51
|
Vinatier C, Domínguez E, Guicheux J, Caramés B. Role of the Inflammation-Autophagy-Senescence Integrative Network in Osteoarthritis. Front Physiol 2018; 9:706. [PMID: 29988615 PMCID: PMC6026810 DOI: 10.3389/fphys.2018.00706] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 05/22/2018] [Indexed: 12/11/2022] Open
Abstract
Osteoarthritis is the most common musculoskeletal disease causing chronic disability in adults. Studying cartilage aging, chondrocyte senescence, inflammation, and autophagy mechanisms have identified promising targets and pathways with clinical translatability potential. In this review, we highlight the most recent mechanistic and therapeutic preclinical models of aging with particular relevance in the context of articular cartilage and OA. Evidence supporting the role of metabolism, nuclear receptors and transcription factors, cell senescence, and circadian rhythms in the development of musculoskeletal system degeneration assure further translational efforts. This information might be useful not only to propose hypothesis and advanced models to study the molecular mechanisms underlying joint degeneration, but also to translate our knowledge into novel disease-modifying therapies for OA.
Collapse
Affiliation(s)
- Claire Vinatier
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France
| | - Eduardo Domínguez
- Biofarma Research Group, Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Jerome Guicheux
- INSERM, UMR 1229, Regenerative Medicine and Skeleton, University of Nantes, ONIRIS, Nantes, France.,University of Nantes, UFR Odontologie, Nantes, France.,CHU Nantes, PHU4 OTONN, Nantes, France
| | - Beatriz Caramés
- Grupo de Biología del Cartílago, Servicio de Reumatología. Instituto de Investigación Biomédica de A Coruña, Complexo Hospitalario Universitario de A Coruña, Sergas, A Coruña, Spain
| |
Collapse
|
52
|
Słuczanowska-Głąbowska S, Malinowski D, Safranow K, Domański L, Czerewaty M, Ustianowski P, Laszczyńska M, Pawlik A. Caveolin-1 rs4730751 gene polymorphism in kidney allograft recipients. J Appl Biomed 2018. [DOI: 10.1016/j.jab.2017.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
53
|
Zeng W, Tang J, Li H, Xu H, Lu H, Peng H, Lin C, Gao R, Lin S, Lin K, Liu K, Jiang Y, Weng J, Zeng L. Caveolin-1 deficiency protects pancreatic β cells against palmitate-induced dysfunction and apoptosis. Cell Signal 2018; 47:65-78. [PMID: 29596872 DOI: 10.1016/j.cellsig.2018.03.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 03/18/2018] [Accepted: 03/23/2018] [Indexed: 12/14/2022]
Abstract
Lipotoxicity leads to insulin secretion deficiency, which is among the important causes for the onset of type 2 diabetes mellitus. Thus, the restoration of β-cell mass and preservation of its endocrine function are long-sought goals in diabetes research. Previous studies have suggested that the membrane protein caveolin-1 (Cav-1) is implicated in β-cell apoptosis and insulin secretion, however, the underlying mechanisms still remains unclear. Our objective is to explore whether Cav-1 depletion protects pancreatic β cells from lipotoxicity and what are the underlying mechanisms. In this study, we found that Cav-1 silencing significantly promoted β-cell proliferation, inhibited palmitate (PA)-induced pancreatic β-cell apoptosis and enhanced insulin production and secretion. These effects were associated with enhanced activities of Akt and ERK1/2, which in turn downregulated the expression of cell cycle inhibitors (FOXO1, GSK3β, P21, P27 and P53) and upregulated the expression of Cyclin D2 and Cyclin D3. Subsequent inhibition of PI3K/Akt and ERK/MAPK pathways abolished Cav-1 depletion induced β-cell mass protection. Furthermore, under PA induced endoplasmic reticulum (ER) stress, Cav-1 silencing significantly reduced eIF2α phosphorylation and the expression of ER stress-responsive markers BiP and CHOP, which are among the known sensitizers of lipotoxicity. Our findings suggest Cav-1 as potential target molecule in T2DM treatment via the preservation of lipotoxicity-induced β-cell mass reduction and the attenuation of insulin secretion dysfunction.
Collapse
Affiliation(s)
- Wen Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Jiansong Tang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Haicheng Li
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Haixia Xu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Hongyun Lu
- Department of Endocrinology and Metabolism, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai 519000, China
| | - Hangya Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Chuwen Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Rili Gao
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Shuo Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Keyi Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Kunying Liu
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Yan Jiang
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Jianping Weng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China
| | - Longyi Zeng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Diabetology, Guangzhou 510630, China.
| |
Collapse
|
54
|
Kerepesi C, Daróczy B, Sturm Á, Vellai T, Benczúr A. Prediction and characterization of human ageing-related proteins by using machine learning. Sci Rep 2018; 8:4094. [PMID: 29511309 PMCID: PMC5840292 DOI: 10.1038/s41598-018-22240-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/19/2018] [Indexed: 01/08/2023] Open
Abstract
Ageing has a huge impact on human health and economy, but its molecular basis - regulation and mechanism - is still poorly understood. By today, more than three hundred genes (almost all of them function as protein-coding genes) have been related to human ageing. Although individual ageing-related genes or some small subsets of these genes have been intensively studied, their analysis as a whole has been highly limited. To fill this gap, for each human protein we extracted 21000 protein features from various databases, and using these data as an input to state-of-the-art machine learning methods, we classified human proteins as ageing-related or non-ageing-related. We found a simple classification model based on only 36 protein features, such as the "number of ageing-related interaction partners", "response to oxidative stress", "damaged DNA binding", "rhythmic process" and "extracellular region". Predicted values of the model quantify the relevance of a given protein in the regulation or mechanisms of the human ageing process. Furthermore, we identified new candidate proteins having strong computational evidence of their important role in ageing. Some of them, like Cytochrome b-245 light chain (CY24A) and Endoribonuclease ZC3H12A (ZC12A) have no previous ageing-associated annotations.
Collapse
Affiliation(s)
- Csaba Kerepesi
- Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary.
| | - Bálint Daróczy
- Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary
| | - Ádám Sturm
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - Tibor Vellai
- Department of Genetics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE Genetics Research Group, Eötvös Loránd University, Budapest, Hungary
| | - András Benczúr
- Institute for Computer Science and Control (MTA SZTAKI), Hungarian Academy of Sciences, Budapest, Hungary
| |
Collapse
|
55
|
Lin HK, Lin HH, Chiou YW, Wu CL, Chiu WT, Tang MJ. Caveolin-1 down-regulation is required for Wnt5a-Frizzled 2 signalling in Ha-Ras V12 -induced cell transformation. J Cell Mol Med 2018; 22:2631-2643. [PMID: 29502342 PMCID: PMC5908114 DOI: 10.1111/jcmm.13531] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 12/17/2017] [Indexed: 01/16/2023] Open
Abstract
Caveolin‐1 (Cav1) is down‐regulated during MK4 (MDCK cells harbouring inducible Ha‐RasV12 gene) transformation by Ha‐RasV12. Cav1 overexpression abrogates the Ha‐RasV12‐driven transformation of MK4 cells; however, the targeted down‐regulation of Cav1 is not sufficient to mimic this transformation. Cav1‐silenced cells, including MK4/shCav1 cells and MDCK/shCav1 cells, showed an increased cell area and discontinuous junction‐related proteins staining. Cellular and mechanical transformations were completed when MDCK/shCav1 cells were treated with medium conditioned by MK4 cells treated with IPTG (MK4+I‐CM) but not with medium conditioned by MK4 cells. Nanoparticle tracking analysis showed that Ha‐RasV12‐inducing MK4 cells increased exosome‐like microvesicles release compared with their normal counterparts. The cellular and mechanical transformation activities of MK4+I‐CM were abolished after heat treatment and exosome depletion and were copied by exosomes derived from MK4+I‐CM (MK4+I‐EXs). Wnt5a, a downstream product of Ha‐RasV12, was markedly secreted by MK4+I‐CM and MK4+I‐EXs. Suppression of Wnt5a expression and secretion using the porcupine inhibitor C59 or Wnt5a siRNA inhibited the Ha‐RasV12‐ and MK4+I‐CM‐induced transformation of MK4 cells and MDCK/shCav1 cells, respectively. Cav1 down‐regulation, either by Ha‐RasV12 or targeted shRNA, increased frizzled‐2 (Fzd2) protein levels without affecting its mRNA levels, suggesting a novel role of Cav1 in negatively regulating Fzd2 expression. Additionally, silencing Cav1 facilitated the internalization of MK4+I‐EXs in MDCK cells. These data suggest that Cav1‐dependent repression of Fzd2 and exosome uptake is potentially relevant to its antitransformation activity, which hinders the activation of Ha‐RasV12‐Wnt5a‐Stat3 pathway. Altogether, these results suggest that both decreasing Cav1 and increasing exosomal Wnt5a must be implemented during Ha‐RasV12‐driven cell transformation.
