51
|
Cytoplasmic linker proteins regulate neuronal polarization through microtubule and growth cone dynamics. J Neurosci 2011; 31:1528-38. [PMID: 21273437 DOI: 10.1523/jneurosci.3983-10.2011] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Axon formation is a hallmark of initial neuronal polarization. This process is thought to be regulated by enhanced microtubule stability in the subsequent axon and changes in actin dynamics in the future axonal growth cone. Here, we show that the microtubule end-binding proteins cytoplasmic linker protein (CLIP)-115 and CLIP-170 were enriched in the axonal growth cone and extended into the actin-rich domain of the growth cone. CLIPs were necessary for axon formation and sufficient to induce an axon. The regulation of axonal microtubule stabilization by CLIPs enabled the protrusion of microtubules into the leading edge of the axonal growth cone. Moreover, CLIPs positively regulated growth cone dynamics and restrained actin arc formation, which was necessary for axon growth. In fact, in neurons without CLIP activity, axon formation was restored by actin destabilization or myosin II inhibition. Together, our data suggest that CLIPs enable neuronal polarization by controlling the stabilization of microtubules and growth cone dynamics.
Collapse
|
52
|
Dent EW, Gupton SL, Gertler FB. The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol 2011; 3:cshperspect.a001800. [PMID: 21106647 DOI: 10.1101/cshperspect.a001800] [Citation(s) in RCA: 421] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Axon outgrowth and guidance to the proper target requires the coordination of filamentous (F)-actin and microtubules (MTs), the dynamic cytoskeletal polymers that promote shape change and locomotion. Over the past two decades, our knowledge of the many guidance cues, receptors, and downstream signaling cascades involved in neuronal outgrowth and guidance has increased dramatically. Less is known, however, about how those cascades of information converge and direct appropriate remodeling and interaction of cytoskeletal polymers, the ultimate effectors of movement and guidance. During development, much of the communication that occurs between environmental guidance cues and the cytoskeleton takes place at the growing tip of the axon, the neuronal growth cone. Several articles on this topic focus on the "input" to the growth cone, the myriad of receptor types, and their corresponding cognate ligands. Others investigate the signaling cascades initiated by receptors and propagated by second messenger pathways (i.e., kinases, phosphatases, GTPases). Ultimately, this plethora of information converges on proteins that associate directly with the actin and microtubule cytoskeletons. The role of these cytoskeletal-associated proteins, as well as the cytoskeleton itself in axon outgrowth and guidance, is the subject of this article.
Collapse
Affiliation(s)
- Erik W Dent
- Department of Anatomy, University of Wisconsin-Madison, 53706, USA
| | | | | |
Collapse
|
53
|
Fung SJ, Sivagnanasundaram S, Shannon Weickert C. Lack of change in markers of presynaptic terminal abundance alongside subtle reductions in markers of presynaptic terminal plasticity in prefrontal cortex of schizophrenia patients. Biol Psychiatry 2011; 69:71-9. [PMID: 21145444 PMCID: PMC3001685 DOI: 10.1016/j.biopsych.2010.09.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Revised: 09/14/2010] [Accepted: 09/16/2010] [Indexed: 11/27/2022]
Abstract
BACKGROUND Reduced synaptic connectivity in frontal cortex may contribute to schizophrenia symptoms. While altered messenger RNA (mRNA) and protein expression of various synaptic genes have been found, discrepancies between studies mean a generalizable synaptic pathology has not been identified. METHODS We determined if mRNAs encoding presynaptic proteins enriched in inhibitory (vesicular gamma-aminobutyric acid transporter [VGAT] and complexin 1) and/or excitatory (vesicular glutamate transporter 1 [VGluT1] and complexin 2) terminals are altered in the dorsolateral prefrontal cortex of subjects with schizophrenia (n = 37 patients, n = 37 control subjects). We also measured mRNA expression of markers associated with synaptic plasticity/neurite outgrowth (growth associated protein 43 [GAP43] and neuronal navigators [NAVs] 1 and 2) and mRNAs of other synaptic-associated proteins previously implicated in schizophrenia: dysbindin and vesicle-associated membrane protein 1 (VAMP1) mRNAs using quantitative polymerase chain reaction. RESULTS No significant changes in complexin 1, VGAT, complexin 2, VGluT1, dysbindin, NAV2, or VAMP1 mRNA expression were found; however, expression of mRNAs associated with plasticity/cytoskeletal modification (GAP43 and NAV1) was reduced in schizophrenia. Although dysbindin mRNA did not differ in schizophrenia compared with control subjects, dysbindin mRNA positively correlated with GAP43 and NAV1 in schizophrenia but not in control subjects, suggesting low levels of dysbindin may be linked to reduced plasticity in the disease state. No relationships between three dysbindin genetic polymorphisms previously associated with dysbindin mRNA levels were found. CONCLUSIONS A reduction in the plasticity of synaptic terminals supports the hypothesis that their reduced modifiability may contribute to neuropathology and working memory deficits in schizophrenia.
