO2) photoreduction is a promising process
for both mitigating CO2 emissions and providing chemicals
and fuels. A gas–solid two-phase annular fluidized bed photoreactor
(FBPR) would be preferred for this process due to its high mass-transfer
rate and easy operation. However, CO2 photoreduction using
the FBPR has not been widely researched to date. The Lagrangian multiphase
particle-in-cell (MP-PIC) simulation with computational fluid dynamic
models is a new and robust approach to explore the multiphase reaction
system in the gas–solid fluidized bed. Therefore, the purpose
of this paper is to investigate CO2 photoreduction in the
FBPR by MP-PIC modeling to understand the intrinsic mechanism of solid
flow, species mass transfer, and CO2 photoreaction. The
MP-PIC models for solid flow in the FBPR were validated by the bed
expansion height and bubble size. The results showed the particle
stress of the Lun model, the drag of the Ergun-WenYu (Gidaspow) model,
and the coefficient of restitution e = 0.95 with
the wall parameters ew = 0.9 and μw = 0.6 are the best fit to the experimental empirical correlations.
The MP-PIC models developed in this work proved to be better than
the Eulerian two-fluid modeling in the prediction of the bed expansion
height and bubble size. It was also found from the simulation results
that the maximum radiation intensity is in the half reactor height
area, and the photocatalytic reaction mainly occurred around the inner
wall. It showed that the gas velocity and catalyst loading were two
crucial operating parameters to control the process. The results reported
here can provide guidance for the operation and reactor design of
the CO2 photoreduction process.
Collapse
Affiliation(s)
- Xuesong Lu
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Jeannie Z. Y. Tan
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - M. Mercedes Maroto-Valer
- Research Centre for Carbon Solutions (RCCS), School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| |
Collapse
|
85
|
Shcherban N, Shvalagin V, Korzhak G, Yaremov P, Skoryk M, Sergiienko S, Ya. Kuchmiy S. Hard template synthesis and photocatalytic activity of graphitic carbon nitride in the hydrogen evolution reaction using organic acids as electron donors. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
86
|
Anthony ET, Oladoja NA. Process enhancing strategies for the reduction of Cr(VI) to Cr(III) via photocatalytic pathway. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:8026-8053. [PMID: 34837612 DOI: 10.1007/s11356-021-17614-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
This discourse aimed at providing insight into the strategies that can be adopted to boost the process of photoreduction of Cr(VI) to Cr(III). Cr(VI) is amongst the highly detestable pollutants; thus, its removal or reduction to an innocuous and more tolerable Cr(III) has been the focus. The high promise of photocatalysis hinged on the sustainability, low cost, simplicity, and zero sludge generation. Consequently, the present dissertation provided a comprehensive review of the process enhancement procedures that have been reported for the photoreduction of Cr(VI) to Cr(III). Premised on the findings from experimental studies on Cr(VI) reductions, the factors that enhanced the process were identified, dilated, and interrogated. While the salient reaction conditions for the process optimization include the degree of ionization of reacting medium, available photogenerated electrons, reactor ambience, type of semiconductors, surface area of semiconductor, hole scavengers, quantum efficiency, and competing reactions, the relevant process variables are photocatalyst dosage, initial Cr(VI) concentration, interfering ion, and organic load. In addition, the practicability of photoreduction of Cr(VI) to Cr(III) was explored according to the potential for photocatalyst recovery, reactivation, and reuse reaction conditions and the process variables.
Collapse
Affiliation(s)
- Eric Tobechukwu Anthony
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria
| | - Nurudeen Abiola Oladoja
- Hydrochemistry Research Laboratory, Department of Chemical Sciences, Adekunle Ajasin University, Akungba Akoko, Nigeria.
| |
Collapse
|
87
|
Reñones P, Fresno F, Oropeza FE, de la Peña O’Shea VA. Improved Methane Production by Photocatalytic CO 2 Conversion over Ag/In 2O 3/TiO 2 Heterojunctions. MATERIALS 2022; 15:ma15030843. [PMID: 35160788 PMCID: PMC8837040 DOI: 10.3390/ma15030843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/20/2022] [Indexed: 02/06/2023]
Abstract
In this work, the role of In2O3 in a heterojunction with TiO2 is studied as a way of increasing the photocatalytic activity for gas-phase CO2 reduction using water as the electron donor and UV irradiation. Depending on the nature of the employed In2O3, different behaviors appear. Thus, with the high crystallite sizes of commercial In2O3, the activity is improved with respect to TiO2, with modest improvements in the selectivity to methane. On the other hand, when In2O3 obtained in the laboratory, with low crystallite size, is employed, there is a further change in selectivity toward CH4, even if the total conversion is lower than that obtained with TiO2. The selectivity improvement in the heterojunctions is attributed to an enhancement in the charge transfer and separation with the presence of In2O3, more pronounced when smaller particles are used as in the case of laboratory-made In2O3, as confirmed by time-resolved fluorescence measurements. Ternary systems formed by these heterojunctions with silver nanoparticles reflect a drastic change in selectivity toward methane, confirming the role of silver as an electron collector that favors the charge transfer to the reaction medium.