Collapse
Affiliation(s)
- Hsiu-Kuan Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Hsi-Hui Lin
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Wei Chiou
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Lung Wu
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| | - Wen-Tai Chiu
- Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Jer Tang
- Department of Physiology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
56
|
Hernandez-Segura A, Nehme J, Demaria M. Hallmarks of Cellular Senescence. Trends Cell Biol 2018; 28:436-453. [PMID: 29477613 DOI: 10.1016/j.tcb.2018.02.001] [Citation(s) in RCA: 1622] [Impact Index Per Article: 231.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 01/10/2023]
Abstract
Cellular senescence is a permanent state of cell cycle arrest that promotes tissue remodeling during development and after injury, but can also contribute to the decline of the regenerative potential and function of tissues, to inflammation, and to tumorigenesis in aged organisms. Therefore, the identification, characterization, and pharmacological elimination of senescent cells have gained attention in the field of aging research. However, the nonspecificity of current senescence markers and the existence of different senescence programs strongly limit these tasks. Here, we describe the molecular regulators of senescence phenotypes and how they are used for identifying senescent cells in vitro and in vivo. We also highlight the importance that these levels of regulations have in the development of therapeutic targets.
Collapse
Affiliation(s)
- Alejandra Hernandez-Segura
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jamil Nehme
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Marco Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
57
|
Liu J, Liu Y, Chen J, Hu C, Teng M, Jiao K, Shen Z, Zhu D, Yue J, Li Z, Li Y. The ROS-mediated activation of IL-6/STAT3 signaling pathway is involved in the 27-hydroxycholesterol-induced cellular senescence in nerve cells. Toxicol In Vitro 2017; 45:10-18. [PMID: 28739487 DOI: 10.1016/j.tiv.2017.07.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/28/2017] [Accepted: 07/18/2017] [Indexed: 12/22/2022]
Abstract
The oxysterol 27-hydroxycholesterol (27HC) is a selective estrogen receptor modulator (SERMs), which like endogenous estrogen 17β-estradiol (E2) induces the proliferation of ER-positive breast cancer cells in vitro. Interestingly, the observation that 27HC induces adverse effects in neural system, distinguishing it from E2. It has been suggested that high levels of circulating cholesterol increase the entry of 27HC into the brain, which may induce learning and memory impairment. Based on this evidence, 27HC may be associated with neurodegenerative processes and interrupted cholesterol homeostasis in the brain. However, the biological events that participate in this process remain largely elusive. In the present study, we demonstrated that 27HC induced apparent cellular senescence in nerve cells. Senescence-associated β-galactosidase (SA-β-Gal) assay revealed that 27HC induced senescence in both BV2 cells and PC12 cells. Furthermore, we demonstrated that 27HC promoted the accumulation of cellular reactive oxygen species (ROS) in nerve cells and subsequently activation of IL-6/STAT3 signaling pathway. Notably, treatment with the ROS scavenger N-acetylcysteine (NAC) markedly blocked 27HC-induced ROS production and activation of IL-6/STAT3 signaling pathway. Either blocking the generation of ROS or inhibition of IL-6/STAT3 both attenuated 27HC-induced cellular senescence. In sum, these findings not only suggested a mechanism whereby 27HC induced cellular senescence in nerve cells, but also helped to recognize the 27HC as a novel harmful factor in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiao Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yun Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Juan Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chunyan Hu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mengying Teng
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Kailin Jiao
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhaoxia Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Dongmei Zhu
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jia Yue
- Department of Nutrition and Food Hygiene, School of Public Health, Gansu University of Chinese Medical, Lanzhou 730000, China
| | - Zhong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Yuan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
58
|
Ding L, Zeng Q, Wu J, Li D, Wang H, Lu W, Jiang Z, Xu G. Caveolin‑1 regulates oxidative stress‑induced senescence in nucleus pulposus cells primarily via the p53/p21 signaling pathway in vitro. Mol Med Rep 2017; 16:9521-9527. [PMID: 29039595 PMCID: PMC5780011 DOI: 10.3892/mmr.2017.7789] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Accepted: 09/12/2017] [Indexed: 01/12/2023] Open
Abstract
Previous studies have indicated that cellular senescence is a critical underlying mechanism of intervertebral disc degeneration. However, the precise mechanism by which cellular senescence accelerates disc degeneration has not been fully elucidated. Caveolin-1 has recently emerged as an important regulator of cellular senescence. Therefore, the aim of the present study was to investigate whether caveolin-1 is involved in nucleus pulposus (NP) cellular senescence during oxidative stress. PCR was used to detect caveolin-1 mRNA expression and protein expression was detected by western blotting. Caveolin-1 expression at the mRNA and protein levels was markedly increased following treatment with tert-butyl hydroperoxide, and an increase in premature senescence was observed, as determined by senescence-associated β-galactosidase staining and the decline of cellular proliferative ability. In addition, caveolin-1 gene expression was successfully knocked down by lentivirus-mediated RNA interference, which exerted a protective effect against the cellular senescence induced by oxidative stress. Notably, p53 and p21 protein expression, though not p16 protein expression, decreased with caveolin-1 silencing. The results suggested that caveolin-1 may be involved in NP cellular senescence during oxidative stress in vitro, mainly via the p53/p21 signaling pathway. Thus, caveolin-1 may represent a novel therapeutic target for the prevention of intervertebral disc degeneration.
Collapse
Affiliation(s)
- Lei Ding
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Qingmin Zeng
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Jingping Wu
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Defang Li
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Houlei Wang
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Wei Lu
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Zengxin Jiang
- Department of Orthopedic Surgery, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| | - Guoxiong Xu
- Central Laboratory, Jinshan Hospital, Fudan University, Shanghai 201508, P.R. China
| |
Collapse
|
59
|
Feng X, Gao W, Li Y. Caveolin-1 is involved in high glucose accelerated human glomerular mesangial cell senescence. Korean J Intern Med 2017; 32:883-889. [PMID: 27048255 PMCID: PMC5583444 DOI: 10.3904/kjim.2015.254] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 09/07/2015] [Accepted: 10/15/2015] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND/AIMS We demonstrated the role of caveolin-1 involved in high glucose (HG)-induced glomerular mesangial cells (GMCs) senescence. METHODS HG was used to stimulate GMCs. The telomere lengths were analyzed by Southern blot. β-Galactosidase staining was determined. The expressions of caveolin-1 and P53 proteins were determined by Western blot. RESULTS Treatment with high concentrations of glucose induced GMC senescence accompanied by shortened telomere length and increase of β-galactosidase staining as well as P53 protein, which was abrogated after application of caveolin-1-siRNA. CONCLUSIONS This study proved that HG induced cell senescence in GMCs. The caveolin-1 is involved in HG-induced mesangial cell senescence, and blocking caveolin-1 significantly reduced cell senescence. The effect of caveolin-1 is mediated by P53 pathway.
Collapse
Affiliation(s)
- Xin Feng
- Department of Rheumatology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
| | - Wei Gao
- Department of Rheumatology, The First Affiliated Hospital of Liaoning Medical University, Jinzhou, China
- Correspondence to Wei Gao, M.D. Department of Rheumatology, The First Affiliated Hospital of Liaoning Medical University, No 2, RenMin Street, Guta, Jinzhou 121000, China E-mail:
| | - Yao Li
- Department of Physiology, Liaoning Medical University, Jinzhou, China
| |
Collapse
|
60
|
The Role of Caveolin 1 in HIV Infection and Pathogenesis. Viruses 2017; 9:v9060129. [PMID: 28587148 PMCID: PMC5490806 DOI: 10.3390/v9060129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 05/02/2017] [Accepted: 05/22/2017] [Indexed: 12/29/2022] Open
Abstract
Caveolin 1 (Cav-1) is a major component of the caveolae structure and is expressed in a variety of cell types including macrophages, which are susceptible to human immunodeficiency virus (HIV) infection. Caveolae structures are present in abundance in mechanically stressed cells such as endothelial cells and adipocytes. HIV infection induces dysfunction of these cells and promotes pathogenesis. Cav-1 and the caveolae structure are believed to be involved in multiple cellular processes that include signal transduction, lipid regulation, endocytosis, transcytosis, and mechanoprotection. Such a broad biological role of Cav-1/caveolae is bound to have functional cross relationships with several molecular pathways including HIV replication and viral-induced pathogenesis. The current review covers the relationship of Cav-1 and HIV in respect to viral replication, persistence, and the potential role in pathogenesis.
Collapse
|
61
|
Dou H, Feher A, Davila AC, Romero MJ, Patel VS, Kamath VM, Gooz MB, Rudic RD, Lucas R, Fulton DJ, Weintraub NL, Bagi Z. Role of Adipose Tissue Endothelial ADAM17 in Age-Related Coronary Microvascular Dysfunction. Arterioscler Thromb Vasc Biol 2017; 37:1180-1193. [PMID: 28473444 DOI: 10.1161/atvbaha.117.309430] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 04/12/2017] [Indexed: 12/23/2022]
Abstract
OBJECTIVE A disintegrin and metalloproteinase ADAM17 (tumor necrosis factor-α [TNF]-converting enzyme) regulates soluble TNF levels. We tested the hypothesis that aging-induced activation in adipose tissue (AT)-expressed ADAM17 contributes to the development of remote coronary microvascular dysfunction in obesity. APPROACH AND RESULTS Coronary arterioles (CAs, ≈90 µm) from right atrial appendages and mediastinal AT were examined in patients (aged: 69±11 years, BMI: 30.2±5.6 kg/m2) who underwent open heart surgery. CA and AT were also studied in 6-month and 24-month lean and obese mice fed a normal or high-fat diet. We found that obesity elicited impaired endothelium-dependent CA dilations only in older patients and in aged high-fat diet mice. Transplantation of AT from aged obese, but not from young or aged, mice increased serum cytokine levels, including TNF, and impaired CA dilation in the young recipient mice. In patients and mice, obesity was accompanied by age-related activation of ADAM17, which was attributed to vascular endothelium-expressed ADAM17. Excess, ADAM17-shed TNF from AT arteries in older obese patients was sufficient to impair CA dilation in a bioassay in which the AT artery was serially connected to a CA. Moreover, we found that the increased activity of endothelial ADAM17 is mediated by a diminished inhibitory interaction with caveolin-1, owing to age-related decline in caveolin-1 expression in obese patients and mice or to genetic deletion of caveolin-1. CONCLUSIONS The present study indicates that aging and obesity cooperatively reduce caveolin-1 expression and increase vascular endothelial ADAM17 activity and soluble TNF release in AT, which may contribute to the development of remote coronary microvascular dysfunction in older obese patients.
