51
|
Ke S, Haselkorn R. Fluorescence spectroscopy study of heterocyst differentiation in Anabaena PCC 7120 filaments. Microbiology (Reading) 2013; 159:253-258. [DOI: 10.1099/mic.0.064220-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Shan Ke
- Department of Molecular Genetics and Cell Biology, the University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| | - Robert Haselkorn
- Department of Molecular Genetics and Cell Biology, the University of Chicago, 920 E 58th Street, Chicago, IL 60637, USA
| |
Collapse
|
52
|
Wang H, Sivonen K, Rouhiainen L, Fewer DP, Lyra C, Rantala-Ylinen A, Vestola J, Jokela J, Rantasärkkä K, Li Z, Liu B. Genome-derived insights into the biology of the hepatotoxic bloom-forming cyanobacterium Anabaena sp. strain 90. BMC Genomics 2012; 13:613. [PMID: 23148582 PMCID: PMC3542288 DOI: 10.1186/1471-2164-13-613] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 11/05/2012] [Indexed: 11/15/2022] Open
Abstract
Background Cyanobacteria can form massive toxic blooms in fresh and brackish bodies of water and are frequently responsible for the poisoning of animals and pose a health risk for humans. Anabaena is a genus of filamentous diazotrophic cyanobacteria commonly implicated as a toxin producer in blooms in aquatic ecosystems throughout the world. The biology of bloom-forming cyanobacteria is poorly understood at the genome level. Results Here, we report the complete sequence and comprehensive annotation of the bloom-forming Anabaena sp. strain 90 genome. It comprises two circular chromosomes and three plasmids with a total size of 5.3 Mb, encoding a total of 4,738 genes. The genome is replete with mobile genetic elements. Detailed manual annotation demonstrated that almost 5% of the gene repertoire consists of pseudogenes. A further 5% of the genome is dedicated to the synthesis of small peptides that are the products of both ribosomal and nonribosomal biosynthetic pathways. Inactivation of the hassallidin (an antifungal cyclic peptide) biosynthetic gene cluster through a deletion event and a natural mutation of the buoyancy-permitting gvpG gas vesicle gene were documented. The genome contains a large number of genes encoding restriction-modification systems. Two novel excision elements were found in the nifH gene that is required for nitrogen fixation. Conclusions Genome analysis demonstrated that this strain invests heavily in the production of bioactive compounds and restriction-modification systems. This well-annotated genome provides a platform for future studies on the ecology and biology of these important bloom-forming cyanobacteria.
Collapse
Affiliation(s)
- Hao Wang
- Department of Food and Environmental Sciences, University of Helsinki, Helsinki, FIN-00014, Finland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Expression of Shewanella oneidensis MR-1 [FeFe]-hydrogenase genes in Anabaena sp. strain PCC 7120. Appl Environ Microbiol 2012; 78:8579-86. [PMID: 23023750 DOI: 10.1128/aem.01959-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H(2) generated from renewable resources holds promise as an environmentally innocuous fuel that releases only energy and water when consumed. In biotechnology, photoautotrophic oxygenic diazotrophs could produce H(2) from water and sunlight using the cells' endogenous nitrogenases. However, nitrogenases have low turnover numbers and require large amounts of ATP. [FeFe]-hydrogenases found in other organisms can have 1,000-fold higher turnover numbers and no specific requirement for ATP but are very O(2) sensitive. Certain filamentous cyanobacteria protect nitrogenase from O(2) by sequestering the enzyme within internally micro-oxic, differentiated cells called heterocysts. We heterologously expressed the [FeFe]-hydrogenase operon from Shewanella oneidensis MR-1 in Anabaena sp. strain PCC 7120 using the heterocyst-specific promoter P(hetN). Active [FeFe]-hydrogenase was detected in and could be purified from aerobically grown Anabaena sp. strain PCC 7120, but only when the organism was grown under nitrate-depleted conditions that elicited heterocyst formation. These results suggest that the heterocysts protected the [FeFe]-hydrogenase against inactivation by O(2).
Collapse
|
54
|
Identification and characterization of five intramembrane metalloproteases in Anabaena variabilis. J Bacteriol 2012; 194:6105-15. [PMID: 22961855 DOI: 10.1128/jb.01366-12] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Regulated intramembrane proteolysis (RIP) involves cleavage of a transmembrane segment of a protein, releasing the active form of a membrane-anchored transcription factor (MTF) or a membrane-tethered signaling protein in response to an extracellular or intracellular signal. RIP is conserved from bacteria to humans and governs many important signaling pathways in both prokaryotes and eukaryotes. Proteases that carry out these cleavages are named intramembrane cleaving proteases (I-CLips). To date, little is known about I-CLips in cyanobacteria. In this study, five putative site-2 type I-Clips (Ava_1070, Ava_1730, Ava_1797, Ava_3438, and Ava_4785) were identified through a genome-wide survey in Anabaena variabilis. Biochemical analysis demonstrated that these five putative A. variabilis site-2 proteases (S2Ps(Av)) have authentic protease activities toward an artificial substrate pro-σ(K), a Bacillus subtilis MTF, in our reconstituted Escherichia coli system. The enzymatic activities of processing pro-σ(K) differ among these five S2Ps(Av). Substitution of glutamic acid (E) by glutamine (Q) in the conserved HEXXH zinc-coordinated motif caused the loss of protease activities in these five S2Ps(Av), suggesting that they belonged to the metalloprotease family. Further mapping of the cleaved peptides of pro-σ(K) by Ava_4785 and Ava_1797 revealed that Ava_4785 and Ava_1797 recognized the same cleavage site in pro-σ(K) as SpoIVFB, a cognate S2P of pro-σ(K) from B. subtilis. Taking these results together, we report here for the first time the identification of five metallo-intramembrane cleaving proteases in Anabaena variabilis. The experimental system described herein should be applicable to studies of other RIP events and amenable to developing in vitro assays for I-CLips.
