51
|
Transcutaneous spinal stimulation alters cortical and subcortical activation patterns during mimicked-standing: A proof-of-concept fMRI study. NEUROIMAGE: REPORTS 2022; 2. [DOI: 10.1016/j.ynirp.2022.100090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
52
|
Stochastic spinal neuromodulation tunes the intrinsic logic of spinal neural networks. Exp Neurol 2022; 355:114138. [DOI: 10.1016/j.expneurol.2022.114138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
|
53
|
Atkinson DA, Steele AG, Manson GA, Sheynin J, Oh J, Gerasimenko YP, Sayenko DG. Characterization of interlimb interaction via transcutaneous spinal stimulation of cervical and lumbar spinal enlargements. J Neurophysiol 2022; 127:1075-1085. [PMID: 35320019 PMCID: PMC8993515 DOI: 10.1152/jn.00456.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/17/2022] [Accepted: 03/21/2022] [Indexed: 11/22/2022] Open
Abstract
The use of transcutaneous electrical spinal stimulation (TSS) to modulate sensorimotor networks after neurological insult has garnered much attention from both researchers and clinicians in recent years. Although many different stimulation paradigms have been reported, the interlimb effects of these neuromodulation techniques have been little studied. The effects of multisite TSS on interlimb sensorimotor function are of particular interest in the context of neurorehabilitation, as these networks have been shown to be important for functional recovery after neurological insult. The present study utilized a condition-test paradigm to investigate the effects of interenlargement TSS on spinal motor excitability in both cervical and lumbosacral motor pools. Additionally, comparison was made between the conditioning effects of lumbosacral and cervical TSS and peripheral stimulation of the fibular nerve and ulnar nerve, respectively. In 16/16 supine, relaxed participants, facilitation of spinally evoked motor responses (sEMRs) in arm muscles was seen in response to lumbosacral TSS or fibular nerve stimulation, whereas facilitation of sEMRs in leg muscles was seen in response to cervical TSS or ulnar nerve stimulation. The decreased latency between TSS- and peripheral nerve-evoked conditioning implicates interlimb networks in the observed facilitation of motor output. The results demonstrate the ability of multisite TSS to engage interlimb networks, resulting in the bidirectional influence of cervical and lumbosacral motor output. The engagement of interlimb networks via TSS of the cervical and lumbosacral enlargements represents a feasible method for engaging spinal sensorimotor networks in clinical populations with compromised motor function.NEW & NOTEWORTHY Bidirectional interlimb modulation of spinal motor excitability can be evoked by transcutaneous spinal stimulation over the cervical and lumbosacral enlargements. Multisite transcutaneous spinal stimulation engages spinal sensorimotor networks thought to be important in the recovery of function after spinal cord injury.
Collapse
Affiliation(s)
- D. A. Atkinson
- Doctor of Physical Therapy program, University of St. Augustine for Health Sciences, Austin, Texas
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - A. G. Steele
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - G. A. Manson
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
- School of Kinesiology and Health Studies, Queen’s University, Kingston, Ontario, Canada
| | - J. Sheynin
- Department of Psychiatry and Behavioral Science, Texas A&M University Health Science Center, Houston, Texas
| | - J. Oh
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| | - Y. P. Gerasimenko
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky
- Department of Physiology, University of Louisville, Louisville, Kentucky
- Pavlov Institute of Physiology, St. Petersburg, Russia
| | - D. G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas
| |
Collapse
|
54
|
Zhong H, Liu E, Kohli P, Perez L, Edgerton VR, Ginsberg D, Gad P, Kreydin E. Noninvasive spinal neuromodulation mitigates symptoms of idiopathic overactive bladder. Bioelectron Med 2022; 8:5. [PMID: 35317851 PMCID: PMC8941742 DOI: 10.1186/s42234-022-00087-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 02/28/2022] [Indexed: 11/14/2022] Open
Abstract
Background Overactive bladder (OAB) affects 12 to 30% of the world’s population. The accompanying urinary urgency, frequency and incontinence can have a profound effect on quality of life, leading to depression, social isolation, avoidance of sexual activity and loss of productivity. Conservative measures such as lifestyle modification and pelvic floor physical therapy are the first line of treatment for overactive bladder. Patients who fail these may go on to take medications, undergo neuromodulation or receive injection of botulinum toxin into the bladder wall. While effective, medications have side effects and suffer from poor adherence. Neuromodulation and botulinum toxin injection are also effective but are invasive and not acceptable to some patients. Methods We have developed a novel transcutaneous spinal cord neuromodulator (SCONE™,) that delivers multifrequency electrical stimulation to the spinal cord without the need for insertion or implantation of stimulating electrodes. Previously, multifrequency transcutaneous stimulation has been demonstrated to penetrate to the spinal cord and lead to motor activation of detrusor and external urethral sphincter muscles. Here, we report on eight patients with idiopathic overactive bladder, who underwent 12 weeks of SCONE™ therapy. Results All patients reported statistically significant clinical improvement in multiple symptoms of overactive bladder, such as urinary urgency, frequency and urge incontinence. In addition, patients reported significant symptomatic improvements as captured by validated clinical surveys. Conclusion SCONE™ therapy represents the first of its kind therapy to treat symptoms of urgency, frequency and urge urinary incontinence in patients with OAB. Trial registration The study was listed on clinicaltrials.gov (NCT03753750).
Collapse
Affiliation(s)
- Hui Zhong
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA.,Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA
| | - Emilie Liu
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA.,Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA.,SpineX Inc., 19509 Astor Pl, Northridge, Los Angeles, CA, 91324, USA
| | - Priya Kohli
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA.,Institute of Urology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Laura Perez
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA.,Institute of Urology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA.,Department of Neurosurgery, University of California, Los Angeles, CA, 90095, USA.,Brain Research Institute, University of California, Los Angeles, CA, 90095, USA.,Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, 08916, Badalona, Barcelona, Spain
| | - David Ginsberg
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA.,Institute of Urology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| | - Parag Gad
- Department of Neurobiology, University of California, Los Angeles, CA, 90095, USA. .,Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA. .,SpineX Inc., 19509 Astor Pl, Northridge, Los Angeles, CA, 91324, USA.
| | - Evgeniy Kreydin
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, CA, 90242, USA.,Institute of Urology, Keck School of Medicine of University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
55
|
Kandhari S, Sharma D, Samuel S, Sharma G, Majumdar P, Edgerton VR, Gad P. Epidural spinal stimulation enables global sensorimotor and autonomic function recovery after complete paralysis: 1st study from India. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2052-2059. [PMID: 35271446 DOI: 10.1109/tnsre.2022.3158393] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
While the loss of sensorimotor and autonomic function often occurs due to multiple trauma and pathologies, spinal cord injury is one of the few traumatic pathologies that severely affects multiple organ systems both upstream and downstream of the injury. Current standard of care therapies primarily maintains health and avoids secondary complications. They do not address the underlying neurological condition. Multiple modalities including spinal neuromodulation have shown promise as potential therapies. The objective of this study was to demonstrate the impact of activity-based neurorehabilitation in presence of epidural spinal stimulation to enable simultaneous global recovery of sensorimotor and autonomic functions in patients with complete motor paralysis due to spinal cord injury. These data are unique in that it quantifies simultaneously changes multiple organ systems within only 2 months of intense activity-based neurorehabilitation when also delivering epidural stimulation consisting of sub-motor threshold stimulation over a period of 12-16 hours/day to enable 'self-training' in 10 patients. Finally, these studies were done in a traditional neurorehabilitation clinical in India using off-the-shelf electrode arrays and pulse generators, thus demonstrating the feasibility of this approach in simultaneously enabling recoveries of multiple physiological organ systems after chronic paralysis and the ability to perform these procedures in a standard, well-controlled clinical environment.
Collapse
|
56
|
Gharooni AA, Kwon BK, Fehlings MG, Boerger TF, Rodrigues-Pinto R, Koljonen PA, Kurpad SN, Harrop JS, Aarabi B, Rahimi-Movaghar V, Wilson JR, Davies BM, Kotter MRN, Guest JD. Developing Novel Therapies for Degenerative Cervical Myelopathy [AO Spine RECODE-DCM Research Priority Number 7]: Opportunities From Restorative Neurobiology. Global Spine J 2022; 12:109S-121S. [PMID: 35174725 PMCID: PMC8859698 DOI: 10.1177/21925682211052920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
STUDY DESIGN Narrative review. OBJECTIVES To provide an overview of contemporary therapies for the James Lind Alliance priority setting partnership for degenerative cervical myelopathy (DCM) question: 'Can novel therapies, including stem-cell, gene, pharmacological and neuroprotective therapies, be identified to improve the health and wellbeing of people living with DCM and slow down disease progression?' METHODS A review of the literature was conducted to outline the pathophysiology of DCM and present contemporary therapies that may hold therapeutic value in 3 broad categories of neuroprotection, neuroregeneration, and neuromodulation. RESULTS Chronic spinal cord compression leads to ischaemia, neuroinflammation, demyelination, and neuronal loss. Surgical intervention may halt progression and improve symptoms, though the majority do not make a full recovery leading to lifelong disability. Neuroprotective agents disrupt deleterious secondary injury pathways, and one agent, Riluzole, has undergone Phase-III investigation in DCM. Although it did not show efficacy on the primary outcome modified Japanese Orthopaedic Association scale, it showed promising results in pain reduction. Regenerative approaches are in the early stage, with one agent, Ibudilast, currently in a phase-III investigation. Neuromodulation approaches aim to therapeutically alter the state of spinal cord excitation by electrical stimulation with a variety of approaches. Case studies using electrical neuromuscular and spinal cord stimulation have shown positive therapeutic utility. CONCLUSION There is limited research into interventions in the 3 broad areas of neuroprotection, neuroregeneration, and neuromodulation for DCM. Contemporary and novel therapies for DCM are now a top 10 priority, and whilst research in these areas is limited in DCM, it is hoped that this review will encourage research into this priority.
Collapse
Affiliation(s)
- Aref-Ali Gharooni
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Brian K. Kwon
- Vancouver Spine Surgery Institute, Department of Orthopedics, The University of British Columbia, Vancouver, BC, Canada
| | - Michael G. Fehlings
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Timothy F. Boerger
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - Ricardo Rodrigues-Pinto
- Spinal Unit (UVM), Department of Orthopaedics, Centro Hospitalar Universitário do Porto - Hospital de Santo António, Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Porto, Portugal
| | - Paul Aarne Koljonen
- Department of Orthopaedics and Traumatology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Shekar N. Kurpad
- Department of Neurosurgery, Medical College of Wisconsin, Wauwatosa, WI, USA
| | - James S. Harrop
- Department of Neurological Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Bizhan Aarabi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Vafa Rahimi-Movaghar
- Department of Neurosurgery, Sina Trauma and Surgery Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Jefferson R. Wilson
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Benjamin M. Davies
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - Mark R. N. Kotter
- Neurosurgery Unit, Department of Clinical Neuroscience, University of Cambridge, UK
| | - James D. Guest
- Department of Neurosurgery and The Miami Project to Cure Paralysis, The Miller School of Medicine, University of Miami, Miami, FL, USA
| |
Collapse
|
57
|
Karamian BA, Siegel N, Nourie B, Serruya MD, Heary RF, Harrop JS, Vaccaro AR. The role of electrical stimulation for rehabilitation and regeneration after spinal cord injury. J Orthop Traumatol 2022; 23:2. [PMID: 34989884 PMCID: PMC8738840 DOI: 10.1186/s10195-021-00623-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 12/27/2021] [Indexed: 12/26/2022] Open
Abstract
Electrical stimulation is used to elicit muscle contraction and can be utilized for neurorehabilitation following spinal cord injury when paired with voluntary motor training. This technology is now an important therapeutic intervention that results in improvement in motor function in patients with spinal cord injuries. The purpose of this review is to summarize the various forms of electrical stimulation technology that exist and their applications. Furthermore, this paper addresses the potential future of the technology.