Collapse
Affiliation(s)
- Huijuan Dou
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Attila Feher
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Alec C Davila
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Maritza J Romero
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Vijay S Patel
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Vinayak M Kamath
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Monika Beck Gooz
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - R Daniel Rudic
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Rudolf Lucas
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - David J Fulton
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Neal L Weintraub
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.)
| | - Zsolt Bagi
- From the Vascular Biology Center (H.D., A.F., A.C.D., M.J.R., R.L., D.J.F., N.L.W., Z.B.), Department of Surgery (V.S.P., V.M.K.), Department of Medicine (N.L.W., Z.B.), and Department of Pharmacology and Toxicology (M.J.R., R.D.R., R.L., D.J.F.), Medical College of Georgia, Augusta University; and Department of Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston (M.B.G.).
| |
Collapse
|
62
|
Charles S, Raj V, Arokiaraj J, Mala K. Caveolin1/protein arginine methyltransferase1/sirtuin1 axis as a potential target against endothelial dysfunction. Pharmacol Res 2017; 119:1-11. [PMID: 28126510 DOI: 10.1016/j.phrs.2017.01.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/20/2016] [Accepted: 01/22/2017] [Indexed: 12/23/2022]
Abstract
Endothelial dysfunction (ED), an established response to cardiovascular risk factors, is characterized by increased levels of soluble molecules secreted by endothelial cells (EC). Evidence suggest that ED is an independent predictor of cardiac events and that it is associated with a deficiency in production or bioavailability of nitric oxide (NO) and/or an imbalance in the relative contribution of endothelium-derived relaxing and contracting factors. ED can be reversed by treating cardiovascular risk factors, hence, beyond ambiguity, ED contributes to initiation and progression of atherosclerotic disease. Majority of cardiovascular risk factors act by a common pathway, oxidative stress (OS), characterized by an imbalance in bioavailability of NO and reactive oxygen species (ROS). Enhanced ROS, through several mechanisms, alters competence of EC that leads to ED, reducing its potential to maintain homeostasis and resulting in development of cardiovascular disease (CVD). Influential mechanisms that have been implicated in the development of ED include (i) presence of elevated levels of NOS inhibitor, asymmetric dimethylarginine (ADMA) due to augmented enzyme activity of protein arginine methyl transferase-1 (PRMT1); (ii) decrease in NO generation by endothelial nitric oxide synthase (eNOS) uncoupling, or by reaction of NO with free radicals and (iii) impaired post translational modification of protein (PTM) such as eNOS, caveolin-1 (cav1) and sirtuin-1 (SIRT1). However, the inter-related mechanisms that concur to developing ED is yet to be understood. The events that possibly overlay include OS-induced sequestration of SIRT1 to caveolae facilitating cav1-SIRT1 association; potential increase in lysine acetylation of enzymes such as eNOS and PRMT1 leading to enhanced ADMA formation; imbalance in acetylation-methylation ratio (AMR); diminished NO generation and ED. Here we review current literature from research showing interdependent association between cav1-PRMT1-SIRT1 to the outcomes of experimental and clinical research aiming to preserve endothelial function with gene- or pharmaco-therapy.
Collapse
Affiliation(s)
- Soniya Charles
- Department of Biotechnology, School of Bioengineering, SRM University, Potheri 603203, Tamil Nadu, India
| | - Vijay Raj
- Medical College Hospital and Research Center, SRM University, Potheri 603203, Tamil Nadu, India
| | - Jesu Arokiaraj
- Department of Biotechnology, Faculty of Science and Humanities, SRM University, Potheri 603203, Tamil Nadu, India
| | - Kanchana Mala
- Medical College Hospital and Research Center, SRM University, Potheri 603203, Tamil Nadu, India.
| |
Collapse
|
63
|
Weidmann C, Pomerleau J, Trudel-Vandal L, Landreville S. Differential responses of choroidal melanocytes and uveal melanoma cells to low oxygen conditions. Mol Vis 2017; 23:103-115. [PMID: 28356703 PMCID: PMC5360455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 11/25/2022] Open
Abstract
PURPOSE Tissue culture is traditionally performed at atmospheric oxygen concentration (21%), which induces hyperoxic stress, as endogenous physiologic oxygen tension found in tissues varies between 2% and 9%. This discrepancy may lead to misinterpretation of results and may explain why effects observed in vitro cannot always be reproduced in vivo and vice versa. Only a few studies have been conducted in low physiologic oxygen conditions to understand the development and differentiation of cells from the eye. METHODS The aim of this study was to investigate the growth and gene expression profile of melanocytes from the choroid permanently exposed to 21% (hyperoxic) or 3% (physiologic) oxygen with proliferation assays and DNA microarray. The cellular behavior of the melanocytes was then compared to that of cancer cells. RESULTS The gross morphology and melanin content of choroidal melanocytes changed slightly when they were exposed to 3% O2, and the doubling time was statistically significantly faster. There was an increase in the percentage of choroidal melanocytes in the active phases of the cell cycle as observed by using the proliferation marker Ki67. The caveolin-1 senescence marker was not increased in choroidal melanocytes or uveal melanoma cells grown in hyperoxia. In comparison, the morphology of the uveal melanoma cells was similar between the two oxygen levels, and the doubling time was slower at 3% O2. Surprisingly, gene expression profiling of the choroidal melanocytes did not reveal a large list of transcripts considerably dysregulated between the two oxygen concentrations; only the lactate transporter monocarboxylate transporter (MCT4) was statistically significantly upregulated at 3% O2. CONCLUSIONS This study showed that the oxygen concentration must be tightly controlled in experimental settings, because it influences the subsequent cellular behavior of human choroidal melanocytes.
Collapse
Affiliation(s)
- Cindy Weidmann
- Axe Médecine régénératrice and Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de recherche du CHU de Québec, Quebec City, QC, Canada,Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Quebec City, QC, Canada
| | - Jade Pomerleau
- Axe Médecine régénératrice and Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de recherche du CHU de Québec, Quebec City, QC, Canada,Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Quebec City, QC, Canada
| | - Laurence Trudel-Vandal
- Axe Médecine régénératrice and Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de recherche du CHU de Québec, Quebec City, QC, Canada,Centre de recherche en organogénèse expérimentale de l’Université Laval/LOEX, Quebec City, QC, Canada
| | - Solange Landreville
- Axe Médecine régénératrice and Centre Universitaire d’Ophtalmologie (CUO)-Recherche, Centre de recherche du CHU de Québec, Quebec City, QC, Canada,Département d’ophtalmologie, Faculté de médecine, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
64
|
Caveolin-1 expression in oral lichen planus, dysplastic lesions and squamous cell carcinoma. Pathol Res Pract 2017; 213:809-814. [PMID: 28554768 DOI: 10.1016/j.prp.2017.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/06/2017] [Accepted: 03/04/2017] [Indexed: 12/24/2022]
Abstract
Caveolin-1(Cav-1), the main part of caveolae structure, is supposed to play a role in pathogenesis of many human tumors. Since oral lichen planus (OLP) is considered as a potential premalignant disease, this study evaluated Cav-1 expression in OLP in comparison with benign hyperkeratosis, dysplastic epithelium and oral squamous cell carcinoma (OSCC), to investigate its possible role in pathogenesis and malignant transformation of OLP. In this cross-sectional retrospective study, immunohistochemical expression of Cav-1 in the epithelial component and stroma was evaluated in 81 samples, including 12 cases of hyperkeratosis, 24 OLP, 22 epithelial dysplasia, and 23 OSCC samples. Correlations between Cav-1 expression and clinicopathological variables were evaluated statistically. Positive Cav-1 staining was found in 58% of OLP, 91% of hyperkeratosis, 100% of epithelial dysplasia, and 95% of OSCC samples. OSCC showed the highest Cav-1 expression and OLP had the lowest (P=0.001). The intensity of staining was significantly increased in stepwise manner from OLP to OSCC (P=0.001). Expression of Cav-1 was related to the grade of samples in OSCC and dysplastic samples (P=0.04). Based on the findings, it was concluded that Cav-1 may play a role in the pathogenesis of OLP and carcinogenesis of SCC, but its role in malignant transformation of OLP is not confirmed. Further studies are needed to evaluate its potential therapeutic function in OLP and SCC.