Collapse
|
55
|
Brown AI, Rutenberg AD. Heterocyst placement strategies to maximize the growth of cyanobacterial filaments. Phys Biol 2012; 9:046002. [DOI: 10.1088/1478-3975/9/4/046002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
56
|
Qin H, Peng C, Liu Y, Li D. DIFFERENTIAL RESPONSES OF ANABAENA SP. PCC 7120 (CYANOPHYCEAE) CULTURED IN NITROGEN-DEFICIENT AND NITROGEN-ENRICHED MEDIA TO ULTRAVIOLET-B RADIATION(1). JOURNAL OF PHYCOLOGY 2012; 48:615-625. [PMID: 27011077 DOI: 10.1111/j.1529-8817.2012.01162.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stratospheric ozone depletion increases the amount of ultraviolet-B radiation (UVBR) (280-320 nm) reaching the surface of the earth, potentially affecting phytoplankton. In this work, Anabaena sp. PCC 7120, a typically nitrogen (N)-fixing filamentous bloom-forming cyanobacterium in freshwater, was individually cultured in N-deficient and N-enriched media for long-term acclimation before being subjected to ultraviolet-B (UVB) exposure experiments. Results suggested that the extent of breakage in the filaments induced by UVBR increases with increasing intensity of UVB stress. In general, except for the 0.1 W · m(-2) treatment, which showed a mild increase, UVB exposure inhibits photosynthesis as evidenced by the decrease in the chl fluorescence parameters maximum photochemical efficiency of PSII (Fv /Fm ) and maximum relative electron transport rate. Complementary chromatic acclimation was also observed in Anabaena under different intensities of UVB stress. Increased total carbohydrate and soluble protein may provide some protection for the culture against damaging UVB exposure. In addition, N-deficient cultures with higher recovery capacity showed overcompensatory growth under low UVB (0.1 W · m(-2) ) exposure during the recovery period. Significantly increased (∼830%) ATPase activity may provide enough energy to repair the damage caused by exposure to UVB.
Collapse
Affiliation(s)
- Hongjie Qin
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Chengrong Peng
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yongding Liu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Dunhai Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China Graduate University of Chinese Academy of Sciences, Beijing 100049, ChinaInstitute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| |
Collapse
|
57
|
Abstract
Like eukaryotes, bacteria must coordinate division with growth to ensure cells are the appropriate size for a given environmental condition or developmental fate. As single-celled organisms, nutrient availability is one of the strongest influences on bacterial cell size. Classic physiological experiments conducted over four decades ago first demonstrated that cell size is directly correlated with nutrient source and growth rate in the Gram-negative bacterium Salmonella typhimurium. This observation subsequently served as the basis for studies revealing a role for cell size in cell cycle progression in a closely related organism, Escherichia coli. More recently, the development of powerful genetic, molecular, and imaging tools has allowed us to identify and characterize the nutrient-dependent pathway responsible for coordinating cell division and cell size with growth rate in the Gram-positive model organism Bacillus subtilis. Here, we discuss the role of cell size in bacterial growth and development and propose a broadly applicable model for cell size control in this important and highly divergent domain of life.
Collapse
Affiliation(s)
- An-Chun Chien
- Department of Biology, Box 1137, Washington University, 1 Brookings Dr., Saint Louis, MO, USA
| | | | | |
Collapse
|
58
|
Feldmann EA, Ni S, Sahu ID, Mishler CH, Levengood JD, Kushnir Y, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA. Differential Binding between PatS C-Terminal Peptide Fragments and HetR from Anabaena sp. PCC 7120. Biochemistry 2012; 51:2436-42. [DOI: 10.1021/bi300228n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Erik A. Feldmann
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Shuisong Ni
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Clay H. Mishler
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Jeffrey D. Levengood
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Yegor Kushnir
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Robert M. McCarrick
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Blanton S. Tolbert
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Sean M. Callahan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Michael A. Kennedy
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| |
Collapse
|
59
|
Higa KC, Rajagopalan R, Risser DD, Rivers OS, Tom SK, Videau P, Callahan SM. The RGSGR amino acid motif of the intercellular signalling protein, HetN, is required for patterning of heterocysts in Anabaena sp. strain PCC 7120. Mol Microbiol 2012; 83:682-93. [DOI: 10.1111/j.1365-2958.2011.07949.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
60
|
Adams DG, Duggan PS. Signalling in Cyanobacteria–Plant Symbioses. SIGNALING AND COMMUNICATION IN PLANT SYMBIOSIS 2012. [DOI: 10.1007/978-3-642-20966-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
61
|
Yuvakkumar R, Elango V, Venkatachalam R, Kannan N, Prabu P. Influence of Nano Nutrients on Heterocyst-Forming Cyanobacterium Anabaena ambigua Rao. ACTA ACUST UNITED AC 2011. [DOI: 10.1080/15533174.2011.591875] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- R. Yuvakkumar
- a Centre for Nanoscience and Technology , K. S. Rangasamy College of Technology , Tiruchengode, Tamilnadu, India
| | - V. Elango
- a Centre for Nanoscience and Technology , K. S. Rangasamy College of Technology , Tiruchengode, Tamilnadu, India
| | - R. Venkatachalam
- a Centre for Nanoscience and Technology , K. S. Rangasamy College of Technology , Tiruchengode, Tamilnadu, India
| | - N. Kannan
- b Department of Biotechnology , K. S. Rangasamy College of Technology , Tiruchengode, Tamilnadu, India
| | - P. Prabu
- a Centre for Nanoscience and Technology , K. S. Rangasamy College of Technology , Tiruchengode, Tamilnadu, India
| |
Collapse
|
62
|
Goclaw-Binder H, Sendersky E, Shimoni E, Kiss V, Reich Z, Perelman A, Schwarz R. Nutrient-associated elongation and asymmetric division of the cyanobacterium Synechococcus PCC 7942. Environ Microbiol 2011; 14:680-90. [DOI: 10.1111/j.1462-2920.2011.02620.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
63
|
Feldmann EA, Ni S, Sahu ID, Mishler CH, Risser DD, Murakami JL, Tom SK, McCarrick RM, Lorigan GA, Tolbert BS, Callahan SM, Kennedy MA. Evidence for Direct Binding between HetR from Anabaena sp. PCC 7120 and PatS-5. Biochemistry 2011; 50:9212-24. [DOI: 10.1021/bi201226e] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Erik A. Feldmann
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Shuisong Ni
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Indra D. Sahu
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Clay H. Mishler
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Douglas D. Risser
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Jodi L. Murakami
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Sasa K. Tom
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Robert M. McCarrick
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Gary A. Lorigan
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Blanton S. Tolbert
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| | - Sean M. Callahan
- Department of Microbiology, University of Hawaii, Honolulu, Hawaii 96822, United
States
| | - Michael A. Kennedy
- Department of Chemistry and
Biochemistry, Miami University, Oxford,
Ohio 45056, United States
| |
Collapse
|
64
|
Olmedo-Verd E, Santamaría-Gómez J, Ochoa de Alda JAG, Ribas de Pouplana L, Luque I. Membrane anchoring of aminoacyl-tRNA synthetases by convergent acquisition of a novel protein domain. J Biol Chem 2011; 286:41057-68. [PMID: 21965654 DOI: 10.1074/jbc.m111.242461] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Four distinct aminoacyl-tRNA synthetases (aaRSs) found in some cyanobacterial species contain a novel protein domain that bears two putative transmembrane helices. This CAAD domain is present in glutamyl-, isoleucyl-, leucyl-, and valyl-tRNA synthetases, the latter of which has probably recruited the domain more than once during evolution. Deleting the CAAD domain from the valyl-tRNA synthetase of Anabaena sp. PCC 7120 did not significantly modify the catalytic properties of this enzyme, suggesting that it does not participate in its canonical tRNA-charging function. Multiple lines of evidence suggest that the function of the CAAD domain is structural, mediating the membrane anchorage of the enzyme, although membrane localization of aaRSs has not previously been described in any living organism. Synthetases containing the CAAD domain were localized in the intracytoplasmic thylakoid membranes of cyanobacteria and were largely absent from the plasma membrane. The CAAD domain was necessary and apparently sufficient for protein targeting to membranes. Moreover, localization of aaRSs in thylakoids was important under nitrogen limiting conditions. In Anabaena, a multicellular filamentous cyanobacterium often used as a model for prokaryotic cell differentiation, valyl-tRNA synthetase underwent subcellular relocation at the cell poles during heterocyst differentiation, a process also dependent on the CAAD domain.
