51
|
Luo XQ, Yan P, Zhang NY, Luo B, Wang M, Deng YH, Wu T, Wu X, Liu Q, Wang HS, Wang L, Kang YX, Duan SB. Machine learning for early discrimination between transient and persistent acute kidney injury in critically ill patients with sepsis. Sci Rep 2021; 11:20269. [PMID: 34642418 PMCID: PMC8511088 DOI: 10.1038/s41598-021-99840-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 09/30/2021] [Indexed: 12/29/2022] Open
Abstract
Acute kidney injury (AKI) is commonly present in critically ill patients with sepsis. Early prediction of short-term reversibility of AKI is beneficial to risk stratification and clinical treatment decision. The study sought to use machine learning methods to discriminate between transient and persistent sepsis-associated AKI. Septic patients who developed AKI within the first 48 h after ICU admission were identified from the Medical Information Mart for Intensive Care III database. AKI was classified as transient or persistent according to the Acute Disease Quality Initiative workgroup consensus. Five prediction models using logistic regression, random forest, support vector machine, artificial neural network and extreme gradient boosting were constructed, and their performance was evaluated by out-of-sample testing. A simplified risk prediction model was also derived based on logistic regression and features selected by machine learning algorithms. A total of 5984 septic patients with AKI were included, 3805 (63.6%) of whom developed persistent AKI. The artificial neural network and logistic regression models achieved the highest area under the receiver operating characteristic curve (AUC) among the five machine learning models (0.76, 95% confidence interval [CI] 0.74-0.78). The simplified 14-variable model showed adequate discrimination, with the AUC being 0.76 (95% CI 0.73-0.78). At the optimal cutoff of 0.63, the sensitivity and specificity of the simplified model were 63% and 76% respectively. In conclusion, a machine learning-based simplified prediction model including routine clinical variables could be used to differentiate between transient and persistent AKI in critically ill septic patients. An easy-to-use risk calculator can promote its widespread application in daily clinical practice.
Collapse
Affiliation(s)
- Xiao-Qin Luo
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ping Yan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ning-Ya Zhang
- Information Center, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Bei Luo
- Department of Information Systems, City University of Hong Kong, Tat Chee Avenue, Kowloon, 999077, Hong Kong SAR, China
| | - Mei Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ying-Hao Deng
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Ting Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Xi Wu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Qian Liu
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Hong-Shen Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Lin Wang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Yi-Xin Kang
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China
| | - Shao-Bin Duan
- Department of Nephrology, Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, 139 Renmin Road, Changsha, 410011, Hunan, China.
| |
Collapse
|
52
|
Dos Santos Pinheiro C, de Oliveira Gomes CG, Ribeiro Lima Machado C, Guedes LR, Rocha HC, Guimarães RG, Carvalho FAC, Saturnino SF, do Nascimento VC, de Andrade MVM, Vilela EG. Performance of High Mobility Protein Group 1 and Interleukin-6 as Predictors of Outcomes Resulting from Variceal Bleeding in Patients with Advanced Chronic Liver Disease. Inflammation 2021; 45:544-553. [PMID: 34618276 DOI: 10.1007/s10753-021-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 08/08/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Variceal bleeding is a serious complication in cirrhotic patients and is related to increased expression of inflammatory mediators that accentuate circulatory dysfunction. The study aims to evaluate the performance of high mobility protein group 1 (HMG1) and interleukin-6 (IL-6) as predictors of acute kidney injury (AKI), infection and death in these patients. Fifty patients who were diagnosed with advanced chronic liver disease with variceal bleeding were included. The mean age was 52.8 ± 10.8 years, and 33 (66%) were male. Twenty-one (42%) patients were classified as Child-Pugh C, 21 (42%) Child-Pugh B and 8 (16%) Child-Pugh A. The mean HMG1 serum level was 2872.36 pg/mL ± 2491.94, and the median IL-6 serum level was 47.26 pg/mL (0-1102.4). In AKI, the serum level of HMG1 that performed best on the ROC curve was 3317.9 pg/mL. The IL-6 serum level was not associated with AKI. HMG1 and IL-6 cut-off values that better predicted infection were 3317.9 pg/mL and 72.9 pg/mL, and for mortality, the values were 2668 pg/mL and 84.5 pg/mL, respectively. In multivariate analysis, the variables that were associated with AKI and infection outcomes were model for end-stage liver disease and HMG1. Infections were related to the risk of death. Clinical and laboratory variables related to the outcomes were identified. Serum levels of HMG1 were associated with AKI and infection and had good performance in the ROC curve. IL-6 levels were not maintained in logistic regression outcomes but had good performance in infection and death outcomes. Such data will be useful for comparisons and possible future validations.
Collapse
Affiliation(s)
- Camilla Dos Santos Pinheiro
- Faculdade de Medicina da, Postgraduate Program in Sciences Applied To Adult Health, Federal University of Minas Gerais Medical (Programa de Pós-Graduação Em Ciências Aplicadas À Saúde Do Adulto, Universidade Federal de Minas Gerais), Belo Horizonte, Brazil.
| | - Célio Geraldo de Oliveira Gomes
- Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Camilla Ribeiro Lima Machado
- Faculdade de Medicina da, Postgraduate Program in Sciences Applied To Adult Health, Federal University of Minas Gerais Medical (Programa de Pós-Graduação Em Ciências Aplicadas À Saúde Do Adulto, Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Ludmila Resende Guedes
- Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Henrique Carvalho Rocha
- Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Roberto Gardone Guimarães
- Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Fernando Antônio Castro Carvalho
- Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Saulo Fernandes Saturnino
- Intensive Care Unit of Clinical Hospital of the Federal University of Minas Gerais (Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Vanuza Chagas do Nascimento
- Faculdade de Medicina da, Postgraduate Program in Sciences Applied To Adult Health, Federal University of Minas Gerais Medical (Programa de Pós-Graduação Em Ciências Aplicadas À Saúde Do Adulto, Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Marcus Vinicius Melo de Andrade
- Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| | - Eduardo Garcia Vilela
- Faculdade de Medicina da, Postgraduate Program in Sciences Applied To Adult Health, Federal University of Minas Gerais Medical (Programa de Pós-Graduação Em Ciências Aplicadas À Saúde Do Adulto, Universidade Federal de Minas Gerais), Belo Horizonte, Brazil.,Alfa Institute of Gastroenterology of the Clinical Hospital of the Federal University of Minas Gerais (Instituto Alfa de Gastroenterologia, Hospital das Clínicas da Universidade Federal de Minas Gerais), Belo Horizonte, Brazil
| |
Collapse
|
53
|
The Critical Role of Cannabinoid Receptor 2 in URB602-Induced Protective Effects Against Renal Ischemia-Reperfusion Injury in the Rat. Shock 2021; 54:520-530. [PMID: 32004183 DOI: 10.1097/shk.0000000000001517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Renal ischemia-reperfusion injury (IRI) is a major cause of acute kidney injury (AKI) and even induces remote organ damage. Accumulating proofs demonstrates that the endocannabinoid system may provide a promising access for treatment strategy of renal IRI associated AKI. In the current study, using the established renal IRI model of rat, we tested the hypothesis that pretreatment of URB602, 30 min before renal IRI, alleviates kidney injury and relevant distant organ damage via limiting oxidative stress and inflammation. Using Western blot analysis and LC-MS/MS, renal IRI showed to increase the levels of 2-arachidonoylglycerol (2-AG) in kidneys as well as COX-2, PGE2, TXA2, and decrease N-arachidonoylethanolamine (anandamide, AEA); the expressions of renal cannabinoid receptor 1 (CB1) and cannabinoid receptor 2 (CB2) were unchanged. The URB602 pretreatment in renal IRI, further enhanced renal 2-AG which is high affinity to both CB1 and CB2, and reduced renal COX-2 which is involved in the regulation of renal perfusion and inflammation. AM630 (CB2 antagonist) almost blocked all the antioxidant, anti-inflammatory and nephroprotective effects of URB602, whereas AM251 (CB1 antagonist) showed limited influence, and parecoxib (COX-2 inhibitor) slightly ameliorated renal function at the dose of 10 mg/kg. Taken together, our data indicate that URB602 acts as a reactive oxygen species scavenger and anti-inflammatory media in renal IRI mainly depending on the activation of CB2.
Collapse
|
54
|
Han YK, Kim JS, Lee GB, Lim JH, Park KM. Oxidative stress following acute kidney injury causes disruption of lung cell cilia and their release into the bronchoaveolar lavage fluid and lung injury, which are exacerbated by Idh2 deletion. Redox Biol 2021; 46:102077. [PMID: 34315110 PMCID: PMC8326422 DOI: 10.1016/j.redox.2021.102077] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 01/02/2023] Open
Abstract
Acute kidney injury (AKI) induces distant organ injury, which is a serious concern in patients with AKI. Recent studies have demonstrated that distant organ injury is associated with oxidative stress of organ and damage of cilium, an axoneme-based cellular organelle. However, the role of oxidative stress and cilia damage in AKI-induced lung injury remains to be defined. Here, we investigated whether AKI-induced lung injury is associated with mitochondrial oxidative stress and cilia disruption in lung cells. AKI was induced in isocitrate dehydrogenase 2 (Idh2, a mitochondrial antioxidant enzyme)-deleted (Idh2−/−) and wild-type (Idh2+/+) mice by kidney ischemia-reperfusion (IR). A group of mice were treated with Mito-TEMPO, a mitochondria-specific antioxidant. Kidney IR caused lung injuries, including alveolar septal thickening, alveolar damage, and neutrophil accumulation in the lung, and increased protein concentration and total cell number in bronchoalveolar lavage fluid (BALF). In addition, kidney IR caused fragmentation of lung epithelial cell cilia and the release of fragments into BALF. Kidney IR also increased the production of superoxide, lipid peroxidation, and mitochondrial and nuclei DNA oxidation in lungs and decreased IDH2 expression. Lung oxidative stress and injury relied on the degree of kidney injury. Idh2 deletion exacerbated kidney IR-induced lung injuries. Treatment with Mito-TEMPO attenuated kidney IR-induced lung injuries, with greater attenuation in Idh2−/− than Idh2+/+ mice. Our data demonstrate that AKI induces the disruption of cilia and damages cells via oxidative stress in lung epithelial cells, which leads to the release of disrupted ciliary fragments into BALF.
Collapse
Affiliation(s)
- Yong Kwon Han
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Ji Su Kim
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Gwan Beom Lee
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea
| | - Jae Hang Lim
- Department of Microbiology, School of Medicine, Ihwa Woman's University, 25 Magokdong-ro 2-gil, Gangseo-gu, Seoul, 07804, Republic of Korea
| | - Kwon Moo Park
- Department of Anatomy, Cardiovascular Research Institute and BK21 Plus, School of Medicine, Kyungpook National University, 680 Gukchaebosang-ro, Junggu, Daegu, 41944, Republic of Korea.
| |
Collapse
|
55
|
Li J, Chen J, Yang Y, Ding R, Wang M, Gu Z. Ginkgolide A attenuates sepsis-associated kidney damage via upregulating microRNA-25 with NADPH oxidase 4 as the target. Int Immunopharmacol 2021; 95:107514. [PMID: 33677255 DOI: 10.1016/j.intimp.2021.107514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 02/07/2023]
Abstract
The aim of the present study was to explore the effects of Ginkgolide A (GA) on renal function of mice with sepsis and whether GA could attenuate sepsis-associated inflammation and apoptosis in kidney via upregulating microRNA (miR)-25 with NADPH oxidase 4 (Nox4) as the target. Experiments were carried out on lipopolysaccharide (LPS)-treated mice and kidney tubular (NRK-52E) cells. GA significantly inhibited the increases of creatinine (Cr), blood urea nitrogen (BUN) and cystatin C (CysC) in the serum of LPS-treated mice. The increases of inflammatory factors including tumor necrosis factor (TNF)-α, interleukin (IL)-1β and IL-6 in the kidneys of LPS-treated mice or NRK-52E cells were inhibited by GA administration. The changes of cleaved-caspase 3, cleaved-caspase 8, Bax, Bcl2 in mouse kidney and NRK-52E cells treated by LPS were reversed by GA administration. The sepsis-induced decrease of miR-25 was enhanced by GA treatment. The LPS-induced increases of inflammatory factors and apoptosis in mouse kidney or NRK-52E cells were attenuated after miR-25 agomiR administration. The bioinformatics analysis and luciferase reporter assays showed that Nox4 was a direct target gene of miR-25. Treatment with miR-25 inhibited Nox4 expression, while Nox4 over-expression reversed the inhibiting effects of miR-25 agomiR on LPS-induced increases of inflammatory factors and apoptosis in NRK-52E cells. These results indicated that GA could improve sepsis-induced renal damage by attenuating renal inflammation and apoptosis via upregulating miR-25 with Nox4 as the target.