Collapse
|
65
|
Krupkova O, Ferguson SJ, Wuertz-Kozak K. Stability of (−)-epigallocatechin gallate and its activity in liquid formulations and delivery systems. J Nutr Biochem 2016; 37:1-12. [DOI: 10.1016/j.jnutbio.2016.01.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 01/20/2016] [Accepted: 01/28/2016] [Indexed: 12/24/2022]
|
66
|
Kurundkar A, Thannickal VJ. Redox mechanisms in age-related lung fibrosis. Redox Biol 2016; 9:67-76. [PMID: 27394680 PMCID: PMC4943089 DOI: 10.1016/j.redox.2016.06.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 06/24/2016] [Accepted: 06/24/2016] [Indexed: 12/12/2022] Open
Abstract
Redox signaling and oxidative stress are associated with tissue fibrosis and aging. Aging is recognized as a major risk factor for fibrotic diseases involving multiple organ systems, including that of the lung. A number of oxidant generating enzymes are upregulated while antioxidant defenses are deficient with aging and cellular senescence, leading to redox imbalance and oxidative stress. However, the precise mechanisms by which redox signaling and oxidative stress contribute to the pathogenesis of lung fibrosis are not well understood. Tissue repair is a highly regulated process that involves the interactions of several cell types, including epithelial cells, fibroblasts and inflammatory cells. Fibrosis may develop when these interactions are dysregulated with the acquisition of pro-fibrotic cellular phenotypes. In this review, we explore the roles of redox mechanisms that promote and perpetuate fibrosis in the context of cellular senescence and aging.
Collapse
Affiliation(s)
- Ashish Kurundkar
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Victor J Thannickal
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
67
|
ROS, Cell Senescence, and Novel Molecular Mechanisms in Aging and Age-Related Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3565127. [PMID: 27247702 PMCID: PMC4877482 DOI: 10.1155/2016/3565127] [Citation(s) in RCA: 695] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 04/02/2016] [Accepted: 04/06/2016] [Indexed: 12/15/2022]
Abstract
The aging process worsens the human body functions at multiple levels, thus causing its gradual decrease to resist stress, damage, and disease. Besides changes in gene expression and metabolic control, the aging rate has been associated with the production of high levels of Reactive Oxygen Species (ROS) and/or Reactive Nitrosative Species (RNS). Specific increases of ROS level have been demonstrated as potentially critical for induction and maintenance of cell senescence process. Causal connection between ROS, aging, age-related pathologies, and cell senescence is studied intensely. Senescent cells have been proposed as a target for interventions to delay the aging and its related diseases or to improve the diseases treatment. Therapeutic interventions towards senescent cells might allow restoring the health and curing the diseases that share basal processes, rather than curing each disease in separate and symptomatic way. Here, we review observations on ROS ability of inducing cell senescence through novel mechanisms that underpin aging processes. Particular emphasis is addressed to the novel mechanisms of ROS involvement in epigenetic regulation of cell senescence and aging, with the aim to individuate specific pathways, which might promote healthy lifespan and improve aging.
Collapse
|
68
|
Wang J, Chen H, Cao P, Wu X, Zang F, Shi L, Liang L, Yuan W. Inflammatory cytokines induce caveolin-1/β-catenin signalling in rat nucleus pulposus cell apoptosis through the p38 MAPK pathway. Cell Prolif 2016; 49:362-72. [PMID: 27125453 DOI: 10.1111/cpr.12254] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 02/18/2016] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVES Apoptosis of nucleus pulposus (NP) cells is a major cause of intervertebral disc degeneration. To elucidate relationships between caveolin-1 and cytokine-induced apoptosis, we investigated the role of caveolin-1 in cytokine-induced apoptosis in rat NP cells and the related signalling pathway. MATERIALS AND METHODS Rat NP cells were treated with interleukin (IL)-1β or tumour necrosis factor alpha (TNF-α), and knockdown of caveolin-1 and β-catenin was achieved using specific siRNAs. Then, apoptotic level of rat NP cells and expression and activation of caveolin-1/β-catenin signalling were assessed by flow cytometric analysis, qRT-PCR, western blotting and luciferase assays. The relationship between the mitogen-activated protein kinase (MAPK) pathway and caveolin-1 promoter activity was also determined by luciferase assays. RESULTS IL-1β and TNF-α induced apoptosis, upregulated caveolin-1 expression and activated Wnt/β-catenin signalling in rat NP cells, while the induction effect of cytokines was reversed by caveolin-1 siRNA and β-catenin siRNA. Promotion of rat NP cell apoptosis and nuclear translocation of β-catenin induced by caveolin-1 overexpression were abolished by β-catenin siRNA. Furthermore, pretreatment with a p38 MAPK inhibitor or dominant negative-p38, blocked cytokine-dependent induction of caveolin-1/β-catenin expression and activity. CONCLUSIONS The results revealed the role of p38/caveolin-1/β-catenin in inflammatory cytokine-induced apoptosis in rat NP cells. Thus, controlling p38/caveolin-1/β-catenin activity seemed to regulate IL-1β- and TNF-α-induced apoptosis in the NP during intervertebral disc degeneration.
Collapse
Affiliation(s)
- Jianxi Wang
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Huajiang Chen
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Peng Cao
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Xiaodong Wu
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Fazhi Zang
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Liangyu Shi
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Lei Liang
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| | - Wen Yuan
- Department of Orthopaedic Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, China
| |
Collapse
|
69
|
Gilliam AJH, Smith JN, Flather D, Johnston KM, Gansmiller AM, Fishman DA, Edgar JM, Balk M, Majumdar S, Weiss GA. Affinity-Guided Design of Caveolin-1 Ligands for Deoligomerization. J Med Chem 2016; 59:4019-25. [PMID: 27010220 DOI: 10.1021/acs.jmedchem.5b01536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Caveolin-1 is a target for academic and pharmaceutical research due to its many cellular roles and associated diseases. We report peptide WL47 (1), a small, high-affinity, selective disrupter of caveolin-1 oligomers. Developed and optimized through screening and analysis of synthetic peptide libraries, ligand 1 has 7500-fold improved affinity compared to its T20 parent ligand and an 80% decrease in sequence length. Ligand 1 will permit targeted study of caveolin-1 function.
Collapse
Affiliation(s)
- Amanda J H Gilliam
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Joshua N Smith
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Dylan Flather
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Kevin M Johnston
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Andrew M Gansmiller
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Dmitry A Fishman
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Joshua M Edgar
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Mark Balk
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Sudipta Majumdar
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| | - Gregory A Weiss
- Department of Chemistry, and ‡Department of Molecular Biology and Biochemistry, University of California , Irvine, California 92697-2025, United States
| |
Collapse
|
70
|
The Natural Polyphenol Epigallocatechin Gallate Protects Intervertebral Disc Cells from Oxidative Stress. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:7031397. [PMID: 27119009 PMCID: PMC4826942 DOI: 10.1155/2016/7031397] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/30/2016] [Accepted: 02/16/2016] [Indexed: 12/19/2022]
Abstract
Oxidative stress-related phenotypic changes and a decline in the number of viable cells are crucial contributors to intervertebral disc degeneration. The polyphenol epigallocatechin 3-gallate (EGCG) can interfere with painful disc degeneration by reducing inflammation, catabolism, and pain. In this study, we hypothesized that EGCG furthermore protects against senescence and/or cell death, induced by oxidative stress. Sublethal and lethal oxidative stress were induced in primary human intervertebral disc cells with H2O2 (total n = 36). Under sublethal conditions, the effects of EGCG on p53-p21 activation, proliferative capacity, and accumulation of senescence-associated β-galactosidase were tested. Further, the effects of EGCG on mitochondria depolarization and cell viability were analyzed in lethal oxidative stress. The inhibitor LY249002 was applied to investigate the PI3K/Akt pathway. EGCG inhibited accumulation of senescence-associated β-galactosidase but did not affect the loss of proliferative capacity, suggesting that EGCG did not fully neutralize exogenous radicals. Furthermore, EGCG increased the survival of IVD cells in lethal oxidative stress via activation of prosurvival PI3K/Akt and protection of mitochondria. We demonstrated that EGCG not only inhibits inflammation but also can enhance the survival of disc cells in oxidative stress, which makes it a suitable candidate for the development of novel therapies targeting disc degeneration.