Collapse
Affiliation(s)
- Samantha J. Fung
- Schizophrenia Research Institute, Sydney, Australia,Neuroscience Research Australia, Sydney, Australia,School of Medical Sciences, University of New South Wales, Sydney, Australia
| | | | - Cynthia Shannon Weickert
- Schizophrenia Research Institute, Sydney, Australia,Neuroscience Research Australia, Sydney, Australia,School of Psychiatry, University of New South Wales, Australia
| |
Collapse
|
54
|
McNeill EM, Roos KP, Moechars D, Clagett-Dame M. Nav2 is necessary for cranial nerve development and blood pressure regulation. Neural Dev 2010; 5:6. [PMID: 20184720 PMCID: PMC2843687 DOI: 10.1186/1749-8104-5-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Accepted: 02/25/2010] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND All-trans retinoic acid (atRA) is required for nervous system development, including the developing hindbrain region. Neuron navigator 2 (Nav2) was first identified as an atRA-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, Rainb1), and is required for atRA-mediated neurite outgrowth. In this paper, we explore the importance of Nav2 in nervous system development and function in vivo. RESULTS Nav2 hypomorphic homozygous mutants show decreased survival starting at birth. Nav2 mutant embryos show an overall reduction in nerve fiber density, as well as specific defects in cranial nerves IX (glossopharyngeal) and X (vagus). Nav2 hypomorphic mutant adult mice also display a blunted baroreceptor response compared to wild-type controls. CONCLUSIONS Nav2 functions in mammalian nervous system development, and is required for normal cranial nerve development and blood pressure regulation in the adult.
Collapse
Affiliation(s)
- Elizabeth M McNeill
- Interdepartmental Graduate Program in Nutritional Sciences, University of Wisconsin, Madison, WI, USA
| | | | | | | |
Collapse
|
55
|
|
56
|
Gouveia SM, Akhmanova A. Cell and Molecular Biology of Microtubule Plus End Tracking Proteins. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 285:1-74. [DOI: 10.1016/b978-0-12-381047-2.00001-3] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
57
|
Hoogenraad CC, Bradke F. Control of neuronal polarity and plasticity – a renaissance for microtubules? Trends Cell Biol 2009; 19:669-76. [DOI: 10.1016/j.tcb.2009.08.006] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 08/06/2009] [Accepted: 08/13/2009] [Indexed: 11/29/2022]
|
58
|
Congenic interval of CD45/Ly-5 congenic mice contains multiple genes that may influence hematopoietic stem cell engraftment. Blood 2009; 115:408-17. [PMID: 19901263 DOI: 10.1182/blood-2008-03-143370] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The B6.SJL-Ptprc(d)Pep3(b)/BoyJ (B6.SJL) congenic mouse strain, a valuable and widely used tool in murine bone marrow transplantation studies, has long been considered equivalent to the parental C57B/L6 (B6) strain with the exception of a small congenic interval on chromosome 1 harboring an alternative CD45/Ly-5 alloantigen (Ly-5.1). In this study we compared functional properties of stem and stromal cells between the strains, and delineated the boundary of the B6.SJL congenic interval. We identified a 25% reduction in homing efficiency, 3.8-fold reduction in transplantable long-term hematopoietic stem cells (LT-HSCs), a 5-fold reduction in LT-HSCs capable of 24-hour homing, and a cell-intrinsic engraftment defect of 30% to 50% in B6.SJL-derived bone marrow cells relative to B6-derived cells. These functional differences were independent of stem cell number, cycling, or apoptosis. Genotypic analysis revealed a 42.1-mbp congenic interval in B6.SJL including 306 genes, and at least 124 genetic polymorphisms. Moreover, expression profiling revealed 288 genes differentially expressed between nonhematopoietic stromal cells of the 2 strains. These results indicate that polymorphisms between the B6 and SJL genotype within the B6.SJL congenic interval influence HSC engraftment and result in transcriptional variation within bone marrow stroma.