Collapse
Affiliation(s)
- Jianzhong Li
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Jian Chen
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Yucheng Yang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Rui Ding
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Meili Wang
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China
| | - Zhenhua Gu
- Department of Urology, Wuxi Traditional Chinese Medicine Hospital, Wuxi, China.
| |
Collapse
|
56
|
Maiwall R, Pasupuleti SSR, Chandel SS, Narayan A, Jain P, Mitra LG, Kumar G, Moreau R, Sarin SK. Co-orchestration of acute kidney injury and non-kidney organ failures in critically ill patients with cirrhosis. Liver Int 2021; 41:1358-1369. [PMID: 33534915 DOI: 10.1111/liv.14809] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 12/21/2020] [Accepted: 01/29/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Little is known on the course of acute kidney injury (AKI) and its relation to non-kidney organ failures and mortality in critically ill patients with cirrhosis (CICs). METHODS We conducted a large prospective, single-centre, observational study in which CICs were followed up daily, during the first 7 days of intensive care, collecting prespecified criteria for AKI, extrarenal extrahepatic organ failures (ERH-OFs) and systemic inflammatory response syndrome (SIRS). RESULTS A total of 291 patients admitted to ICU were enrolled; 231 (79.4%) had at least one ERH-OFs, 168 (58%) had AKI at presentation, and 145 (49.8%) died by 28 days. At day seven relative to baseline, 151 (51.8%) patients had progressive or persistent AKI, while the rest remained free of AKI or had AKI improvement. The 28-day mortality rate was higher among patients with progressive/persistent AKI (74.2% vs 23.5%; P < .001) or maximum stage 3 of AKI in the first week. Two-level mixed logistic regression modelling identified independent baseline risk factors for progressive/persistent AKI, including 3 to 4 SIRS criteria, infections due to multidrug-resistant bacteria (MDR), elevated serum bilirubin, and number of ERH-OFs. Follow-up risk factors included increases in bilirubin and chloride levels, and new development of 2 or 3 ERH-OFs. CONCLUSIONS Our results show that among CICs admitted to the ICU, the stage and course of AKI in the first week determines outcomes. Strategies combating MDR infections, multiorgan failure, liver failure and intense systemic inflammation could prevent AKI progression or persistence in CICs.
Collapse
Affiliation(s)
- Rakhi Maiwall
- Department of Hepatology, Institute of Liver and Biliary Science, New Delhi, India
| | - Samba Siva R Pasupuleti
- Department of Biostatistics, Institute of Liver and Biliary Science, New Delhi, India.,Department of Statistics, Pachhunga University College, Mizoram University, Aizawl, India
| | - Shivendra S Chandel
- Department of Hepatology, Institute of Liver and Biliary Science, New Delhi, India
| | - Ashad Narayan
- Department of Hepatology, Institute of Liver and Biliary Science, New Delhi, India
| | - Priyanka Jain
- Department of Biostatistics, Institute of Liver and Biliary Science, New Delhi, India
| | - Lalita Gouri Mitra
- Department of Anaesthesia and Critical Care, Institute of Liver and Biliary Science, New Delhi, India
| | - Guresh Kumar
- Department of Biostatistics, Institute of Liver and Biliary Science, New Delhi, India
| | - Richard Moreau
- Inserm, Université de Paris, Centre de Recherche sur l'Inflammation (CRI), Paris, France.,Assistance Publique-Hôpitaux de Paris, Service d'Hépatologie, Hôpital Beaujon, Clichy, France
| | - Shiv K Sarin
- Department of Hepatology, Institute of Liver and Biliary Science, New Delhi, India
| |
Collapse
|
57
|
Abstract
In the last decade, the role of apoptosis in the pathophysiology of acute kidney injury (AKI) and AKI to chronic kidney disease (CKD) progression has been revisited as our understanding of ferroptosis and necroptosis has emerged. A growing body of evidence, reviewed here, ascribes a central pathophysiological role for ferroptosis and necroptosis to AKI, nephron loss, and acute tubular necrosis. We will introduce concepts to the non-cell-autonomous manner of kidney tubular injury during ferroptosis, a phenomenon that we refer to as a "wave of death." We hypothesize that necroptosis might initiate cell death propagation through ferroptosis. The remaining necrotic debris requires effective removal processes to prevent a secondary inflammatory response, referred to as necroinflammation. Open questions include the differences in the immunogenicity of ferroptosis and necroptosis, and the specificity of necrostatins and ferrostatins to therapeutically target these processes to prevent AKI-to-CKD progression and end-stage renal disease.
Collapse
|
58
|
Lin Y, Zhao M, Bai L, Li H, Xu Y, Li X, Xie J, Zhang Y, Zheng D. Renal-targeting peptide-microRNA nanocomplex for near IR imaging and therapy of renal ischemia/reperfusion injury. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.02.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
59
|
Chen D, Yuan H, Cao C, Liu Z, Jiang L, Tan Y, Ding J, Ma M, Huang W, Wan X. Impact of acute kidney injury on in-hospital outcomes in Chinese patients with community acquired pneumonia. BMC Pulm Med 2021; 21:143. [PMID: 33933054 PMCID: PMC8088559 DOI: 10.1186/s12890-021-01511-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 04/21/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute kidney injury (AKI) is a frequent complication of community acquired pneumonia (CAP). However, the impact of AKI on in-hospital outcomes of patients with CAP in the Chinese population remains unclear. METHODS Patients diagnosed with CAP were evaluated in this retrospective observational study. Multiple Cox regression models were employed to identify the association between AKI and in-hospital mortality and 30-day mortality, respectively. RESULTS A total of 4213 patients were recruited; 950 (22.5%) patients were diagnosed with AKI. Independent risk factors for AKI were age, male gender, hypertension, cardiac dysfunction, diabetes, chronic kidney disease, acute respiratory failure, use of diuretics, use of vasoactive drugs, and CURB-65. Cox proportional hazards regression revealed AKI, use of angiotensin receptor blocker, hypertension, CURB-65, acute respiratory failure, and use of vasoactive drugs to be independent risk factors for both in-hospital and 30-day mortality. Compared to patients without AKI, those suffering AKI were found to have 1.31-fold (HR 1.31, 95% CI, 1.04-1.66; P = 0.023) and 1.29-fold (HR 1.29, 95% CI, 1.02-1.62; P = 0.033) increased in-hospital and 30-day mortality risks, respectively. In addition, patients with AKI were likely to require admission to intensive care unit (ICU) (42.9% versus 11.4%; P < 0.001), mechanical ventilation (33.8% versus 9.3%; P < 0.001), invasive mechanical ventilation (25.9% versus 5.8%; P < 0.001), non-invasive mechanical ventilation (25.4% versus 7.1%; P < 0.001), and experienced a longer duration of hospital stay (14 days versus 10 days; P < 0.001) than those without AKI. However, no significant difference in ICU stay (11 days versus 10 days; P = 0.099) and duration of mechanical ventilation (8 days versus 8 days; P = 0.369) between AKI and non-AKI groups was found. CONCLUSION AKI was common in Chinese patients with CAP. Patients with CAP who developed AKI had worse in-hospital outcomes.
Collapse
Affiliation(s)
- Dawei Chen
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Hongbo Yuan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Changchun Cao
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhihe Liu
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Linglin Jiang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Yan Tan
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ji Ding
- Department of Cardiothoracic Surgery, Yizheng People's Hospital, Yangzhou, Jiangsu, China
| | - Mengqing Ma
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wenjuan Huang
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China
| | - Xin Wan
- Department of Nephrology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, China.
- Department of Nephrology, Sir Run Run Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
60
|
Maeda A, Hayase N, Doi K. Acute Kidney Injury Induces Innate Immune Response and Neutrophil Activation in the Lung. Front Med (Lausanne) 2020; 7:565010. [PMID: 33330525 PMCID: PMC7718030 DOI: 10.3389/fmed.2020.565010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Complication in acute kidney injury (AKI) is significantly associated with developing acute respiratory failure (ARF), while ARF is one of the most important risks for AKI. These data suggest AKI and ARF may synergistically worsen the outcomes of critically ill patients and these organ injuries may not occur independently. Organ crosstalk between the kidney and the lung has been investigated by using animal models so far. This review will focus on innate immune response and neutrophil activation among the mechanisms that contribute to this organ crosstalk. AKI increased the blood level of an inflammatory mediator in high-mobility group box 1, which induces an innate immune reaction via toll-like receptor 4. The remarkable infiltration of neutrophils to the lung was observed in animal AKI models. IL-6 and IL-8 have been demonstrated to contribute to pulmonary neutrophil activation in AKI. In addition, the formation of a neutrophil extracellular trap was also observed in the lung after the exposure of renal ischemia reperfusion in the animal model. Further investigation is necessary to determine whether targeting innate immune response and neutrophil activation will be useful for developing new therapeutics that could improve multiple organ failure in critically ill patients.
Collapse
Affiliation(s)
- Akinori Maeda
- Department of Acute Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Naoki Hayase
- Department of Acute Medicine, The University of Tokyo Hospital, Tokyo, Japan
| | - Kent Doi
- Department of Acute Medicine, The University of Tokyo Hospital, Tokyo, Japan
| |
Collapse
|
61
|
Bagheri Y, Aghajani S, Hosseinzadeh M, Hoshmandan F, Abdollahpour A, Vahed SZ. Protective effects of Gamma Oryzanol on distant organs after kidney ischemia-reperfusion in rats: A focus on liver protection. Hum Exp Toxicol 2020; 40:1022-1030. [PMID: 33325270 DOI: 10.1177/0960327120979014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is the main clinical concern resulted from ischemia-reperfusion injury (IRI). Ample clinical data indicates that AKI is associated with distant organ dysfunctions and poor patients' outcomes. Oxidative stress and inflammation have a critical role in the pathogenesis of organ injuries following IRI. The objectives of this study were to determine the impact of Gamma Oryzanol (GO), extracted from rice bran oil, on distant organs in rats after IRI. METHODS Twelve out of 24 Wistar rats were treated by one dosage of GO (100mg/kg) 1 h before I/R induction through both oral gavage and intraperitoneal injection. Then, the AKI model rats were induced by IRI. Oxidative stress and antioxidant protein levels were assessed in the brain, heart, and liver tissues in the experimental groups. Furthermore, the effects of GO on IRI-induced liver dysfunction, apoptosis, and inflammation were measured by Western blot. RESULTS GO pretreatment could significantly restore the levels and activity of antioxidant proteins in the brain, heart, and liver tissues (P < 0.05). Moreover, GO pretreatment could decrease the inflammatory cytokine (IL-1, IL-6, and TNF-α) in the liver (P < 0.01). By reducing Bax/Bcl-2 ratio and down-regulating caspase-3, GO could significantly diminish apoptosis in the liver tissue after the kidney I/R (P < 0.01). Additionally, GO could significantly diminish the deterioration of liver function in the kidney I/R model. CONCLUSION GO protects distant organs against renal IRI-induced oxidative stress. Furthermore, it ameliorates liver function and remarkably exerts anti-oxidative, anti-inflammatory, and anti-apoptotic roles in the liver as an important detoxifying organ.
Collapse
Affiliation(s)
- Yasin Bagheri
- Young Researchers and Elite Club, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Shadi Aghajani
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Mahla Hosseinzadeh
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Farid Hoshmandan
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Abdollah Abdollahpour
- Faculty of Veterinary Medicine, 201583Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Sepideh Zununi Vahed
- Kidney Research Center, 48432Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
62
|
El-Rashid M, Nguyen-Ngo D, Minhas N, Meijles DN, Li J, Ghimire K, Julovi S, Rogers NM. Repurposing of metformin and colchicine reveals differential modulation of acute and chronic kidney injury. Sci Rep 2020; 10:21968. [PMID: 33319836 PMCID: PMC7738483 DOI: 10.1038/s41598-020-78936-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Acute kidney injury (AKI) is a major health problem affecting millions of patients globally. There is no effective treatment for AKI and new therapies are urgently needed. Novel drug development, testing and progression to clinical trials is overwhelmingly expensive. Drug repurposing is a more cost-effective measure. We identified 2 commonly used drugs (colchicine and metformin) that alter inflammatory cell function and signalling pathways characteristic of AKI, and tested them in models of acute and chronic kidney injury to assess therapeutic benefit. We assessed the renoprotective effects of colchicine or metformin in C57BL/6 mice challenged with renal ischemia reperfusion injury (IRI), treated before or after injury. All animals underwent analysis of renal function and biomolecular phenotyping at 24 h, 48 h and 4 weeks after injury. Murine renal tubular epithelial cells were studied in response to in vitro mimics of IRI. Pre-emptive treatment with colchicine or metformin protected against AKI, with lower serum creatinine, improved histological changes and decreased TUNEL staining. Pro-inflammatory cytokine profile and multiple markers of oxidative stress were not substantially different between groups. Metformin augmented expression of multiple autophagic proteins which was reversed by the addition of hydroxychloroquine. Colchicine led to an increase in inflammatory cells within the renal parenchyma. Chronic exposure after acute injury to either therapeutic agent in the context of reduced renal mass did not mitigate the development of fibrosis, with colchicine significantly worsening an ischemic phenotype. These data indicate that colchicine and metformin affect acute and chronic kidney injury differently. This has significant implications for potential drug repurposing, as baseline renal disease must be considered when selecting medication.
Collapse
Affiliation(s)
- Maryam El-Rashid
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Danny Nguyen-Ngo
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Nikita Minhas
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Daniel N Meijles
- Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - Jennifer Li
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Sohel Julovi
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia
| | - Natasha M Rogers
- Centre for Transplant and Renal Research, Westmead Institute for Medical Research, 176 Hawkesbury Road, Westmead, NSW, 2145, Australia. .,Westmead Clinical Medical School, University of Sydney, Camperdown, NSW, Australia. .,Renal Division, Westmead Hospital, Sydney, NSW, Australia. .,Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
63
|
Diniz LRL, Souza MTDS, Duarte ABS, de Sousa DP. Mechanistic Aspects and Therapeutic Potential of Quercetin against COVID-19-Associated Acute Kidney Injury. Molecules 2020; 25:molecules25235772. [PMID: 33297540 PMCID: PMC7730372 DOI: 10.3390/molecules25235772] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/01/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023] Open
Abstract
The inflammatory mediator and oxidant agent storm caused by the SARS-CoV-2 infection has been strongly associated with the failure of vital organs observed in critically ill patients with coronavirus disease 2019 (COVID-19) and the death of thousands of infected people around the world. Acute kidney injury (AKI) is a common renal disorder characterized by a sudden and sustained decrease in renal function with a critical influence on poor prognosis and lethal clinical outcomes of various etiologies, including some viral infection diseases. It is known that oxidative stress and inflammation play key roles in the pathogenesis and development of AKI. Quercetin is a natural substance that has multiple pharmacological properties, such as anti-inflammatory action, and is used as a dietary supplement. There is evidence of the anti-coronavirus activities of this compound, including against the target SARS-CoV-2 3CLpro. The ability to inhibit coronavirus and its inflammatory processes is strongly desired in a new drug for the treatment of COVID-19. Therefore, in this review, the dual effect of quercetin is discussed from a mechanistic perspective in relation to AKI kidney injury and its nephroprotective potential to SARS-CoV-2 patients.