Collapse
Affiliation(s)
- Elvira Olmedo-Verd
- Instituto de Bioquímica Vegetal y Fotosíntesis, C.S.I.C. and Universidad de Sevilla, Avda Américo Vespucio 49, E-41092 Seville, Spain
| | | | | | | | | |
Collapse
|
65
|
Srirangan K, Pyne ME, Perry Chou C. Biochemical and genetic engineering strategies to enhance hydrogen production in photosynthetic algae and cyanobacteria. BIORESOURCE TECHNOLOGY 2011; 102:8589-8604. [PMID: 21514821 DOI: 10.1016/j.biortech.2011.03.087] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/24/2011] [Accepted: 03/25/2011] [Indexed: 05/30/2023]
Abstract
As an energy carrier, hydrogen gas is a promising substitute to carbonaceous fuels owing to its superb conversion efficiency, non-polluting nature, and high energy content. At present, hydrogen is predominately synthesized via chemical reformation of fossil fuels. While various biological methods have been extensively explored, none of them is justified as economically feasible. A sustainable platform for biological production of hydrogen will certainly impact the biofuel market. Among a selection of biological systems, algae and cyanobacteria have garnered major interests as potential cell factories for hydrogen production. In conjunction with photosynthesis, these organisms utilize inexpensive inorganic substrates and solar energy for simultaneous biosynthesis and hydrogen evolution. However, the hydrogen yield associated with these organisms remains far too low to compete with the existing chemical systems. This article reviews recent advances of biochemical, bioprocess, and genetic engineering strategies in circumventing technological limitations to hopefully improve the applicative potential of these photosynthetic hydrogen production systems.
Collapse
Affiliation(s)
- Kajan Srirangan
- Department of Chemical Engineering, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
66
|
McDermott JE, Oehmen CS, McCue LA, Hill E, Choi DM, Stöckel J, Liberton M, Pakrasi HB, Sherman LA. A model of cyclic transcriptomic behavior in the cyanobacterium Cyanothece sp. ATCC 51142. MOLECULAR BIOSYSTEMS 2011; 7:2407-18. [PMID: 21698331 DOI: 10.1039/c1mb05006k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Systems biology attempts to reconcile large amounts of disparate data with existing knowledge to provide models of functioning biological systems. The cyanobacterium Cyanothece sp. ATCC 51142 is an excellent candidate for such systems biology studies because: (i) it displays tight functional regulation between photosynthesis and nitrogen fixation; (ii) it has robust cyclic patterns at the genetic, protein and metabolomic levels; and (iii) it has potential applications for bioenergy production and carbon sequestration. We have represented the transcriptomic data from Cyanothece 51142 under diurnal light/dark cycles as a high-level functional abstraction and describe development of a predictive in silico model of diurnal and circadian behavior in terms of regulatory and metabolic processes in this organism. We show that incorporating network topology into the model improves performance in terms of our ability to explain the behavior of the system under new conditions. The model presented robustly describes transcriptomic behavior of Cyanothece 51142 under different cyclic and non-cyclic growth conditions, and represents a significant advance in the understanding of gene regulation in this important organism.
Collapse
Affiliation(s)
- Jason E McDermott
- Computational Biology and Bioinformatics Group, Pacific Northwest National Laboratory, MSIN: J4-33, Richland, WA 99352, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Dubey GP, Ben-Yehuda S. Intercellular nanotubes mediate bacterial communication. Cell 2011; 144:590-600. [PMID: 21335240 DOI: 10.1016/j.cell.2011.01.015] [Citation(s) in RCA: 367] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 01/10/2011] [Indexed: 12/18/2022]
Abstract
Bacteria are known to communicate primarily via secreted extracellular factors. Here we identify a previously uncharacterized type of bacterial communication mediated by nanotubes that bridge neighboring cells. Using Bacillus subtilis as a model organism, we visualized transfer of cytoplasmic fluorescent molecules between adjacent cells. Additionally, by coculturing strains harboring different antibiotic resistance genes, we demonstrated that molecular exchange enables cells to transiently acquire nonhereditary resistance. Furthermore, nonconjugative plasmids could be transferred from one cell to another, thereby conferring hereditary features to recipient cells. Electron microscopy revealed the existence of variously sized tubular extensions bridging neighboring cells, serving as a route for exchange of intracellular molecules. These nanotubes also formed in an interspecies manner, between B. subtilis and Staphylococcus aureus, and even between B. subtilis and the evolutionary distant bacterium Escherichia coli. We propose that nanotubes represent a major form of bacterial communication in nature, providing a network for exchange of cellular molecules within and between species.
Collapse
Affiliation(s)
- Gyanendra P Dubey
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, Israel
| | | |
Collapse
|
68
|
Hu Y, Zhang X, Shi Y, Zhou Y, Zhang W, Su XD, Xia B, Zhao J, Jin C. Structures of Anabaena calcium-binding protein CcbP: insights into Ca2+ signaling during heterocyst differentiation. J Biol Chem 2011; 286:12381-8. [PMID: 21330362 DOI: 10.1074/jbc.m110.201186] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Ca2+-binding proteins play pivotal roles in both eukaryotic and prokaryotic cells. CcbP from cyanobacterium Anabaena sp. strain PCC 7120 is a major Ca2+-binding protein involved in heterocyst differentiation, a process that forms specialized nitrogen-fixing cells. The three-dimensional structures of both Ca2+-free and Ca2+-bound forms of CcbP are essential for elucidating the Ca2+-signaling mechanism. However, CcbP shares low sequence identity with proteins of known structures, and its Ca2+-binding sites remain unknown. Here, we report the solution structures of CcbP in both Ca2+-free and Ca2+-bound forms determined by nuclear magnetic resonance spectroscopy. CcbP adopts an overall new fold and contains two Ca2+-binding sites with distinct Ca2+-binding abilities. Mutation of Asp38 at the stronger Ca2+-binding site of CcbP abolished its ability to regulate heterocyst formation in vivo. Surprisingly, the β-barrel subdomain of CcbP, which does not participate in Ca2+-binding, topologically resembles the Src homology 3 (SH3) domain and might act as a protein-protein interaction module. Our results provide the structural basis of the unique Ca2+ signaling mechanism during heterocyst differentiation.