Collapse
|
71
|
Bach FC, Zhang Y, Miranda-Bedate A, Verdonschot LC, Bergknut N, Creemers LB, Ito K, Sakai D, Chan D, Meij BP, Tryfonidou MA. Increased caveolin-1 in intervertebral disc degeneration facilitates repair. Arthritis Res Ther 2016; 18:59. [PMID: 26939667 PMCID: PMC4778307 DOI: 10.1186/s13075-016-0960-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 02/22/2016] [Indexed: 01/07/2023] Open
Abstract
Background Preceding intervertebral disc (IVD) degeneration, the cell phenotype in the nucleus pulposus (NP) shifts from notochordal cells (NCs) to chondrocyte-like cells (CLCs). Microarray analysis showed a correlation between caveolin-1 expression and the phenotypic transition of NCs to CLCs. With a clinical directive in mind, the aim of this study was to determine the role of caveolin-1 in IVD degeneration. As a scaffolding protein, caveolin-1 influences several signaling pathways, and transforming growth factor (TGF)-β receptors have been demonstrated to colocalize with caveolin-1. Therefore, the hypothesis of this study was that caveolin-1 facilitates repair by enhancing TGF-β signaling in the IVD. Methods Protein expression (caveolin-1, apoptosis, progenitor cell markers, extracellular matrix, and phosphorylated Smad2 [pSmad2]) was determined in IVDs of wild-type (WT) and caveolin-1-null mice and canine IVDs of different degeneration grades (immunofluorescence, immunohistochemistry, and TUNEL assay). Canine/human CLC microaggregates were treated with chondrogenic medium alone or in combination with caveolin-1 scaffolding domain (CSD) peptide and/or caveolin-1 silencing RNA. After 28 days, gene and protein expression profiles were determined. Results The NP of WT mice was rich in viable NCs, whereas the NP of caveolin-1-null mice contained more collagen-rich extracellular matrix and fewer cells, together with increased progenitor cell marker expression, pSmad2 TGF-β signaling, and high apoptotic activity. During canine IVD degeneration, caveolin-1 expression and apoptotic activity increased. In vitro caveolin-1 silencing decreased the CLC microaggregate glycosaminoglycan (GAG) content, which could be rescued by CSD treatment. Furthermore, CSD increased TGF-β/pSmad2 signaling at gene and protein expression levels and enhanced the anabolic effects of TGF-β1, reflected in increased extracellular matrix deposition by the CLCs. Conclusions Caveolin-1 plays a role in preservation of the NC phenotype. Additionally, it may be related to CLC apoptosis, given its increased expression in degenerated IVDs. Nevertheless, CSD enhanced CLC GAG deposition in vitro, and hence the increased caveolin-1 expression during IVD degeneration may also facilitate an ultimate attempt at repair. Further studies are needed to investigate how caveolin-1 modifies other signaling pathways and facilitates IVD repair. Electronic supplementary material The online version of this article (doi:10.1186/s13075-016-0960-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Frances C Bach
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Ying Zhang
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China.
| | - Alberto Miranda-Bedate
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Lucy C Verdonschot
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Niklas Bergknut
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Laura B Creemers
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.
| | - Keita Ito
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands. .,Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | - Daisuke Sakai
- Department of Orthopaedic Surgery, Tokai University School of Medicine, Isehara, Japan.
| | - Danny Chan
- Department of Biochemistry, The University of Hong Kong, Hong Kong, China.
| | - Björn P Meij
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Marianna A Tryfonidou
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
72
|
Lamoke F, Shaw S, Yuan J, Ananth S, Duncan M, Martin P, Bartoli M. Increased Oxidative and Nitrative Stress Accelerates Aging of the Retinal Vasculature in the Diabetic Retina. PLoS One 2015; 10:e0139664. [PMID: 26466127 PMCID: PMC4605485 DOI: 10.1371/journal.pone.0139664] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 09/16/2015] [Indexed: 01/12/2023] Open
Abstract
Hyperglycemia-induced retinal oxidative and nitrative stress can accelerate vascular cell aging, which may lead to vascular dysfunction as seen in diabetes. There is no information on whether this may contribute to the progression of diabetic retinopathy (DR). In this study, we have assessed the occurrence of senescence-associated markers in retinas of streptozotocin-induced diabetic rats at 8 and 12 weeks of hyperglycemia as compared to normoglycemic aging (12 and 14 months) and adult (4.5 months) rat retinas. We have found that in the diabetic retinas there was an up-regulation of senescence-associated markers SA-β-Gal, p16INK4a and miR34a, which correlated with decreased expression of SIRT1, a target of miR34a. Expression of senescence-associated factors primarily found in retinal microvasculature of diabetic rats exceeded levels measured in adult and aging rat retinas. In aging rats, retinal expression of senescence associated-factors was mainly localized at the level of the retinal pigmented epithelium and only minimally in the retinal microvasculature. The expression of oxidative/nitrative stress markers such as 4-hydroxynonenal and nitrotyrosine was more pronounced in the retinal vasculature of diabetic rats as compared to normoglycemic aging and adult rat retinas. Treatments of STZ-rats with the anti-nitrating drug FeTPPS (10mg/Kg/day) significantly reduced the appearance of senescence markers in the retinal microvasculature. Our results demonstrate that hyperglycemia accelerates retinal microvascular cell aging whereas physiological aging affects primarily cells of the retinal pigmented epithelium. In conclusion, hyperglycemia-induced retinal vessel dysfunction and DR progression involve vascular cell senescence due to increased oxidative/nitrative stress.
Collapse
Affiliation(s)
- Folami Lamoke
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Sean Shaw
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Jianghe Yuan
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Sudha Ananth
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Michael Duncan
- Dept. of Medicine, Section of Gastroenterology/Hepatology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Pamela Martin
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
| | - Manuela Bartoli
- Dept. of Ophthalmology, Medical College of Georgia, Georgia Regents University, Augusta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
73
|
Adverse Effects of Diabetes Mellitus on the Skeleton of Aging Mice. J Gerontol A Biol Sci Med Sci 2015; 71:290-9. [DOI: 10.1093/gerona/glv160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/19/2015] [Indexed: 01/15/2023] Open
|
74
|
Wan X, Chen Z, Choi WI, Gee HY, Hildebrandt F, Zhou W. Loss of Epithelial Membrane Protein 2 Aggravates Podocyte Injury via Upregulation of Caveolin-1. J Am Soc Nephrol 2015; 27:1066-75. [PMID: 26264854 DOI: 10.1681/asn.2014121197] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 06/23/2015] [Indexed: 11/03/2022] Open
Abstract
Nephrotic syndrome is a CKD defined by proteinuria with subsequent hypoalbuminemia, hyperlipidemia, and edema caused by impaired renal glomerular filtration barrier function. We previously identified mutations in epithelial membrane protein 2 (EMP2) as a monogenic cause of this disease. Here, we generated an emp2-knockout zebrafish model using transcription activator-like effector nuclease-based genome editing. We found that loss of emp2 in zebrafish upregulated caveolin-1 (cav1), a major component of caveolae, in embryos and adult mesonephric glomeruli and exacerbated podocyte injury. This phenotype was partially rescued by glucocorticoids. Furthermore, overexpression of cav1 in zebrafish podocytes was sufficient to induce the same phenotype observed in emp2 homozygous mutants, which was also treatable with glucocorticoids. Similarly, knockdown of EMP2 in cultured human podocytes resulted in increased CAV1 expression and decreased podocyte survival in the presence of puromycin aminonucleoside, whereas glucocorticoid treatment ameliorated this phenotype. Taken together, we have established excessive CAV1 as a mediator of the predisposition to podocyte injury because of loss of EMP2, suggesting CAV1 could be a novel therapeutic target in nephrotic syndrome and podocyte injury.
Collapse
Affiliation(s)
- Xiaoyang Wan
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Zhaohong Chen
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; Jinling Hospital, Nanjing, China
| | - Won-Il Choi
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Heon Yung Gee
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and
| | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts; and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan;
| |
Collapse
|
75
|
Could caveolae be acting as warnings of mitochondrial ageing? Mech Ageing Dev 2015; 146-148:81-7. [PMID: 25959712 DOI: 10.1016/j.mad.2015.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 04/09/2015] [Accepted: 04/28/2015] [Indexed: 11/20/2022]
Abstract
Ageing is a cellular process with many facets, some of which are currently undergoing a paradigm change. It is the case of "mitochondrial theory of ageing", which, interestingly, has been found lately to cross paths with another ageing dysfunctional process - intracellular signalling - in an unexpected point (or place) - caveolae. The latter represent membrane microdomains altered in senescent cells, scaffolded by proteins modified (posttranslational or as expression) with ageing. An important determinant of these alterations is oxidative stress, through increased production of reactive oxygen species that originate at mitochondrial site. Spanning from physical contact points, to shared structural proteins and similar function domains, caveolae and mitochondria might have more in common than originally thought. By reviewing recent data on oxidative stress impact on caveolae and caveolins, as well as possible interactions between caveolae and mitochondria, we propose a hypothesis for senescence-related involvement of caveolins.
Collapse
|
76
|
Hamilton A, Mittal S, Barnardo MCNM, Fuggle SV, Friend P, Gough SCL, Simmonds MJ. Genetic variation in caveolin-1 correlates with long-term pancreas transplant function. Am J Transplant 2015; 15:1392-9. [PMID: 25787790 DOI: 10.1111/ajt.13104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 11/11/2014] [Accepted: 11/11/2014] [Indexed: 01/25/2023]
Abstract
Pancreas transplantation is a successful treatment for a selected group of people with type 1 diabetes. Continued insulin production can decrease over time and identifying predictors of long-term graft function is key to improving survival. The aim of this study was to screen subjects for variation in the Caveolin-1 gene (Cav1), previously shown to correlate with long-term kidney transplant function. We genotyped 435 pancreas transplant donors and 431 recipients who had undergone pancreas transplantation at the Oxford Transplant Centre, UK, for all known common variation in Cav1. Death-censored cumulative events were analyzed using Kaplan-Meier and Cox regression. Unlike kidney transplantation, the rs4730751 variant in our pancreas donors or transplant recipients did not correlate with long-term graft function (p = 0.331-0.905). Presence of rs3801995 TT genotype (p = 0.009) and rs9920 CC/CT genotype (p = 0.010) in our donors did however correlate with reduced long-term graft survival. Multivariate Cox regression (adjusted for donor and recipient transplant factors) confirmed the association of rs3801995 (p = 0.009, HR = 1.83;[95% CI = 1.16-2.89]) and rs9920 (p = 0.037, HR = 1.63; [95% CI = 1.03-2.73]) with long-term graft function. This is the first study to provide evidence that donor Cav1 genotype correlates with long-term pancreas graft function. Screening Cav1 in other datasets is required to confirm these pilot results.