Collapse
Affiliation(s)
- Lúcio Ricardo Leite Diniz
- Department of Nursing, College of Nordeste da Bahia, 48590-000 Coronel João Sá, Bahia, Brazil
- Correspondence: ; Tel.: +55-75-3286-2268
| | | | - Allana Brunna Sucupira Duarte
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970 João Pessoa, PB, Brazil; (A.B.S.D.); (D.P.d.S.)
| | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, 58051-970 João Pessoa, PB, Brazil; (A.B.S.D.); (D.P.d.S.)
| |
Collapse
|
64
|
Nishida K, Watanabe H, Miyahisa M, Hiramoto Y, Nosaki H, Fujimura R, Maeda H, Otagiri M, Maruyama T. Systemic and sustained thioredoxin analogue prevents acute kidney injury and its-associated distant organ damage in renal ischemia reperfusion injury mice. Sci Rep 2020; 10:20635. [PMID: 33244034 PMCID: PMC7691343 DOI: 10.1038/s41598-020-75025-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/27/2019] [Indexed: 12/19/2022] Open
Abstract
The mortality of patients with acute kidney injury (AKI) remains high due to AKI associated-lung injury. An effective strategy for preventing both AKI and AKI-associated lung injury is urgently needed. Thioredoxin-1 (Trx) is a redox-active protein that possesses anti-oxidative, anti-apoptotic and anti-inflammatory properties including modulation of macrophage migration inhibitory factor (MIF), but its short half-life limits its clinical application. Therefore, we examined the preventive effect of a long-acting Trx, which is a fusion protein of albumin and Trx (HSA-Trx), against AKI and AKI-associated lung injury. Recombinant HSA-Trx was expressed using a Pichia expression system. AKI-induced lung injury mice were generated by bilateral renal ischemia reperfusion injury (IRI). HSA-Trx administration attenuated renal IRI and its-associated lung injury. Both renal and pulmonary oxidative stress were suppressed by HSA-Trx. Moreover, HSA-Trx inhibited elevations of plasma IL-6 and TNF-α level, and suppressed IL-6-CXCL1/2-mediated neutrophil infiltration into lung and TNF-α-mediated pulmonary apoptosis. Additionally, HSA-Trx suppressed renal IRI-induced MIF expression in kidney and lung. Administration of HSA-Trx resulted in a significant increase in the survival rate of renal IRI mice. Collectively, HSA-Trx could have therapeutic utility in preventing both AKI and AKI-associated lung injury as a consequence of its systemic and sustained multiple biological action.
Collapse
Affiliation(s)
- Kento Nishida
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroshi Watanabe
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| | - Masako Miyahisa
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Yuto Hiramoto
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hiroto Nosaki
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Rui Fujimura
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Hitoshi Maeda
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Masaki Otagiri
- Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Kumamoto, 860-0082, Japan
| | - Toru Maruyama
- Department of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
- Center for Clinical Pharmaceutical Sciences, School of Pharmacy, Kumamoto University, 5-1, Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan.
| |
Collapse
|
65
|
Kaur J, Kaur T, Sharma AK, Kaur J, Yadav HN, Pathak D, Singh AP. Fenofibrate attenuates ischemia reperfusion-induced acute kidney injury and associated liver dysfunction in rats. Drug Dev Res 2020; 82:412-421. [PMID: 33226649 DOI: 10.1002/ddr.21764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 11/10/2020] [Accepted: 11/10/2020] [Indexed: 01/09/2023]
Abstract
Ischemia/reperfusion (I/R) is one of the common reasons for acute kidney injury (AKI) and we need to develop effective therapies for treating AKI. We investigated the role of fenofibrate against I/R-induced AKI and associated hepatic dysfunction in rats. In male wistar albino rats, renal pedicle occlusion for 40 min and 24 h reperfusion resulted in AKI. I/R-induced AKI was demonstrated by measuring serum creatinine, creatinine clearance, urea, uric acid, potassium, fractional excretion of sodium and urinary microproteins. Oxidative stress in rat kidneys was quantified by assaying superoxide anion generation, thiobarbituric acid reactive substances, and reduced glutathione levels. AKI-induced hepatic damage was quantified by assaying serum aminotransferases, alkaline phosphatase and bilirubin levels. Moreover, serum cholesterol, high density lipoprotein and triglycerides were quantified. Hematoxylin-eosin staining of renal and hepatic tissues was done and the kidney and liver injury scores were determined. Immunohistology of endothelial nitric oxide synthase (eNOS) was done in rat kidneys. Fenofibrate was administered for 1 week before subjecting rats to AKI. In separate group, the nitric oxide synthase inhibitor, L-nitroarginine methyl ester (L-NAME) was administered prior to fenofibrate treatment. In I/R group, significant alteration in the serum/urine parameters indicated AKI and hepatic dysfunction along with marked increase in kidney and liver injury scores. Treatment with fenofibrate attenuated AKI and associated hepatic dysfunction. Moreover, I/R-induced decrease in renal eNOS expression was abrogated by fenofibrate. Pre-treatment with L-NAME abolished fenofibrate mediated reno- and hepato-protective effects. In conclusion, fenofibrate attenuates I/R-induced AKI and associated hepatic dysfunction putatively through modulation of eNOS expression.
Collapse
Affiliation(s)
- Jashanpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Tajpreet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India.,Department of Pharmacology, Khalsa College of Pharmacy, Amritsar (INDIA), India
| | - Ashwani Kumar Sharma
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Japneet Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| | - Harlokesh Narayan Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India.,Department of Veterinary Anatomy, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | | | - Amrit Pal Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
66
|
Zhao L, Zhao L, Wang YY, Yang F, Chen Z, Yu Q, Shi H, Huang S, Zhao X, Xiu L, Li X, Li Y. Platelets as a prognostic marker for sepsis: A cohort study from the MIMIC-III database. Medicine (Baltimore) 2020; 99:e23151. [PMID: 33157998 PMCID: PMC7647525 DOI: 10.1097/md.0000000000023151] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
During sepsis, platelets dysfunction contributes to organ dysfunction. Studies on platelets dysfunction in the long-term prognosis of sepsis are lacking. The aim of this study was to assess the role of platelets in the long-term prognosis of sepsis patients.A total of 4576 sepsis patients were extracted from MIMIC III Database. Survival was analyzed by the Kaplan-Meier method. Univariate and multivariate cox analyses were performed to identify prognostic factors. Significant prognostic factors were combined to build a nomogram to predict 1 year overall survival (OS). The discriminative ability and predictive accuracy of the nomogram were evaluated using the receiver operating characteristic curve (ROC) analysis and calibration curves used for sepsis.The more abnormal the platelet level, the worse prognosis of patients. After final regression analysis, age, blood urea nitrogen, platelets, international normalized ratio, partial thromboplastin time, potassium, hemoglobin, white blood cell count, organ failures were found to be independent predictors of 1 year OS of sepsis patient and were entered into a nomogram. The nomogram showed a robust discrimination, with an area under the receiver operating characteristic curve of 0.752. The calibration curves for the probability of the prognosis of sepsis patients showed optimal agreement between the probability as predicted by the nomogram and the actual probability.Platelet was an independent prognostic predictor of 1 year OS for patients with sepsis. Platelet-related nomogram that can predict the 1 year OS of sepsis patients. It revealed optimal discrimination and calibration, indicating that the nomogram may have clinical utility.
Collapse
Affiliation(s)
- Lina Zhao
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Lijiao Zhao
- Department of Pharmaceutical Engineering, Inner Mongolia Agricultural University, Hohhot
| | - Yun ying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Fei Yang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Zhuang Chen
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Qing Yu
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Hui Shi
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Shiying Huang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Xiaoli Zhao
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Limei Xiu
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Xiaolu Li
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Inner Mongolia
| | - Yun Li
- Department of Anesthesiology Medicine, Chifeng Municipal Hospital, Inner Mongolia, China
| |
Collapse
|
67
|
Abstract
Acute kidney injury (AKI) is a threatening medical condition associated with poor outcomes at different settings. The development of standardized diagnostic criteria and new biomarkers addressed significant clinical impacts of AKI and the need for an early AKI detection, respectively. There have been some breakthroughs in understanding the pathogenesis of AKI through basic research; however, treatments against AKI aside from renal replacement therapy (RRT) have not shown adequate successful results. Biomarkers that could identify good responders to certain treatment are expected to facilitate translation of basic research findings. Most patients with severe AKI treated with RRT died due to multiple-organ failure, not renal dysfunction. Hence, it is essential to identify other organ dysfunctions induced by AKI as organ crosstalk. Also, a multidisciplinary approach of critical care nephrology is needed to evaluate a complex organ crosstalk in AKI. For disruptive innovation for AKI, we further explore these new aspects of AKI, which previously were considered outside the scope of nephrology.
Collapse
Affiliation(s)
- Kent Doi
- Department of Emergency and Critical Care Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8655, Japan.
| |
Collapse
|
68
|
Guo S, Zhang F, Chen Y, Chen Y, Shushakova N, Yao Y, Zeng R, Li J, Lu X, Chen R, Haller H, Gueler F, Xu G, Rong S. Pre-ischemic renal lavage protects against renal ischemia-reperfusion injury by attenuation of local and systemic inflammatory responses. FASEB J 2020; 34:16307-16318. [PMID: 33089923 DOI: 10.1096/fj.201902943r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/30/2020] [Accepted: 10/02/2020] [Indexed: 01/04/2023]
Abstract
Postischemic acute kidney injury (AKI) is a common clinical complication and often fatal, with no effective treatment available. Little is known about the role of leukocytes trapped in renal vessels during ischemia-reperfusion injury (IRI) in the postischemic AKI. We designed a new animal model in rats with preforming renal artery lavage prior to IRI to investigate the effect of diminishing the residual circulating leukocytes on kidney damage and inflammation. Moreover, the functional changes of macrophages in hypoxia reoxygenation condition were also analyzed. We found pre-ischemic renal lavage significantly decreased the serum creatinine and blood urea nitrogen levels, and downregulated the mRNA and protein expressions in kidneys and urinary secretion of kidney injury molecule-1 of rats after IRI. The renal pathological damage caused by IRI was also ameliorated by pre-ischemic renal lavage, as evidenced by fewer cast formation, diminished morphological signs of AKI in the tissue at 24 hours after IRI. Pre-ischemic renal lavage reduced the numbers of infiltrating CD68+ macrophages and MPO+ neutrophils. The mRNA expression of pro-inflammatory mediator in IRI kidneys and the levels of pro-inflammatory cytokines in circulatory system and urine were also reduced due to pre-ischemic lavage. Compared with nontreated rats with IRI, pre-ischemic renal lavage significantly reduced the phosphorylation levels of ERK and p65 subunit of NF-κB in the kidney after IRI. In addition, we found hypoxia/reoxygenation could promote the expression of pro-inflammatory mediators and inhibit the expression of anti-inflammatory factors by regulating ERK/NF-κB signaling pathway. Thus, pre-ischemic renal lavage could clearly reduce the renal damage after IRI by attenuating inflammation, and macrophages trapped in renal vessels during IRI could be important pathogenic factors driving tissue injury.
Collapse
Affiliation(s)
- Shuiming Guo
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuxiang Zhang
- ICU, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, Jinan, China
| | - Ying Chen
- Department of Nephrology, The First People's Hospital of Yichang, Yichang, China
| | - Yuetao Chen
- Department of Respiratory, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Nelli Shushakova
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Ying Yao
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rui Zeng
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junhua Li
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia Lu
- Institute of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongjun Chen
- Department of Pediatric Kidney, Liver, and Metabolic Diseases, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Gang Xu
- Department of Nephrology, Division of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
69
|
Yang J, Kim CJ, Go YS, Lee HY, Kim MG, Oh SW, Cho WY, Im SH, Jo SK. Intestinal microbiota control acute kidney injury severity by immune modulation. Kidney Int 2020; 98:932-946. [PMID: 32470493 DOI: 10.1016/j.kint.2020.04.048] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Intestinal microbiota impacts the host immune system and influences the outcomes of chronic diseases. However, it remains uncertain whether acute kidney injury (AKI) impacts intestinal microbiota or vice versa. To determine this, we investigated the mechanistic link between AKI, microbiota, and immune response in ischemia/reperfusion injury. Microbiota alteration and its biological consequences after ischemia/reperfusion injury were examined and the effect of dysbiotic microbiota on the outcome of AKI was also assessed by colonizing germ-free mice with post-AKI microbiota. The role of Th17, Th1, Tregs cells and macrophage polarization in mediating the renoprotective effect of antibiotic induced microbiota depletion in ischemia/reperfusion injury was also determined. Increase of Enterobacteriacea, decrease of Lactobacilli, and Ruminococacceae were found to be the hallmarks of ischemia/reperfusion injury induced dysbiosis and were associated with a decreased levels of short-chain fatty acids, intestinal inflammation and leaky gut. Colonizing germ-free mice with post-AKI microbiota worsened ischemia/reperfusion injury severity with exaggerated inflammation in recipient mice compared to colonizing with microbiota from sham operated mice. Microbiota depletion by oral antibiotics protected against ischemia/reperfusion injury. This renoprotective effect was associated with reduced Th 17, Th 1 response along with expansion of regulatory T cells, and M2 macrophages. Our study demonstrated a unique bidirectional relationship between the kidney and the intestine during AKI. Intestinal dysbiosis, inflammation and leaky gut are consequences of AKI but they also represent an important modifier determining post-AKI severity. Thus, targeting the intestinal microbiota might provide a novel therapeutic strategy in AKI.