Collapse
Affiliation(s)
- Yunfei Hu
- Beijing Nuclear Magnetic Resonance Center, State Key Laboratory of Plant and Protein Engineering, College of Life Sciences, Peking University, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Sulfate-driven elemental sparing is regulated at the transcriptional and posttranscriptional levels in a filamentous cyanobacterium. J Bacteriol 2011; 193:1449-60. [PMID: 21239582 DOI: 10.1128/jb.00885-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sulfur is an essential nutrient that can exist at growth-limiting concentrations in freshwater environments. The freshwater cyanobacterium Fremyella diplosiphon (also known as Tolypothrix sp. PCC 7601) is capable of remodeling the composition of its light-harvesting antennae, or phycobilisomes, in response to changes in the sulfur levels in its environment. Depletion of sulfur causes these cells to cease the accumulation of two forms of a major phycobilisome protein called phycocyanin and initiate the production of a third form of phycocyanin, which possesses a minimal number of sulfur-containing amino acids. Since phycobilisomes make up approximately 50% of the total protein in these cells, this elemental sparing response has the potential to significantly influence the fitness of this species under low-sulfur conditions. This response is specific for sulfate and occurs over the physiological range of sulfate concentrations likely to be encountered by this organism in its natural environment. F. diplosiphon has two separate sulfur deprivation responses, with low sulfate levels activating the phycobilisome remodeling response and low sulfur levels activating the chlorosis or bleaching response. The phycobilisome remodeling response results from changes in RNA abundance that are regulated at both the transcriptional and posttranscriptional levels. The potential of this response, and the more general bleaching response of cyanobacteria, to provide sulfur-containing amino acids during periods of sulfur deprivation is examined.
Collapse
|
70
|
Bothe H, Schmitz O, Yates MG, Newton WE. Nitrogen fixation and hydrogen metabolism in cyanobacteria. Microbiol Mol Biol Rev 2010; 74:529-51. [PMID: 21119016 PMCID: PMC3008169 DOI: 10.1128/mmbr.00033-10] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This review summarizes recent aspects of (di)nitrogen fixation and (di)hydrogen metabolism, with emphasis on cyanobacteria. These organisms possess several types of the enzyme complexes catalyzing N(2) fixation and/or H(2) formation or oxidation, namely, two Mo nitrogenases, a V nitrogenase, and two hydrogenases. The two cyanobacterial Ni hydrogenases are differentiated as either uptake or bidirectional hydrogenases. The different forms of both the nitrogenases and hydrogenases are encoded by different sets of genes, and their organization on the chromosome can vary from one cyanobacterium to another. Factors regulating the expression of these genes are emerging from recent studies. New ideas on the potential physiological and ecological roles of nitrogenases and hydrogenases are presented. There is a renewed interest in exploiting cyanobacteria in solar energy conversion programs to generate H(2) as a source of combustible energy. To enhance the rates of H(2) production, the emphasis perhaps needs not to be on more efficient hydrogenases and nitrogenases or on the transfer of foreign enzymes into cyanobacteria. A likely better strategy is to exploit the use of radiant solar energy by the photosynthetic electron transport system to enhance the rates of H(2) formation and so improve the chances of utilizing cyanobacteria as a source for the generation of clean energy.
Collapse
Affiliation(s)
- Hermann Bothe
- Botanical Institute, The University of Cologne, Zülpicher Str. 47b, D-50923 Cologne, Germany.
| | | | | | | |
Collapse
|
71
|
Espinosa J, Brunner T, Fiedler N, Forchhammer K, Muro-Pastor AM, Maldener I. DevT (Alr4674), resembling a Ser/Thr protein phosphatase, is essential for heterocyst function in the cyanobacterium Anabaena sp. PCC 7120. Microbiology (Reading) 2010; 156:3544-3555. [DOI: 10.1099/mic.0.043398-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
72
|
Multicellularity in a Heterocyst-Forming Cyanobacterium: Pathways for Intercellular Communication. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010. [DOI: 10.1007/978-1-4419-1528-3_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
73
|
Abstract
Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function together to accommodate the oxygen-sensitive process of nitrogen fixation. This article focuses on recent research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation.
Collapse
Affiliation(s)
- Krithika Kumar
- Department of Biology, Texas A&M University, College Station, 77843, USA
| | | | | |
Collapse
|
74
|
Weyman PD, Pratte B, Thiel T. Hydrogen production in nitrogenase mutants in Anabaena variabilis. FEMS Microbiol Lett 2010; 304:55-61. [DOI: 10.1111/j.1574-6968.2009.01883.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
75
|
Bullerjahn GS, Boyanapalli R, Rozmarynowycz MJ, McKay RML. Cyanobacterial bioreporters as sensors of nutrient availability. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 118:165-188. [PMID: 20091289 DOI: 10.1007/10_2009_23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Due to their ubiquity in aquatic environments and their contribution to total biomass, especially in oligotrophic systems, cyanobacteria can be viewed as a proxy for primary productivity in both marine and fresh waters. In this chapter we describe the development and use of picocyanobacterial bioreporters to measure the bioavailability of nutrients that may constrain total photosynthesis in both lacustrine and marine systems. Issues pertaining to bioreporter construction, performance and field applications are discussed. Specifically, luminescent Synechococcus spp. and Synechocystis spp. bioreporters are described that allow the bioavailability of phosphorus, nitrogen and iron to be accurately measured in environmental samples.
Collapse
Affiliation(s)
- George S Bullerjahn
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403, USA
| | | | | | | |
Collapse
|
76
|
Temporal and spatial regulation of the four transcription start sites of hetR from Anabaena sp. strain PCC 7120. J Bacteriol 2009; 192:1088-96. [PMID: 20008074 DOI: 10.1128/jb.01297-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The filamentous cyanobacterium Anabaena sp. strain PCC 7120 forms nitrogen-fixing heterocysts in a periodic pattern in response to combined-nitrogen limitation in the environment. The master regulator of heterocyst differentiation, HetR, is necessary for both pattern formation and commitment of approximately every 10th cell of a filament to differentiation into a heterocyst. In this study, the individual contributions of four transcriptional start points (tsps) in regulation of transcription of hetR were assessed, and the effects of the regulatory genes patS, hetN, and patA on transcription from the tsps were determined. The tsp located at nucleotide -271 relative to the translational start site (-271 tsp) was the most tightly regulated tsp, and fluorescence from a -271 tsp-green fluorescent protein (GFP) reporter fusion was observed initially in groups of two cells and later in single cells arranged in a spatial pattern that mimicked the pattern of heterocysts that emerged. Conversely, the fluorescence from the -184 and -728/-696 tsp-GFP reporter fusions was uniform throughout filaments. Transcription from the -271 tsp was severely downregulated in a strain in which the patA gene, which encodes a positive regulator of differentiation, was deleted, and it was not detectable in strains overexpressing the genes encoding the negative regulators of differentiation, patS and hetN. In strains lacking the -271 tsp of hetR, pattern formation, the timing of commitment to differentiation, and the number of cells that differentiated into heterocysts were affected. Taken together, these results demonstrate the role of regulation of the -271 tsp of hetR in the genetic network that governs heterocyst pattern formation and differentiation.