Collapse
|
88
|
Khositanon C, Deepracha S, Assabumrungrat S, Ogawa M, Weeranoppanant N. Simple Fabrication of a Continuous-Flow Photocatalytic Reactor Using Dopamine-Assisted Immobilization onto a Fluoropolymer Tubing. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04303] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chetsada Khositanon
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
| | - Siwada Deepracha
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Suttichai Assabumrungrat
- Center of Excellence in Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
- Bio-Circular-Green-Economy Technology & Engineering Center, BCGeTEC, Faculty of Engineering, Chulalongkorn University, Bangkok 10330, Thailand
| | - Makoto Ogawa
- School of Energy Science and Engineering (ESE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| | - Nopphon Weeranoppanant
- Department of Chemical Engineering, Faculty of Engineering, Burapha University, Chonburi 20131, Thailand
- School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand
| |
Collapse
|
89
|
Kräuter J, Franz E, Waidhas F, Brummel O, Jörg Libuda, Al-Shamery K. The Role of Defects in the Photoconversion of 2-Propanol on Rutile Titania: Operando Spectroscopy Combined with Elementary Studies. J Catal 2022. [DOI: 10.1016/j.jcat.2021.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
90
|
Perini JAL, Irikura K, Torquato LDM, Flor JBDS, Zanoni MVB. Effect of ionic liquid in a pressurized reactor to enhance CO2 photocatalytic reduction at TiO2 modified by gold nanoparticles. J Catal 2022. [DOI: 10.1016/j.jcat.2021.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
91
|
Zeng X, Wang B, Zhang X, Zhang H, Fan M, Wang J, Ren B, Yang X, Bai X. Construction of the Sn-doped defect pyrochlore oxide KNbMoO 6·H 2O/g-C 3N 4 composite and its photocatalytic reduction of CO 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj03415h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Sn-doped defect pyrochlore oxide KNbMoO6·H2O/g-C3N4 composite can be used as a photocatalyst for conversion of CO2 in order to deal with energy and environmental issues.
Collapse
Affiliation(s)
- Xu Zeng
- Institute of Petrochemistry Heilong Jiang Academy of Sciences, Harbin, 150001, People's Republic of China
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Bo Wang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Xin Zhang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Hong Zhang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Meiqing Fan
- Measurement Biotechnique Research Center, College of Food Engineering, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Jun Wang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, People's Republic of China
| | - Bo Ren
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Xiaodong Yang
- Institute for Interdisciplinary Biomass Functional Materials Studies, Jilin Engineering Normal University, Changchun, 130052, People's Republic of China
| | - Xuefeng Bai
- Institute of Petrochemistry Heilong Jiang Academy of Sciences, Harbin, 150001, People's Republic of China
| |
Collapse
|
92
|
Abstract
CO2 reutilization processes contribute to the mitigation of CO2 as a potent greenhouse gas (GHG) through reusing and converting it into economically valuable chemical products including methanol, dimethyl ether, and methane. Solar thermochemical conversion and photochemical and electrochemical CO2 reduction processes are emerging technologies in which solar energy is utilized to provide the energy required for the endothermic dissociation of CO2. Owing to the surface-dependent nature of these technologies, their performance is significantly reliant on the solid reactant/catalyst accessible surface area. Solid porous structures either entirely made from the catalyst or used as a support for coating the catalyst/solid reactants can increase the number of active reaction sites and, thus, the kinetics of CO2 reutilization reactions. This paper reviews the principles and application of porous materials for CO2 reutilization pathways in solar thermochemical, photochemical, and electrochemical reduction technologies. Then, the state of the development of each technology is critically reviewed and evaluated with the focus on the use of porous materials. Finally, the research needs and challenges are presented to further advance the implementation of porous materials in the CO2 reutilization processes and the commercialization of the aforementioned technologies.
Collapse
|
93
|
Kibar ME. Preparation of copper oxide-cerium oxide/nanotube-titanium dioxide photocatalyst for CO2 conversion in solar light. REACTION KINETICS MECHANISMS AND CATALYSIS 2021. [DOI: 10.1007/s11144-021-02079-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
94
|
Kozlova EA, Lyulyukin MN, Kozlov DV, Parmon VN. Semiconductor photocatalysts and mechanisms of carbon dioxide reduction and nitrogen fixation under UV and visible light. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr5004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Abstract
The review summarizes the current knowledge about heterogeneous semiconductor photocatalysts that are active towards photocatalytic reduction of carbon dioxide and molecular nitrogen under visible and near-UV light. The main classes of these photocatalysts and characteristic features of their application in the target processes are considered. Primary attention is given to photocatalysts based on titanium dioxide, which have high activity and stability in the carbon dioxide reduction. For the first time, the photofixation of nitrogen under irradiation in the presence of various semiconductor materials is considered in detail.