Collapse
Affiliation(s)
- Brian A Karamian
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA.
| | - Nicholas Siegel
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA
| | - Blake Nourie
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA
| | | | - Robert F Heary
- Department of Neurological Surgery, Hackensack Meridian School of Medicine, Nutley, NJ, 07110, USA
| | - James S Harrop
- Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Alexander R Vaccaro
- Rothman Orthopaedic Institute at Thomas Jefferson University, 925 Chestnut St, 5th Floor, Philadelphia, PA, 19107, USA
| |
Collapse
|
58
|
New Therapy for Spinal Cord Injury: Autologous Genetically-Enriched Leucoconcentrate Integrated with Epidural Electrical Stimulation. Cells 2022; 11:cells11010144. [PMID: 35011706 PMCID: PMC8750549 DOI: 10.3390/cells11010144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
The contemporary strategy for spinal cord injury (SCI) therapy aims to combine multiple approaches to control pathogenic mechanisms of neurodegeneration and stimulate neuroregeneration. In this study, a novel regenerative approach using an autologous leucoconcentrate enriched with transgenes encoding vascular endothelial growth factor (VEGF), glial cell line-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) combined with supra- and sub-lesional epidural electrical stimulation (EES) was tested on mini-pigs similar in morpho-physiological scale to humans. The complex analysis of the spinal cord recovery after a moderate contusion injury in treated mini-pigs compared to control animals revealed: better performance in behavioural and joint kinematics, restoration of electromyography characteristics, and improvement in selected immunohistology features related to cell survivability, synaptic protein expression, and glial reorganization above and below the injury. These results for the first time demonstrate the positive effect of intravenous infusion of autologous genetically-enriched leucoconcentrate producing recombinant molecules stimulating neuroregeneration combined with neuromodulation by translesional multisite EES on the restoration of the post-traumatic spinal cord in mini-pigs and suggest the high translational potential of this novel regenerative therapy for SCI patients.
Collapse
|
59
|
Malone IG, Kelly MN, Nosacka RL, Nash MA, Yue S, Xue W, Otto KJ, Dale EA. Closed-Loop, Cervical, Epidural Stimulation Elicits Respiratory Neuroplasticity after Spinal Cord Injury in Freely Behaving Rats. eNeuro 2022; 9:ENEURO.0426-21.2021. [PMID: 35058311 PMCID: PMC8856702 DOI: 10.1523/eneuro.0426-21.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/08/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Over half of all spinal cord injuries (SCIs) are cervical, which can lead to paralysis and respiratory compromise, causing significant morbidity and mortality. Effective treatments to restore breathing after severe upper cervical injury are lacking; thus, it is imperative to develop therapies to address this. Epidural stimulation has successfully restored motor function after SCI for stepping, standing, reaching, grasping, and postural control. We hypothesized that closed-loop stimulation triggered via healthy hemidiaphragm EMG activity has the potential to elicit functional neuroplasticity in spinal respiratory pathways after cervical SCI (cSCI). To test this, we delivered closed-loop, electrical, epidural stimulation (CLES) at the level of the phrenic motor nucleus (C4) for 3 d after C2 hemisection (C2HS) in freely behaving rats. A 2 × 2 Latin Square experimental design incorporated two treatments, C2HS injury and CLES therapy resulting in four groups of adult, female Sprague Dawley rats: C2HS + CLES (n = 8), C2HS (n = 6), intact + CLES (n = 6), intact (n = 6). In stimulated groups, CLES was delivered for 12-20 h/d for 3 d. After C2HS, 3 d of CLES robustly facilitated the slope of stimulus-response curves of ipsilesional spinal motor evoked potentials (sMEPs) versus nonstimulated controls. To our knowledge, this is the first demonstration of CLES eliciting respiratory neuroplasticity after C2HS in freely behaving animals. These findings suggest CLES as a promising future therapy to address respiratory deficiency associated with cSCI.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
| | - Mia N Kelly
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physical Therapy, University of Florida, Gainesville, FL 32611
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
| | - Sijia Yue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Wei Xue
- Department of Biostatistics, University of Florida, Gainesville, FL 32611
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611
- Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611
- Department of Neurology, University of Florida, Gainesville, FL 32611
- Department of Neuroscience, University of Florida, Gainesville, FL 32611
| | - Erica A Dale
- Breathing Research and Therapeutics Center, University of Florida, Gainesville, FL 32611
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32611
- McKnight Brain Institute, University of Florida, Gainesville, FL 32611
| |
Collapse
|
60
|
Vose AK, Welch JF, Nair J, Dale EA, Fox EJ, Muir GD, Trumbower RD, Mitchell GS. Therapeutic acute intermittent hypoxia: A translational roadmap for spinal cord injury and neuromuscular disease. Exp Neurol 2022; 347:113891. [PMID: 34637802 PMCID: PMC8820239 DOI: 10.1016/j.expneurol.2021.113891] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/03/2021] [Indexed: 01/03/2023]
Abstract
We review progress towards greater mechanistic understanding and clinical translation of a strategy to improve respiratory and non-respiratory motor function in people with neuromuscular disorders, therapeutic acute intermittent hypoxia (tAIH). In 2016 and 2020, workshops to create and update a "road map to clinical translation" were held to help guide future research and development of tAIH to restore movement in people living with chronic, incomplete spinal cord injuries. After briefly discussing the pioneering, non-targeted basic research inspiring this novel therapeutic approach, we then summarize workshop recommendations, emphasizing critical knowledge gaps, priorities for future research effort, and steps needed to accelerate progress as we evaluate the potential of tAIH for routine clinical use. Highlighted areas include: 1) greater mechanistic understanding, particularly in non-respiratory motor systems; 2) optimization of tAIH protocols to maximize benefits; 3) identification of combinatorial treatments that amplify plasticity or remove plasticity constraints, including task-specific training; 4) identification of biomarkers for individuals most/least likely to benefit from tAIH; 5) assessment of long-term tAIH safety; and 6) development of a simple, safe and effective device to administer tAIH in clinical and home settings. Finally, we update ongoing clinical trials and recent investigations of tAIH in SCI and other clinical disorders that compromise motor function, including ALS, multiple sclerosis, and stroke.
Collapse
Affiliation(s)
- Alicia K Vose
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Joseph F Welch
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Jayakrishnan Nair
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Erica A Dale
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, FL 32610, USA
| | - Emily J Fox
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA; Brooks Rehabilitation, Jacksonville, FL 32216, USA
| | - Gillian D Muir
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK S7N 5B4, Canada
| | - Randy D Trumbower
- Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, USA
| | - Gordon S Mitchell
- Breathing Research and Therapeutics Center, Department of Physical Therapy and McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
61
|
Steele AG, Atkinson DA, Varghese B, Oh J, Markley RL, Sayenko DG. Characterization of Spinal Sensorimotor Network Using Transcutaneous Spinal Stimulation during Voluntary Movement Preparation and Performance. J Clin Med 2021; 10:jcm10245958. [PMID: 34945253 PMCID: PMC8709482 DOI: 10.3390/jcm10245958] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/10/2021] [Accepted: 12/15/2021] [Indexed: 12/12/2022] Open
Abstract
Transcutaneous electrical spinal stimulation (TSS) can be used to selectively activate motor pools based on their anatomical arrangements in the lumbosacral enlargement. These spatial patterns of spinal motor activation may have important clinical implications, especially when there is a need to target specific muscle groups. However, our understanding of the net effects and interplay between the motor pools projecting to agonist and antagonist muscles during the preparation and performance of voluntary movements is still limited. The present study was designed to systematically investigate and differentiate the multi-segmental convergence of supraspinal inputs on the lumbosacral neural network before and during the execution of voluntary leg movements in neurologically intact participants. During the experiments, participants (N = 13) performed isometric (1) knee flexion and (2) extension, as well as (3) plantarflexion and (4) dorsiflexion. TSS consisting of a pair pulse with 50 ms interstimulus interval was delivered over the T12-L1 vertebrae during the muscle contractions, as well as within 50 to 250 ms following the auditory or tactile stimuli, to characterize the temporal profiles of net spinal motor output during movement preparation. Facilitation of evoked motor potentials in the ipsilateral agonists and contralateral antagonists emerged as early as 50 ms following the cue and increased prior to movement onset. These results suggest that the descending drive modulates the activity of the inter-neuronal circuitry within spinal sensorimotor networks in specific, functionally relevant spatiotemporal patterns, which has a direct implication for the characterization of the state of those networks in individuals with neurological conditions.
Collapse
Affiliation(s)
- Alexander G. Steele
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Department of Electrical and Computer Engineering, University of Houston, E413 Engineering Bldg 2, 4726 Calhoun Road, Houston, TX 77204, USA
| | - Darryn A. Atkinson
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- College of Rehabilitative Sciences, University of St. Augustine for Health Sciences, 5401 La Crosse Avenue, Austin, TX 78739, USA
| | - Blesson Varghese
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Jeonghoon Oh
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Rachel L. Markley
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, 6550 Fannin Street, Houston, TX 77030, USA; (A.G.S.); (D.A.A.); (B.V.); (J.O.); (R.L.M.)
- Correspondence: ; Tel.: +1-713-363-9910
| |
Collapse
|
62
|
Spinal cord imaging markers and recovery of standing with epidural stimulation in individuals with clinically motor complete spinal cord injury. Exp Brain Res 2021; 240:279-288. [PMID: 34854934 DOI: 10.1007/s00221-021-06272-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/20/2021] [Indexed: 02/04/2023]
Abstract
Spinal cord epidural stimulation (scES) is an intervention to restore motor function in those with severe spinal cord injury (SCI). Spinal cord lesion characteristics assessed via magnetic resonance imaging (MRI) may contribute to understand motor recovery. This study assessed relationships between standing ability with scES and spared spinal cord tissue characteristics at the lesion site. We hypothesized that the amount of lateral spared cord tissue would be related to independent extension in the ipsilateral lower limb. Eleven individuals with chronic, clinically motor complete SCI underwent spinal cord MRI, and were subsequently implanted with scES. Standing ability and lower limb activation patterns were assessed during an overground standing experiment with scES. This assessment occurred prior to any activity-based intervention with scES. Lesion hyperintensity was segmented from T2 axial images, and template-based analysis was used to estimate spared tissue in anterior, posterior, right, and left spinal cord regions. Regression analysis was used to assess relationships between imaging and standing outcomes. Total volume of spared tissue was related to left (p = 0.007), right (p = 0.005), and bilateral (p = 0.011) lower limb extension. Spared tissue in the left cord region was related to left lower limb extension (p = 0.019). A positive trend (p = 0.138) was also observed between right spared cord tissue and right lower limb extension. In this study, MRI measures of spared spinal cord tissue were significantly related to standing outcomes with scES. These preliminary results warrant future investigation of roles of supraspinal input and MRI-detected spared spinal cord tissue on lower limb motor responsiveness to scES.
Collapse
|
63
|
Linde MB, Thoreson AR, Lopez C, Gill ML, Veith DD, Hale RF, Calvert JS, Grahn PJ, Fautsch KJ, Sayenko DG, Zhao KD. Quantitative Assessment of Clinician Assistance During Dynamic Rehabilitation Using Force Sensitive Resistors. FRONTIERS IN REHABILITATION SCIENCES 2021; 2:757828. [PMID: 36188812 PMCID: PMC9397738 DOI: 10.3389/fresc.2021.757828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/25/2021] [Indexed: 02/05/2023]
Abstract
Background: Neuromodulation using epidural electrical stimulation (EES) has shown functional restoration in humans with chronic spinal cord injury (SCI). EES during body weight supported treadmill training (BWSTT) enhanced stepping performance in clinical trial participants with paraplegia. Unfortunately, tools are lacking in availability to quantify clinician assistance during BWSTT with and without EES. Force sensitive resistors (FSRs) have previously quantified clinician assistance during static standing; however, dynamic tasks have not been addressed. Objective: To determine the validity of FSRs in measurements of force and duration to quantify clinician assistance and participant progression during BWSTT with EES in participants with SCI. Design: A feasibility study to determine the effectiveness of EES to restore function in individuals with SCI. Methods: Two male participants with chronic SCI were enrolled in a pilot phase clinical trial. Following implantation of an EES system in the lumbosacral spinal cord, both participants underwent 12 months of BWSTT with EES. At monthly intervals, FSRs were positioned on participants' knees to quantity forces applied by clinicians to achieve appropriate mechanics of stepping during BWSTT. The FSRs were validated on the benchtop using a leg model instrumented with a multiaxial load cell as the gold standard. The outcomes included clinician-applied force duration measured by FSR sensors and changes in applied forces indicating progression over the course of rehabilitation. Results: The force sensitive resistors validation revealed a proportional bias in their output. Loading required for maximal assist training exceeded the active range of the FSRs but were capable of capturing changes in clinician assist levels. The FSRs were also temporally responsive which increased utility for accurately assessing training contact time. The FSRs readings were able to capture independent stance for both participants by study end. There was minimal to no applied force bilaterally for participant 1 and unilaterally for participant 2. Conclusions: Clinician assistance applied at the knees as measured through FSRs during dynamic rehabilitation and EES (both on and off) effectively detected point of contact and duration of forces; however, it lacks accuracy of magnitude assessment. The reduced contact time measured through FSRs related to increased stance duration, which objectively identified independence in stepping during EES-enabled BWSTT following SCI.