Collapse
Affiliation(s)
- Jihyun Yang
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - Chan Johng Kim
- Division of Integrative Biosciences and Biotechnology & Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Yoon Sook Go
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - Hee Young Lee
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - Myung-Gyu Kim
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - Se Won Oh
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - Won Yong Cho
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea
| | - Sin-Hyeog Im
- Division of Integrative Biosciences and Biotechnology & Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
| | - Sang Kyung Jo
- Division of Nephrology, Department of Internal Medicine, Korea University Medical College, Seoul, Korea.
| |
Collapse
|
70
|
Evaluation of the Biomarkers HMGB1 and IL-6 as Predictors of Mortality in Cirrhotic Patients with Acute Kidney Injury. Mediators Inflamm 2020; 2020:2867241. [PMID: 33061824 PMCID: PMC7533024 DOI: 10.1155/2020/2867241] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/11/2020] [Indexed: 01/07/2023] Open
Abstract
Background Acute kidney injury (AKI) affects from 20% to 50% of cirrhotic patients, and the one-month mortality rate is 60%. The main cause of AKI is bacterial infection, which worsens circulatory dysfunction through the release of HMGB1 and IL-6. Objectives To evaluate HMGB1 and IL-6 as biomarkers of morbidity/mortality. Methods Prospective, observational study of 25 hospitalised cirrhotic patients with AKI. Clinical and laboratory data were collected at the time of diagnosis of AKI, including serum HMGB1 and IL-6. Results The mean age was 55 years; 70% were male. Infections accounted for 13 cases. The 30-day and three-month mortality rates were 17.4% and 30.4%, respectively. HMGB1 levels were lower in survivors than in nonsurvivors at 30 days (1174.2 pg/mL versus 3338.5 pg/mL, p = 0.035), but not at three months (1540 pg/mL versus 2352 pg/mL, p = 0.243). Serum IL-6 levels were 43.3 pg/mL versus 153.3 pg/mL (p = 0.061) at 30 days and 35.8 pg/mL versus 87.9 pg/mL (p = 0.071) at three months, respectively. The area under the ROC curve for HMGB1 was 0.842 and 0.657, and that for IL-6 was 0.803 and 0.743 for discriminating nonsurvivors at 30 days and three months, respectively. In multivariate analysis, no biomarker was independently associated with mortality. Conclusion HMGB1 levels were associated with decreased survival in cirrhotics. Larger studies are needed to confirm our results.
Collapse
|
71
|
Chen Y, Huang Y, Xiong B, Luo H, Song X. Dexmedetomidine ameliorates renal ischemia reperfusion-mediated activation of the NLRP3 inflammasome in alveolar macrophages. Gene 2020; 758:144973. [PMID: 32707303 DOI: 10.1016/j.gene.2020.144973] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/01/2020] [Accepted: 07/17/2020] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (rI/R) is a risk factor for acute lung injury (ALI). Alveolar macrophages (AMs) activation mediated by rI/R-induced ALI is one of the pathogeneses associated with the development of ALI. In rI/R, α2-adrenergic receptor agonists have been indicated to be effective in decreasing urea nitrogen concentrations. In this study, we explored the underlying pathogenesis of the clinically obtainable α2-adrenergic receptor agonist dexmedetomidine (DEX) in protecting against rI/R -mediated AMs activation. We incubated AMs with the serum of sham and rI/R rats in the presence or absence of various concentrations of DEX. We used an enzyme-linked immunosorbent assay to detect the secretion levels of GSH, LDH, IL-18, IL-1β, and HMGB1 in the culture supernatant. We employed real-time polymerase chain reaction to assess the expression of NOX-4 mRNA, and western blotting to observe the protein levels of NOX-4, the NLRP3 inflammasome, AMPK, and eNOS. In addition, we used immunofluorescence to analyze ROS and MMP activity. Incubation of AMs with DEX suppressed rI/R-mediated cellular LDH production and ROS release. DEX also abolished the rI/R-mediated decrease in the activity of GSH and increased the levels of the rI/R-related NADPH oxidase protein NOX-4. Furthermore, DEX reduced the amelioration of the mitochondrial potential induced by rI/R. Our study showed that DEX inhibits rI/R-mediated levels of the NLRP3 inflammasome proteins ASC, NLRP3, HMGB1 and p20, and ameliorates rI/R-mediated AMPK signaling inactivation. Therefore, DEX reduces the levels of two mediators that are activated by the NLRP3 inflammasome: IL-18 and IL-1β. Finally, our study established that DEX mitigates the rI/R-mediated decrease in eNOS, demonstrating its protective functions against AMs activation. In conclusion, our study demonstrated that the protective action of DEX in AMs is induced through amelioration of HMGB1-NLRP3 inflammasome-AMPK signaling. Our results suggest that the anesthetic reagent DEX exerts beneficial effects to ameliorate rI/R-induced ALI.
Collapse
Affiliation(s)
- Yingying Chen
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Ying Huang
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Bingrui Xiong
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Huan Luo
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China
| | - Xuemin Song
- Department of Anesthesiology, Zhongnan Hospital, Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
72
|
Betônico GN, Lima EQ, Tome AC. Challenges in COVID-19 medical response: A nephrology perspective. Eur J Clin Invest 2020; 50:e13309. [PMID: 32511752 PMCID: PMC7300537 DOI: 10.1111/eci.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 05/20/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Emerson Quintino Lima
- Nephrology Division, Medicine School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil
| | - Ana Carolina Tome
- Nephrology Division, Medicine School of Sao Jose do Rio Preto, Sao Jose do Rio Preto, Brazil
| |
Collapse
|
73
|
Aparicio-Trejo OE, Avila-Rojas SH, Tapia E, Rojas-Morales P, León-Contreras JC, Martínez-Klimova E, Hernández-Pando R, Sánchez-Lozada LG, Pedraza-Chaverri J. Chronic impairment of mitochondrial bioenergetics and β-oxidation promotes experimental AKI-to-CKD transition induced by folic acid. Free Radic Biol Med 2020; 154:18-32. [PMID: 32360615 DOI: 10.1016/j.freeradbiomed.2020.04.016] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 04/17/2020] [Indexed: 12/13/2022]
Abstract
Recent studies suggest that mitochondrial bioenergetics and oxidative stress alterations may be common mechanisms involved in the progression of renal damage. However, the evolution of the mitochondrial alterations over time and the possible effects that their prevention could have in the progression of renal damage are not clear. Folic acid (FA)-induced kidney damage is a widely used experimental model to induce acute kidney injury (AKI), which can evolve to chronic kidney disease (CKD). Therefore, it has been extensively applied to study the mechanisms involved in AKI-to-CKD transition. We previously demonstrated that one day after FA administration, N-acetyl-cysteine (NAC) pre-administration prevented the development of AKI induced by FA. Such therapeutic effect was related to mitochondrial preservation. In the present study, we characterized the temporal course of mitochondrial bioenergetics and redox state alterations along the progression of renal damage induced by FA. Mitochondrial function was studied at different time points and showed a sustained impairment in oxidative phosphorylation capacity and a decrease in β-oxidation, decoupling, mitochondrial membrane potential depolarization and a pro-oxidative state, attributed to the reduction in activity of complexes I and III and mitochondrial cristae effacement, thus favoring the transition from AKI to CKD. Furthermore, the mitochondrial protection by NAC administration before AKI prevented not only the long-term deterioration of mitochondrial function at the chronic stage, but also CKD development. Taken together, our results support the idea that the prevention of mitochondrial dysfunction during an AKI event can be a useful strategy to prevent the transition to CKD.
Collapse
Affiliation(s)
- Omar Emiliano Aparicio-Trejo
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Sabino Hazael Avila-Rojas
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Edilia Tapia
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - Pedro Rojas-Morales
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Juan Carlos León-Contreras
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ''Salvador Zubirán'', 14000, Mexico, Mexico City, Mexico
| | - Elena Martínez-Klimova
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico
| | - Rogelio Hernández-Pando
- Experimental Pathology Section, National Institute of Medical Sciences and Nutrition ''Salvador Zubirán'', 14000, Mexico, Mexico City, Mexico
| | - Laura Gabriela Sánchez-Lozada
- Department of Cardio-Renal Physiopathology, National Institute of Cardiology "Ignacio Chávez", Mexico City, 14080, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico (UNAM), Mexico City, 04510, Mexico.
| |
Collapse
|
74
|
Zhang K, Li R, Xu G, Han H, Qin L. Effect of GM6001 on the expression of syndecan-1 in rats with acute kidney injury and its protective effect on the kidneys. Exp Ther Med 2020; 20:2049-2054. [PMID: 32782516 PMCID: PMC7401296 DOI: 10.3892/etm.2020.8892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 11/15/2022] Open
Abstract
Expression of syndecan-1 (SDC-1) in rats with acute kidney injury and the protective effect of GM6001 on the kidney were investigated. Fifty SD rats were selected and randomly divided into control group (CG) (n=15), treatment control group (TCG) (n=10), module group (MG) (n=15) and treatment group (TG) (n=10). In TG, the model of acute renal injury (AKI) in rats was established after pretreatment of intraperitoneal injection of GM6001 one day before modeling. In MG, the same amount of saline was injected intraperitoneally one day before modeling and the same treatment was done on the day of modeling. In CG, the same amount of saline was injected intraperitoneally one day before modeling but the model was not made. In TCG, rats were pretreated with intraperitoneal injection of GM6001 one day before modeling but the model was not made. The contents of blood urea nitrogen (BUN) in serum, serum creatinine (SCR), uric acid (UA) and blood β2-microglobulin (β2-MG) were detected by ELISA. The content of SDC-1 in renal tissues was detected by qRT-PCR and western blotting. Expression of SDC-1 in renal tissue of 24 rats after modeling was lower than that of MG (P<0.050). SDC-1 expression was the highest in TG (P<0.05). Compared with before modeling, the contents of BUN, SCR, UA and β2-MG in MG and TG increased (P<0.05). After modeling, the contents of serum BUN, SCR, UA and β2-MG in TG were significantly lower than those in MG (P<0.05). The levels of SDC-1 in renal tissue of rats with acute kidney injury increased. After GM6001 treatment, SDC-1 levels can be improved and has a certain protective effect on the kidneys.
Collapse
Affiliation(s)
- Kunying Zhang
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Rongxin Li
- Department of Pharmacy, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Guodong Xu
- Department of Pathology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| | - Huirong Han
- Department of Anesthesiology, Weifang Medical University, Weifang, Shandong 261042, P.R. China
| | - Lili Qin
- Department of Nephrology, Weifang People's Hospital, Weifang, Shandong 261000, P.R. China
| |
Collapse
|
75
|
Shang Y, Madduma Hewage S, Wijerathne CUB, Siow YL, Isaak CK, O K. Kidney Ischemia-Reperfusion Elicits Acute Liver Injury and Inflammatory Response. Front Med (Lausanne) 2020; 7:201. [PMID: 32582723 PMCID: PMC7280447 DOI: 10.3389/fmed.2020.00201] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 04/24/2020] [Indexed: 12/20/2022] Open
Abstract
Ischemia-reperfusion (IR) is a common risk factor that causes acute kidney injury (AKI). AKI is associated with dysfunction of other organs also known as distant organ injury. The liver function is often compromised in patients with AKI and in animal models. However, the underlying mechanisms are not fully understood. Inflammatory response plays an important role in IR-induced tissue injury. Although increased proinflammatory cytokines have been detected in the kidney and the distant organs after renal IR, their original sources remain uncertain. In the present study, we investigated the acute effect of renal IR on hepatic inflammatory cytokine expression and the mechanism involved. Sprague-Dawley rats that were subjected to renal IR (ischemia for 45 min followed by reperfusion for 1 h or 6 h) had increased plasma levels of creatinine, urea, and transaminases, indicating kidney and liver injuries. There was a significant increase in the expression of proinflammatory cytokine mRNA (MCP-1, TNF-α, IL-6) in the kidney and liver in rats with renal IR. This was accompanied by a significant increase in proinflammatory cytokine protein levels in the plasma, kidney, and liver. Activation of a nuclear transcription factor kappa B (NF-κB) was detected in the liver after renal IR. The inflammatory foci and an increased myeloperoxidase (MPO) activity were detected in the liver after renal IR, indicating hepatic inflammatory response and leukocyte infiltration. These results suggest that renal IR can directly activate NF-κB and induce acute production of proinflammatory cytokines in the liver. Renal IR-induced hepatic inflammatory response may contribute to impaired liver function and systemic inflammation.