Collapse
Affiliation(s)
- A Hamilton
- Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), University of Oxford, Oxford, UK
| | | | | | | | | | | | | |
Collapse
|
77
|
Catita J, López-Luppo M, Ramos D, Nacher V, Navarro M, Carretero A, Sánchez-Chardi A, Mendes-Jorge L, Rodriguez-Baeza A, Ruberte J. Imaging of cellular aging in human retinal blood vessels. Exp Eye Res 2015; 135:14-25. [PMID: 25818511 DOI: 10.1016/j.exer.2015.03.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 03/13/2015] [Accepted: 03/25/2015] [Indexed: 01/10/2023]
Abstract
To date two main aging vascular lesions have been reported in elderly human retinas: acellular capillaries and microaneurysms. However, their exact mechanism of formation remains unclear. Using high resolution microscopy techniques we revise cellular alterations observed in aged human retinal vessels, such as lipofuscin accumulation, caveolae malfunction, blood basement membrane disruption and enhanced apoptosis that could trigger the development of these aging vascular lesions. Moreover, we have generated a set of original images comparing retinal vasculature between middle and old aged healthy humans to show in a comprehensive manner the main structural and ultrastructural alterations occurred during age in retinal blood vessels.
Collapse
Affiliation(s)
- J Catita
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - M López-Luppo
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - D Ramos
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - V Nacher
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - M Navarro
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - A Carretero
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - A Sánchez-Chardi
- Microscopy Facility, Faculty of Science, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - L Mendes-Jorge
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; Department of Morphology and Function, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal
| | - A Rodriguez-Baeza
- Department of Morphological Sciences, School of Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - J Ruberte
- Center of Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Bellaterra, Spain; Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, Bellaterra, Spain; Interdisciplinary Centre of Research in Animal Health, Faculty of Veterinary Medicine, Universidade de Lisboa, Lisbon, Portugal; CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain.
| |
Collapse
|
78
|
Wehinger S, Ortiz R, Díaz MI, Aguirre A, Valenzuela M, Llanos P, Mc Master C, Leyton L, Quest AFG. Phosphorylation of caveolin-1 on tyrosine-14 induced by ROS enhances palmitate-induced death of beta-pancreatic cells. Biochim Biophys Acta Mol Basis Dis 2015; 1852:693-708. [PMID: 25572853 DOI: 10.1016/j.bbadis.2014.12.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2014] [Revised: 12/24/2014] [Accepted: 12/27/2014] [Indexed: 01/22/2023]
Abstract
A considerable body of evidence exists implicating high levels of free saturated fatty acids in beta pancreatic cell death, although the molecular mechanisms and the signaling pathways involved have not been clearly defined. The membrane protein caveolin-1 has long been implicated in cell death, either by sensitizing to or directly inducing apoptosis and it is normally expressed in beta cells. Here, we tested whether the presence of caveolin-1 modulates free fatty acid-induced beta cell death by reexpressing this protein in MIN6 murine beta cells lacking caveolin-1. Incubation of MIN6 with palmitate, but not oleate, induced apoptotic cell death that was enhanced by the presence of caveolin-1. Moreover, palmitate induced de novo ceramide synthesis, loss of mitochondrial transmembrane potential and reactive oxygen species (ROS) formation in MIN6 cells. ROS generation promoted caveolin-1 phosphorylation on tyrosine-14 that was abrogated by the anti-oxidant N-acetylcysteine or the incubation with the Src-family kinase inhibitor, PP2 (4-amino-5-(4-chlorophenyl)-7(dimethylethyl)pyrazolo[3,4-d]pyrimidine). The expression of a non-phosphorylatable caveolin-1 tyrosine-14 to phenylalanine mutant failed to enhance palmitate-induced apoptosis while for MIN6 cells expressing the phospho-mimetic tyrosine-14 to glutamic acid mutant caveolin-1 palmitate sensitivity was comparable to that observed for MIN6 cells expressing wild type caveolin-1. Thus, caveolin-1 expression promotes palmitate-induced ROS-dependent apoptosis in MIN6 cells in a manner requiring Src family kinase mediated tyrosine-14 phosphorylation.
Collapse
Affiliation(s)
- Sergio Wehinger
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile; Research Program of Interdisciplinary Excellence in Healthy Aging (PIEI-ES), Faculty of Health Sciences, Department of Clinical Biochemistry and Immunohematology, Universidad de Talca, 3465548 Talca, Chile
| | - Rina Ortiz
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - María Inés Díaz
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Adam Aguirre
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Manuel Valenzuela
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Paola Llanos
- Institute for Research in Dental Sciences, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Christopher Mc Master
- Departament of Pediatrics, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada; Department of Biochemistry and Molecular Biology, Atlantic Research Centre, Dalhousie University, Halifax, NS, Canada
| | - Lisette Leyton
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile
| | - Andrew F G Quest
- Laboratory of Cellular Communication, Center for Molecular Studies of the Cell (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago de Chile, Chile.
| |
Collapse
|
79
|
Ma W, Wang DD, Li L, Feng YK, Gu HM, Zhu GM, Piao JH, Yang Y, Gao X, Zhang PX. Caveolin-1 plays a key role in the oleanolic acid-induced apoptosis of HL-60 cells. Oncol Rep 2014; 32:293-301. [PMID: 24842472 DOI: 10.3892/or.2014.3177] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 04/14/2014] [Indexed: 11/06/2022] Open
Abstract
Our previous study found that caveolin-1 (CAV-1) protein expression is upregulated during oleanolic acid (OA)-induced inhibition of proliferation and promotion of apoptosis in HL-60 cells. CAV-1 is the main structural protein component of caveolae, playing important roles in tumorigenesis and tumor development. It has been shown that cav-1 expression is lower in leukemia cancer cell lines SUP-B15, HL-60, THP-1 and K562 and in chronic lymphocytic leukemia primary (CLP) cells when compared with normal white blood cells, with the lowest cav-1 expression level found in HL-60 cells. To study the effects of cav-1 in HL-60 cells and the effects of cav-1 overexpression on OA drug efficacy, cav-1 was overexpressed in HL-60 cells using lentiviral-mediated transfection combined with OA treatment. The results showed that cav-1 overexpression inhibited HL-60 cell proliferation, promoted apoptosis, arrested the cell cycle in the G1 phase and inhibited activation of the PI3K/AKT/mTOR signaling pathway. Overexpression of CAV-1 also increased HL-60 cell sensitivity to OA. To further verify whether OA affects HL-60 cells via the activation of downstream signaling pathways by CAV-1, cav-1 gene expression was silenced using RNAi, and the cells were treated with OA to examine its efficacy. The results showed that after cav-1 silencing, OA had little effect on cell activity, apoptosis, the cell cycle and phosphorylation of HL-60 cells. This study is the first to show that CAV-1 plays a crucial role in the effects of OA on HL-60 cells.
Collapse
Affiliation(s)
- Wei Ma
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Di-Di Wang
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Li Li
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Yu-Kuan Feng
- Department of Biology, Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Hong-Mei Gu
- Department of Biology, Mudanjiang Medical University, Mudanjiang 157011, P.R. China
| | - Gui-Ming Zhu
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Jin-Hua Piao
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Yu Yang
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| | - Xu Gao
- Department of Biochemistry, Harbin Medical University, Harbin 150086, P.R. China
| | - Peng-Xia Zhang
- School of Basic Medicine, Jiamusi University, Jiamusi 154000, P.R. China
| |
Collapse
|
80
|
Zhang J, Lazarenko OP, Blackburn ML, Badger TM, Ronis MJJ, Chen J. Soy protein isolate down‐regulates caveolin‐1 expression to suppress osteoblastic cell senescence pathways. FASEB J 2014; 28:3134-45. [DOI: 10.1096/fj.13-243659] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jian Zhang
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Oxana P. Lazarenko
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Michael L. Blackburn
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Thomas M. Badger
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Martin J. J. Ronis
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
- Department of Pharmacology and ToxicologyUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| | - Jin‐Ran Chen
- Arkansas Children's Nutrition CenterLittle RockArkansasUSA
- Department of PediatricsUniversity of Arkansas for Medical SciencesLittle RockArkansasUSA
| |
Collapse
|
81
|
Kaushik G, Engler AJ. From stem cells to cardiomyocytes: the role of forces in cardiac maturation, aging, and disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2014; 126:219-42. [PMID: 25081620 DOI: 10.1016/b978-0-12-394624-9.00009-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Stem cell differentiation into a variety of lineages is known to involve signaling from the extracellular niche, including from the physical properties of that environment. What regulates stem cell responses to these cues is there ability to activate different mechanotransductive pathways. Here, we will review the structures and pathways that regulate stem cell commitment to a cardiomyocyte lineage, specifically examining proteins within muscle sarcomeres, costameres, and intercalated discs. Proteins within these structures stretch, inducing a change in their phosphorylated state or in their localization to initiate different signals. We will also put these changes in the context of stem cell differentiation into cardiomyocytes, their subsequent formation of the chambered heart, and explore negative signaling that occurs during disease.