Collapse
|
59
|
Stringham EG, Schmidt KL. Navigating the cell: UNC-53 and the navigators, a family of cytoskeletal regulators with multiple roles in cell migration, outgrowth and trafficking. Cell Adh Migr 2009; 3:342-6. [PMID: 19684480 DOI: 10.4161/cam.3.4.9451] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Changes in cell shape are associated with a variety of processes including cell migration, axon outgrowth, cell division and vesicle trafficking. C. elegans UNC-53 and its vertebrate homologs, the Navigators, are required for the migration of cells and the outgrowth of neuronal processes. The identification of novel molecular interactions and live imaging studies have revealed that UNC-53/NAVs are signal transducers associated with actin filaments, microtubules and intermediate filaments. In addition to modulating cytoskeletal dynamics at the leading edge of migrating or outgrowing cells, both UNC-53 and the navigators are expressed in adult cells, conspicuously those with specialized roles in endocytosis or secretion. Collectively, these results suggest that UNC-53/NAVs may be a central regulator of cytoskeletal dynamics, responsible for integrating signaling cues to multiple components of the cytoskeleton to coordinate rearrangement during cell outgrowth or trafficking.
Collapse
Affiliation(s)
- Eve G Stringham
- Department of Biology, Trinity Western University, Langley, BC, Canada.
| | | |
Collapse
|
60
|
van Haren J, Draegestein K, Keijzer N, Abrahams JP, Grosveld F, Peeters PJ, Moechars D, Galjart N. Mammalian Navigators are microtubule plus-end tracking proteins that can reorganize the cytoskeleton to induce neurite-like extensions. ACTA ACUST UNITED AC 2009; 66:824-38. [DOI: 10.1002/cm.20370] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
61
|
de Nijs L, Léon C, Nguyen L, Loturco JJ, Delgado-Escueta AV, Grisar T, Lakaye B. EFHC1 interacts with microtubules to regulate cell division and cortical development. Nat Neurosci 2009; 12:1266-74. [PMID: 19734894 DOI: 10.1038/nn.2390] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Accepted: 08/04/2009] [Indexed: 12/29/2022]
Abstract
Mutations in the EFHC1 gene are linked to juvenile myoclonic epilepsy (JME), one of the most frequent forms of idiopathic generalized epilepsies. JME is associated with subtle alterations of cortical and subcortical architecture, but the underlying pathological mechanism remains unknown. We found that EFHC1 is a microtubule-associated protein involved in the regulation of cell division. In vitro, EFHC1 loss of function disrupted mitotic spindle organization, impaired M phase progression, induced microtubule bundling and increased apoptosis. EFHC1 impairment in the rat developing neocortex by ex vivo and in utero electroporation caused a marked disruption of radial migration. We found that this effect was a result of cortical progenitors failing to exit the cell cycle and defects in the radial glia scaffold organization and in the locomotion of postmitotic neurons. Therefore, we propose that EFHC1 is a regulator of cell division and neuronal migration during cortical development and that disruption of its functions leads to JME.
Collapse
|
62
|
Schmidt KL, Marcus-Gueret N, Adeleye A, Webber J, Baillie D, Stringham EG. The cell migration molecule UNC-53/NAV2 is linked to the ARP2/3 complex by ABI-1. Development 2009; 136:563-74. [PMID: 19168673 DOI: 10.1242/dev.016816] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The shape changes that are required to position a cell to migrate or grow out in a particular direction involve a coordinated reorganization of the actin cytoskeleton. Although it is known that the ARP2/3 complex nucleates actin filament assembly, exactly how the information from guidance cues is integrated to elicit ARP2/3-mediated remodeling during outgrowth remains vague. Previous studies have shown that C. elegans UNC-53 and its vertebrate homolog NAV (Neuronal Navigators) are required for the migration of cells and neuronal processes. We have identified ABI-1 as a novel molecular partner of UNC-53/NAV2 and have found that a restricted calponin homology (CH) domain of UNC-53 is sufficient to bind ABI-1. ABI-1 and UNC-53 have an overlapping expression pattern, and display similar cell migration phenotypes in the excretory cell, and in mechanosensory and motoneurons. Migration defects were also observed after RNAi of proteins known to function with abi-1 in actin dynamics, including nck-1, wve-1 and arx-2. We propose that UNC-53/NAV2, through its CH domain, acts as a scaffold that links ABI-1 to the ARP2/3 complex to regulate actin cytoskeleton remodeling.