Collapse
|
77
|
Toyoshima M, Sasaki NV, Fujiwara M, Ehira S, Ohmori M, Sato N. Early candidacy for differentiation into heterocysts in the filamentous cyanobacterium Anabaena sp. PCC 7120. Arch Microbiol 2009; 192:23-31. [DOI: 10.1007/s00203-009-0525-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 10/15/2009] [Accepted: 10/26/2009] [Indexed: 11/29/2022]
|
78
|
Genetic and cytological evidence that heterocyst patterning is regulated by inhibitor gradients that promote activator decay. Proc Natl Acad Sci U S A 2009; 106:19884-8. [PMID: 19897721 DOI: 10.1073/pnas.0909152106] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The formation of a pattern of differentiated cells from a group of seemingly equivalent, undifferentiated cells is a central paradigm of developmental biology. Several species of filamentous cyanobacteria differentiate nitrogen-fixing heterocysts at regular intervals along unbranched filaments to form a periodic pattern of two distinct cell types. This patterning has been used to exemplify application of the activator-inhibitor model to periodic patterns in biology. The activator-inhibitor model proposes that activators and inhibitors of differentiation diffuse from source cells to form concentration gradients that in turn mediate patterning, but direct visualization of concentration gradients of activators and inhibitors has been difficult. Here we show that the periodic pattern of heterocysts produced by cyanobacteria relies on two inhibitors of heterocyst differentiation, PatS and HetN, in a manner consistent with the predictions of the activator-inhibitor model. Concentration gradients of the activator, HetR, were observed adjacent to heterocysts, the natural source of PatS and HetN, as well as adjacent to vegetative cells that were manipulated to overexpress a gene encoding either of the inhibitors. Gradients of HetR relied on posttranslational decay of HetR. Deletion of both patS and hetN genes prevented the formation of gradients of HetR, and a derivative of the inhibitors was shown to promote decay of HetR in a concentration-dependent manner. Our results provide strong support for application of the activator-inhibitor model to heterocyst patterning and, more generally, the formation of periodic patterns in biological systems.
Collapse
|
79
|
|
80
|
Asai H, Iwamori S, Kawai K, Ehira S, Ishihara JI, Aihara K, Shoji S, Iwasaki H. Cyanobacterial cell lineage analysis of the spatiotemporal hetR expression profile during heterocyst pattern formation in Anabaena sp. PCC 7120. PLoS One 2009; 4:e7371. [PMID: 19823574 PMCID: PMC2756587 DOI: 10.1371/journal.pone.0007371] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/17/2009] [Indexed: 11/18/2022] Open
Abstract
Diazotrophic heterocyst formation in the filamentous cyanobacterium, Anabaena sp. PCC 7120, is one of the simplest pattern formations known to occur in cell differentiation. Most previous studies on heterocyst patterning were based on statistical analysis using cells collected or observed at different times from a liquid culture, which would mask stochastic fluctuations affecting the process of pattern formation dynamics in a single bacterial filament. In order to analyze the spatiotemporal dynamics of heterocyst formation at the single filament level, here we developed a culture system to monitor simultaneously bacterial development, gene expression, and phycobilisome fluorescence. We also developed micro-liquid chamber arrays to analyze multiple Anabaena filaments at the same time. Cell lineage analyses demonstrated that the initial distributions of hetR::gfp and phycobilisome fluorescence signals at nitrogen step-down were not correlated with the resulting distribution of developed heterocysts. Time-lapse observations also revealed a dynamic hetR expression profile at the single-filament level, including transient upregulation accompanying cell division, which did not always lead to heterocyst development. In addition, some cells differentiated into heterocysts without cell division after nitrogen step-down, suggesting that cell division in the mother cells is not an essential requirement for heterocyst differentiation.
Collapse
Affiliation(s)
- Hironori Asai
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
| | - Shunsuke Iwamori
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
| | - Kentaro Kawai
- Department of Electrocic and Photonic Systems, Waseda University, Tokyo, Japan
| | - Shigeki Ehira
- Department of Biological Science, Chuo University, Kasuga, Tokyo
| | - Jun-ichi Ishihara
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
| | - Kazuyuki Aihara
- Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
- ERATO Aihara Complexity Modelling Project, JST, Tokyo, Japan
| | - Shuichi Shoji
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
- Department of Electrocic and Photonic Systems, Waseda University, Tokyo, Japan
| | - Hideo Iwasaki
- Department of Electrical Engineering and Biological Science, Waseda University (TWIns), Tokyo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Tokyo, Japan
- * E-mail:
| |
Collapse
|
81
|
Molecular characterization of a novel peroxidase from the cyanobacterium Anabaena sp. strain PCC 7120. Appl Environ Microbiol 2009; 75:7509-18. [PMID: 19801472 DOI: 10.1128/aem.01121-09] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The open reading frame alr1585 of Anabaena sp. strain PCC 7120 encodes a heme-dependent peroxidase (Anabaena peroxidase [AnaPX]) belonging to the novel DyP-type peroxidase family (EC 1.11.1.X). We cloned and heterologously expressed the active form of the enzyme in Escherichia coli. The purified enzyme was a 53-kDa tetrameric protein with a pI of 3.68, a low pH optima (pH 4.0), and an optimum reaction temperature of 35 degrees C. Biochemical characterization revealed an iron protoporphyrin-containing heme peroxidase with a broad specificity for aromatic substrates such as guaiacol, 4-aminoantipyrine and pyrogallol. The enzyme efficiently catalyzed the decolorization of anthraquinone dyes like Reactive Blue 5, Reactive Blue 4, Reactive Blue 114, Reactive Blue 119, and Acid Blue 45 with decolorization rates of 262, 167, 491, 401, and 256 muM.min(-1), respectively. The apparent K(m) and k(cat)/K(m) values for Reactive Blue 5 were 3.6 muM and 1.2 x 10(7) M(-1) s(-1), respectively, while the apparent K(m) and k(cat)/K(m) values for H(2)O(2) were 5.8 muM and 6.6 x 10(6) M(-1) s(-1), respectively. In contrast, the decolorization activity of AnaPX toward azo dyes was relatively low but was significantly enhanced 2- to approximately 50-fold in the presence of the natural redox mediator syringaldehyde. The specificity and catalytic efficiency for hydrogen donors and synthetic dyes show the potential application of AnaPX as a useful alternative of horseradish peroxidase or fungal DyPs. To our knowledge, this study represents the only extensive report in which a bacterial DyP has been tested in the biotransformation of synthetic dyes.