The bibliography includes 264 references.
Collapse
|
95
|
Computational modeling of green hydrogen generation from photocatalytic H2S splitting: Overview and perspectives. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2021. [DOI: 10.1016/j.jphotochemrev.2021.100456] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Al-Madanat O, Curti M, Günnemann C, AlSalka Y, Dillert R, Bahnemann DW. TiO2 photocatalysis: Impact of the platinum loading method on reductive and oxidative half-reactions. Catal Today 2021. [DOI: 10.1016/j.cattod.2021.07.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
97
|
Hamdi D, Mansouri L, Srivastava V, Sillanpaa M, Bousselmi L. Enhancement of Eu and Ce doped TiO2 thin films photoactivity: Application on Amido Black photodegradation. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
98
|
Singh P, Srivastava R. Utilization of bio-inspired catalyst for CO2 reduction into green fuels: Recent advancement and future perspectives. J CO2 UTIL 2021. [DOI: 10.1016/j.jcou.2021.101748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
99
|
Yadav A, Kangsabanik J, Singh N, Alam A. Novel Two-Dimensional MA 2N 4 Materials for Photovoltaic and Spintronic Applications. J Phys Chem Lett 2021; 12:10120-10127. [PMID: 34636577 DOI: 10.1021/acs.jpclett.1c02650] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We have systematically investigated a family of newly proposed two-dimensional MA2N4 materials (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, W; A = Si, Ge) using first-principles calculation. We categorize the potential of these materials into three different applications based on accurate simulation of band gap (using Hybrid HSE06 functional) and the associated descriptors. Three candidate materials (MoGe2N4, HfSi2N4, and NbSi2N4) turn out to be extremely promising for three different applications. MoGe2N4 and HfSi2N4 monolayers show strong optical absorption in the visible range, including high transition probability from the valence to conduction band. The GW+BSE calculations confirm a strong excitonic effect in both the systems. With a band gap of 1.42 eV, multilayer MoGe2N4 shows reasonably large simulated efficiency (∼15.40%) and hence can be explored for possible photovoltaic applications. High optical absorption, suitable band gap/edge positions, and the CO2 activation make HfSi2N4 monolayer a promising candidate for photocatalytic CO2 reduction. NbSi2N4, on the other hand, belongs to a new class of spintronic material called a bipolar magnetic semiconductor, recommended for spin-transport-based applications.
Collapse
Affiliation(s)
- Asha Yadav
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jiban Kangsabanik
- Department of Physics, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Nirpendra Singh
- Department of Physics and Center for Catalyst and Separation, Khalifa University of Science and Technology, Abu Dhabi-127788, United Arab Emirates
| | - Aftab Alam
- Department of Physics, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
100
|
Sabri MA, Al Jitan S, Bahamon D, Vega LF, Palmisano G. Current and future perspectives on catalytic-based integrated carbon capture and utilization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148081. [PMID: 34091328 DOI: 10.1016/j.scitotenv.2021.148081] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/03/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
There exist several well-known methods with varying maturity for capturing carbon dioxide from emission sources of different concentrations, including absorption, adsorption, cryogenics and membrane separation, among others. The capture and separation steps can produce almost pure CO2, but at substantial cost for being conditioned for transport and final utilization, with high economical risks to be considered. A possible way for the elimination of this conditioning and cost is direct CO2 utilization, whether on-site in a further process but within the same plant, or in-situ, coupling both capture and conversion in the same unit. This approach is usually called integrated carbon capture and utilization (ICCU) or integrated carbon capture and conversion (ICCC), and has lately started receiving considerable attention in many circles. As CO2 is already industrially employed in other sectors, such as food preservation, water treatment and conversion to high added-value chemicals and fuels such as methanol, methane, etc., among others, it is of great interest to explore the global ICCC approach. Catalytic-based processes play a key role in CO2 conversion, and different technologies are gaining great attention from both academia and industry. However, the 'big picture of ICCU' and in which technology the efforts should focus on at large scale is still unclear. This review analyzes some promising concepts of ICCU specifically on CO2 catalytic conversion, highlighting their current commercial relevance as well as challenges that have to be faced today and in the next future.
Collapse
Affiliation(s)
- Muhammad Ashraf Sabri
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Samar Al Jitan
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Daniel Bahamon
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates
| | - Lourdes F Vega
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Center for Catalysis and Separation (CeCaS), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| | - Giovanni Palmisano
- Department of Chemical Engineering, Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates; Research and Innovation Center on CO(2) and H(2) (RICH Center), Khalifa University, Abu Dhabi, P.O. Box 127788, United Arab Emirates.
| |
Collapse
|