Collapse
Affiliation(s)
- Gaurav Kaushik
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| | - Adam J Engler
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
82
|
Thompson MA, Prakash YS, Pabelick CM. The role of caveolae in the pathophysiology of lung diseases. Expert Rev Respir Med 2013; 8:111-22. [PMID: 24308657 DOI: 10.1586/17476348.2014.855610] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Caveolae are flask-shaped plasma membrane invaginations formed by constitutive caveolin proteins and regulatory cavin proteins. Caveolae harbor a range of signaling components such as receptors, ion channels and regulatory molecules. There is now increasing evidence that caveolins and cavins play an important role in a variety of diseases. However, the mechanisms by which these caveolar proteins affect lung health and disease are still under investigation, with emerging data suggesting complex roles in disease pathophysiology. This review summarizes the current state of understanding of how caveolar proteins contribute to lung structure and function and how their altered expression and/or function can influence lung diseases.
Collapse
|
83
|
Walraven M, Gouverneur M, Middelkoop E, Beelen RHJ, Ulrich MMW. Altered TGF-β signaling in fetal fibroblasts: what is known about the underlying mechanisms? Wound Repair Regen 2013; 22:3-13. [PMID: 24134669 DOI: 10.1111/wrr.12098] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/25/2013] [Indexed: 02/01/2023]
Abstract
Scarless wound healing is a unique and intrinsic capacity of the fetal skin that is not fully understood. Further insight into the underlying mechanisms of fetal wound healing may lead to new therapeutic approaches promoting adult scarless wound healing. Differences between fetal and adult wound healing are found in the extracellular matrix, the inflammatory reaction and the levels of growth factors present in the wound. This review focuses specifically on transforming growth factor β (TGF-β), as this growth factor is prominently involved in wound healing and fibroblast-to-myofibroblast differentiation. Although fetal fibroblasts do respond to TGF-β, they lack a proliferative and a contractile response and display short-lived myofibroblast differentiation, autocrine response, and collagen up-regulation in comparison with adult fibroblasts. Curiously, prolonged TGF-β activation is associated with fibrosis, and therefore, this short-lived response in fetal fibroblasts might contribute to scarless healing. This review gives an overview of the current knowledge on TGF-β signaling and the intracellular TGF-β signaling pathway in fetal fibroblasts. Furthermore, this review also describes the various components that regulate the cellular TGF-β response and hypothesizes about the possible roles these components might play in the altered response of fetal fibroblasts to TGF-β.
Collapse
Affiliation(s)
- Mariëlle Walraven
- Department of Molecular Cell Biology and Immunology, VU University Medical Center, Amsterdam, The Netherlands; Association of Dutch Burn Centers, Beverwijk, The Netherlands
| | | | | | | | | |
Collapse
|
84
|
Bitar MS, Abdel-Halim SM, Al-Mulla F. Caveolin-1/PTRF upregulation constitutes a mechanism for mediating p53-induced cellular senescence: implications for evidence-based therapy of delayed wound healing in diabetes. Am J Physiol Endocrinol Metab 2013; 305:E951-63. [PMID: 23941874 DOI: 10.1152/ajpendo.00189.2013] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A heightened state of oxidative stress and senescence of fibroblasts constitute potential therapeutic targets in nonhealing diabetic wounds. Here, we studied the underlying mechanism mediating diabetes-induced cellular senescence using in vitro cultured dermal fibroblasts and in vivo circular wounds. Our results demonstrated that the total antioxidant capacity and mRNA levels of thioredoxinreductase and glucose-6-phosphate dehydrogenase as well as the ratio of NADPH/NADP were decreased markedly in fibroblasts from patients with type 2 diabetes (DFs). Consistent with this shift in favor of excessive reactive oxygen species, DFs also displayed a significant increase in senescence-associated β-galactosidase activity and phospho-γ-histone H2AX (pH2AX) level. Moreover, the ability of PDGF to promote cell proliferation/migration and regulate the phosphorylation-dependent activation of Akt and ERK1/2 appears to be attenuated as a function of diabetes. Mechanistically, we found that diabetes-induced oxidative stress upregulated caveolin-1 (Cav-1) and PTRF expression, which in turn sequestered Mdm2 away from p53. This process resulted in the activation of a p53/p21-dependent pathway and the induction of premature senescence in DFs. Most of the aforementioned oxidative stress and senescence-based features observed in DFs were recapitulated in a 10-day-old diabetic wound. Intriguingly, we confirmed that the targeted depletion of Cav-1 or PTRF using siRNA- or Vivo-Morpholino antisense-based gene therapy markedly inhibited diabetes/oxidative stress-induced premature senescence and also accelerated tissue repair in this disease state. Overall, our data illuminate Cav-1/PTRF-1 as a key player of a novel signaling pathway that may link a heightened state of oxidative stress to cellular senescence and impaired wound healing in diabetes.
Collapse
Affiliation(s)
- Milad S Bitar
- Department of Pharmacology and Toxicology, Kuwait University, Safat, Kuwait
| | | | | |
Collapse
|
85
|
Trushina E, Canaria CA, Lee DY, McMurray CT. Loss of caveolin-1 expression in knock-in mouse model of Huntington's disease suppresses pathophysiology in vivo. Hum Mol Genet 2013; 23:129-44. [PMID: 24021477 DOI: 10.1093/hmg/ddt406] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Loss of cholesterol homeostasis and altered vesicle trafficking have been detected in Huntington's disease (HD) cellular and animal models, yet the role of these dysfunctions in pathophysiology of HD is unknown. We demonstrate here that defects in caveolar-related cholesterol trafficking directly contribute to the mechanism of HD in vivo. We generated new mouse models that express mutant Huntington's protein (mhtt), but have partial or total loss of caveolin-1 (Cav1) expression. Fluorescence resonance energy transfer dequenching confirms a direct interaction between mhtt and Cav1. Mhtt-expressing neurons exhibited cholesterol accumulation and suppressed caveolar-related post-Golgi trafficking from endoplasmic reticulum/Golgi to plasma membrane. Loss or reduction of Cav1 expression in a knock-in HD mouse model rescues the cholesterol phenotype in neurons and significantly delays the onset of motor decline and development of neuronal inclusions. We propose that aberrant interaction between Cav1 and mhtt leads to altered cholesterol homeostasis and plays a direct causative role in the onset of HD pathophysiology in vivo.
Collapse
|
86
|
Chilosi M, Carloni A, Rossi A, Poletti V. Premature lung aging and cellular senescence in the pathogenesis of idiopathic pulmonary fibrosis and COPD/emphysema. Transl Res 2013; 162:156-73. [PMID: 23831269 DOI: 10.1016/j.trsl.2013.06.004] [Citation(s) in RCA: 214] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 06/11/2013] [Indexed: 02/06/2023]
Abstract
Different anatomic and physiological changes occur in the lung of aging people that can affect pulmonary functions, and different pulmonary diseases, including deadly diseases such as chronic obstructive pulmonary disease (COPD)/emphysema and idiopathic pulmonary fibrosis (IPF), can be related to an acceleration of the aging process. The individual genetic background, as well as exposure to a variety of toxic substances (cigarette smoke in primis) can contribute significantly to accelerating pulmonary senescence. Premature aging can impair lung function by different ways: by interfering specifically with tissue repair mechanisms after damage, thus perturbing the correct crosstalk between mesenchymal and epithelial components; by inducing systemic and/or local alteration of the immune system, thus impairing the complex mechanisms of lung defense against infections; and by stimulating a local and/or systemic inflammatory condition (inflammaging). According to recently proposed pathogenic models in COPD and IPF, premature cellular senescence likely affects distinct progenitors cells (mesenchymal stem cells in COPD, alveolar epithelial precursors in IPF), leading to stem cell exhaustion. In this review, the large amount of data supporting this pathogenic view are discussed, with emphasis on the possible molecular and cellular mechanisms leading to the severe parenchymal remodeling that characterizes, in different ways, these deadly diseases.
Collapse
Affiliation(s)
- Marco Chilosi
- Department of Pathology, University of Verona, Verona, Italy.
| | | | | | | |
Collapse
|
87
|
Zhao H, Halicka HD, Li J, Darzynkiewicz Z. Berberine suppresses gero-conversion from cell cycle arrest to senescence. Aging (Albany NY) 2013; 5:623-36. [PMID: 23974852 PMCID: PMC3796215 DOI: 10.18632/aging.100593] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/20/2013] [Indexed: 01/05/2023]
Abstract
Berberine (BRB), a natural alkaloid, has a long history of medicinal use in both Ayurvedic and old Chinese medicine. Recently, available as a dietary supplement, Berberine is reported to have application in treatment of variety diseases. Previously we observed that BRB inhibited mTOR/S6 signaling concurrently with reduction of the level of endogenous oxidants and constitutive DNA damage response. We currently tested whether Berberine can affect premature, stress-induced cellular senescence caused by mitoxantrone. The depth of senescence was quantitatively measured by morphometric parameters, senescence-associated β-galactosidase, induction of p21WAF1, replication stress (γH2AX expression), and mTOR signaling; the latter revealed by ribosomal S6 protein (rpS6) phosphorylation. All these markers of senescence were distinctly diminished, in a concentration-dependent manner, by Berberine. In view of the evidence that BRB localizes in mitochondria, inhibits respiratory electron chain and activates AMPK, the observed attenuation of the replication stress-induced cellular senescence most likely is mediated by AMPK that leads to inhibition of mTOR signaling. In support of this mechanism is the observation that rhodamine123, the cationic probe targeting mitochondrial electron chain, also suppressed rpS6 phosphorylation. The present findings reveal that: (a) in cells induced to senescence BRB exhibits gero-suppressive properties by means of mTOR/S6 inhibition; (b) in parallel, BRB reduces the level of constitutive DNA damage response, previously shown to report oxidative DNA damage by endogenous ROS; (c) there appears to a causal linkage between the (a) and (b) activities; (d) the in vitro model of premature stress-induced senescence can be used to assess effectiveness of potential gero-suppressive agents targeting mTOR/S6 and ROS signaling; (e) since most of the reported beneficial effects of BRB are in age-relate diseases, it is likely that gero-suppression is the primary activity of this traditional medicine.