Collapse
Affiliation(s)
- Margaux B. Linde
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Andrew R. Thoreson
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Megan L. Gill
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Daniel D. Veith
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Rena F. Hale
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Peter J. Grahn
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kalli J. Fautsch
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Dimitry G. Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, United States
| | - Kristin D. Zhao
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Kristin D. Zhao
| |
Collapse
|
64
|
Hachmann JT, Yousak A, Wallner JJ, Gad PN, Edgerton VR, Gorgey AS. Epidural spinal cord stimulation as an intervention for motor recovery after motor complete spinal cord injury. J Neurophysiol 2021; 126:1843-1859. [PMID: 34669485 DOI: 10.1152/jn.00020.2021] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury (SCI) commonly results in permanent loss of motor, sensory, and autonomic function. Recent clinical studies have shown that epidural spinal cord stimulation may provide a beneficial adjunct for restoring lower extremity and other neurological functions. Herein, we review the recent clinical advances of lumbosacral epidural stimulation for restoration of sensorimotor function in individuals with motor complete SCI and we discuss the putative neural pathways involved in this promising neurorehabilitative approach. We focus on three main sections: review recent clinical results for locomotor restoration in complete SCI; discuss the contemporary understanding of electrical neuromodulation and signal transduction pathways involved in spinal locomotor networks; and review current challenges of motor system modulation and future directions toward integrative neurorestoration. The current understanding is that initial depolarization occurs at the level of large diameter dorsal root proprioceptive afferents that when integrated with interneuronal and latent residual supraspinal translesional connections can recruit locomotor centers and augment downstream motor units. Spinal epidural stimulation can initiate excitability changes in spinal networks and supraspinal networks. Different stimulation parameters can facilitate standing or stepping, and it may also have potential for augmenting myriad other sensorimotor and autonomic functions. More comprehensive investigation of the mechanisms that mediate the transformation of dysfunctional spinal networks to higher functional states with a greater focus on integrated systems-based control system may reveal the key mechanisms underlying neurological augmentation and motor restoration after severe paralysis.
Collapse
Affiliation(s)
- Jan T Hachmann
- Department of Neurological Surgery, Virginia Commonwealth University, Richmond, Virginia
| | - Andrew Yousak
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Josephine J Wallner
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
| | - Parag N Gad
- Department of Neurobiology, University of California, Los Angeles, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Fundación Institut Guttmann, Institut Universitari de Neurorehabilitació Badalona, Barcelona, Spain
| | - Ashraf S Gorgey
- Spinal Cord Injury and Disorders Center, Hunter Holmes McGuire VAMC, Richmond, Virginia
- Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
65
|
Calvert JS, Gill ML, Linde MB, Veith DD, Thoreson AR, Lopez C, Lee KH, Gerasimenko YP, Edgerton VR, Lavrov IA, Zhao KD, Grahn PJ, Sayenko DG. Voluntary Modulation of Evoked Responses Generated by Epidural and Transcutaneous Spinal Stimulation in Humans with Spinal Cord Injury. J Clin Med 2021; 10:jcm10214898. [PMID: 34768418 PMCID: PMC8584516 DOI: 10.3390/jcm10214898] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 10/20/2021] [Accepted: 10/20/2021] [Indexed: 12/29/2022] Open
Abstract
Transcutaneous (TSS) and epidural spinal stimulation (ESS) are electrophysiological techniques that have been used to investigate the interactions between exogenous electrical stimuli and spinal sensorimotor networks that integrate descending motor signals with afferent inputs from the periphery during motor tasks such as standing and stepping. Recently, pilot-phase clinical trials using ESS and TSS have demonstrated restoration of motor functions that were previously lost due to spinal cord injury (SCI). However, the spinal network interactions that occur in response to TSS or ESS pulses with spared descending connections across the site of SCI have yet to be characterized. Therefore, we examined the effects of delivering TSS or ESS pulses to the lumbosacral spinal cord in nine individuals with chronic SCI. During low-frequency stimulation, participants were instructed to relax or attempt maximum voluntary contraction to perform full leg flexion while supine. We observed similar lower-extremity neuromusculature activation during TSS and ESS when performed in the same participants while instructed to relax. Interestingly, when participants were instructed to attempt lower-extremity muscle contractions, both TSS- and ESS-evoked motor responses were significantly inhibited across all muscles. Participants with clinically complete SCI tested with ESS and participants with clinically incomplete SCI tested with TSS demonstrated greater ability to modulate evoked responses than participants with motor complete SCI tested with TSS, although this was not statistically significant due to a low number of subjects in each subgroup. These results suggest that descending commands combined with spinal stimulation may increase activity of inhibitory interneuronal circuitry within spinal sensorimotor networks in individuals with SCI, which may be relevant in the context of regaining functional motor outcomes.
Collapse
Affiliation(s)
- Jonathan S. Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA;
| | - Megan L. Gill
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Margaux B. Linde
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Daniel D. Veith
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Andrew R. Thoreson
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Cesar Lopez
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
| | - Kendall H. Lee
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of Russian Academy of Sciences, 199034 St. Petersburg, Russia;
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
| | - Victor R. Edgerton
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Department of Neurobiology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA 90095, USA
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Institut Guttmann, Hospital de Neurorehabilitació, Institut Universitari Adscrit a la Universitat Autònoma de Barcelona, 08916 Badalona, Spain
- Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo 2007, Australia
| | - Igor A. Lavrov
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Kristin D. Zhao
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Physiology and Biomedical Engineering, Rochester, MN 55905, USA
| | - Peter J. Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN 55905, USA; (M.L.G.); (M.B.L.); (D.D.V.); (A.R.T.); (C.L.); (K.H.L.); (K.D.Z.); (P.J.G.)
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA;
| | - Dimitry G. Sayenko
- Center for Neuroregeneration, Department of Neurosurgery, Houston Methodist Research Institute, Houston, TX 77030, USA
- Correspondence: ; Tel.: +1-713-363-7949
| |
Collapse
|
66
|
Siddiqui AM, Islam R, Cuellar CA, Silvernail JL, Knudsen B, Curley DE, Strickland T, Manske E, Suwan PT, Latypov T, Akhmetov N, Zhang S, Summer P, Nesbitt JJ, Chen BK, Grahn PJ, Madigan NN, Yaszemski MJ, Windebank AJ, Lavrov IA. Newly regenerated axons via scaffolds promote sub-lesional reorganization and motor recovery with epidural electrical stimulation. NPJ Regen Med 2021; 6:66. [PMID: 34671050 PMCID: PMC8528837 DOI: 10.1038/s41536-021-00176-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/31/2021] [Indexed: 01/10/2023] Open
Abstract
Here, we report the effect of newly regenerated axons via scaffolds on reorganization of spinal circuitry and restoration of motor functions with epidural electrical stimulation (EES). Motor recovery was evaluated for 7 weeks after spinal transection and following implantation with scaffolds seeded with neurotrophin producing Schwann cell and with rapamycin microspheres. Combined treatment with scaffolds and EES-enabled stepping led to functional improvement compared to groups with scaffold or EES, although, the number of axons across scaffolds was not different between groups. Re-transection through the scaffold at week 6 reduced EES-enabled stepping, still demonstrating better performance compared to the other groups. Greater synaptic reorganization in the presence of regenerated axons was found in group with combined therapy. These findings suggest that newly regenerated axons through cell-containing scaffolds with EES-enabled motor training reorganize the sub-lesional circuitry improving motor recovery, demonstrating that neuroregenerative and neuromodulatory therapies cumulatively enhancing motor function after complete SCI.
Collapse
Affiliation(s)
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Carlos A Cuellar
- School of Sport Sciences, Universidad Anáhuac México, Campus Norte, Huixquilucan, State of Mexico, Mexico
| | | | - Bruce Knudsen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Dallece E Curley
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Brown University, Providence, Rhode Island, USA
| | | | - Emilee Manske
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Neuroscience, Scripps College, Claremont, CA, USA
| | - Parita T Suwan
- Paracelsus Medical Private University, Salzburg, Austria
| | - Timur Latypov
- Division of Brain, Imaging, and Behaviour - Systems Neuroscience, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nafis Akhmetov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Shuya Zhang
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Priska Summer
- Paracelsus Medical Private University, Salzburg, Austria
| | | | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
67
|
Shinozaki M, Nagoshi N, Nakamura M, Okano H. Mechanisms of Stem Cell Therapy in Spinal Cord Injuries. Cells 2021; 10:cells10102676. [PMID: 34685655 PMCID: PMC8534136 DOI: 10.3390/cells10102676] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/28/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Every year, 0.93 million people worldwide suffer from spinal cord injury (SCI) with irretrievable sequelae. Rehabilitation, currently the only available treatment, does not restore damaged tissues; therefore, the functional recovery of patients remains limited. The pathophysiology of spinal cord injuries is heterogeneous, implying that potential therapeutic targets differ depending on the time of injury onset, the degree of injury, or the spinal level of injury. In recent years, despite a significant number of clinical trials based on various types of stem cells, these aspects of injury have not been effectively considered, resulting in difficult outcomes of trials. In a specialty such as cancerology, precision medicine based on a patient’s characteristics has brought indisputable therapeutic advances. The objective of the present review is to promote the development of precision medicine in the field of SCI. Here, we first describe the multifaceted pathophysiology of SCI, with the temporal changes after injury, the characteristics of the chronic phase, and the subtypes of complete injury. We then detail the appropriate targets and related mechanisms of the different types of stem cell therapy for each pathological condition. Finally, we highlight the great potential of stem cell therapy in cervical SCI.
Collapse
Affiliation(s)
- Munehisa Shinozaki
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Narihito Nagoshi
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Masaya Nakamura
- Department of Orthopedic Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (N.N.); (M.N.)
| | - Hideyuki Okano
- Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan;
- Correspondence:
| |
Collapse
|
68
|
Beck L, Veith D, Linde M, Gill M, Calvert J, Grahn P, Garlanger K, Husmann D, Lavrov I, Sayenko D, Strommen J, Lee K, Zhao K. Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans. J Spinal Cord Med 2021; 44:800-805. [PMID: 32202485 PMCID: PMC8477931 DOI: 10.1080/10790268.2020.1739894] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Introduction: Spinal cord injury (SCI) often results in chronic secondary health conditions related to autonomic and metabolic dysfunction. Epidural electrical stimulation (EES) combined with task-specific training has been shown to enable motor function in individuals with chronic paralysis. The reported effects of EES on secondary health conditions, such as bladder function and body composition, are limited. We report the impact of EES on SCI-related secondary health changes in bladder function and body composition.Methods: Two participants with motor and sensory complete SCI performed 6 months of rehabilitation without EES followed by 12 months of task-specific training with EES after implantation of a 16-electrode array on the surface of the lumbosacral spinal cord. Participants performed three days of training per week in the laboratory, and additionally performed task-specific activities with EES at home during this time frame. Changes in bladder and body composition were recorded via clinically-available testing of neurogenic bladder functionality and dual-energy X-ray absorptiometry, respectively.Results: In one participant, we observed an increase in episodes of urinary incontinence with worsening bladder compliance and pressures at the end of the study. Bone mineral density changes were insignificant in both participants; however, one participant showed a substantial increase in lean mass (+9.1 kg; 6 months of training) via redistribution of body fat through an android/gynoid ratio reduction (-0.15; 6 months of training).Conclusion: EES optimized for standing and stepping may negatively impact neurogenic bladder functionality. Close monitoring of bladder health is imperative to prevent undesirable bladder compliance, which can lead to upper urinary tract deteriorations. Conversely, EES may serve as an adjunct tool with regular exercise modalities to improve body composition through activation of musculature innervated by spinal segments that are below the SCI.