Collapse
Affiliation(s)
- Yue Shang
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Susara Madduma Hewage
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Charith U B Wijerathne
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada
| | - Yaw L Siow
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri Food Canada, St. Boniface Hospital Research Centre, Winnipeg, MB, Canada
| | - Cara K Isaak
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| | - Karmin O
- St. Boniface Hospital Research Centre, Winnipeg, MB, Canada.,Department of Animal Science, University of Manitoba, Winnipeg, MB, Canada.,Department of Physiology and Pathophysiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
76
|
Risk of incident bleeding after acute kidney injury: A retrospective cohort study. J Crit Care 2020; 59:23-31. [PMID: 32485439 DOI: 10.1016/j.jcrc.2020.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/07/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE End-stage kidney disease (ESKD) causes bleeding diathesis; however, whether these findings are extrapolable to acute kidney injury (AKI) remains uncertain. We assessed whether AKI is associated with an increased risk of bleeding. METHODS Single-center retrospective cohort study, excluding readmissions, admissions <24 h, ESKD or kidney transplants. The primary outcome was the development of incident bleeding analyzed by multivariate time-dependent Cox models. RESULTS In 1001 patients, bleeding occurred in 48% of AKI and 57% of non-AKI patients (p = .007). To identify predictors of incident bleeding, we excluded patients who bled before ICU (n = 488). In bleeding-free patients (n = 513), we observed a trend toward higher risks of bleeding in AKI (22% vs. 16%, p = .06), and a higher risk of bleeding in AKI-requiring dialysis (38% vs. 17%, p = .01). Cirrhosis, AKI-requiring dialysis, anticoagulation, and coronary artery disease were associated with bleeding (HR 3.67, 95%CI:1.33-10.25; HR 2.82, 95%CI:1.26-6.32; HR 2.34, 95%CI:1.45-3.80; and HR 1.84, 95%CI:1.06-3.20, respectively), while SOFA score and sepsis had a protective association (HR 0.92 95%CI:0.84-0.99 and HR 0.55, 95%CI:0.34-0.91, respectively). Incident bleeding was not associated with mortality. CONCLUSIONS AKI-requiring dialysis was associated with incident bleeding, independent of anticoagulant administration. Studies are needed to better understand how AKI affects coagulation and clinical outcomes.
Collapse
|
77
|
Dexmedetomidine Preconditioning Protects Rats from Renal Ischemia-Reperfusion Injury Accompanied with Biphasic Changes of Nuclear Factor-Kappa B Signaling. J Immunol Res 2020; 2020:3230490. [PMID: 32377532 PMCID: PMC7183529 DOI: 10.1155/2020/3230490] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022] Open
Abstract
Acute kidney injury (AKI) is one of the most common and troublesome perioperative complications. Dexmedetomidine (DEX) is a potent α2-adrenoceptor (α2-AR) agonist with anti-inflammatory and renoprotective effects. In this study, a rat renal ischemia–reperfusion injury (IRI) model was induced. At 24 h after reperfusion, the IRI-induced damage and the renoprotection of DEX preconditioning were confirmed both biochemically and histologically. Changes in nuclear factor-kappa B (NF-κB), as well as its downstream anti-inflammatory factor A20 and proinflammatory factor tumor necrosis factor-α (TNF-α), were detected. Atipamezole, a nonselective antagonist, was then added 5 min before the administration of DEX to further analyze DEX's effects on NF-κB, and another anti-inflammatory medicine, methylprednisolone, was used in comparison with DEX, to further analyze DEX's effects on NF-κB. Different concentrations of DEX (0 nM, 0.1 nM, 1 nM, 10 nM, 100 nM, 1 μM, and 10 μM) were applied to preincubated human renal tubular epithelial cell line (HK-2) cells in vitro. After anoxia and reoxygenation, the MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) tetrazolium assay and enzyme-linked immunosorbent assay (ELISA) were performed to evaluate the levels of NF-κB downstream anti-inflammatory cytokines. The results showed that, unlike methylprednisolone, DEX preconditioning led to a time-dependent biphasic change (first activation then inhibition) of NF-κB in the rat renal IRI models that were given 25 μg/kg i.p. It was accompanied by a similarly biphasic change of TNF-α and an early and persistent upregulation of A20. In vitro, DEX's cellular protection showed a concentration-dependent biphasic change which was protective within the range of 0 to 100 nM but became opposite when concentrations are greater than 1 μM. The changes in the A20 and NF-κB messenger RNA (mRNA) levels were consistent with the renoprotective ability of DEX. In other words, DEX preconditioning protected the rats from renal IRI via regulation biphasic change of NF-κB signaling.
Collapse
|
78
|
Haas L, Eckart A, Haubitz S, Mueller B, Schuetz P, Segerer S. Estimated glomerular filtration rate predicts 30-day mortality in medical emergency departments: Results of a prospective multi-national observational study. PLoS One 2020; 15:e0230998. [PMID: 32251482 PMCID: PMC7135226 DOI: 10.1371/journal.pone.0230998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 03/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Renal failure is common in patients seeking help in medical emergency departments. Decreased renal function is associated with increased mortality in patients with heart failure or sepsis. In this study, the association between renal function (reflected by estimated glomerular filtration rate (eGFR) at the time of admission) and clinical outcome was evaluated. METHODS/OBJECTIVES Data was used from a prospective, multi-national, observational cohort of patients treated in three medical emergency departments of tertiary care centers. The eGFR was calculated from the creatinine at the time of admission (using the Chronic Kidney Disease-Epidemiology Collaboration equation,CKD-EPI). Uni- and multivariate regression models were used for eGFR and 30-day mortality, in hospital mortality, length of stay and intensive care unit admission rate. RESULTS 6983 patients were included. The 30-day mortality was 1.8%, 3.5%, 6.9%, 11.1%, 13.6%, and 14.2% in patients with eGFR of above 90, 60-89, 45-59, 30-44, 15-29, and <15 ml/min/1.73m2, respectively. Using multivariate regression, the adjusted odds ratio (OR) was 2.31 (for 15-29 ml/min/1.73m2, 95% confidence interval 1.36 to 3.90, p = 0.002) and 3.73 (for eGFR <15ml/min/1.73m2 as compared to >90 ml/min/1.73m2, 95% CI 2.04 to 6.84, p<0.001). For 10 ml/min/1.73m2 decrease in eGFR the OR for the 30-day mortality was 1.15 (95% CI1.09 to 1.22, p<0.001).The eGFR was also significantly associated with in-hospital mortality, the percentage of ICU-admissions, and with a longer hospital stay. No association was found with hospital readmission within 30 days. As limitations, only eGFR at admission was available and the number of patients on hemodialysis was unknown. CONCLUSION Reduced eGFR at the time of admission is a strong and independent predictor for adverse outcome in this large population of patients admitted to medical emergency departments.
Collapse
Affiliation(s)
- Laurent Haas
- Division of Nephrology, Dialysis and Transplantation, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
- * E-mail:
| | - Andreas Eckart
- Division of Nephrology, Dialysis and Transplantation, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Sebastian Haubitz
- Division of General Internal and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Beat Mueller
- Division of General Internal and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Philipp Schuetz
- Division of General Internal and Emergency Medicine, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| | - Stephan Segerer
- Division of Nephrology, Dialysis and Transplantation, University Department of Medicine, Kantonsspital Aarau, Aarau, Switzerland
| |
Collapse
|
79
|
Hirayama A, Goto T, Hasegawa K. Association of acute kidney injury with readmissions after hospitalization for acute exacerbation of chronic obstructive pulmonary disease: a population-based study. BMC Nephrol 2020; 21:116. [PMID: 32245429 PMCID: PMC7119005 DOI: 10.1186/s12882-020-01780-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Background Little is known about the relationship between acute kidney injury (AKI) and outcomes after acute exacerbation of chronic obstructive pulmonary disease (AECOPD). We aimed to investigate associations between AKI and readmission risks after hospitalization for AECOPD. Methods A retrospective, population-based cohort study using State Inpatient Databases from seven U.S. states (Arkansas, California, Florida, Iowa, Nebraska, New York, and Utah) from 2010 through 2013. We identified all adults (aged ≥40 years) hospitalized for AECOPD during the study period. Among them, we further identified patients with a concurrent diagnosis of new AKI. The outcome measures were any-cause readmissions within 30 days and 90 days after hospitalization for AECOPD. To determine associations between AKI and readmission risk, we constructed Cox proportional hazards models examining the time-to-readmission. We also identified the primary reason of readmission. Results We identified 356,990 patients hospitalized for AECOPD. The median age was 71 years and 41.9% were male. Of these, 24,833 (7.0%) had a concurrent diagnosis of AKI. Overall, patients with AKI had significantly higher risk of 30-day all-cause readmission compared to those without AKI (hazard ratio 1.47; 95% CI 1.43–1.51; P < 0.001). Likewise, patients with AKI had significantly higher risk of 90-day all-cause readmission (hazard ratio 1.35; 95% CI 1.32–1.38; P < 0.001). These associations remained significant after adjustment for confounders (both P < 0.05). Additionally, patients with AKI were likely to be readmitted for non-respiratory reasons including sepsis, acute renal failure, and congestive heart failure. Conclusions Among patients hospitalized for AECOPD, patients with AKI were at higher risk of 30-day and 90-day readmission, particularly with non-respiratory reasons.
Collapse
Affiliation(s)
- Atsushi Hirayama
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, 125 Nashua Street, Suite 920, Boston, MA, USA. .,Public Health, Department of Social Medicine, Osaka University Graduate School of Medicine, 2-2, Yamadaoka, Suita, Osaka, Japan.
| | - Tadahiro Goto
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, 125 Nashua Street, Suite 920, Boston, MA, USA.,Department of Clinical Epidemiology and Health Economics, School of Public Health, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Kohei Hasegawa
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, 125 Nashua Street, Suite 920, Boston, MA, USA
| |
Collapse
|
80
|
Wu WF, Wang JN, Li Z, Wei B, Jin J, Gao L, Li HD, Li J, Chen HY, Meng XM. 7-Hydroxycoumarin protects against cisplatin-induced acute kidney injury by inhibiting necroptosis and promoting Sox9-mediated tubular epithelial cell proliferation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 69:153202. [PMID: 32169782 DOI: 10.1016/j.phymed.2020.153202] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 01/01/2020] [Accepted: 02/29/2020] [Indexed: 06/10/2023]
Abstract
BACKGROUND 7-Hydroxycoumarin (7-HC), also known as umbelliferon, is commonly found in Chinese herbs (e.g. Eucommiae Cortex, Prunellae Spica, Radix Angelicae Biseratae). Previous laboratory studies have indicated that 7-HC has anti-inflammatory, anti-oxidative, and anti-tumor effects. Cisplatin is a widely used chemotherapeutic agent for cancer. Nephrotoxicity is one of the limiting side effects of cisplatin use. PURPOSE This study aimed to evaluate the renoprotective effect of 7-HC in a cisplatin-induced acute kidney injury (AKI) mouse model. METHODS AKI was induced in male C57BL/6 mice (aged 6-8 weeks) by a single intraperitoneal injection of cisplatin at 20 mg/kg. The mice received 7-HC at 30, 60, and 90 mg/kg intraperitoneally before or after cisplatin administration. Renal function, necroptosis, and cell proliferation were measured. Mechanisms underlying the reno-protective effect of 7-HC were explored in renal tubular epithelial cells treated with or without cisplatin. RESULTS In-vivo experiments showed that 7-HC significantly improved the loss in kidney function induced by cisplatin, as indicated by lower levels of serum creatinine and blood urea nitrogen, in AKI mice. Consistent herewith, cisplatin-induced tubular damage was alleviated by 7-HC as shown by morphological (periodic acid-Schiff staining) and kidney injury marker (KIM-1) analyses. We found that 7-HC suppressed renal necroptosis via the RIPK1/RIPK3/MLKL pathway and accelerated renal repair as evidenced by the upregulation of cyclin D1 in cisplatin-induced nephropathy. In-vitro experiments showed that knockdown of Sox9 attenuated the suppressive effect of 7-HC on KIM-1 and reversed the stimulatory effect of 7-HC on cyclin D1 expression in cisplatin-treated HK-2 cells, indicating that 7-HC may protect against AKI via a Sox9-dependent mechanism. CONCLUSION 7-HC inhibits cisplatin-induced AKI by suppressing RIPK1/RIPK3/MLKL-mediated necroptosis and promoting Sox9-mediated tubular epithelial cell proliferation. 7-HC may serve as a preventive and therapeutic agent for AKI.
Collapse
Affiliation(s)
- Wei-Feng Wu
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China; School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong and Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Jia-Nan Wang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zeng Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Biao Wei
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Juan Jin
- Department of Pharmacology, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Li Gao
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Hai-Yong Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong and Department of Chinese Medicine, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
81
|
Wei B, Tian T, Liu YG. IL-10 Combined with NGAL Has Diagnostic Value for AECOPD Combined with AKI. Int J Chron Obstruct Pulmon Dis 2020; 15:637-644. [PMID: 32273692 PMCID: PMC7105373 DOI: 10.2147/copd.s245541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/15/2020] [Indexed: 01/05/2023] Open
Abstract
Background In patients with acute exacerbation of chronic obstructive pulmonary disease (AECOPD) complicated by acute kidney injury (AKI) has an acute onset and seriously affects the prognosis of patients. The inflammatory factors are still in doubt in the diagnosis of AECOPD with AKI. Material and Methods This study is a retrospective study. By collecting the plasma concentrations of inflammatory factors IFN-γ, IL-2, IL-4, IL-10, IL-17, and NGAL in patients with AECOPD group, AECOPD plus AKI group, and control group. The expression level of each factor among the three different groups was analyzed, and the correlation of each factor was analyzed. The diagnostic value of each factor in patients with AECOPD combined with AKI was tested. Results A total of 245 cases of AECOPD, 69 cases of AECOPD with AKI, and 50 healthy control group were included in this study. IFN-γ and IL-4 were differentially expressed among the three groups (P <0.001). However, there was no difference between the AECOPD group and the AECOPD + AKI group (P = 0.153, and 0.070, respectively). The expression of IL-2, IL-10, IL-17, and NGAL in the three groups were different, and there are statistical differences in pairwise comparisons. (all P values are <0.001). The univariate analysis showed that NGAL and IL-10 with the best correlation (r = 0.696). The ROC curve shows that IL-10 and NGAL have better diagnostic value for AECOPD with AKI. Conclusion The inflammatory factor IL-10 combined with NGAL has a better diagnostic value for AECOPD with AKI.