Collapse
|
63
|
Muley PD, McNeill EM, Marzinke MA, Knobel KM, Barr MM, Clagett-Dame M. The atRA-responsive gene neuron navigator 2 functions in neurite outgrowth and axonal elongation. Dev Neurobiol 2009; 68:1441-53. [PMID: 18726912 DOI: 10.1002/dneu.20670] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Neuron navigator 2 (Nav2) was first identified as an all-trans retinoic acid (atRA)-responsive gene in human neuroblastoma cells (retinoic acid-induced in neuroblastoma 1, RAINB1) that extend neurites after exposure to atRA. It is structurally related to the Caenorhabditis elegans unc-53 gene that is required for cell migration and axonal outgrowth. To gain insight into NAV2 function, the full-length human protein was expressed in C. elegans unc-53 mutants under the control of a mechanosensory neuron promoter. Transgene expression of NAV2 rescued the defects in unc-53 mutant mechanosensory neuron elongation, indicating that Nav2 is an ortholog of unc-53. Using a loss-of-function approach, we also show that Nav2 induction is essential for atRA to induce neurite outgrowth in SH-SY5Y cells. The NAV2 protein is located both in the cell body and along the length of the growing neurites of SH-SY5Y cells in a pattern that closely mimics that of neurofilament and microtubule proteins. Transfection of Nav2 deletion constructs in Cos-1 cells reveals a region of the protein (aa 837-1065) that directs localization with the microtubule cytoskeleton. Collectively, this work supports a role for NAV2 in neurite outgrowth and axonal elongation and suggests this protein may act by facilitating interactions between microtubules and other proteins such as neurofilaments that are key players in the formation and stability of growing neurites.
Collapse
Affiliation(s)
- P D Muley
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706-1544, USA
| | | | | | | | | | | |
Collapse
|
64
|
Akhmanova A, Steinmetz MO. Tracking the ends: a dynamic protein network controls the fate of microtubule tips. Nat Rev Mol Cell Biol 2008; 9:309-22. [PMID: 18322465 DOI: 10.1038/nrm2369] [Citation(s) in RCA: 787] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microtubule plus-end tracking proteins (+TIPs) are a diverse group of evolutionarily conserved cellular factors that accumulate at the ends of growing microtubules. They form dynamic networks through the interaction of a limited set of protein modules, repeat sequences and linear motifs that bind to each other with moderate affinities. +TIPs regulate different aspects of cell architecture by controlling microtubule dynamics, microtubule interactions with cellular structures and signalling factors, and the forces that are exerted on microtubule networks.
Collapse
Affiliation(s)
- Anna Akhmanova
- Department of Cell Biology, Erasmus Medical Center, P.O. Box 2040, 3000 CA Rotterdam, the Netherlands.
| | | |
Collapse
|
65
|
Jaworski J, Hoogenraad CC, Akhmanova A. Microtubule plus-end tracking proteins in differentiated mammalian cells. Int J Biochem Cell Biol 2007; 40:619-37. [PMID: 18023603 DOI: 10.1016/j.biocel.2007.10.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2007] [Revised: 09/16/2007] [Accepted: 10/11/2007] [Indexed: 11/16/2022]
Abstract
Differentiated mammalian cells are often characterized by highly specialized and polarized structure. Its formation and maintenance depends on cytoskeletal components, among which microtubules play an important role. The shape and dynamic properties of microtubule networks are controlled by multiple microtubule-associated factors. These include molecular motors and non-motor proteins, some of which accumulate specifically at the growing microtubule plus-ends (the so-called microtubule plus-end tracking proteins). Plus-end tracking proteins can contribute to the regulation of microtubule dynamics, mediate the cross-talk between microtubule ends, the actin cytoskeleton and the cell cortex, and participate in transport and positioning of structural and regulatory factors and membrane organelles. Malfunction of these proteins results in various human diseases including some forms of cancer, neurodevelopmental disorders and mental retardation. In this article we discuss recent data on microtubule dynamics and activities of microtubule plus-end binding proteins important for the physiology and pathology of differentiated mammalian cells such as neurons, polarized epithelia, muscle and sperm cells.