Collapse
Affiliation(s)
- Lisa Beck
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA,Correspondence to: Lisa Beck, College of Medicine, Clinic Nurse Specialist, Spinal Cord Injury Program, Rehabilitation Medicine Research Center, Physical Medicine and Rehabilitation, Rochester, Minnesota, USA. Phone: 507-255-0177.
| | - Daniel Veith
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Margaux Linde
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Megan Gill
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - Peter Grahn
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA,Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristin Garlanger
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Douglas Husmann
- Department of Urology, Mayo Clinic, Rochester, Minnesota, USA
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Dimitry Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Research Institute, Houston, Texas, USA
| | - Jeffrey Strommen
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA
| | - Kendall Lee
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Kristin Zhao
- Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, Minnesota, USA,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
69
|
Jervis Rademeyer H, Gauthier C, Masani K, Pakosh M, Musselman KE. The effects of epidural stimulation on individuals living with spinal cord injury or disease: a scoping review. PHYSICAL THERAPY REVIEWS 2021. [DOI: 10.1080/10833196.2021.1962051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Hope Jervis Rademeyer
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
| | - Cindy Gauthier
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| | - Kei Masani
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Maureen Pakosh
- Library and Information Services, University Health Network - Toronto Rehabilitation Institute, Toronto, ON, Canada
| | - Kristin E. Musselman
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- KITE, Toronto Rehabilitation Institute - University Health Network, Toronto, ON, Canada
- Department of Physical Therapy, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
70
|
McHugh C, Taylor C, Mockler D, Fleming N. Epidural spinal cord stimulation for motor recovery in spinal cord injury: A systematic review. NeuroRehabilitation 2021; 49:1-22. [PMID: 33967072 DOI: 10.3233/nre-210093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Epidural spinal cord stimulation (ESCS) emerged as a technology for eliciting motor function in the 1990's and was subsequently employed therapeutically in the population with spinal cord injury (SCI). Despite a considerable number of ESCS studies, a comprehensive systematic review of ESCS remains unpublished. OBJECTIVE The current review of the existing literature evaluated the efficacy of ESCS for improving motor function in individuals with SCI. METHODS A search for ESCS studies was performed using the following databases: Medline (Ovid), Web of Science and Embase. Furthermore, to maximize results, an inverse manual search of references cited by identified articles was also performed. Studies published between January 1995 and June 2020 were included. The search was constructed around the following key terms: Spinal cord stimulation, SCI and motor response generation. RESULTS A total of 3435 articles were initially screened, of which 18 met the inclusion criteria. The total sample comprised of 24 participants with SCI. All studies reported some measure of improvement in motor activity with ESCS, with 17 reporting altered EMG responses. Functional improvements were reported in stepping (n = 11) or muscle force (n = 4). Only 5 studies assessed ASIA scale pre- and post-intervention, documenting improved classification in 4 of 11 participants. Appraisal using the modified Downs and Black quality checklist determined that reviewed studies were of poor quality. Due to heterogeneity of outcome measures utilized in studies reviewed, a meta-analysis of data was not possible. CONCLUSION While the basic science is encouraging, the therapeutic efficacy of ESCS remains inconclusive.
Collapse
Affiliation(s)
- Conor McHugh
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Clare Taylor
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - David Mockler
- John Stearne Medical Library, Trinity Centre for Health Sciences, School of Medicine, St. James's Hospital, Dublin, Ireland
| | - Neil Fleming
- Human Performance Laboratory, Department of Anatomy, School of Medicine, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
71
|
Ibáñez J, Angeli CA, Harkema SJ, Farina D, Rejc E. Recruitment order of motor neurons promoted by epidural stimulation in individuals with spinal cord injury. J Appl Physiol (1985) 2021; 131:1100-1110. [PMID: 34382840 PMCID: PMC8461808 DOI: 10.1152/japplphysiol.00293.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Spinal cord epidural stimulation (scES) combined with activity-based training can promote motor function recovery in individuals with motor complete spinal cord injury (SCI). The characteristics of motor neuron recruitment, which influence different aspects of motor control, are still unknown when motor function is promoted by scES. Here, we enrolled five individuals with chronic motor complete SCI implanted with a scES unit to study the recruitment order of motor neurons during standing enabled by scES. We recorded high-density electromyography (HD-EMG) signals on the vastus lateralis muscle, and inferred the order of recruitment of motor neurons from the relation between amplitude and conduction velocity of the scES-evoked EMG responses along the muscle fibers. Conduction velocity of scES-evoked responses was modulated over time, while stimulation parameters and standing condition remained constant, with average values ranging between 3.0±0.1 and 4.4±0.3 m/s. We found that the human spinal circuitry receiving epidural stimulation can promote both orderly (according to motor neuron size) and inverse trends of motor neuron recruitment, and that the engagement of spinal networks promoting rhythmic activity may favor orderly recruitment trends. Conversely, the different recruitment trends did not appear to be related with time since injury or scES implant, nor to the ability to achieve independent knees extension, nor to the conduction velocity values. The proposed approach can be implemented to investigate the effects of stimulation parameters and training-induced neural plasticity on the characteristics of motor neuron recruitment order, contributing to improve mechanistic understanding and effectiveness of epidural stimulation-promoted motor recovery after SCI.
Collapse
Affiliation(s)
- Jaime Ibáñez
- Department of Bioengineering, Imperial College London, London, United Kingdom.,Department of Clinical and Movement Disorders, Institute of Neurology, University College London, London, United Kingdom
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States.,Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States.,Department of Bioengineering, University of Louisville, Louisville, Kentucky, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, Kentucky, United States.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, United States.,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, United States
| |
Collapse
|
72
|
Malone IG, Nosacka RL, Nash MA, Otto KJ, Dale EA. Electrical epidural stimulation of the cervical spinal cord: implications for spinal respiratory neuroplasticity after spinal cord injury. J Neurophysiol 2021; 126:607-626. [PMID: 34232771 PMCID: PMC8409953 DOI: 10.1152/jn.00625.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 06/07/2021] [Accepted: 06/27/2021] [Indexed: 01/15/2023] Open
Abstract
Traumatic cervical spinal cord injury (cSCI) can lead to damage of bulbospinal pathways to the respiratory motor nuclei and consequent life-threatening respiratory insufficiency due to respiratory muscle paralysis/paresis. Reports of electrical epidural stimulation (EES) of the lumbosacral spinal cord to enable locomotor function after SCI are encouraging, with some evidence of facilitating neural plasticity. Here, we detail the development and success of EES in recovering locomotor function, with consideration of stimulation parameters and safety measures to develop effective EES protocols. EES is just beginning to be applied in other motor, sensory, and autonomic systems; however, there has only been moderate success in preclinical studies aimed at improving breathing function after cSCI. Thus, we explore the rationale for applying EES to the cervical spinal cord, targeting the phrenic motor nucleus for the restoration of breathing. We also suggest cellular/molecular mechanisms by which EES may induce respiratory plasticity, including a brief examination of sex-related differences in these mechanisms. Finally, we suggest that more attention be paid to the effects of specific electrical parameters that have been used in the development of EES protocols and how that can impact the safety and efficacy for those receiving this therapy. Ultimately, we aim to inform readers about the potential benefits of EES in the phrenic motor system and encourage future studies in this area.
Collapse
Affiliation(s)
- Ian G Malone
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
| | - Rachel L Nosacka
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Marissa A Nash
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
| | - Kevin J Otto
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, Florida
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- Department of Neurology, University of Florida, Gainesville, Florida
- Department of Materials Science and Engineering, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| | - Erica A Dale
- Breathing Research and Therapeutics Center (BREATHE), University of Florida, Gainesville, Florida
- Department of Physiology and Functional Genomics, University of Florida, Gainesville, Florida
- Department of Neuroscience, University of Florida, Gainesville, Florida
- McKnight Brain Institute, University of Florida, Gainesville, Florida
| |
Collapse
|
73
|
Herrity AN, Hubscher CH, Angeli CA, Boakye M, Harkema SJ. Impact of long-term epidural electrical stimulation enabled task-specific training on secondary conditions of chronic paraplegia in two humans. J Spinal Cord Med 2021; 44:513-514. [PMID: 34270394 PMCID: PMC8288117 DOI: 10.1080/10790268.2021.1918967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- April N. Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA,Correspondence to: April N. Herrity. E-mail:
| | - Charles H. Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, Kentucky, USA
| | - Claudia A. Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Bioengineering, University of Louisville, Louisville, Kentucky, USA
| | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, Kentucky, USA,Department of Neurological Surgery, University of Louisville, Louisville, Kentucky, USA
| |
Collapse
|
74
|
Kim M, Moon Y, Hunt J, McKenzie KA, Horin A, McGuire M, Kim K, Hargrove LJ, Jayaraman A. A Novel Technique to Reject Artifact Components for Surface EMG Signals Recorded During Walking With Transcutaneous Spinal Cord Stimulation: A Pilot Study. Front Hum Neurosci 2021; 15:660583. [PMID: 34149379 PMCID: PMC8209256 DOI: 10.3389/fnhum.2021.660583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 05/06/2021] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous spinal cord electrical stimulation (tSCS) is an emerging technology that targets to restore functionally integrated neuromuscular control of gait. The purpose of this study was to demonstrate a novel filtering method, Artifact Component Specific Rejection (ACSR), for removing artifacts induced by tSCS from surface electromyogram (sEMG) data for investigation of muscle response during walking when applying spinal stimulation. Both simulated and real tSCS contaminated sEMG data from six stroke survivors were processed using ACSR and notch filtering, respectively. The performance of the filters was evaluated with data collected in various conditions (e.g., simulated artifacts contaminating sEMG in multiple degrees, various tSCS intensities in five lower-limb muscles of six participants). In the simulation test, after applying the ACSR filter, the contaminated-signal was well matched with the original signal, showing a high correlation (r = 0.959) and low amplitude difference (normalized root means square error = 0.266) between them. In the real tSCS contaminated data, the ACSR filter showed superior performance on reducing the artifacts (96% decrease) over the notch filter (25% decrease). These results indicate that ACSR filtering is capable of eliminating artifacts from sEMG collected during tSCS application, improving the precision of quantitative analysis of muscle activity.
Collapse
Affiliation(s)
- Minjae Kim
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Interaction and Robotics Research Center, Korea Institute of Science and Technology (KIST), Seoul, South Korea
| | - Yaejin Moon
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Jasmine Hunt
- Shirley Ryan AbilityLab, Chicago, IL, United States
| | | | - Adam Horin
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Matt McGuire
- Shirley Ryan AbilityLab, Chicago, IL, United States
| | - Keehoon Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Levi J Hargrove
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Arun Jayaraman
- Shirley Ryan AbilityLab, Chicago, IL, United States.,Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
75
|
Srivastava E, Singh A, Kumar A. Spinal cord regeneration: A brief overview of the present scenario and a sneak peek into the future. Biotechnol J 2021; 16:e2100167. [PMID: 34080314 DOI: 10.1002/biot.202100167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/17/2021] [Accepted: 05/28/2021] [Indexed: 01/01/2023]
Abstract
The central nervous system (CNS) portrays appreciable complexity in developing from a neural tube to controlling major functions of the body and orchestrated co-ordination in maintaining its homeostasis. Any insult or pathology to such an organized tissue leads to a plethora of events ranging from local hypoxia, ischemia, oxidative stress to reactive gliosis and scarring. Despite unravelling the pathophysiology of spinal cord injury (SCI) and linked cellular and molecular mechanism, the over exhaustive inflammatory response at the site of injury, limited intrinsic regeneration capability of CNS, and the dual role of glial scar halts the expected accomplishment. The review discusses major current treatment approaches for traumatic SCI, addressing their limitation and scope for further development in the field under three main categories- neuroprotection, neuro-regeneration, and neuroplasticity. We further propose that a multi-disciplinary combinatorial treatment approach exploring any two or all three heads simultaneously might alleviate the inhibitory milieu and ameliorate functional recovery.