Collapse
Affiliation(s)
- Bing Wei
- Department of Emergency Medicine, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing100043, People’s Republic of China
| | - Tian Tian
- Department of Emergency Medicine, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing100043, People’s Republic of China
| | - Yu-Geng Liu
- Department of Emergency Medicine, Beijing Chaoyang Hospital Jingxi Branch, Capital Medical University, Beijing100043, People’s Republic of China
| |
Collapse
|
82
|
Laszczyńska O, Severo M, Mascarenhas J, Paiva JA, Azevedo A. Serum creatinine trajectories in real-world hospitalized patients: clinical context and short-term mortality. J Investig Med 2020; 68:870-881. [DOI: 10.1136/jim-2019-001185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/07/2020] [Indexed: 12/27/2022]
Abstract
Fluctuations in serum creatinine (SCr) during hospitalization may provide additional prognostic value beyond baseline renal function. This study aimed to identify groups of patients with distinct creatinine trajectories over hospital stay and assess them in terms of clinical characteristics and short-term mortality. This retrospective study included 35 853 unique adult admissions to a tertiary referral center between January 2012 and January 2016 with at least three SCr measurements within the first 9 days of stay. Individual SCr courses were determined using linear regression or linear-splines model and grouped into clusters. SCr trajectories were described as median SCr courses within clusters. Almost half of the patients presented with changing, mainly declining SCr concentration during hospitalization. In comparison to patients with an increase in SCr, those with a significant decline were younger, more often admitted via the emergency department, more often required a higher level of care, had fewer comorbidities and the more pronounced the fall in SCr, the greater the observed difference. Regardless of baseline renal function, an increase in SCr was related to the highest in-hospital mortality risk among compared clusters. Also, patients with normal renal function at admission followed by decreasing SCr were at higher risk of inpatient death, but lower 90-day postdischarge mortality than patients with a stable SCr. Acute changes in inpatient SCr convey important prognostic information and can only be interpreted by looking at their evolution over time. Recognizing underlying causes and providing adequate care is crucial for improving adverse prognosis.
Collapse
|
83
|
Propofol post-conditioning lessens renal ischemia/reperfusion-induced acute lung injury associated with autophagy and apoptosis through MAPK signals in rats. Gene 2020; 741:144562. [PMID: 32169629 DOI: 10.1016/j.gene.2020.144562] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/08/2020] [Indexed: 12/14/2022]
Abstract
Renal Ischemia/Reperfusion (rI/R)-induced acute lung injury (ALI) is a major problem in rI/R. The objective of the current study was to explore the defensive roles of propofol (Pro), an intravenous anesthetic, on rI/R-induced ALI through mitogen-activated protein kinase (MAPK) signaling. Rats were divided into Sham, Pro (10 mg/kg), rI/R, rI/R + Pro (5 mg/kg), and rI/R + Pro (10 mg/kg) groups. Rats were treated with Pro at 1 h after rI/R treatment. Serum and lung tissues at 24 h after rI/R were collected to evaluate morphological changes and the expression of myeloperoxidase (MPO), inflammatory cytokines, and crucial proteins in the MAPK pathway. Pro attenuated the production of mediators, resulting in reduced levels of autophagy and apoptosis by restricting the MAPK pathway in rI/R-induced ALI model. Pro represses rI/R-induced pulmonary autophagy and apoptosis by decreasing the production of inflammatory molecules, and the effects of Pro are involved in the inhibition of the MAPK pathway.
Collapse
|
84
|
The Neutrophil Percentage-to-Albumin Ratio Is Associated with All-Cause Mortality in Critically Ill Patients with Acute Kidney Injury. BIOMED RESEARCH INTERNATIONAL 2020; 2020:5687672. [PMID: 32219136 PMCID: PMC7049452 DOI: 10.1155/2020/5687672] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 02/08/2023]
Abstract
Background There is no evidence to suggest the predictive power of neutrophil percentage-to-albumin ratio (NPAR) in patients with acute kidney injury (AKI). We hypothesized that NPAR would correlate with all-cause mortality in critically ill patients with AKI. Methods From the MIMIC-III V1.4 database, we extracted demographics, vital signs, comorbidities, laboratory tests, and other clinical data. The clinical endpoints were 30-, 90- and 365-day all-cause mortality in critically ill patients with AKI. Cox proportional hazards models were used to evaluate the prognostic values of NPAR, and subgroup analyses were performed to measure mortality across various subgroups. Results A total of 7,481 eligible subjects were enrolled. In multivariate analysis, after adjustments for age, ethnicity, gender, and other confounding factors, higher NPARs were associated with an increased risk of 30-, 90- and 365-day all-cause mortality in critically ill patients with AKI (tertile 3 versus tertile 1: adjusted HR, 95% CI: 1.48, 1.30–1.69; 1.47, 1.31–1.66; 1.46, 1.32–1.62, respectively; P trend <0.01). A similar trend was observed in the NPAR group division by quintiles. Subgroup analysis revealed no significant interactions in most strata. Conclusions Increased NPAR correlates with increased risk of all-cause mortality in critically ill patients with AKI.
Collapse
|
85
|
Pan H, Li J, Zhou Q, Zhu F, He S. Protective Effects of PGC-1α on the Blood Brain Barrier After Acute Kidney Injury. Neurochem Res 2020; 45:1086-1096. [PMID: 32060774 DOI: 10.1007/s11064-020-02985-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/01/2020] [Accepted: 02/08/2020] [Indexed: 12/31/2022]
Abstract
Blood brain barrier (BBB) disruption plays an important role in brain injury after acute kidney injury (AKI). However, its underlying mechanisms remain poorly understood. Recent evidence has revealed that proper mitochondrial function is essential for BBB permeability. Peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) is a key factor in mitochondrial biogenesis and function. This study was designed to investigate the role of PGC-1α in BBB injury after AKI and its related mechanisms. Mice received recombinant adenovirus encoding murine PGC-1α (100 μl, 1.0 × 109PFU/ml) or vehicle 5 days before renal I/R or sham operation. Twenty-four hours after the operation, brain, kidney and serum samples were collected for assessments. We found that mice suffering from renal I/R injury showed decreased PGC-1α levels in both the kidney and BBB. PGC-1α transfection resulted in increased PGC-1α level and mitochondrial transcripts in BBB at 24 h after AKI. PGC-1α transfection improved renal function, systemic inflammation and BBB permeability via both the paracellular and transcellular pathways. Further study suggested that PGC-1α overexpression elevated fatty acid oxidation related gene expression. Our findings demonstrate the importance of PGC-1α in AKI-induced BBB injury and suggest that it could be a therapeutic target for BBB repair via the regulation of mitochondrial function.
Collapse
Affiliation(s)
- Hao Pan
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, People's Republic of China.
| | - Junhua Li
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, People's Republic of China
| | - Qiaodan Zhou
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, People's Republic of China
| | - Fengming Zhu
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, People's Republic of China
| | - Siyuan He
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jiefang Road, Wuhan, 430030, People's Republic of China
| |
Collapse
|
86
|
Chaudery H, MacDonald N, Ahmad T, Chandra S, Tantri A, Sivasakthi V, Mansor M, Matos R, Pearse RM, Prowle JR. Acute Kidney Injury and Risk of Death After Elective Surgery: Prospective Analysis of Data From an International Cohort Study. Anesth Analg 2020; 128:1022-1029. [PMID: 30418232 DOI: 10.1213/ane.0000000000003923] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND Postoperative acute kidney injury (AKI) is associated with a high mortality rate. However, the relationship among AKI, its associations, and mortality is not well understood. METHODS Planned analysis of data was collected during an international 7-day cohort study of adults undergoing elective in-patient surgery. AKI was defined using Kidney Disease Improving Global Outcomes criteria. Patients missing preoperative creatinine data were excluded. We used multivariable logistic regression to examine the relationships among preoperative creatinine-based estimated glomerular filtration rate (eGFR), postoperative AKI, and hospital mortality, accounting for the effects of age, major comorbid diseases, and nature and severity of surgical intervention on outcomes. We similarly modeled preoperative associations of AKI. Data are presented as n (%) or odds ratios (ORs) with 95% confidence intervals. RESULTS A total of 36,357 patients were included, 743 (2.0%) of whom developed AKI with 73 (9.8%) deaths in hospital. AKI affected 73 of 196 (37.2%) of all patients who died. Mortality was strongly associated with the severity of AKI (stage 1: OR, 2.57 [1.3-5.0]; stage 2: OR, 8.6 [5.0-15.1]; stage 3: OR, 30.1 [18.5-49.0]). Low preoperative eGFR was strongly associated with AKI. However, in our model, lower eGFR was not associated with increasing mortality in patients who did not develop AKI. Conversely, in older patients, high preoperative eGFR (>90 mL·minute·1.73 m) was associated with an increasing risk of death, potentially reflecting poor muscle mass. CONCLUSIONS The occurrence and severity of AKI are strongly associated with risk of death after surgery. However, the relationship between preoperative renal function as assessed by serum creatinine-based eGFR and risk of death dependent on patient age and whether AKI develops postoperatively.
Collapse
Affiliation(s)
- Hannan Chaudery
- From the William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Neil MacDonald
- Department of Anaesthesia, Royal London Hospital, Barts Health NHS Trust, London, United Kingdom
| | - Tahania Ahmad
- From the William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - Susilo Chandra
- Universitas Indonesia, Ciptomangunkusumo Hospital, Jakarta, Indonesia
| | - Aida Tantri
- Universitas Indonesia, Ciptomangunkusumo Hospital, Jakarta, Indonesia
| | | | - Marzida Mansor
- Department of Anaesthesiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Ricardo Matos
- Unidade de Cuidados Intensivos Polivalente Neurocríticos, Hospital de S. José, Centro Hospitalar de Lisboa Central, E.P.E, Lisboa, Portugal
| | - Rupert M Pearse
- From the William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | - John R Prowle
- From the William Harvey Research Institute, Barts and The London School of Medicine & Dentistry, Queen Mary University of London, London, United Kingdom
| | | |
Collapse
|
87
|
Pretreatment with Roxadustat (FG-4592) Attenuates Folic Acid-Induced Kidney Injury through Antiferroptosis via Akt/GSK-3 β/Nrf2 Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6286984. [PMID: 32051732 PMCID: PMC6995323 DOI: 10.1155/2020/6286984] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/29/2019] [Accepted: 12/12/2019] [Indexed: 12/13/2022]
Abstract
Folic acid- (FA-) induced kidney injury is characterized by the tubule damage due to the disturbance of the antioxidant system and subsequent interstitial fibrosis. FG-4592 is an inhibitor of prolyl hydroxylase of hypoxia-inducible factor (HIF), an antioxidant factor. The present study investigated the protective role of FG-4592 pretreatment at the early stage of the kidney injury and long-term impact on the progression of renal fibrosis. FG-4592 was administrated two days before FA injection in mice. On the second day after FA injection, the mice with FG-4592 pretreatment showed an improved renal function, compared with those without FG-4592 pretreatment, indicated by biochemical and histological parameters; meanwhile, the cellular content of iron, malondialdehyde, and 4-hydroxynonenal histologically decreased, implying the suppression of iron accumulation and lipid peroxidation. Simultaneously, upregulation of HIF-1α was found, along with Nrf2 activation, which was reflected by increased nuclear translocation and high-expression of downstream proteins, including heme-oxygenase1, glutathione peroxidase4, and cystine/glutamate transporter, as well as ferroportin. Correspondingly, the elevated levels of antioxidative enzymes and glutathione, as well as reduced iron accumulation, were observed, suggesting a lower risk of occurrence of ferroptosis with FG-4592 pretreatment. This was confirmed by reversed pathological parameters and improved renal function in FA-treated mice with the administration of ferrostatin-1, a specific ferroptosis inhibitor. Furthermore, a signal pathway study indicated that Nrf2 activation was associated with increased phosphorylation of Akt and GSK-3β, verified by the use of an inhibitor of the PI3K that phosphorylates Akt. Moreover, FG-4592 pretreatment also decreased macrophage infiltration and expression of inflammatory factors TNF-α and IL-1β. On the 14th day after FA injection, FG-4592 pretreatment decreased collagen deposition and expression of fibrosis biomarkers. These findings suggest that the protective role of FG-4592 pretreatment is achieved mainly by decreasing ferroptosis at the early stage of FA-induced kidney injury via Akt/GSK-3β-mediated Nrf2 activation, which retards the fibrosis progression.
Collapse
|
88
|
Neutrophil, lymphocyte and platelet ratio as a predictor of mortality in septic-acute kidney injury patients. Nefrologia 2020; 40:461-468. [PMID: 31948827 DOI: 10.1016/j.nefro.2019.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 10/18/2019] [Accepted: 11/10/2019] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND AKI is frequent in critically ill patients, in whom the leading cause of AKI is sepsis. The role of intrarenal and systemic inflammation appears to be significant in the pathophysiology of septic-AKI. The neutrophils to lymphocytes and platelets (N/LP) ratio is an indirect marker of inflammation. The aim of this study was to evaluate the prognostic ability of N/LP ratio at admission in septic-AKI patients admitted to an intensive care unit (ICU). METHODS This is a retrospective analysis of 399 septic-AKI patients admitted to the Division of Intensive Medicine of the Centro Hospitalar Universitário Lisboa Norte between January 2008 and December 2014. The Kidney Disease Improving Global Outcomes (KDIGO) classification was used to define AKI. N/LP ratio was calculated as: (Neutrophil count×100)/(Lymphocyte count×Platelet count). RESULTS Fifty-two percent of patients were KDIGO stage 3, 25.8% KDIGO stage 2 and 22.3% KDIGO stage 1. A higher N/LP ratio was an independent predictor of increased risk of in-hospital mortality in septic-AKI patients regardless of KDIGO stage (31.59±126.8 vs 13.66±22.64, p=0.028; unadjusted OR 1.01 (95% CI 1.00-1.02), p=0.027; adjusted OR 1.01 (95% CI 1.00-1.02), p=0.015). The AUC for mortality prediction in septic-AKI was of 0.565 (95% CI (0.515-0.615), p=0.034). CONCLUSIONS The N/LP ratio at ICU admission was independently associated with in-hospital mortality in septic-AKI patients.