Collapse
|
82
|
|
83
|
Affiliation(s)
- Robert Haselkorn
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
84
|
Gerdtzen ZP, Salgado JC, Osses A, Asenjo JA, Rapaport I, Andrews BA. Modeling heterocyst pattern formation in cyanobacteria. BMC Bioinformatics 2009; 10 Suppl 6:S16. [PMID: 19534741 PMCID: PMC2697639 DOI: 10.1186/1471-2105-10-s6-s16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Background To allow the survival of the population in the absence of nitrogen, some cyanobacteria strains have developed the capability of differentiating into nitrogen fixing cells, forming a characteristic pattern. In this paper, the process by which cyanobacteria differentiates from vegetative cells into heterocysts in the absence of nitrogen and the elements of the gene network involved that allow the formation of such a pattern are investigated. Methods A simple gene network model, which represents the complexity of the differentiation process, and the role of all variables involved in this cellular process is proposed. Specific characteristics and details of the system's behavior such as transcript profiles for ntcA, hetR and patS between consecutive heterocysts were studied. Results The proposed model is able to capture one of the most distinctive features of this system: a characteristic distance of 10 cells between two heterocysts, with a small standard deviation according to experimental variability. The system's response to knock-out and over-expression of patS and hetR was simulated in order to validate the proposed model against experimental observations. In all cases, simulations show good agreement with reported experimental results. Conclusion A simple evolution mathematical model based on the gene network involved in heterocyst differentiation was proposed. The behavior of the biological system naturally emerges from the network and the model is able to capture the spacing pattern observed in heterocyst differentiation, as well as the effect of external perturbations such as nitrogen deprivation, gene knock-out and over-expression without specific parameter fitting.
Collapse
Affiliation(s)
- Ziomara P Gerdtzen
- Centre for Biochemical Engineering and Biotechnology, Department of Chemical Engineering and Biotechnology, University of Chile, Av, Beauchef 850, Santiago 837-0448, Chile.
| | | | | | | | | | | |
Collapse
|
85
|
Affiliation(s)
- Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
86
|
Ni S, Benning MM, Smola MJ, Feldmann EA, Kennedy MA. Crystal structure of Npun_R1517, a putative negative regulator of heterocyst differentiation fromNostoc punctiformePCC 73102. Proteins 2009; 74:794-8. [DOI: 10.1002/prot.22308] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
87
|
Baniulis D, Yamashita E, Whitelegge JP, Zatsman AI, Hendrich MP, Hasan SS, Ryan CM, Cramer WA. Structure-Function, Stability, and Chemical Modification of the Cyanobacterial Cytochrome b6f Complex from Nostoc sp. PCC 7120. J Biol Chem 2009; 284:9861-9. [PMID: 19189962 DOI: 10.1074/jbc.m809196200] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The crystal structure of the cyanobacterial cytochrome b(6)f complex has previously been solved to 3.0-A resolution using the thermophilic Mastigocladus laminosus whose genome has not been sequenced. Several unicellular cyanobacteria, whose genomes have been sequenced and are tractable for mutagenesis, do not yield b(6)f complex in an intact dimeric state with significant electron transport activity. The genome of Nostoc sp. PCC 7120 has been sequenced and is closer phylogenetically to M. laminosus than are unicellular cyanobacteria. The amino acid sequences of the large core subunits and four small peripheral subunits of Nostoc are 88 and 80% identical to those in the M. laminosus b(6)f complex. Purified b(6)f complex from Nostoc has a stable dimeric structure, eight subunits with masses similar to those of M. laminosus, and comparable electron transport activity. The crystal structure of the native b(6)f complex, determined to a resolution of 3.0A (PDB id: 2ZT9), is almost identical to that of M. laminosus. Two unique aspects of the Nostoc complex are: (i) a dominant conformation of heme b(p) that is rotated 180 degrees about the alpha- and gamma-meso carbon axis relative to the orientation in the M. laminosus complex and (ii) acetylation of the Rieske iron-sulfur protein (PetC) at the N terminus, a post-translational modification unprecedented in cyanobacterial membrane and electron transport proteins, and in polypeptides of cytochrome bc complexes from any source. The high spin electronic character of the unique heme c(n) is similar to that previously found in the b(6)f complex from other sources.
Collapse
Affiliation(s)
- Danas Baniulis
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Nicolaisen K, Hahn A, Schleiff E. The cell wall in heterocyst formation byAnabaenasp. PCC 7120. J Basic Microbiol 2009; 49:5-24. [DOI: 10.1002/jobm.200800300] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
89
|
Bernroitner M, Zamocky M, Pairer M, Furtmüller PG, Peschek GA, Obinger C. Heme-copper oxidases and their electron donors in cyanobacterial respiratory electron transport. Chem Biodivers 2008; 5:1927-1961. [PMID: 18972533 DOI: 10.1002/cbdv.200890180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cyanobacteria are the paradigmatic organisms of oxygenic (plant-type) photosynthesis and aerobic respiration. Since there is still an amazing lack of knowledge on the role and mechanism of their respiratory electron transport, we have critically analyzed all fully or partially sequenced genomes for heme-copper oxidases and their (putative) electron donors cytochrome c(6), plastocyanin, and cytochrome c(M). Well-known structure-function relationships of the two branches of heme-copper oxidases, namely cytochrome c (aa(3)-type) oxidase (COX) and quinol (bo-type) oxidase (QOX), formed the base for a critical inspection of genes and ORFs found in cyanobacterial genomes. It is demonstrated that at least one operon encoding subunits I-III of COX is found in all cyanobacteria, whereas many non-N(2)-fixing species lack QOX. Sequence analysis suggests that both cyanobacterial terminal oxidases should be capable of both the four-electron reduction of dioxygen and proton pumping. All diazotrophic organisms have at least one operon that encodes QOX. In addition, the highly refined specialization in heterocyst forming Nostocales is reflected by the presence of two paralogs encoding COX. The majority of cyanobacterial genomes contain one gene or ORF for plastocyanin and cytochrome c(M), whereas 1-4 paralogs for cytochrome c(6) were found. These findings are discussed with respect to published data about the role of respiration in wild-type and mutated cyanobacterial strains in normal metabolism, stress adaptation, and nitrogen fixation. A model of the branched electron-transport pathways downstream of plastoquinol in cyanobacteria is presented.