Collapse
Affiliation(s)
- Ekta Srivastava
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anamika Singh
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Environmental Science and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
76
|
Soloukey S, de Rooij JD, Osterthun R, Drenthen J, De Zeeuw CI, Huygen FJPM, Harhangi BS. The Dorsal Root Ganglion as a Novel Neuromodulatory Target to Evoke Strong and Reproducible Motor Responses in Chronic Motor Complete Spinal Cord Injury: A Case Series of Five Patients. Neuromodulation 2021; 24:779-793. [PMID: 32706445 PMCID: PMC8359424 DOI: 10.1111/ner.13235] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 06/11/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Current strategies for motor recovery after spinal cord injury (SCI) aim to facilitate motor performance through modulation of afferent input to the spinal cord using epidural electrical stimulation (EES). The dorsal root ganglion (DRG) itself, the first relay station of these afferent inputs, has not yet been targeted for this purpose. The current study aimed to determine whether DRG stimulation can facilitate clinically relevant motor response in motor complete SCI. MATERIALS AND METHODS Five patients with chronic motor complete SCI were implanted with DRG leads placed bilaterally on level L4 during five days. Based on personalized stimulation protocols, we aimed to evoke dynamic (phase 1) and isotonic (phase 2) motor responses in the bilateral quadriceps muscles. On days 1 and 5, EMG-measurements (root mean square [RMS] values) and clinical muscle force measurements (MRC scoring) were used to measure motor responses and their reproducibility. RESULTS In all patients, DRG-stimulation evoked significant phase 1 and phase 2 motor responses with an MRC ≥4 for all upper leg muscles (rectus femoris, vastus lateralis, vastus medialis, and biceps femoris) (p < 0.05 and p < 0.01, respectively), leading to a knee extension movement strong enough to facilitate assisted weight bearing. No significant differences in RMS values were observed between days 1 and 5 of the study, indicating that motor responses were reproducible. CONCLUSION The current paper provides first evidence that bilateral L4 DRG stimulation can evoke reproducible motor responses in the upper leg, sufficient for assisted weight bearing in patients with chronic motor complete SCI. As such, a new target for SCI treatment has surfaced, using existing stimulation devices, making the technique directly clinically accessible.
Collapse
Affiliation(s)
- Sadaf Soloukey
- Department of NeurosurgeryErasmus MC RotterdamRotterdamThe Netherlands
- Department of NeuroscienceErasmus MC RotterdamRotterdamThe Netherlands
| | - Judith D. de Rooij
- Center for Pain Medicine, Department of AnesthesiologyErasmus MC RotterdamRotterdamThe Netherlands
- Unit of Physiotherapy, Department of OrthopedicsErasmus MC RotterdamRotterdamThe Netherlands
| | - Rutger Osterthun
- Department of Rehabilitation MedicineErasmus MC RotterdamRotterdamThe Netherlands
- Spinal Cord Injury DepartmentRijndam Rehabilitation CenterRotterdamThe Netherlands
| | - Judith Drenthen
- Department of Clinical NeurophysiologyErasmus MC RotterdamRotterdamThe Netherlands
| | - Chris I. De Zeeuw
- Department of NeuroscienceErasmus MC RotterdamRotterdamThe Netherlands
- Netherlands Institute for NeuroscienceRoyal Dutch Academy for Arts and SciencesAmsterdamThe Netherlands
| | - Frank J. P. M. Huygen
- Center for Pain Medicine, Department of AnesthesiologyErasmus MC RotterdamRotterdamThe Netherlands
| | | |
Collapse
|
77
|
Tapias Pérez J. Spinal cord stimulation: beyond pain management. NEUROLOGÍA (ENGLISH EDITION) 2021; 37:586-595. [DOI: 10.1016/j.nrleng.2019.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/20/2019] [Indexed: 12/23/2022] Open
|
78
|
Mesbah S, Ball T, Angeli C, Rejc E, Dietz N, Ugiliweneza B, Harkema S, Boakye M. Predictors of volitional motor recovery with epidural stimulation in individuals with chronic spinal cord injury. Brain 2021; 144:420-433. [PMID: 33367527 DOI: 10.1093/brain/awaa423] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/25/2020] [Accepted: 09/30/2020] [Indexed: 12/25/2022] Open
Abstract
Spinal cord epidural stimulation (scES) has enabled volitional lower extremity movements in individuals with chronic and clinically motor complete spinal cord injury and no clinically detectable brain influence. The aim of this study was to understand whether the individuals' neuroanatomical characteristics or positioning of the scES electrode were important factors influencing the extent of initial recovery of lower limb voluntary movements in those with clinically motor complete paralysis. We hypothesized that there would be significant correlations between the number of joints moved during attempts with scES prior to any training interventions and the amount of cervical cord atrophy above the injury, length of post-traumatic myelomalacia and the amount of volume coverage of lumbosacral enlargement by the stimulation electrode array. The clinical and imaging records of 20 individuals with chronic and clinically motor complete spinal cord injury who underwent scES implantation were reviewed and analysed using MRI and X-ray integration, image segmentation and spinal cord volumetric reconstruction techniques. All individuals that participated in the scES study (n = 20) achieved, to some extent, lower extremity voluntary movements post scES implant and prior to any locomotor, voluntary movement or cardiovascular training. The correlation results showed that neither the cross-section area of spinal cord at C3 (n = 19, r = 0.33, P = 0.16) nor the length of severe myelomalacia (n = 18, r = -0.02, P = 0.93) correlated significantly with volitional lower limb movement ability. However, there was a significant, moderate correlation (n = 20, r = 0.59, P = 0.006) between the estimated percentage of the lumbosacral enlargement coverage by the paddle electrode as well as the position of the paddle relative to the maximal lumbosacral enlargement and the conus tip (n = 20, r = 0.50, P = 0.026) with the number of joints moved volitionally. These results suggest that greater coverage of the lumbosacral enlargement by scES may improve motor recovery prior to any training, possibly because of direct modulatory effects on the spinal networks that control lower extremity movements indicating the significant role of motor control at the level of the spinal cord.
Collapse
Affiliation(s)
- Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Tyler Ball
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Claudia Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, USA
| | - Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Nicholas Dietz
- Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| | - Susan Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurosurgery, University of Louisville, Louisville, KY, USA.,Frazier Rehab Institute, University of Louisville Health, Louisville, KY, USA
| | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Neurosurgery, University of Louisville, Louisville, KY, USA
| |
Collapse
|
79
|
Boakye M, Ugiliweneza B, Madrigal F, Mesbah S, Ovechkin A, Angeli C, Bloom O, Wecht JW, Ditterline B, Harel NY, Kirshblum S, Forrest G, Wu S, Harkema S, Guest J. Clinical Trial Designs for Neuromodulation in Chronic Spinal Cord Injury Using Epidural Stimulation. Neuromodulation 2021; 24:405-415. [PMID: 33794042 DOI: 10.1111/ner.13381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/11/2021] [Accepted: 02/09/2021] [Indexed: 12/17/2022]
Abstract
STUDY DESIGN This is a narrative review focused on specific challenges related to adequate controls that arise in neuromodulation clinical trials involving perceptible stimulation and physiological effects of stimulation activation. OBJECTIVES 1) To present the strengths and limitations of available clinical trial research designs for the testing of epidural stimulation to improve recovery after spinal cord injury. 2) To describe how studies can control for the placebo effects that arise due to surgical implantation, the physical presence of the battery, generator, control interfaces, and rehabilitative activity aimed to promote use-dependent plasticity. 3) To mitigate Hawthorne effects that may occur in clinical trials with intensive supervised participation, including rehabilitation. MATERIALS AND METHODS Focused literature review of neuromodulation clinical trials with integration to the specific context of epidural stimulation for persons with chronic spinal cord injury. CONCLUSIONS Standard of care control groups fail to control for the multiple effects of knowledge of having undergone surgical procedures, having implanted stimulation systems, and being observed in a clinical trial. The irreducible effects that have been identified as "placebo" require sham controls or comparison groups in which both are implanted with potentially active devices and undergo similar rehabilitative training.
Collapse
Affiliation(s)
- Maxwell Boakye
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Beatrice Ugiliweneza
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Health Management and Systems Sciences, University of Louisville, Louisville, KY, USA
| | - Fabian Madrigal
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA
| | - Samineh Mesbah
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Alexander Ovechkin
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Claudia Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Department of Bioengineering, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - Ona Bloom
- Feinstein Institute for Medical Research, Manhasset, NY, USA.,Department of Molecular Medicine, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,Department of Physical Medicine and Rehabilitation, Zucker School of Medicine at Hofstra Northwell, Manhasset, NY, USA.,James J Peters VA Medical Center, Bronx, NY, USA
| | - Jill W Wecht
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bonnie Ditterline
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA
| | - Noam Y Harel
- James J Peters VA Medical Center, Bronx, NY, USA.,The Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Steven Kirshblum
- Kessler Institute for Rehabilitation, Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NY, USA.,Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA
| | - Gail Forrest
- Human Performance and Engineering Research, Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine and Rehabilitation, Rutgers New Jersey Medical School, Newark, NJ, USA
| | - Samuel Wu
- Department of Biostatistics, CTSI Data Coordinating Center, University of Florida, Gainesville, FL, USA
| | - Susan Harkema
- Department of Neurological Surgery, University of Louisville, Louisville, KY, USA.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, USA.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, USA
| | - James Guest
- Neurological Surgery, and the Miami Project to Cure Paralysis, Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
80
|
Canna A, Lehto LJ, Wu L, Sang S, Laakso H, Ma J, Filip P, Zhang Y, Gröhn O, Esposito F, Chen CC, Lavrov I, Michaeli S, Mangia S. Brain fMRI during orientation selective epidural spinal cord stimulation. Sci Rep 2021; 11:5504. [PMID: 33750822 PMCID: PMC7943775 DOI: 10.1038/s41598-021-84873-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 02/17/2021] [Indexed: 11/18/2022] Open
Abstract
Epidural spinal cord stimulation (ESCS) is widely used for chronic pain treatment, and is also a promising tool for restoring motor function after spinal cord injury. Despite significant positive impact of ESCS, currently available protocols provide limited specificity and efficiency partially due to the limited number of contacts of the leads and to the limited flexibility to vary the spatial distribution of the stimulation field in respect to the spinal cord. Recently, we introduced Orientation Selective (OS) stimulation strategies for deep brain stimulation, and demonstrated their selectivity in rats using functional MRI (fMRI). The method achieves orientation selectivity by controlling the main direction of the electric field gradients using individually driven channels. Here, we introduced a similar OS approach for ESCS, and demonstrated orientation dependent brain activations as detected by brain fMRI. The fMRI activation patterns during spinal cord stimulation demonstrated the complexity of brain networks stimulated by OS-ESCS paradigms, involving brain areas responsible for the transmission of the motor and sensory information. The OS approach may allow targeting ESCS to spinal fibers of different orientations, ultimately making stimulation less dependent on the precision of the electrode implantation.
Collapse
Affiliation(s)
- Antonietta Canna
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Lauri J Lehto
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Lin Wu
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Sheng Sang
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Hanne Laakso
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Jun Ma
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Pavel Filip
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.,Department of Neurology, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Yuan Zhang
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Olli Gröhn
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Clark C Chen
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN, USA
| | - Igor Lavrov
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Shalom Michaeli
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA
| | - Silvia Mangia
- Center for Magnetic Resonance Research (CMRR), Department of Radiology, University of Minnesota, 2021 6th St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
81
|
Brommer B, He M, Zhang Z, Yang Z, Page JC, Su J, Zhang Y, Zhu J, Gouy E, Tang J, Williams P, Dai W, Wang Q, Solinsky R, Chen B, He Z. Improving hindlimb locomotor function by Non-invasive AAV-mediated manipulations of propriospinal neurons in mice with complete spinal cord injury. Nat Commun 2021; 12:781. [PMID: 33536416 PMCID: PMC7859413 DOI: 10.1038/s41467-021-20980-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
After complete spinal cord injuries (SCI), spinal segments below the lesion maintain inter-segmental communication via the intraspinal propriospinal network. However, it is unknown whether selective manipulation of these circuits can restore locomotor function in the absence of brain-derived inputs. By taking advantage of the compromised blood-spinal cord barrier following SCI, we optimized a set of procedures in which AAV9 vectors administered via the tail vein efficiently transduce neurons in lesion-adjacent spinal segments after a thoracic crush injury in adult mice. With this method, we used chemogenetic actuators to alter the excitability of propriospinal neurons in the thoracic cord of the adult mice with a complete thoracic crush injury. We showed that activating these thoracic neurons enables consistent and significant hindlimb stepping improvement, whereas direct manipulations of the neurons in the lumbar spinal cord led to muscle spasms without meaningful locomotion. Strikingly, manipulating either excitatory or inhibitory propriospinal neurons in the thoracic levels leads to distinct behavioural outcomes, with preferential effects on standing or stepping, two key elements of the locomotor function. These results demonstrate a strategy of engaging thoracic propriospinal neurons to improve hindlimb function and provide insights into optimizing neuromodulation-based strategies for treating SCI.