Collapse
|
89
|
Xu EH, Claveau M, Yoon EW, Barrington KJ, Mohammad K, Shah PS, Wintermark P. Neonates with hypoxic-ischemic encephalopathy treated with hypothermia: Observations in a large Canadian population and determinants of death and/or brain injury. J Neonatal Perinatal Med 2020; 13:449-458. [PMID: 32310192 DOI: 10.3233/npm-190368] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BACKGROUND Birth asphyxia in term neonates remains a serious condition that causes significant mortality and long-term neurodevelopmental sequelae despite hypothermia treatment. The objective of this study was to review therapeutic hypothermia practices in a large population of neonates with hypoxic-ischemic encephalopathy (HIE) across Canada and to identify determinants of adverse outcome. METHODS Our retrospective observational cohort study examined neonates≥36 weeks, admitted to the Canadian Neonatal Network NICUs between 2010 and 2014, diagnosed with HIE, and treated with hypothermia. Adverse outcome was defined as death and/or brain injury. Maternal, birth, and postnatal characteristics were compared between neonates with adverse outcome and those without. The association between the variables which were significantly different (p < 0.05) between the two groups and adverse outcome were further tested, while adjusting for gestational age, birth weight, gender, and initial severity of encephalopathy. RESULTS A total of 2187 neonates were admitted for HIE; 52% were treated with hypothermia and 40% developed adverse outcome. Initial severity of encephalopathy (moderate, p = 0.006; severe, p < 0.0001), hypotension treated with inotropes (p = 0.001), and renal failure (p = 0.007) were significantly associated with an increased risk of death and/or brain injury. CONCLUSIONS In asphyxiated neonates treated with hypothermia, not only their initial severity of encephalopathy on admission, but also their cardiac and renal complications during the first days after birth were significantly associated with risk of death and/or brain injury. Careful monitoring and cautious management of these complications is warranted.
Collapse
Affiliation(s)
- E H Xu
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, Québec, Canada
| | - M Claveau
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, Québec, Canada
| | - E W Yoon
- Maternal-Infant Care Research Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - K J Barrington
- Department of Pediatrics, Division of Neonate Medicine, University of Montreal, Montreal, Québec, Canada
| | - K Mohammad
- Department of Pediatrics, Division of Neonatology, University of Calgary, Calgary, Canada
| | - P S Shah
- Maternal-Infant Care Research Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
- Department of Pediatrics, University of Toronto, Toronto, Ontario, Canada
| | - P Wintermark
- Department of Pediatrics, Division of Newborn Medicine, Montreal Children's Hospital, McGill University, Montreal, Québec, Canada
| |
Collapse
|
90
|
Imtiazul IM, Asma R, Lee JH, Cho NJ, Park S, Song HY, Gil HW. Change of surfactant protein D and A after renal ischemia reperfusion injury. PLoS One 2019; 14:e0227097. [PMID: 31877195 PMCID: PMC6932791 DOI: 10.1371/journal.pone.0227097] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 12/12/2019] [Indexed: 12/15/2022] Open
Abstract
Acute kidney injury (AKI) is associated with widespread effects on distant organs, including the lungs. Surfactant protein (SP)-A and SP-D are members of the C-type lectin family, which plays a critical role in host defense and regulation of inflammation in a variety of infections. Serum levels of SP-A and SP-D are markers to reflect lung injury in acute respiratory distress syndrome, idiopathic pulmonary fibrosis, and sarcoidosis. We investigated the change of lung-specific markers, including SP-A and SP-D in an AKI mice model. We studied C57BL/6J mice 4 and 24 hours after an episode of ischemic AKI (23 min of renal pedicle clamping and then reperfusion); numerous derangements were present, including SP-A, SP-D, and lung tight-junction protein. Neutrophil infiltration and apoptosis in the lungs increased in ischemic AKI. Receptor for advanced glycation end products (RAGE) in the lungs, a marker of pneumocyte I, was not changed. Lung tight-junction proteins, particularly claudin-4, claudin-18, and anti-junctional adhesion molecule 1 (JAMA-1), were reduced in 24 hours after AKI. Serum SP-A and SP-D significantly increased in ischemic AKI. SP-A and SP-D in the lungs did not increase in ischemic AKI. The immunohistochemistry showed that the expression of SP-A and SP-D was intact in ischemic AKI. SP-A and SP-D in the kidneys were significantly higher in AKI than in the sham. These patterns of SP-A and SP-D in the kidneys were similar to those of serum. AKI induces apoptosis and inflammation in the lungs. Serum SP-A and SP-D increased in ischemic AKI, but these could have originated from the kidneys. So serum SP-A and SP-D could not reflect lung injury in AKI. Further study is needed to reveal how a change in lung tight-junction protein could influence the prognosis in patients with AKI.
Collapse
Affiliation(s)
- Islam Md Imtiazul
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Redwan Asma
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Ji-Hye Lee
- Department of Pathology, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Nam-Jun Cho
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Samel Park
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
| | - Ho-Yeon Song
- Department of Microbiology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hyo-Wook Gil
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan, Republic of Korea
- * E-mail:
| |
Collapse
|
91
|
Lu QB, Du Q, Wang HP, Tang ZH, Wang YB, Sun HJ. Salusin-β mediates tubular cell apoptosis in acute kidney injury: Involvement of the PKC/ROS signaling pathway. Redox Biol 2019; 30:101411. [PMID: 31884071 PMCID: PMC6939056 DOI: 10.1016/j.redox.2019.101411] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Salusin-β is abundantly expressed in many organs and tissues including heart, blood vessels, brain and kidneys. Recent studies have identified salusin-β as a bioactive peptide that contributes to various diseases, such as atherosclerosis, hypertension, diabetes and metabolic syndrome. However, the role of salusin-β in the pathogenesis of acute kidney injury (AKI) is largely unclear. In the present study, we investigated the roles of salusin-β in cisplatin or lipopolysaccharide (LPS)-induced renal injury. Herein, we found that salusin-β expression was upregulated in both renal tubular cells and kidney tissues induced by both cisplatin and LPS. In vitro, silencing of salusin-β diminished, whereas overexpression of salusin-β exaggerated the increased PKC phosphorylation, oxidative stress, histone γH2AX expression, p53 activation and apoptosis in either cisplatin or LPS-challenged renal tubular cells. More importantly, salusin-β overexpression-induced tubular cell apoptosis were abolished by using the PKC inhibitor Go 6976, reactive oxygen species (ROS) scavenger NAC, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase inhibitor apocynin (Apo) or p53 inhibitor Pifithrin-α. In animals, blockade of salusin-β alleviated PKC phosphorylation, ROS accumulation, DNA damage, and p53 activation as well as renal dysfunction in mice after administration of cisplatin or LPS. Taken together, these results suggest that overexpressed salusin-β is deleterious in AKI by activation of the PKC/ROS signaling pathway, thereby priming renal tubular cells for apoptosis and death.
Collapse
Affiliation(s)
- Qing-Bo Lu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, PR China
| | - Qiong Du
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hui-Ping Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Zi-Han Tang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Yuan-Ben Wang
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China
| | - Hai-Jian Sun
- Department of Basic Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, PR China; Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
92
|
Hessey E, Morissette G, Lacroix J, Perreault S, Samuel S, Dorais M, Jouvet P, Lafrance JP, LeLorier J, Phan V, Palijan A, Pizzi M, Roy L, Zappitelli M. Long-term Mortality After Acute Kidney Injury in the Pediatric ICU. Hosp Pediatr 2019; 8:260-268. [PMID: 29712717 DOI: 10.1542/hpeds.2017-0215] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
OBJECTIVES (1) To evaluate the association between acute kidney injury (AKI) in the PICU and long-term mortality and (2) to determine the extent to which adding the urine output (UO)-defined AKI alters the association. METHODS A 2-center retrospective cohort study of children (≤18 years old) admitted to the PICU between 2003 and 2005 for noncardiac surgery, with follow-up until 2010. Patients with end stage renal disease, no provincial health insurance number, who died during hospitalization, or could not be linked to administrative data were excluded. One hospitalization per patient was included. AKI was defined by using serum creatinine criteria and/or UO criteria. Mortality was ascertained by using administrative data. Cox regression analysis was performed to evaluate the association between AKI and long-term mortality. RESULTS The study population included 2041 patients (55.7% male, mean admission age 6.5 ± 5.8 years). Of 2041 hospital survivors, 9 (0.4%) died within 30 days, 51 (2.5%) died within 1 year, and 118 (5.8%) died within 5 to 7 years postdischarge. AKI was independently associated with 5- to 7-year mortality (adjusted hazard ratio [95% confidence interval]: 3.10 [1.46-6.57] and 3.38 [1.63-7.02], respectively). Including UO did not strengthen the association. CONCLUSIONS AKI is associated with 5- to 7-year mortality. Because this is an observational study we cannot determine if AKI is causative of mortality or of the pathophysiology. However, patients with AKI represent a high-risk group. It is reasonable that these patients be considered for targeted follow-up until future researchers better elucidate these relationships.
Collapse
Affiliation(s)
- Erin Hessey
- Division of Nephrology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | - Geneviève Morissette
- Pediatric Intensive Care Unit, Department of Pediatrics, Centre mère-enfant Soleil, Centre Hospitalier de l'Université Laval, Quebec, Canada
| | | | | | - Susan Samuel
- Division of Nephrology, Department of Pediatrics, Alberta Children's Hospital, Calgary, Canada
| | - Marc Dorais
- StatScience Inc, Notre-Dame-de-l'Île-Perrot, Quebec, Canada; and
| | | | - Jean-Philippe Lafrance
- Division of Nephrology, Department of Medicine, Hôpital Maisonneuve-Rosemont, Montreal, Canada.,Pharmacology and Physiology, Faculties of Medicine, and
| | | | - Véronique Phan
- Division of Nephrology, Department of Pediatrics, Centre Hospitalier Universitaire Sainte-Justine, Montreal, Canada
| | - Ana Palijan
- Division of Nephrology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | - Michael Pizzi
- Division of Nephrology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada
| | - Louise Roy
- Division of Nephrology, Departments of Medicine
| | - Michael Zappitelli
- Division of Nephrology, Department of Pediatrics, Montreal Children's Hospital, McGill University Health Centre, Montreal, Canada;
| |
Collapse
|
93
|
Ma N, Wei W, Fan X, Ci X. Farrerol Attenuates Cisplatin-Induced Nephrotoxicity by Inhibiting the Reactive Oxygen Species-Mediated Oxidation, Inflammation, and Apoptotic Signaling Pathways. Front Physiol 2019; 10:1419. [PMID: 31849693 PMCID: PMC6901966 DOI: 10.3389/fphys.2019.01419] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/04/2019] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a chemotherapy drug that is often used in clinical practice, but its frequent use often leads to nephrotoxicity. Therefore, we urgently need a drug that reduces the nephrotoxicity induced by cisplatin. Farrerol reportedly has antioxidant potential, but its renal protective effects and potential mechanisms remain unclear. In this study, we used both cell and mouse models to determine the mechanism of farrerol in cisplatin-induced nephrotoxicity. The in vitro experiments revealed that farrerol improved cisplatin-induced nephrotoxicity and reactive oxygen species (ROS) production via nuclear factor erythrocyte 2-related factor 2 (Nrf2) activation. Moreover, farrerol effectively activated Nrf2 and subsequently increased the expression of Nrf2-targeted antioxidant enzymes, including heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase-1 (NQO1), but inhibited Kelch-like ECH-associated protein 1 (Keap1) and NADPH oxidase type 4 (NOX4). Furthermore, farrerol attenuated the phosphorylation of C-Jun N-terminal kinase (JNK), extracellular signal-regulated kinase (ERK), and p38 mitogen-activated protein kinase (p38); the activation of phosphorylated nuclear factor-κB (p-NF-κB) and nucleotide-binding domain (NOD)-like receptor protein 3 (NLRP3); and the expression of phosphorylated p53 (p-p53), Bax, and cleaved caspase-3. In vivo, farrerol significantly improved cisplatin-induced renal damage, as demonstrated by the recovery of blood urea nitrogen (BUN), serum creatinine (SCr), kidney injury molecule-1 (KIM-1), neutrophil gelatinase-associated lipocalin (NGAL), and pathological damage. Moreover, farrerol inhibited inflammatory and apoptotic protein expression in vivo. Notably, farrerol exerted slight protection in Nrf2-knockout mice compared with wild-type mice. These findings indicate that farrerol can effectively activate Nrf2 and can serve as a therapeutic target in the treatment of acute kidney injury (AKI).