Collapse
Affiliation(s)
- Margit Bernroitner
- Department of Chemistry, Division of Biochemistry, BOKU-University of Natural Resources and Applied Life Sciences, Muthgasse 18, A-1190 Vienna
| | | | | | | | | | | |
Collapse
|
90
|
Lopez D, Vlamakis H, Kolter R. Generation of multiple cell types in Bacillus subtilis. FEMS Microbiol Rev 2008; 33:152-63. [PMID: 19054118 DOI: 10.1111/j.1574-6976.2008.00148.x] [Citation(s) in RCA: 269] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Bacillus subtilis is a Gram-positive bacterium that is well known for its ability to differentiate into metabolically inactive spores that are highly resistant to environmental stresses. In fact, populations of genetically identical B. subtilis comprise numerous distinct cell types. In addition to spores, cells can become genetically competent, motile, produce extracellular matrix or degradative enzymes, or secrete toxins that allow them to cannibalize their neighbors. Many of the cell fates listed above appear to be mutually exclusive. In this review, we discuss how individual cells within a population control their gene expression to ensure that proper regulation of differentiation occurs. These different cell fates are regulated by an intricate network that relies primarily on the activity of three major transcriptional regulators: Spo0A, DegU, and ComK. While individual cells must choose distinct cell fates, the population as a whole exhibits a spectrum of phenotypes whose diversity may increase fitness.
Collapse
Affiliation(s)
- Daniel Lopez
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | | | | |
Collapse
|
91
|
|
92
|
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that differentiates heterocysts in response to deprivation of combined nitrogen. A hetF deletion strain lacked heterocysts and had aberrant cell morphology. Site-directed mutagenesis of the predicted active-site histidine and cysteine residues of this putative caspase-hemoglobinase fold protease abolished HetF function, supporting the hypothesis that HetF is a protease. Deletion of patA, which is necessary for the formation of most intercalary heterocysts, or hetF resulted in an increase in HetR protein, and extra copies of hetF on a plasmid functionally bypassed the deletion of patA. A hetR-gfp translational fusion expressed from an inducible promoter demonstrated that hetF-dependent downregulation of HetR levels occurs rapidly in vegetative cells, as well as developing heterocysts. "Mosaic" filaments in which only one cell of a filament had a copy of hetR or hetF indicated that hetF is required for differentiation only in cells that will become heterocysts. hetF was required for transcription from a hetR-dependent transcription start point of the hetR promoter and induction of transcription from the patS promoter. The inverse correlation between the level of HetR protein and transcription from hetR-dependent promoters suggests that the transcriptional activity of HetR is regulated by HetF and PatA.
Collapse
|
93
|
Role of two NtcA-binding sites in the complex ntcA gene promoter of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 2008; 190:7584-90. [PMID: 18805988 DOI: 10.1128/jb.00856-08] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Anabaena sp. strain PCC 7120 is a filamentous cyanobacterium that fixes N(2) in specialized cells called heterocysts, which differentiate from vegetative cells in a process that requires the nitrogen control transcription factor NtcA. 2-Oxoglutarate-stimulated binding of purified NtcA to wild-type and modified versions of the ntcA gene promoter from Anabaena sp. was analyzed by mobility shift and DNase I footprinting assays, and the role of NtcA-binding sites in the expression of the ntcA gene during heterocyst differentiation was studied in vivo by using an ntcA-gfp translational fusion and primer extension analysis. Mutation of neither of the two identified NtcA-binding sites eliminated localized expression of ntcA in proheterocysts, but mutation of both sites led to very low, nonlocalized expression.
Collapse
|
94
|
Karunakaran R, Mehta O, Kunjadia P, Apte S, Nareshkumar G. Excision of Anabaena PCC 7120 nifD element in Escherichia coli: Growth kinetics and RecA regulated xisA expression and DNA rearrangement. BIORESOURCE TECHNOLOGY 2008; 99:4551-8. [PMID: 17765537 DOI: 10.1016/j.biortech.2007.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 05/29/2007] [Accepted: 07/06/2007] [Indexed: 05/17/2023]
Abstract
Anabaena PCC 7120 nifHDK operon is interrupted by an 11 kb DNA element which is excised during the development of heterocysts by Excisase A, encoded by the xisA gene residing on the element. The excision is a site-specific recombination event that occurs at the 11 base pair direct repeats flanking the element. Earlier work showed the excision of the 11 kb element in Escherichia coli at a frequency 0.3%. We report here the excision of this element at 1.1% and 1.98% in E. coli DH5alpha, and 1.9% and 10.9% in E. coli JM 101 when grown on Luria broth and minimal media, respectively. Excision of nifD element in isogenic recA(-) (RK1) and recA+ (RK2) E. coli JM101 P1 transductants, showed similar results to that of E. coli JM101 and DH5alpha, respectively. A plasmid pMX32, carrying a xisA defective 11kb element, showed no excision in E. coli RK2 strain. In contrast to Anabaena PCC 7120, excision of nifD element did not increase in E. coli DH5alpha grown in iron-deficient conditions. A PxisA::lacZ transcriptional fusion, used to detect the expression of elusive xisA gene, showed maximal beta-galactosidase activity in the stationary phase. The results suggest that the excision event in E. coli may involve additional factors, such as RecA and that the physiological status can influence the excision of nifD element.
Collapse
Affiliation(s)
- R Karunakaran
- Molecular Microbial Biochemistry Laboratory, Department of Biochemistry, Faculty of Science, MS University of Baroda, Vadodara 390 002, India
| | | | | | | | | |
Collapse
|
95
|
Mullineaux CW, Mariscal V, Nenninger A, Khanum H, Herrero A, Flores E, Adams DG. Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J 2008; 27:1299-308. [PMID: 18388860 DOI: 10.1038/emboj.2008.66] [Citation(s) in RCA: 112] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/04/2008] [Indexed: 11/09/2022] Open
Abstract
Heterocyst-forming filamentous cyanobacteria are true multicellular prokaryotes, in which heterocysts and vegetative cells have complementary metabolism and are mutually dependent. The mechanism for metabolite exchange between cells has remained unclear. To gain insight into the mechanism and kinetics of metabolite exchange, we introduced calcein, a 623-Da fluorophore, into the Anabaena cytoplasm. We used fluorescence recovery after photobleaching to quantify rapid diffusion of this molecule between the cytoplasms of all the cells in the filament. This indicates nonspecific intercellular channels allowing the movement of molecules from cytoplasm to cytoplasm. We quantify rates of molecular exchange as filaments adapt to diazotrophic growth. Exchange among vegetative cells becomes faster as filaments differentiate, becoming considerably faster than exchange with heterocysts. Slower exchange is probably a price paid to maintain a microaerobic environment in the heterocyst. We show that the slower exchange is partly due to the presence of cyanophycin polar nodules in heterocysts. The phenotype of a null mutant identifies FraG (SepJ), a membrane protein localised at the cell-cell interface, as a strong candidate for the channel-forming protein.
