51
|
Proinflammatory Cytokines Induce Endocrine Differentiation in Pancreatic Ductal Cells via STAT3-Dependent NGN3 Activation. Cell Rep 2016; 15:460-470. [PMID: 27068459 DOI: 10.1016/j.celrep.2016.03.036] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 02/18/2016] [Accepted: 03/09/2016] [Indexed: 12/16/2022] Open
Abstract
A major goal of diabetes research is to develop strategies that replenish pancreatic insulin-producing beta cells. One emerging strategy is to harness pancreatic plasticity-the ability of pancreatic cells to undergo cellular interconversions-a phenomenon implicated in physiological stress and pancreatic injury. Here, we investigate the effects of inflammatory cytokine stress on the differentiation potential of ductal cells in a human cell line, in mouse ductal cells by pancreatic intraductal injection, and during the progression of autoimmune diabetes in the non-obese diabetic (NOD) mouse model. We find that inflammatory cytokine insults stimulate epithelial-to-mesenchymal transition (EMT) as well as the endocrine program in human pancreatic ductal cells via STAT3-dependent NGN3 activation. Furthermore, we show that inflammatory cytokines activate ductal-to-endocrine cell reprogramming in vivo independent of hyperglycemic stress. Together, our findings provide evidence that inflammatory cytokines direct ductal-to-endocrine cell differentiation, with implications for beta cell regeneration.
Collapse
|
52
|
Pauerstein PT, Sugiyama T, Stanley SE, McLean GW, Wang J, Martín MG, Kim SK. Dissecting Human Gene Functions Regulating Islet Development With Targeted Gene Transduction. Diabetes 2015; 64:3037-49. [PMID: 25901096 PMCID: PMC4512220 DOI: 10.2337/db15-0042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 04/09/2015] [Indexed: 01/19/2023]
Abstract
During pancreas development, endocrine precursors and their progeny differentiate, migrate, and cluster to form nascent islets. The transcription factor Neurogenin 3 (Neurog3) is required for islet development in mice, but its role in these dynamic morphogenetic steps has been inferred from fixed tissues. Moreover, little is known about the molecular genetic functions of NEUROG3 in human islet development. We developed methods for gene transduction by viral microinjection in the epithelium of cultured Neurog3-null mutant fetal pancreas, permitting genetic complementation in a developmentally relevant context. In addition, we developed methods for quantitative assessment of live-cell phenotypes in single developing islet cells. Delivery of wild-type NEUROG3 rescued islet differentiation, morphogenesis, and live cell deformation, whereas the patient-derived NEUROG3(R107S) allele partially restored indicators of islet development. NEUROG3(P39X), a previously unreported patient allele, failed to restore islet differentiation or morphogenesis and was indistinguishable from negative controls, suggesting that it is a null mutation. Our systems also permitted genetic suppression analysis and revealed that targets of NEUROG3, including NEUROD1 and RFX6, can partially restore islet development in Neurog3-null mutant mouse pancreata. Thus, advances described here permitted unprecedented assessment of gene functions in regulating crucial dynamic aspects of islet development in the fetal pancreas.
Collapse
Affiliation(s)
- Philip T Pauerstein
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Takuya Sugiyama
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Susan E Stanley
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Graeme W McLean
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Jing Wang
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| | - Martín G Martín
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA
| | - Seung K Kim
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA
| |
Collapse
|
53
|
De Vas MG, Kopp JL, Heliot C, Sander M, Cereghini S, Haumaitre C. Hnf1b controls pancreas morphogenesis and the generation of Ngn3+ endocrine progenitors. Development 2015; 142:871-82. [PMID: 25715395 DOI: 10.1242/dev.110759] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Heterozygous mutations in the human HNF1B gene are associated with maturity-onset diabetes of the young type 5 (MODY5) and pancreas hypoplasia. In mouse, Hnf1b heterozygous mutants do not exhibit any phenotype, whereas the homozygous deletion in the entire epiblast leads to pancreas agenesis associated with abnormal gut regionalization. Here, we examine the specific role of Hnf1b during pancreas development, using constitutive and inducible conditional inactivation approaches at key developmental stages. Hnf1b early deletion leads to a reduced pool of pancreatic multipotent progenitor cells (MPCs) due to decreased proliferation and increased apoptosis. Lack of Hnf1b either during the first or the secondary transitions is associated with cystic ducts. Ductal cells exhibit aberrant polarity and decreased expression of several cystic disease genes, some of which we identified as novel Hnf1b targets. Notably, we show that Glis3, a transcription factor involved in duct morphogenesis and endocrine cell development, is downstream Hnf1b. In addition, a loss and abnormal differentiation of acinar cells are observed. Strikingly, inactivation of Hnf1b at different time points results in the absence of Ngn3(+) endocrine precursors throughout embryogenesis. We further show that Hnf1b occupies novel Ngn3 putative regulatory sequences in vivo. Thus, Hnf1b plays a crucial role in the regulatory networks that control pancreatic MPC expansion, acinar cell identity, duct morphogenesis and generation of endocrine precursors. Our results uncover an unappreciated requirement of Hnf1b in endocrine cell specification and suggest a mechanistic explanation of diabetes onset in individuals with MODY5.