Collapse
Affiliation(s)
- Ning Ma
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China.,Department of Urology, The First Hospital, Jilin University, Changchun, China
| | - Wei Wei
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Xiaoye Fan
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| | - Xinxin Ci
- Institute of Translational Medicine, The First Hospital, Jilin University, Changchun, China
| |
Collapse
|
94
|
Tanaka S, Okusa MD. Crosstalk between the nervous system and the kidney. Kidney Int 2019; 97:466-476. [PMID: 32001065 DOI: 10.1016/j.kint.2019.10.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 12/20/2022]
Abstract
Under physiological states, the nervous system and the kidneys communicate with each other to maintain normal body homeostasis. However, pathological states disrupt this interaction as seen in hypertension, and kidney damage can cause impaired renorenal reflex and sodium handling. In acute kidney injury (AKI) and chronic kidney disease (CKD), damaged kidneys can have a detrimental effect on the central nervous system. CKD is an independent risk factor for cerebrovascular disease and cognitive impairment, and many factors, including retention of uremic toxins and phosphate, have been proposed as CKD-specific factors responsible for structural and functional cerebral changes in patients with CKD. However, more studies are needed to determine the precise pathogenesis. Epidemiological studies have shown that AKI is associated with a subsequent risk for developing stroke and dementia. However, recent animal studies have shown that the renal nerve contributes to kidney inflammation and fibrosis, whereas activation of the cholinergic anti-inflammatory pathway, which involves the vagus nerve, the splenic nerve, and immune cells in the spleen, has a significant renoprotective effect. Therefore, elucidating mechanisms of communication between the nervous system and the kidney enables us not only to develop new strategies to ameliorate neurological conditions associated with kidney disease but also to design safe and effective clinical interventions for kidney disease, using the neural and neuroimmune control of kidney injury and disease.
Collapse
Affiliation(s)
- Shinji Tanaka
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Mark D Okusa
- Division of Nephrology and Center for Immunity, Inflammation, and Regenerative Medicine, University of Virginia, Charlottesville, Virginia, USA.
| |
Collapse
|
95
|
Lung ultrasound to detect and monitor pulmonary congestion in patients with acute kidney injury in nephrology wards: a pilot study. J Nephrol 2019; 33:335-341. [PMID: 31686409 DOI: 10.1007/s40620-019-00666-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/29/2019] [Indexed: 12/14/2022]
Abstract
INTRODUCTION Lung congestion and frank pulmonary edema are established complications of acute kidney injury (AKI) and early detection and monitoring of lung congestion may be useful for the clinical management of AKI patients. METHODS We compared standardized clinical criteria (including lung crackles and peripheral edema grading) and simultaneous chest ultrasound (US) to detect lung congestion in a series of 39 inpatients with AKI. RESULTS At baseline, twelve patients (31%) were clinically euvolemic and twelve presented clear-cur cardiovascular congestion (31%) by clinical criteria. Fifteen patients (38%) were hypovolemic. The median number of US-B lines in patients with cardiovascular congestion was much higher (50, inter-quartile range 27-99) than in euvolemic (14, IQR 11-37) and hypovolemic patients (7, IQR 3-16, P < 0.001). Remarkably, a substantial proportion of asymptomatic euvolemic (66%) and hypovolemic (46%) patients had lung congestion of moderate to severe degree (> 15 US-B lines) by lung US. Crackles severity and the number of US-B lines over time were inter-related (Spearman's ρ = 0.38, P < 0.01) but the agreement (Cohen k statistics) between the two metrics was unsatisfactory. Forty-eight percent of patients had lung congestion of moderate to severe degree by lung US and this estimate by far exceeded that by clinical criteria (32%). CONCLUSIONS This pilot study shows that chest US has potential for the detection of lung congestion at a pre-clinical stage in AKI. The results of this pilot study form the basis for a clinical trial testing the usefulness of this technique for guiding lung congestion treatment in patients with AKI.
Collapse
|
96
|
Rund KM, Peng S, Greite R, Claaßen C, Nolte F, Oger C, Galano JM, Balas L, Durand T, Chen R, Gueler F, Schebb NH. Dietary omega-3 PUFA improved tubular function after ischemia induced acute kidney injury in mice but did not attenuate impairment of renal function. Prostaglandins Other Lipid Mediat 2019; 146:106386. [PMID: 31698142 DOI: 10.1016/j.prostaglandins.2019.106386] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/09/2019] [Accepted: 08/28/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND Acute kidney injury (AKI) is an important complication after major surgery and solid organ transplantation. Here, we present a dietary omega-3 polyunsaturated fatty acid (n3-PUFA) supplementation study to investigate whether pre-treatment can reduce ischemia induced AKI in mice. METHODS Male 12-14 week old C57BL/6 J mice received a linoleic acid rich sunflower oil based standard diet containing 10 % fat (STD) or the same diet enriched with n3-PUFA (containing 1 % EPA and 1 % DHA) (STD + n3). After 14 days of feeding bilateral 30 min renal ischemia reperfusion injury (IRI) was conducted to induce AKI and mice were sacrificed at 24 h. Serum creatinine and blood urea nitrogen (BUN) as well as liver enzyme elevation were measured. Kidney damage was analyzed by histology and immunohistochemistry. Furthermore, pro-inflammatory cytokines (IL-6, MCP-1) were determined by qPCR. FA and oxylipin pattern were quantified in blood and kidneys by GC-FID and LC-MS/MS, respectively. RESULTS n3-PUFA supplementation prior to renal IRI increased systemic and renal levels of n3-PUFA. Consistently, eicosanoids and other oxylipins derived from n3-PUFA including precursors of specialized pro-resolving mediators were elevated while n6-PUFA derived mediators such as pro-inflammatory prostaglandins were decreased. Feeding of n3-PUFA did not attenuate renal function impairment, morphological renal damage and inflammation characterized by IL-6 and MCP-1 elevation or neutrophil infiltration. However, the tubular transport marker alpha-1 microglobulin (A1M) was significantly higher expressed in proximal tubular epithelial cells of STD + n3 compared to STD fed mice. This indicates a better integrity of proximal tubular epithelial cells and thus significant protection of tubular function. In addition, heme oxygenase-1 (HO-1) which protects tubular function was also up-regulated in the treatment group receiving n3-PUFA supplemented chow. DISCUSSION We showed that n3-PUFA pre-treatment did not affect overall renal function or renal inflammation in a mouse model of moderate ischemia induced AKI, but tubular transport was improved. In conclusion, dietary n3-PUFA supplementation altered the oxylipin levels significantly but did not protect from renal function deterioration or attenuate ischemia induced renal inflammation.
Collapse
Affiliation(s)
- Katharina M Rund
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Shu Peng
- Nephrology, Hannover Medical School, Hannover, Germany; Department of Thoracic surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, China
| | - Robert Greite
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Cornelius Claaßen
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Fabian Nolte
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany
| | - Camille Oger
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Laurence Balas
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS, Université de Montpellier, ENSCM, France
| | - Rongjun Chen
- Nephrology, Hannover Medical School, Hannover, Germany
| | - Faikah Gueler
- Nephrology, Hannover Medical School, Hannover, Germany.
| | - Nils Helge Schebb
- Chair of Food Chemistry, Faculty of Mathematics and Natural Sciences, University of Wuppertal, Wuppertal, Germany.
| |
Collapse
|
97
|
N-Acetylcysteine Attenuates the Increasing Severity of Distant Organ Liver Dysfunction after Acute Kidney Injury in Rats Exposed to Bisphenol A. Antioxidants (Basel) 2019; 8:antiox8100497. [PMID: 31640182 PMCID: PMC6826922 DOI: 10.3390/antiox8100497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Distant organ liver damage after acute kidney injury (AKI) remains a serious clinical setting with high mortality. This undesirable outcome may be due to some hidden factors that can intensify the consequences of AKI. Exposure to bisphenol A (BPA), a universal chemical used in plastics industry, is currently unavoidable and can be harmful to the liver. This study explored whether BPA exposure could be a causative factor that increase severity of remote liver injury after AKI and examined the preventive benefit by N-acetylcysteine (NAC) in this complex condition. Male Wistar rats were given vehicle, BPA, or BPA + NAC for 5 weeks then underwent 45 min renal ischemia followed by 24 h reperfusion (RIR), a group of vehicle-sham-control was also included. RIR not only induced AKI but produced liver injury, triggered systemic oxidative stress as well as inflammation, which increasing severity upon exposure to BPA. Given NAC to BPA-exposed rats diminished the added-on effects of BPA on liver functional impairment, oxidative stress, inflammation, and apoptosis caused by AKI. NAC also mitigated the abnormalities in mitochondrial functions, dynamics, mitophagy, and ultrastructure of the liver by improving the mitochondrial homeostasis regulatory signaling AMPK-PGC-1α-SIRT3. The study demonstrates that NAC is an effective adjunct for preserving mitochondrial homeostasis and reducing remote effects of AKI in environments where BPA exposure is vulnerable.
Collapse
|
98
|
Chen Y, Tang W, Yu F, Xie Y, Jaramillo L, Jang HS, Li J, Padanilam BJ, Oupický D. Determinants of preferential renal accumulation of synthetic polymers in acute kidney injury. Int J Pharm 2019; 568:118555. [PMID: 31344445 PMCID: PMC6708481 DOI: 10.1016/j.ijpharm.2019.118555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/17/2019] [Accepted: 07/21/2019] [Indexed: 12/17/2022]
Abstract
Acute kidney injury (AKI) is a major kidney disease associated with high mortality and morbidity. AKI may lead to chronic kidney disease and end-stage renal disease. Currently, the management of AKI is mainly focused on supportive treatments. Previous studies showed macromolecular delivery systems as a promising method to target AKI, but little is known about how physicochemical properties affect the renal accumulation of polymers in ischemia-reperfusion AKI. In this study, a panel of fluorescently labeled polymers with a range of molecular weights and net charge was synthesized by living radical polymerization. By testing biodistribution of the polymers in unilateral ischemia-reperfusion mouse model of AKI, the results showed that negatively charged and neutral polymers had the greatest potential for selectively accumulating in I/R kidneys. The polymers passed through glomerulus and were retained in proximal tubular cells for up to 24 h after injection. The results obtained in the unilateral model were validated in a bilateral ischemic-reperfusion model. This study demonstrates for the first time that polymers with specific physicochemical characteristics exhibit promising ability to accumulate in the injured AKI kidney, providing initial insights on their use as polymeric drug delivery systems in AKI.
Collapse
Affiliation(s)
- Yi Chen
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Weimin Tang
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Fei Yu
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Ying Xie
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lee Jaramillo
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Hee-Seong Jang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jing Li
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Babu J Padanilam
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Internal Medicine, Section of Nephrology, University of Nebraska Medical Center, Omaha, NE, USA
| | - David Oupický
- Center for Drug Delivery and Nanomedicine, Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
99
|
Hamzagic N, Nikolic T, Jovicic BP, Canovic P, Jacovic S, Petrovic D. Acute Kidney Damage: Definition, Classification and Optimal Time of Hemodialysis. SERBIAN JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2019. [DOI: 10.1515/sjecr-2017-0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract
Acute damage to the kidney is a serious complication in patients in intensive care units. The causes of acute kidney damage in these patients may be prerenal, renal and postrenal. Sepsis is the most common cause of the development of acute kidney damage in intensive care units. For the definition and classification of acute kidney damage in clinical practice, the RIFLE, AKIN and KDIGO classifications are used. There is a complex link between acute kidney damage and other organs. Acute kidney damage is induced by complex pathophysiological mechanisms that cause acute damage and functional disorders of the heart (acute heart failure, acute coronary syndrome and cardiac arrhythmias), brain (whole body cramps, ischaemic stroke and coma), lung (acute damage to the lung and acute respiratory distress syndrome) and liver (hypoxic hepatitis and acute hepatic insufficiency). New biomarkers, colour Doppler ultrasound diagnosis and kidney biopsy have significant roles in the diagnosis of acute kidney damage. Prevention of the development of acute kidney damage in intensive care units includes maintaining an adequate haemodynamic status in patients and avoiding nephrotoxic drugs and agents (radiocontrast agents). The complications of acute kidney damage (hyperkalaemia, metabolic acidosis, hypervolaemia and azotaemia) are treated with medications, intravenous solutions, and therapies for renal function replacement. Absolute indications for acute haemodialysis include resistant hyperkalaemia, severe metabolic acidosis, resistant hypervolaemia and complications of high azotaemia. In the absence of an absolute indication, dialysis is indicated for patients in intensive care units at stage 3 of the AKIN/KDIGO classification and in some patients with stage 2. Intermittent haemodialysis is applied for haemodynamically stable patients with severe hyperkalaemia and hypervolaemia. In patients who are haemodynamically unstable and have liver insufficiency or brain damage, continuous modalities of treatment for renal replacement are indicated.
Collapse
Affiliation(s)
- Nedim Hamzagic
- Center of Hemodialysis , Medical Center Tutin , Tutin , Serbia
| | - Tomislav Nikolic
- Clinic of Urology, Nephrology and Dialysis , Clinical center Kragujevac , Kragujevac , Serbia
- Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Biljana Popovska Jovicic
- Clinic of Infectious Diseases , Clinical center Kragujevac , Kragujevac , Serbia
- Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Petar Canovic
- Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| | - Sasa Jacovic
- Medicines and Medical Devices Agency of Serbia , Belgrade , Serbia
| | - Dejan Petrovic
- Clinic of Urology, Nephrology and Dialysis , Clinical center Kragujevac , Kragujevac , Serbia
- Faculty of Medical Sciences , University of Kragujevac , Kragujevac , Serbia
| |
Collapse
|
100
|
Lameire N, Vanmassenhove J. Timing of Dialysis in Sepsis and Acute Respiratory Distress Syndrome. Am J Respir Crit Care Med 2019; 198:4-5. [PMID: 29394089 DOI: 10.1164/rccm.201801-0129ed] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|