Collapse
Affiliation(s)
- Benedikt Brommer
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Miao He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| | - Zicong Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Zhiyun Yang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jessica C Page
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junfeng Su
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Yu Zhang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Junjie Zhu
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emilia Gouy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jing Tang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Philip Williams
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Wei Dai
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Qi Wang
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ryan Solinsky
- Spaulding Rehabilitation Hospital, Boston, MA, USA
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, USA
| | - Bo Chen
- Department of Neuroscience, Cell Biology, & Anatomy, University of Texas Medical Branch, Galveston, TX, USA.
| | - Zhigang He
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, and Departments of Neurology and Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Donovan J, Forrest G, Linsenmeyer T, Kirshblum S. Spinal Cord Stimulation After Spinal Cord Injury: Promising Multisystem Effects. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2021. [DOI: 10.1007/s40141-020-00304-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
83
|
Tsai ST, Chen YC, Cheng HY, Lin CH, Lin HC, Yang CH, Liang CC, Chen SY. Spinal cord stimulation for spinal cord injury patients with paralysis: To regain walking and dignity. Tzu Chi Med J 2021; 33:29-33. [PMID: 33505875 PMCID: PMC7821832 DOI: 10.4103/tcmj.tcmj_53_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/15/2020] [Accepted: 07/01/2020] [Indexed: 11/25/2022] Open
Abstract
Spinal cord injury (SCI) usually leads to disconnection between traversing neuronal pathway. The impairment of neural circuitry and its ascending and descending pathway usually leave severe SCI patients with both motor disability and loss of sensory function. In addition to poor quality of life, SCI patients not only have disabling respiratory function, urinary retention, impaired sexual function, autonomic dysregulation but also medical refractory neuropathic pain in the long term. Some translational studies demonstrated that spinal networks possess a dynamic state of synaptic connection and excitability that can be facilitated by epidural spinal cord stimulation. In addition, preliminary human studies also confirmed that spinal cord stimulation enables stepping or standing in individuals with paraplegia as well. In this review, we examined the plausible interventional mechanisms underlying the effects of epidural spinal cord stimulation in animal studies. Following the success of translational research, chronic paralyzed subjects due to SCI, defined as motor complete status, regained their voluntary control and function of overground walking and even stepping for some. These progresses lead us into a new hope to help SCI patients to walk and regain their independent life again.
Collapse
Affiliation(s)
- Sheng-Tzung Tsai
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Chen Chen
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan.,Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Hung-Yu Cheng
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chun-Hsiang Lin
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Huan-Chen Lin
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Chich-Haung Yang
- Department of Physical Therapy, College of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Chung-Chao Liang
- Department of Physical Medicine and Rehabilitation, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shin-Yuan Chen
- Department of Neurosurgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
84
|
Gill ML, Linde MB, Hale RF, Lopez C, Fautsch KJ, Calvert JS, Veith DD, Beck LA, Garlanger KL, Sayenko DG, Lavrov IA, Thoreson AR, Grahn PJ, Zhao KD. Alterations of Spinal Epidural Stimulation-Enabled Stepping by Descending Intentional Motor Commands and Proprioceptive Inputs in Humans With Spinal Cord Injury. Front Syst Neurosci 2021; 14:590231. [PMID: 33584209 PMCID: PMC7875885 DOI: 10.3389/fnsys.2020.590231] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 12/11/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Regaining control of movement following a spinal cord injury (SCI) requires utilization and/or functional reorganization of residual descending, and likely ascending, supraspinal sensorimotor pathways, which may be facilitated via task-specific training through body weight supported treadmill (BWST) training. Recently, epidural electrical stimulation (ES) combined with task-specific training demonstrated independence of standing and stepping functions in individuals with clinically complete SCI. The restoration of these functions may be dependent upon variables such as manipulation of proprioceptive input, ES parameter adjustments, and participant intent during step training. However, the impact of each variable on the degree of independence achieved during BWST stepping remains unknown. Objective: To describe the effects of descending intentional commands and proprioceptive inputs, specifically body weight support (BWS), on lower extremity motor activity and vertical ground reaction forces (vGRF) during ES-enabled BWST stepping in humans with chronic sensorimotor complete SCI. Furthermore, we describe perceived changes in the level of assistance provided by clinicians when intent and BWS are modified. Methods: Two individuals with chronic, mid thoracic, clinically complete SCI, enrolled in an IRB and FDA (IDE G150167) approved clinical trial. A 16-contact electrode array was implanted in the epidural space between the T11-L1 vertebral regions. Lower extremity motor output and vertical ground reaction forces were obtained during clinician-assisted ES-enabled treadmill stepping with BWS. Consecutive steps were achieved during various experimentally-controlled conditions, including intentional participation and varied BWS (60% and 20%) while ES parameters remain unchanged. Results: During ES-enabled BWST stepping, the knee extensors exhibited an increase in motor activation during trials in which stepping was passive compared to active or during trials in which 60% BWS was provided compared to 20% BWS. As a result of this increased motor activation, perceived clinician assistance increased during the transition from stance to swing. Intentional participation and 20% BWS resulted in timely and purposeful activation of the lower extremities muscles, which improved independence and decreased clinician assistance. Conclusion: Maximizing participant intention and optimizing proprioceptive inputs through BWS during ES-enabled BWST stepping may facilitate greater independence during BWST stepping for individuals with clinically complete SCI. Clinical Trial Registration:ClinicalTrials.gov identifier: NCT02592668.
Collapse
Affiliation(s)
- Megan L Gill
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Margaux B Linde
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Rena F Hale
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kalli J Fautsch
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Jonathan S Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Daniel D Veith
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Lisa A Beck
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kristin L Garlanger
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Dimitry G Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, United States
| | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew R Thoreson
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Peter J Grahn
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Neurosurgery, Mayo Clinic, Rochester, MN, United States.,Office for Education Diversity, Equity and Inclusion, Mayo Clinic, Rochester, MN, United States
| | - Kristin D Zhao
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
85
|
Hofstoetter US, Perret I, Bayart A, Lackner P, Binder H, Freundl B, Minassian K. Spinal motor mapping by epidural stimulation of lumbosacral posterior roots in humans. iScience 2021; 24:101930. [PMID: 33409476 PMCID: PMC7773960 DOI: 10.1016/j.isci.2020.101930] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/06/2020] [Accepted: 12/08/2020] [Indexed: 12/28/2022] Open
Abstract
Epidural electrical stimulation of the spinal cord is an emergent strategy for the neurological recovery of lower-extremity motor function. Motoneuron pools are thought to be recruited by stimulation of posterior roots. Here, we linked electromyographic data of epidurally evoked lower-extremity responses of 34 individuals with upper motoneuron disorders to a population model of the spinal cord constructed using anatomical parameters of thousands of individuals. We identified a relationship between segmental stimulation sites and activated spinal cord segments, which made spinal motor mapping from epidural space possible despite the complex anatomical interface imposed by the posterior roots. Our statistical approach provided evidence for low-threshold sites of posterior roots and effects of monopolar and bipolar stimulation previously predicted by computer modeling and allowed us to test the impact of different upper motoneuron disorders on the evoked responses. Finally, we revealed a statistical association between intraoperative and postoperative mapping of the spinal cord.
Collapse
Affiliation(s)
- Ursula S. Hofstoetter
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Ivan Perret
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Aymeric Bayart
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| | - Peter Lackner
- Neurological Center, Klinik Penzing Wiener Gesundheitsverbund, 1140 Vienna, Austria
| | - Heinrich Binder
- Neurological Center, Klinik Penzing Wiener Gesundheitsverbund, 1140 Vienna, Austria
| | - Brigitta Freundl
- Neurological Center, Klinik Penzing Wiener Gesundheitsverbund, 1140 Vienna, Austria
| | - Karen Minassian
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, 1090 Vienna, Austria
| |
Collapse
|
86
|
Herrity AN, Aslan SC, Ugiliweneza B, Mohamed AZ, Hubscher CH, Harkema SJ. Improvements in Bladder Function Following Activity-Based Recovery Training With Epidural Stimulation After Chronic Spinal Cord Injury. Front Syst Neurosci 2021; 14:614691. [PMID: 33469421 PMCID: PMC7813989 DOI: 10.3389/fnsys.2020.614691] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/03/2020] [Indexed: 12/27/2022] Open
Abstract
Spinal cord injury (SCI) results in profound neurologic impairment with widespread deficits in sensorimotor and autonomic systems. Voluntary and autonomic control of bladder function is disrupted resulting in possible detrusor overactivity, low compliance, and uncoordinated bladder and external urethral sphincter contractions impairing storage and/or voiding. Conservative treatments managing neurogenic bladder post-injury, such as oral pharmacotherapy and catheterization, are important components of urological surveillance and clinical care. However, as urinary complications continue to impact long-term morbidity in this population, additional therapeutic and rehabilitative approaches are needed that aim to improve function by targeting the recovery of underlying impairments. Several human and animal studies, including our previously published reports, have documented gains in bladder function due to activity-based recovery strategies, such as locomotor training. Furthermore, epidural stimulation of the spinal cord (scES) combined with intense activity-based recovery training has been shown to produce volitional lower extremity movement, standing, as well as improve the regulation of cardiovascular function. In our center, several participants anecdotally reported improvements in bladder function as a result of training with epidural stimulation configured for motor systems. Thus, in this study, the effects of activity-based recovery training in combination with scES were tested on bladder function, resulting in improvements in overall bladder storage parameters relative to a control cohort (no intervention). However, elevated blood pressure elicited during bladder distention, characteristic of autonomic dysreflexia, was not attenuated with training. We then examined, in a separate, large cross-sectional cohort, the interaction between detrusor pressure and blood pressure at maximum capacity, and found that the functional relationship between urinary bladder distention and blood pressure regulation is disrupted. Regardless of one's bladder emptying method (indwelling suprapubic catheter vs. intermittent catheterization), autonomic instability can play a critical role in the ability to improve bladder storage, with SCI enhancing the vesico-vascular reflex. These results support the role of intersystem stimulation, integrating scES for both bladder and cardiovascular function to further improve bladder storage.