Collapse
Affiliation(s)
- Hong Zhao
- Brander Cancer Research Institute and Department of Pathology, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | |
Collapse
|
88
|
Hamoudane M, Maffioli S, Cordera R, Maggi D, Salani B. Caveolin-1 and polymerase I and transcript release factor: new players in insulin-like growth factor-I receptor signaling. J Endocrinol Invest 2013; 36:204-8. [PMID: 23404184 DOI: 10.3275/8848] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Caveolae are plasma membrane regions enriched in Caveolin proteins which regulate vesicular transport, endocytosis, and cell signaling. IGF-I receptor (IGF-IR) localizes in caveolae and tyrosine phosphorylates Caveolin-1 (Cav-1), the most represented caveolar protein. Cav-1 participates to IGF-IR internalization and signaling directly interacting with IGF-IR and its substrates. Recently, polymerase I and transcript release factor (PTRF) or Cavin-1, has been identified in the caveolar backbone. PTRF does not play a Cav-1 ancillary role and emerging data support a direct role of PTRF in IGF-IR signaling. PTRF and Cav-1 can bind IGF-IR and regulate IGF-IR internalization and plasma membrane replacement, mechanisms frequently deregulated in cancer cells. Although the exact roles of Cav-1 and IGF-IR in human cancer continue to be a matter of some debate, there is a strong evidence for an association between Cav-1 and IGF-IR in cancer development. With the discovery of IGF-IR interaction with PTRF in caveolae, new insight emerged to understand the growing functions of these domains in IGF-I action.
Collapse
Affiliation(s)
- M Hamoudane
- Department of Internal Medicine (DiMI) University of Genoa, Genoa, Italy
| | | | | | | | | |
Collapse
|
89
|
Lee ME, Kim SR, Lee S, Jung YJ, Choi SS, Kim WJ, Han JA. Cyclooxygenase-2 inhibitors modulate skin aging in a catalytic activity-independent manner. Exp Mol Med 2013; 44:536-44. [PMID: 22771771 PMCID: PMC3465747 DOI: 10.3858/emm.2012.44.9.061] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It has been proposed that the pro-inflammatory catalytic activity of cyclooxygenase-2 (COX-2) plays a key role in the aging process. However, it remains unclear whether the COX-2 activity is a causal factor for aging and whether COX-2 inhibitors could prevent aging. We here examined the effect of COX-2 inhibitors on aging in the intrinsic skin aging model of hairless mice. We observed that among two selective COX-2 inhibitors and one non-selective COX inhibitor studied, only NS-398 inhibited skin aging, while celecoxib and aspirin accelerated skin aging. In addition, NS-398 reduced the expression of p53 and p16, whereas celecoxib and aspirin enhanced their expression. We also found that the aging-modulating effect of the inhibitors is closely associated with the expression of type I procollagen and caveolin-1. These results suggest that pro-inflammatory catalytic activity of COX-2 is not a causal factor for aging at least in skin and that COX-2 inhibitors might modulate skin aging by regulating the expression of type I procollagen and caveolin-1.
Collapse
Affiliation(s)
- Mi Eun Lee
- Department of Biochemistry and Molecular Biology, Institute of Medical Sciences, Kangwon National University School of Medicine, Chuncheon 200-701, Korea
| | | | | | | | | | | | | |
Collapse
|
90
|
Effects of Aging and Hypercholesterolemia on Oxidative Stress and DNA Damage in Bone Marrow Mononuclear Cells in Apolipoprotein E-deficient Mice. Int J Mol Sci 2013; 14:3325-42. [PMID: 23385237 PMCID: PMC3588046 DOI: 10.3390/ijms14023325] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/10/2013] [Accepted: 01/29/2013] [Indexed: 01/01/2023] Open
Abstract
Recent evidence from apolipoprotein E-deficient (apoE−/−) mice shows that aging and atherosclerosis are closely associated with increased oxidative stress and DNA damage in some cells and tissues. However, bone marrow cells, which are physiologically involved in tissue repair have not yet been investigated. In the present study, we evaluated the influence of aging and hypercholesterolemia on oxidative stress, DNA damage and apoptosis in bone marrow cells from young and aged apoE−/− mice compared with age-matched wild-type C57BL/6 (C57) mice, using the comet assay and flow cytometry. The production of both superoxide and hydrogen peroxide in bone marrow cells was higher in young apoE−/− mice than in age-matched C57 mice, and reactive oxygen species were increased in aged C57 and apoE−/− mice. Similar results were observed when we analyzed the DNA damage and apoptosis. Our data showed that both aging and hypercholesterolemia induce the increased production of oxidative stress and consequently DNA damage and apoptosis in bone marrow cells. This study is the first to demonstrate a functionality decrease of the bone marrow, which is a fundamental extra-arterial source of the cells involved in vascular injury repair.
Collapse
|
91
|
Engelfriet PM, Jansen EHJM, Picavet HSJ, Dollé MET. Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev 2013; 35:132-51. [PMID: 23382477 PMCID: PMC4707878 DOI: 10.1093/epirev/mxs011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2013] [Indexed: 12/21/2022] Open
Abstract
Much progress has been made in the past decades in unraveling the mechanisms that are responsible for aging. The discovery that particular gene mutations in experimental species such as yeast, flies, and nematodes are associated with longevity has led to many important insights into pathways that regulate aging processes. However, extrapolating laboratory findings in experimental species to knowledge that is valid for the complexity of human physiology remains a major challenge. Apart from the restricted experimental possibilities, studying aging in humans is further complicated by the development of various age-related diseases. The availability of a set of biomarkers that really reflect underlying aging processes would be of much value in disentangling age-associated pathology from specific aging mechanisms. In this review, we survey the literature to identify promising biochemical markers of aging, with a particular focus on using them in longitudinal studies of aging in humans that entail repeated measurements on easily obtainable material, such as blood samples. Our search strategy was a 2-pronged approach, one focused on general mechanisms of aging and one including studies on clinical biomarkers of age-related diseases.
Collapse
Affiliation(s)
- Peter M. Engelfriet
- Correspondence to Dr. Peter M. Engelfriet, National Institute for Public Health and the Environment (RIVM), Centre for Prevention and Health Services Research, P.O. Box 1, 3720 BA Bilthoven, The Netherlands (e-mail: )
| | | | | | | |
Collapse
|
92
|
Verschoor CP, Johnstone J, Millar J, Dorrington MG, Habibagahi M, Lelic A, Loeb M, Bramson JL, Bowdish DME. Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J Leukoc Biol 2013; 93:633-7. [PMID: 23341539 PMCID: PMC3701116 DOI: 10.1189/jlb.0912461] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Myeloid-derived suppressor cells are increased with age and elevated in donors with a history of cancer; an age-related effect has never been shown in humans. As we age, the composition of our peripheral leukocytes changes dramatically. Many of these alterations contribute to the general immune dysfunction that burdens the elderly, which in turn, contributes to increased susceptibility to disease. MDSCs represent a heterogeneous population of immunosuppressive leukocytes that are elevated in the peripheral blood of cancer patients. Given the relation between cancer incidence and age, this study examined the frequency of peripheral blood CD33(+)HLA-DR(−) MDSCs across three cohorts: healthy adults (19–59 years old), community-dwelling seniors (61–76 years old), and frail elderly (67–99 years old). This analysis is the first to demonstrate that MDSCs and specifically the CD11b(+)CD15(+) MDSC subset are increased with age. Proinflammatory cytokines that are required for the differentiation of MDSCs (e.g., TNF-α, IL-6, and IL-1β) were similarly found to be increased in the serum of the frail elderly. Furthermore, the proportion of MDSCs and the CD11b(+)CD15(+) subset were found to be elevated significantly in elderly donors with a history of cancer. This age-related elevation in the frequency of MDSCs may contribute to the increased cancer incidence that occurs with age. Further investigation into the functional consequences of elevated MDSCs will provide valuable insight into the progression of age-related pathologies.
Collapse
|
93
|
Dalboni SP, Campagnaro BP, Tonini CL, Vasquez EC, Meyrelles SS. The Concurrence of Hypercholesterolemia and Aging Promotes DNA Damage in Apolipoprotein E-Deficient Mice. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojbd.2012.23010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|