Collapse
Affiliation(s)
- Jacek Jaworski
- International Institute of Molecular and Cell Biology , Warsaw, Poland.
| | | | | |
Collapse
|
66
|
Houtman SH, Rutteman M, De Zeeuw CI, French PJ. Echinoderm microtubule-associated protein like protein 4, a member of the echinoderm microtubule-associated protein family, stabilizes microtubules. Neuroscience 2007; 144:1373-82. [PMID: 17196341 DOI: 10.1016/j.neuroscience.2006.11.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2006] [Revised: 10/31/2006] [Accepted: 11/01/2006] [Indexed: 11/19/2022]
Abstract
Echinoderm microtubule-associated protein (EMAP) is the major microtubule binding protein in dividing sea urchin (Strongylocentrotus purpuratus) eggs. Echinoderm microtubule-associated protein like protein 4 (Eml4, restrictedly overexpressed proliferation-associated protein 120 kDa (Ropp120)) is one of the five mammalian EMAP homologues, the cellular function of which remains to be elucidated. In our first set of experiments we determined the spatio-temporal expression pattern of Eml4 in mouse brain. Our results demonstrate that Eml4 is a highly developmentally regulated gene with high expression levels in the developing nervous system of E11 embryos declining to low levels in adult. Spatially, Eml4 expression becomes restricted to the olfactory bulb, hippocampus and cerebellum. Transient transfection of a fusion construct of full-length mouse Eml4 with green fluorescent protein (GFP-Eml4) into Cos7 and HeLa cells resulted in colocalization of GFP-Eml4 with microtubules. This colocalization was observed both with microtubules of non-dividing cells and with the mitotic spindle of dividing cells. In addition, transient overexpression of GFP-Eml4 in Cos7 cells resulted in microtubules that were resistant to nocodazole treatment suggesting that Eml4 stabilizes microtubules. A consequence of microtubule stabilization is a net reduction in the amount of free tubulin. Microtubule stabilizing proteins therefore are expected to indirectly decrease the microtubule growth rate. Indeed, transient transfection of GFP-Eml4 resulted in a marked decrease in the microtubule growth rate, which is in line with our hypothesis that Eml4 functions as a microtubule stabilizing protein. In summary, our results suggest that Eml4 is a developmentally regulated protein that colocalizes with and stabilizes microtubules.
Collapse
Affiliation(s)
- S H Houtman
- Department of Neuroscience, Erasmus MC, PO Box 2040, 3000 DR Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
67
|
Abstract
The correct positioning of neurons during development--achieved through directed migration--is the basis for proper brain function. Several decades of research have yielded a comprehensive map illustrating the temporal and spatial events underlying neurogenesis and neuronal migration during development. The discovery of distinct migration modes and pathways has been accompanied by the identification of a large interwoven molecular network that transmits extracellular signals into the cell. Moreover, recent work has shed new light on how the cytoskeleton is regulated and coordinated at the molecular and cellular level to execute neuronal migration.
Collapse
Affiliation(s)
- Ramsés Ayala
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, RIKEN-MIT Neuroscience Research Center, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
68
|
Clagett-Dame M, McNeill EM, Muley PD. Role of all-trans retinoic acid in neurite outgrowth and axonal elongation. ACTA ACUST UNITED AC 2006; 66:739-56. [PMID: 16688769 DOI: 10.1002/neu.20241] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The vitamin A metabolite, all-trans retinoic acid (atRA) plays essential roles in nervous system development, including neuronal patterning, survival, and neurite outgrowth. Our understanding of how the vitamin A acid functions in neurite outgrowth comes largely from cultured embryonic neurons and model neuronal cell systems including human neuroblastoma cells. Specifically, atRA has been shown to increase neurite outgrowth from embryonic DRG, sympathetic, spinal cord, and olfactory receptor neurons, as well as dissociated cerebra and retina explants. A role for atRA in axonal elongation is also supported by a limited number of studies in vivo, in which a deficiency in retinoid signaling produced either by dietary or genetic means has been shown to alter neurite outgrowth from the spinal cord and hindbrain regions. Human neuroblastoma cells also show enhanced numbers of neurites and longer processes in response to atRA. The mechanism whereby retinoids regulate neurite outgrowth includes, but is not limited to, the regulation of the transcription of neurotrophin receptors. More recent evidence supports a role for atRA in regulating components of other signaling pathways or candidate neurite-regulating factors. Some of these effects, such as that on neuron navigator 2 (NAV2), may be direct, whereas others may be secondary to other atRA-induced changes in the cell. This review focuses on what is currently known about neurite initiation and growth, with emphasis on the manner in which atRA may influence these events.
Collapse
Affiliation(s)
- Margaret Clagett-Dame
- Department of Biochemistry, University of Wisconsin-Madison, 433 Babcock Drive, Madison, Wisconsin 53706, USA.
| | | | | |
Collapse
|