Collapse
Affiliation(s)
- April N. Herrity
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Sevda C. Aslan
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Ahmad Z. Mohamed
- Department of Urology, University of Louisville, Louisville, KY, United States
| | - Charles H. Hubscher
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Anatomical Sciences and Neurobiology, University of Louisville, Louisville, KY, United States
| | - Susan J. Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States
- Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| |
Collapse
|
87
|
Inanici F, Brighton LN, Samejima S, Hofstetter CP, Moritz CT. Transcutaneous Spinal Cord Stimulation Restores Hand and Arm Function After Spinal Cord Injury. IEEE Trans Neural Syst Rehabil Eng 2021; 29:310-319. [DOI: 10.1109/tnsre.2021.3049133] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
88
|
Choi EH, Gattas S, Brown NJ, Hong JD, Limbo JN, Chan AY, Oh MY. Epidural electrical stimulation for spinal cord injury. Neural Regen Res 2021; 16:2367-2375. [PMID: 33907008 PMCID: PMC8374568 DOI: 10.4103/1673-5374.313017] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
A long-standing goal of spinal cord injury research is to develop effective repair strategies, which can restore motor and sensory functions to near-normal levels. Recent advances in clinical management of spinal cord injury have significantly improved the prognosis, survival rate and quality of life in patients with spinal cord injury. In addition, a significant progress in basic science research has unraveled the underlying cellular and molecular events of spinal cord injury. Such efforts enabled the development of pharmacologic agents, biomaterials and stem-cell based therapy. Despite these efforts, there is still no standard care to regenerate axons or restore function of silent axons in the injured spinal cord. These challenges led to an increased focus on another therapeutic approach, namely neuromodulation. In multiple animal models of spinal cord injury, epidural electrical stimulation of the spinal cord has demonstrated a recovery of motor function. Emerging evidence regarding the efficacy of epidural electrical stimulation has further expanded the potential of epidural electrical stimulation for treating patients with spinal cord injury. However, most clinical studies were conducted on a very small number of patients with a wide range of spinal cord injury. Thus, subsequent studies are essential to evaluate the therapeutic potential of epidural electrical stimulation for spinal cord injury and to optimize stimulation parameters. Here, we discuss cellular and molecular events that continue to damage the injured spinal cord and impede neurological recovery following spinal cord injury. We also discuss and summarize the animal and human studies that evaluated epidural electrical stimulation in spinal cord injury.
Collapse
Affiliation(s)
- Elliot H Choi
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH; Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine; Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Sandra Gattas
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Nolan J Brown
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - John D Hong
- Department of Ophthalmology, Gavin Herbert Eye Institute, School of Medicine, University of California, Irvine, CA, USA
| | - Joshua N Limbo
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Alvin Y Chan
- Department of Neurosurgery, University of California, Irvine, CA, USA
| | - Michael Y Oh
- Department of Neurosurgery, University of California, Irvine, CA, USA
| |
Collapse
|
89
|
Spatiotemporal dynamic changes, proliferation, and differentiation characteristics of Sox9-positive cells after severe complete transection spinal cord injury. Exp Neurol 2020; 337:113556. [PMID: 33326799 DOI: 10.1016/j.expneurol.2020.113556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/21/2022]
Abstract
Studying the spatiotemporal dynamic changes of various cells following spinal cord injury (SCI) is of great significance for understanding the pathological processes of SCI. Changes in the characteristics of Sox9-positive cells, which are widely present in the spinal cord, have rarely been studied following SCI. We found that Sox9-positive cells were widely distributed in the central canal and parenchyma of the uninjured adult spinal cord, with the greatest distribution in the central spinal cord and relatively few cells in the dorsal and ventral sides. Ranging between 14.20% ± 1.61% and 15.60% ± 0.36% of total cells in the spinal cord, almost all Sox9-positive cells were in a quiescent state. However, Sox9-positive cells activated following SCI exhibited different characteristics according to their distance from the lesion area. In the reactive region, Sox9-positive cells highly expressed nestin and exhibited a single-branching structure, whereas in the non-reactive region, cells showed low nestin expression and a multi-branching structure. In response to SCI, a large number of Sox9-positive cells in the spinal cord parenchyma proliferated to participate in the formation of glial scars, whereas Sox9-positive cells in the central canal located near the lesion site accumulated at its broken ends through proliferation. Finally, we found that approximately 6.30% ± 0.35% of Sox9-positive cells differentiated into oligodendrocytes within two weeks after SCI. By examining the spatiotemporal dynamic changes, proliferation and differentiation characteristics of Sox9-positive cells after SCI, our findings provide a theoretical basis for understanding the pathological process of SCI.
Collapse
|
90
|
Epidural Stimulation Combined with Triple Gene Therapy for Spinal Cord Injury Treatment. Int J Mol Sci 2020; 21:ijms21238896. [PMID: 33255323 PMCID: PMC7734573 DOI: 10.3390/ijms21238896] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/06/2020] [Accepted: 11/17/2020] [Indexed: 12/18/2022] Open
Abstract
The translation of new therapies for spinal cord injury to clinical trials can be facilitated with large animal models close in morpho-physiological scale to humans. Here, we report functional restoration and morphological reorganization after spinal contusion in pigs, following a combined treatment of locomotor training facilitated with epidural electrical stimulation (EES) and cell-mediated triple gene therapy with umbilical cord blood mononuclear cells overexpressing recombinant vascular endothelial growth factor, glial-derived neurotrophic factor, and neural cell adhesion molecule. Preliminary results obtained on a small sample of pigs 2 months after spinal contusion revealed the difference in post-traumatic spinal cord outcomes in control and treated animals. In treated pigs, motor performance was enabled by EES and the corresponding morpho-functional changes in hind limb skeletal muscles were accompanied by the reorganization of the glial cell, the reaction of stress cell, and synaptic proteins. Our data demonstrate effects of combined EES-facilitated motor training and cell-mediated triple gene therapy after spinal contusion in large animals, informing a background for further animal studies and clinical translation.
Collapse
|
91
|
Gill M, Linde M, Fautsch K, Hale R, Lopez C, Veith D, Calvert J, Beck L, Garlanger K, Edgerton R, Sayenko D, Lavrov I, Thoreson A, Grahn P, Zhao K. Epidural Electrical Stimulation of the Lumbosacral Spinal Cord Improves Trunk Stability During Seated Reaching in Two Humans With Severe Thoracic Spinal Cord Injury. Front Syst Neurosci 2020; 14:79. [PMID: 33328910 PMCID: PMC7710539 DOI: 10.3389/fnsys.2020.569337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 10/06/2020] [Indexed: 12/21/2022] Open
Abstract
Background: Quality of life measurements indicate that independent performance of activities of daily living, such as reaching to manipulate objects, is a high priority of individuals living with motor impairments due to spinal cord injury (SCI). In a small number of research participants with SCI, electrical stimulation applied to the dorsal epidural surface of the spinal cord, termed epidural spinal electrical stimulation (ES), has been shown to improve motor functions, such as standing and stepping. However, the impact of ES on seated reaching performance, as well as the approach to identifying stimulation parameters that improve reaching ability, have yet to be described. Objective: Herein, we characterize the effects of ES on seated reaching performance in two participants with chronic, complete loss of motor and sensory functions below thoracic-level SCI. Additionally, we report the effects of delivering stimulation to discrete cathode/anode locations on a 16-contact electrode array spanning the lumbosacral spinal segments on reach distance while participants were seated on a mat and/or in their wheelchair. Methods: Two males with mid-thoracic SCI due to trauma, each of which occurred more than 3 years prior to study participation, were enrolled in a clinical trial at Mayo Clinic, Rochester, MN, USA. Reaching performance was assessed, with and without ES, at several time points throughout the study using the modified functional reach test (mFRT). Altogether, participant 1 performed 1,164 reach tests over 26-time points. Participant 2 performed 480 reach tests over 17-time points. Results: Median reach distances during ES were higher for both participants compared to without ES. Forward reach distances were greater than lateral reach distances in all environments, mat or wheelchair, for both participants. Stimulation delivered in the caudal region of the array resulted in improved forward reach distance compared to stimulation in the rostral region. For both participants, when stimulation was turned off, no significant changes in reach distance were observed throughout the study. Conclusion: ES enhanced seated reaching-performance of individuals with chronic SCI. Additionally, electrode configurations delivering stimulation in caudal regions of the lumbosacral spinal segments may improve reaching ability compared to rostral regions.
Collapse
Affiliation(s)
- Megan Gill
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Margaux Linde
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kalli Fautsch
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Rena Hale
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Cesar Lopez
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Daniel Veith
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Jonathan Calvert
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Lisa Beck
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Kristin Garlanger
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, Los Angeles, CA, United States.,The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, NSW, Australia
| | - Dimitry Sayenko
- Department of Neurosurgery, Center for Neuroregeneration, Houston Methodist Hospital, Houston, TX, United States
| | - Igor Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, United States.,Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Andrew Thoreson
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States
| | - Peter Grahn
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Kristin Zhao
- Assistive and Restorative Technology Laboratory, Department of Physical Medicine and Rehabilitation, Rehabilitation Medicine Research Center, Mayo Clinic, Rochester, MN, United States.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
92
|
Krupa P, Siddiqui AM, Grahn PJ, Islam R, Chen BK, Madigan NN, Windebank AJ, Lavrov IA. The Translesional Spinal Network and Its Reorganization after Spinal Cord Injury. Neuroscientist 2020; 28:163-179. [PMID: 33089762 DOI: 10.1177/1073858420966276] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Evidence from preclinical and clinical research suggest that neuromodulation technologies can facilitate the sublesional spinal networks, isolated from supraspinal commands after spinal cord injury (SCI), by reestablishing the levels of excitability and enabling descending motor signals via residual connections. Herein, we evaluate available evidence that sublesional and supralesional spinal circuits could form a translesional spinal network after SCI. We further discuss evidence of translesional network reorganization after SCI in the presence of sensory inputs during motor training. In this review, we evaluate potential mechanisms that underlie translesional circuitry reorganization during neuromodulation and rehabilitation in order to enable motor functions after SCI. We discuss the potential of neuromodulation technologies to engage various components that comprise the translesional network, their functional recovery after SCI, and the implications of the concept of translesional network in development of future neuromodulation, rehabilitation, and neuroprosthetics technologies.
Collapse
Affiliation(s)
- Petr Krupa
- Department of Neurosurgery, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Czech Republic.,Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | | | - Peter J Grahn
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, USA.,Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Riazul Islam
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Bingkun K Chen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | - Igor A Lavrov
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.,Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.,Kazan Federal University, Kazan, Russia
| |
Collapse
|
93
|
Rejc E, Smith AC, Weber KA, Ugiliweneza B, Bert RJ, Negahdar M, Boakye M, Harkema SJ, Angeli CA. Spinal Cord Imaging Markers and Recovery of Volitional Leg Movement With Spinal Cord Epidural Stimulation in Individuals With Clinically Motor Complete Spinal Cord Injury. Front Syst Neurosci 2020; 14:559313. [PMID: 33192348 PMCID: PMC7654217 DOI: 10.3389/fnsys.2020.559313] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 01/07/2023] Open
Abstract
Previous studies have shown that epidural stimulation of the lumbosacral spinal cord (scES) can re-enable lower limb volitional motor control in individuals with chronic, clinically motor complete spinal cord injury (SCI). This observation entails that residual supraspinal connectivity to the lumbosacral spinal circuitry still persisted after SCI, although it was non-detectable when scES was not provided. In the present study, we aimed at exploring further the mechanisms underlying scES-promoted recovery of volitional lower limb motor control by investigating neuroimaging markers at the spinal cord lesion site via magnetic resonance imaging (MRI). Spinal cord MRI was collected prior to epidural stimulator implantation in 13 individuals with chronic, clinically motor complete SCI, and the spared tissue of specific regions of the spinal cord (anterior, posterior, right, left, and total cord) was assessed. After epidural stimulator implantation, and prior to any training, volitional motor control was evaluated during left and right lower limb flexion and ankle dorsiflexion attempts. The ability to generate force exertion and movement was not correlated to any neuroimaging marker. On the other hand, spared tissue of specific cord regions significantly and importantly correlated with some aspects of motor control that include activation amplitude of antagonist (negative correlation) muscles during left ankle dorsiflexion, and electromyographic coordination patterns during right lower limb flexion. The fact that amount and location of spared spinal cord tissue at the lesion site were not related to the ability to generate volitional lower limb movements may suggest that supraspinal inputs through spared spinal cord regions that differ across individuals can result in the generation of lower limb volitional motor output prior to any training when epidural stimulation is provided.