Collapse
Affiliation(s)
- Conrad W Mullineaux
- School of Biological and Chemical Sciences, Queen Mary, University of London, London, UK.
| | | | | | | | | | | | | |
Collapse
|
96
|
Regulation of nif gene expression and the energetics of N2 fixation over the diel cycle in a hot spring microbial mat. ISME JOURNAL 2008; 2:364-78. [PMID: 18323780 DOI: 10.1038/ismej.2007.117] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Nitrogen fixation, a prokaryotic, O2-inhibited process that reduces N2 gas to biomass, is of paramount importance in biogeochemical cycling of nitrogen. We analyzed the levels of nif transcripts of Synechococcus ecotypes, NifH subunit and nitrogenase activity over the diel cycle in the microbial mat of an alkaline hot spring in Yellowstone National Park. The results showed a rise in nif transcripts in the evening, with a subsequent decline over the course of the night. In contrast, immunological data demonstrated that the level of the NifH polypeptide remained stable during the night, and only declined when the mat became oxic in the morning. Nitrogenase activity was low throughout the night; however, it exhibited two peaks, a small one in the evening and a large one in the early morning, when light began to stimulate cyanobacterial photosynthetic activity, but O2 consumption by respiration still exceeded the rate of O2 evolution. Once the irradiance increased to the point at which the mat became oxic, the nitrogenase activity was strongly inhibited. Transcripts for proteins associated with energy-producing metabolisms in the cell also followed diel patterns, with fermentation-related transcripts accumulating at night, photosynthesis- and respiration-related transcripts accumulating during the day and late afternoon, respectively. These results are discussed with respect to the energetics and regulation of N2 fixation in hot spring mats and factors that can markedly influence the extent of N2 fixation over the diel cycle.
Collapse
|
97
|
Zhao W, Ye Z, Zhao J. RbrA, a cyanobacterial rubrerythrin, functions as a FNR-dependent peroxidase in heterocysts in protection of nitrogenase from damage by hydrogen peroxide in Anabaena sp. PCC 7120. Mol Microbiol 2008; 66:1219-30. [PMID: 18001348 DOI: 10.1111/j.1365-2958.2007.05994.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The heterocyst is a specialized cell for nitrogen fixation in some filamentous cyanobacteria. Here we report that a rubrerythrin (RbrA) from Anabaena sp. PCC 7120 functions as a peroxidase in heterocysts and plays an important role in protection of nitrogenase. The electron donor for RbrA in H(2)O(2) reduction is NADPH and the electron transfer from NADPH to RbrA depends on ferredoxin:NADP(+) oxidoreductase. A rbrA mutant (r27) grew much more slowly than the wild type under diazotrophic conditions. Its nitrogenase activity measured in air was only 8% of that measured under anoxic conditions. Staining r27 filaments with 2',7'-dichlorodihydrofluorescein diacetate indicated that heterocysts had a higher H(2)O(2) concentration than the vegetative cells. The expression of rbrA was controlled by two promoters and the promoter for the smaller transcript was regulated by HetR. Spatial expression of rbrA was studied and the results showed that the transcription is localized predominantly in heterocysts. In a mutant lacking nifH and rbrA, the H(2)O(2) concentration in heterocysts was lower than that in the vegetative cells, suggesting that NifH is involved in H(2)O(2) generation. Our results demonstrate that RbrA is a critical enzyme for H(2)O(2) decomposition and provide evidence that nitrogenase autoprotection is important in heterocysts.
Collapse
Affiliation(s)
- Weixing Zhao
- State Key Laboratory of Protein and Plant Genetic Engineering, College of Life Sciences, Peking University, Beijing, 100871, China
| | | | | |
Collapse
|
98
|
Grochowski LL, White RH. Promiscuous anaerobes: new and unconventional metabolism in methanogenic archaea. Ann N Y Acad Sci 2007; 1125:190-214. [PMID: 18096851 DOI: 10.1196/annals.1419.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The development of an oxygenated atmosphere on earth resulted in the polarization of life into two major groups, those that could live in the presence of oxygen and those that could not-the aerobes and the anaerobes. The evolution of aerobes from the earliest anaerobic prokaryotes resulted in a variety of metabolic adaptations. Many of these adaptations center on the need to sustain oxygen-sensitive reactions and cofactors to function in the new oxygen-containing atmosphere. Still other metabolic pathways that were not sensitive to oxygen also diverged. This is likely due to the physical separation of the organisms, based on their ability to live in the presence of oxygen, which allowed for the independent evolution of the pathways. Through the study of metabolic pathways in anaerobes and comparison to the more established pathways from aerobes, insight into metabolic evolution can be gained. This, in turn, can allow for extra- polation to those metabolic pathways occurring in the Last Universal Common Ancestor (LUCA). Some of the unique and uncanonical metabolic pathways that have been identified in the archaea with emphasis on the biochemistry of an obligate anaerobic methanogen, Methanocaldococcus jannaschii are reviewed.
Collapse
Affiliation(s)
- Laura L Grochowski
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | |
Collapse
|
99
|
Zheng Y, Boeglin WE, Schneider C, Brash AR. A 49-kDa mini-lipoxygenase from Anabaena sp. PCC 7120 retains catalytically complete functionality. J Biol Chem 2007; 283:5138-47. [PMID: 18070874 DOI: 10.1074/jbc.m705780200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Anabaena sp. PCC 7120 is one of the few prokaryotes harboring a lipoxygenase (LOX) gene. The sequence resides in an open reading frame encoding a fusion protein of a catalase-like hemoprotein with an unusually short LOX (approximately 49 kDa) at the C terminus. The recombinant mini-LOX contains a non-heme iron in the active site and is highly active with linoleic and alpha-linolenic acids (which occur naturally in Anabaena) giving the respective 9R-hydroperoxides, the mirror image of the 9S-LOX products of plants. Using stereospecifically labeled [11-(3)H]linoleic acids we show that reaction is catalyzed via a typical antarafacial relationship of initial hydrogen abstraction and oxygenation. The mini-LOX oxygenated C16/C18:2-phosphatidylcholine with 9R specificity, suggesting a "tail first" mode of fatty acid binding. Site-directed mutagenesis of an active site Ala (Ala215), typically conserved as Gly in R-LOX, revealed that substitution with Gly retained 9R specificity, whereas the larger Val substitution switched oxygenation to 13S, implying that Ala215 represents the functional equivalent of the Gly in other R-LOX. Metabolism studies using a synthetic fatty acid with extended double bond conjugation, 9E,11Z,14Z-20:3omega6, showed that the mini-LOX can control oxygenation two positions further along the fatty acid carbon chain. We conclude that the mini-LOX, despite lacking the beta-barrel domain and much additional sequence, is catalytically complete. Interestingly, animal and plant LOX, which undoubtedly share a common ancestor, are related in sequence only in the catalytic domain; it is possible that the prokaryotic LOX represents a common link and that the beta-barrel domain was then acquired independently in the animal and plant kingdoms.
Collapse
Affiliation(s)
- Yuxiang Zheng
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-6602, USA
| | | | | | | |
Collapse
|
100
|
Allard JF, Hill AL, Rutenberg AD. Heterocyst patterns without patterning proteins in cyanobacterial filaments. Dev Biol 2007; 312:427-34. [DOI: 10.1016/j.ydbio.2007.09.045] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 09/23/2007] [Accepted: 09/24/2007] [Indexed: 11/24/2022]
|