Collapse
Affiliation(s)
- Enrico Rejc
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Andrew C Smith
- University of Colorado School of Medicine, Department of Physical Medicine and Rehabilitation, Physical Therapy Program, Aurora, CO, United States
| | - Kenneth A Weber
- Department of Anethesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Beatrice Ugiliweneza
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Robert J Bert
- Department of Radiology, University of Louisville, Louisville, KY, United States
| | | | - Maxwell Boakye
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States
| | - Susan J Harkema
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurological Surgery, University of Louisville, Louisville, KY, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Frazier Rehabilitation Institute, University of Louisville Health, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| |
Collapse
|
94
|
Fadeev F, Eremeev A, Bashirov F, Shevchenko R, Izmailov A, Markosyan V, Sokolov M, Kalistratova J, Khalitova A, Garifulin R, Islamov R, Lavrov I. Combined Supra- and Sub-Lesional Epidural Electrical Stimulation for Restoration of the Motor Functions after Spinal Cord Injury in Mini Pigs. Brain Sci 2020; 10:brainsci10100744. [PMID: 33081405 PMCID: PMC7650717 DOI: 10.3390/brainsci10100744] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/06/2020] [Accepted: 10/12/2020] [Indexed: 12/20/2022] Open
Abstract
This study evaluates the effect of combined epidural electrical stimulation (EES) applied above (C5) and below (L2) the spinal cord injury (SCI) at T8–9 combined with motor training on the restoration of sensorimotor function in mini pigs. The motor evoked potentials (MEP) induced by EES applied at C5 and L2 levels were recorded in soleus muscles before and two weeks after SCI. EES treatment started two weeks after SCI and continued for 6 weeks led to improvement in multiple metrics, including behavioral, electrophysiological, and joint kinematics outcomes. In control animals after SCI a multiphasic M-response was observed during M/H-response testing, while animals received EES-enable training demonstrated the restoration of the M-response and H-reflex, although at a lower amplitude. The joint kinematic and assessment with Porcine Thoracic Injury Behavior scale (PTIBS) motor recovery scale demonstrated improvement in animals that received EES-enable training compared to animals with no treatment. The positive effect of two-level (cervical and lumbar) epidural electrical stimulation on functional restoration in mini pigs following spinal cord contusion injury in mini pigs could be related with facilitation of spinal circuitry at both levels and activation of multisegmental coordination. This approach can be taken as a basis for the future development of neuromodulation and neurorehabilitation therapy for patients with spinal cord injury.
Collapse
Affiliation(s)
- Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anton Eremeev
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Roman Shevchenko
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Julia Kalistratova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Anastasiia Khalitova
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Ravil Garifulin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (F.F.); (F.B.); (R.S.); (A.I.); (V.M.); (M.S.); (J.K.); (A.K.); (R.G.)
- Correspondence: (R.I.); (I.L.)
| | - Igor Lavrov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008 Kazan, Russia;
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
- Department of Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: (R.I.); (I.L.)
| |
Collapse
|
95
|
Spinal cord stimulation and rehabilitation in an individual with chronic complete L1 paraplegia due to a conus medullaris injury: motor and functional outcomes at 18 months. Spinal Cord Ser Cases 2020; 6:96. [PMID: 33067413 DOI: 10.1038/s41394-020-00345-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023] Open
Abstract
INTRODUCTION Epidural electrical stimulation of the conus medullaris has helped facilitate native motor recovery in individuals with complete cervicothoracic spinal cord injuries (SCI). A theorized mechanism of clinical improvement includes supporting central pattern generators intrinsic to the conus medullaris. Because spinal cord stimulators (SCS) are approved for the treatment of neuropathic pain, we were able to test this experimental therapy in a subject with complete L1 paraplegia and neuropathic genital pain due to a traumatic conus injury. CASE PRESENTATION An otherwise healthy 48-year-old male with chronic complete L1 paraplegia with no zones of partial preservation (ZPP) and intractable neuropathic genital pain presented to our group seeking nonmedical pain relief and any possible help with functional restoration. After extensive evaluation, discussion, and consent, we proceeded with SCS implantation at the conus and an intensive outpatient physical therapy regimen consistent with the recent SCI rehabilitation literature. DISCUSSION Intraoperatively, no electromyography (EMG) could be elicited with epidural conus stimulation. At 18 months after implantation, his motor ZPPs had advanced from L1 to L5 on the left and from L1 to L3 on the right. Qualitative increases in lower extremity resting state EMG amplitudes were noted, although there was no consistent evidence of voluntary EMG or rhythmic locomotive leg movements. Three validated functional and quality of life (QoL) surveys demonstrated substantial improvements. The modest motor response compared to the literature suggests likely critical differences in the anatomy of such a low injury. However, the change in ZPPs and QoL suggest potential for neuroplasticity even in this patient population.
Collapse
|
96
|
Bloom O, Wecht JM, Legg Ditterline BE, Wang S, Ovechkin AV, Angeli CA, Arcese AA, Harkema SJ. Prolonged Targeted Cardiovascular Epidural Stimulation Improves Immunological Molecular Profile: A Case Report in Chronic Severe Spinal Cord Injury. Front Syst Neurosci 2020; 14:571011. [PMID: 33177997 PMCID: PMC7593242 DOI: 10.3389/fnsys.2020.571011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 09/09/2020] [Indexed: 12/21/2022] Open
Abstract
In individuals with severe spinal cord injury (SCI), the autonomic nervous system (ANS) is affected leading to cardiovascular deficits, which include significant blood pressure instability, with the prevalence of systemic hypotension and orthostatic intolerance resulting in an increased risk of stroke. Additionally, persons with SCI rostral to thoracic vertebral level 5 (T5), where sympathetic nervous system fibers exit the spinal cord and innervate the immune system, have clinically significant systemic inflammation and increased infection risk. Our recent studies show that lumbosacral spinal cord epidural stimulation (scES), applied at the lumbosacral level using targeted configurations that promote cardiovascular stability (CV-scES), can safely and effectively normalize blood pressure in persons with chronic SCI. Herein we present a case report in a female (age 27 years) with chronic clinically motor complete cervical SCI demonstrating that 97-sessions of CV-scES, which increased systemic blood pressure, improved orthostatic tolerance in association with increased cerebral blood flow velocity in the middle cerebral artery, also promoted positive immunological changes in whole-blood gene expression. Specifically, there was evidence of the down-regulation of inflammatory pathways and the up-regulation of adaptative immune pathways. The findings of this case report suggest that the autonomic effects of epidural stimulation, targeted to promote cardiovascular homeostasis, also improves immune system function, which has a significant benefit to long-term cardiovascular and immunologic health in individuals with long-standing SCI. Clinical Trial Registration:www.ClinicalTrials.gov, identifier NCT02307565.
Collapse
Affiliation(s)
- Ona Bloom
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States.,Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States.,Departments of Molecular Medicine; Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States
| | - Jill M Wecht
- VA RR&D National Center for the Medical Consequences of Spinal Cord Injury, James J. Peters VA Medical Center, Bronx, NY, United States.,Department of Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, United States.,Rehabilitation Medicine, The Icahn School of Medicine, Mount Sinai, New York, NY, United States
| | - Bonnie E Legg Ditterline
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Siqi Wang
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Alexander V Ovechkin
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Claudia A Angeli
- Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| | - Anthony A Arcese
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Susan J Harkema
- Departments of Molecular Medicine; Physical Medicine and Rehabilitation, Donald and Barbara Zucker School of Medicine at Hofstra-Northwell, Hempstead, NY, United States.,Kentucky Spinal Cord Injury Research Center, University of Louisville, Louisville, KY, United States.,Department of Neurosurgery, School of Medicine, University of Louisville, Louisville, KY, United States.,Department of Bioengineering, University of Louisville, Louisville, KY, United States
| |
Collapse
|
97
|
Cardiovascular Autonomic Dysfunction in Spinal Cord Injury: Epidemiology, Diagnosis, and Management. Semin Neurol 2020; 40:550-559. [PMID: 32906175 DOI: 10.1055/s-0040-1713885] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Spinal cord injury (SCI) disrupts autonomic circuits and impairs synchronistic functioning of the autonomic nervous system, leading to inadequate cardiovascular regulation. Individuals with SCI, particularly at or above the sixth thoracic vertebral level (T6), often have impaired regulation of sympathetic vasoconstriction of the peripheral vasculature and the splanchnic circulation, and diminished control of heart rate and cardiac output. In addition, impaired descending sympathetic control results in changes in circulating levels of plasma catecholamines, which can have a profound effect on cardiovascular function. Although individuals with lesions below T6 often have normal resting blood pressures, there is evidence of increases in resting heart rate and inadequate cardiovascular response to autonomic provocations such as the head-up tilt and cold face tests. This manuscript reviews the prevalence of cardiovascular disorders given the level, duration and severity of SCI, the clinical presentation, diagnostic workup, short- and long-term consequences, and empirical evidence supporting management strategies to treat cardiovascular dysfunction following a SCI.
Collapse
|
98
|
Eisdorfer JT, Smit RD, Keefe KM, Lemay MA, Smith GM, Spence AJ. Epidural Electrical Stimulation: A Review of Plasticity Mechanisms That Are Hypothesized to Underlie Enhanced Recovery From Spinal Cord Injury With Stimulation. Front Mol Neurosci 2020; 13:163. [PMID: 33013317 PMCID: PMC7497436 DOI: 10.3389/fnmol.2020.00163] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 08/07/2020] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) often results in life-long sensorimotor impairment. Spontaneous recovery from SCI is limited, as supraspinal fibers cannot spontaneously regenerate to form functional networks below the level of injury. Despite this, animal models and humans exhibit many motor behaviors indicative of recovery when electrical stimulation is applied epidurally to the dorsal aspect of the lumbar spinal cord. In 1976, epidural stimulation was introduced to alleviate spasticity in Multiple Sclerosis. Since then, epidural electrical stimulation (EES) has been demonstrated to improve voluntary mobility across the knee and/or ankle in several SCI patients, highlighting its utility in enhancing motor activation. The mechanisms that EES induces to drive these improvements in sensorimotor function remain largely unknown. In this review, we discuss several sensorimotor plasticity mechanisms that we hypothesize may enable epidural stimulation to promote recovery, including changes in local lumbar circuitry, propriospinal interneurons, and the internal model. Finally, we discuss genetic tools for afferent modulation as an emerging method to facilitate the search for the mechanisms of action.
Collapse
Affiliation(s)
- Jaclyn T. Eisdorfer
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Rupert D. Smit
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Kathleen M. Keefe
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - Michel A. Lemay
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| | - George M. Smith
- Department of Neuroscience, Shriners Hospitals Pediatric Research Center, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| | - Andrew J. Spence
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, United States
| |
Collapse
|
99
|
Oscillator Motif as Design Pattern for the Spinal Cord Circuitry Reconstruction. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-020-00743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
100
|
Gad P, Kreydin E, Zhong H, Edgerton VR. Enabling respiratory control after severe chronic tetraplegia: an exploratory case study. J Neurophysiol 2020; 124:774-780. [PMID: 32755339 PMCID: PMC7509292 DOI: 10.1152/jn.00320.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/07/2023] Open
Abstract
Respiratory dysfunction is one of the most debilitating effects of spinal cord injury (SCI) impacting the quality of life of patients and caregivers. In addition, breathing difficulties impact the rehabilitation routine a patient may potentially undergo. Transcutaneous electrical spinal cord neuromodulation (TESCoN) is a novel approach to reactivate and retrain spinal circuits after paralysis. We demonstrate that acute and chronic TESCoN therapy over the cervical spinal cord positively impacts the breathing and coughing ability in a patient with chronic tetraplegia. ln addition, we show that the improved breathing and coughing ability are not only observed in the presence of TESCoN but persisted for a few days after TESCoN was stopped.NEW & NOTEWORTHY Noninvasive spinal neuromodulation improves breathing and coughing in a patient with severe and complete tetraplegia.
Collapse
Affiliation(s)
- Parag Gad
- Department of Neurobiology, University of California, Los Angeles, California
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, California
| | - Evgeniy Kreydin
- Department of Urology, Keck School of Medicine of University of Southern California, Los Angeles, California
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, California
| | - Hui Zhong
- Department of Neurobiology, University of California, Los Angeles, California
- Rancho Research Institute, Rancho Los Amigos National Rehabilitation Center, Downey, California
| | - V Reggie Edgerton
- Department of Neurobiology, University of California, Los Angeles, California
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
- Department of Neurosurgery, University of California, Los Angeles, California
- Brain Research Institute, University of California, Los Angeles, California
- Institut Guttmann. Hospital de Neurorehabilitació, Institut Universitari adscrit a la Universitat Autònoma de Barcelona, Barcelona, Badalona, Spain
- The Centre for Neuroscience and Regenerative Medicine, Faculty of Science, University of Technology Sydney, Ultimo, New South Wales, Australia
| |
Collapse
|