Collapse
Affiliation(s)
- Matias G De Vas
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Janel L Kopp
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Claire Heliot
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Maike Sander
- Department of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California-San Diego, La Jolla, CA 92093-0695, USA
| | - Silvia Cereghini
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| | - Cécile Haumaitre
- CNRS, UMR7622, Institut de Biologie Paris-Seine (IBPS), Paris F-75005, France Sorbonne Universités, UPMC Université Paris 06, UMR7622-IBPS, Paris F-75005, France INSERM U969, Paris F-75005, France
| |
Collapse
|
54
|
Morris HT, Machesky LM. Actin cytoskeletal control during epithelial to mesenchymal transition: focus on the pancreas and intestinal tract. Br J Cancer 2015; 112:613-20. [PMID: 25611303 PMCID: PMC4333498 DOI: 10.1038/bjc.2014.658] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 12/12/2022] Open
Abstract
The formation of epithelial tissues allows organisms to specialise and form tissues with diverse functions and compartmentalised environments. The tight controls on cell growth and migration required to maintain epithelia can present problems such as the development and spread of cancer when normal pathways are disrupted. By attaining a deeper understanding of how cell migration is suppressed to maintain the epithelial organisation and how it is reactivated when epithelial tissues become mesenchymal, new insights into both cancer and development can be gained. Here we discuss recent developments in our understanding of epithelial and mesenchymal regulation of the actin cytoskeleton in normal and cancerous tissue, with a focus on the pancreas and intestinal tract.
Collapse
Affiliation(s)
- H T Morris
- The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - L M Machesky
- The CRUK Beatson Institute for Cancer Research and University of Glasgow College of Medical, Veterinary and Life Sciences, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| |
Collapse
|
55
|
Gopurappilly R, Bhonde R. Transcriptional profiling and functional network analyses of islet-like clusters (ILCs) generated from pancreatic stem cells in vitro. Genomics 2015; 105:211-9. [PMID: 25622784 DOI: 10.1016/j.ygeno.2015.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/08/2015] [Accepted: 01/16/2015] [Indexed: 01/10/2023]
Abstract
We have earlier reported the generation of islet-like clusters (ILCs) from mesenchymal stromal cell (MSC)-like cells present in murine pancreas. Here we compare these ILCs to native primary islets by transcriptome screening. Genes were categorized into functional clusters and network analysis was done by Ingenuity Pathway Analysis (IPA). The fold changes for a selected panel of molecules were validated with quantitative real time PCR. A differential expression of 6516 genes (p-value ≤ 0.05, 1.5 fold change) with upregulated expression of numerous inflammatory and 'Epithelial to Mesenchymal Transition' molecules (EMT) was seen. A significant increase in the early β-cell marker expression in the ILCs indicated their progenitor status. Although not fully mature, ILCs offer certain advantages including the large number of easily inducible initiator MSCs. These 'naïve' cells may aid to devise protocols for generating functional islet equivalents. Moreover their maturation upon transplantation under local microenvironmental niche is highly possible.
Collapse
Affiliation(s)
| | - Ramesh Bhonde
- School of Regenerative Medicine (SORM), Manipal University, Bangalore 560065, India.
| |
Collapse
|
56
|
Liu X, Huang H, Remmers N, Hollingsworth MA. Loss of E-cadherin and epithelial to mesenchymal transition is not required for cell motility in tissues or for metastasis. Tissue Barriers 2014; 2:e969112. [PMID: 25610757 PMCID: PMC4292045 DOI: 10.4161/21688362.2014.969112] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 09/19/2014] [Indexed: 11/19/2022] Open
Abstract
Loss of E-cadherin has been long considered to be a major hallmark of epithelial-mesenchymal transition (EMT) and has been reported in various cancers. P120 catenin regulates E-cadherin stability on the cell surface and also plays a role in intracellular signaling by modulating nuclear transcription. We recently characterized the nature of interactions between p120 catenin and Mucin 1 (MUC1) in pancreatic cancer. Expression of different p120 catenin isoforms with and without MUC1 induced distinct morphologies, cell adhesion, and dynamic properties of motility along with different metastatic properties in vivo. Re-expression of p120 catenin isoform 3A in the context of MUC1 expression in a p120 catenin-deficient cell line stabilized expression of E-cadherin. However, orthotopic implantation of tumors using this stable cell line produced large metastatic lesions to the liver, which exceeded the volume of the primary tumor, suggesting down regulation of E-cadherin is not required for tumor metastasis. Here we extend those studies by showing that ectopic expression of E-cadherin does not block in vitro invasion of the pancreatic cancer cells, and instead accelerated the rate of tumor invasion. Furthermore, results from 23 cases of human pancreatic primary tumor specimens revealed that most tumors exhibiting metastatic activity retained epithelial morphology and E-cadherin gene expression. Our results indicate that loss of E-cadherin and EMT are not required for metastasis and that an epithelial morphology can be maintained during the process of tumor cell movement.
Collapse
Affiliation(s)
- Xiang Liu
- Department of Cancer Biology; Mayo Clinic Comprehensive Cancer Center; Mayo Clinic ; Jacksonville, FL USA ; Eppley Institute For Research in Cancer and Allied Disease; University of Nebraska Medical Center ; Omaha, NE USA
| | - Huocong Huang
- Department of Biochemisty and Molecular Biology; University of Nebraska Medical Center ; Omaha, NE USA
| | - Neeley Remmers
- Department of General Surgery; Veterans Administration; University of Nebraska Medical Center ; Omaha, NE USA
| | - Michael A Hollingsworth
- Eppley Institute For Research in Cancer and Allied Disease; University of Nebraska Medical Center ; Omaha, NE USA
| |
Collapse
|
57
|
Avolio F, Pfeifer A, Courtney M, Gjernes E, Ben-Othman N, Vieira A, Druelle N, Faurite B, Collombat P. From pancreas morphogenesis to β-cell regeneration. Curr Top Dev Biol 2014; 106:217-38. [PMID: 24290351 DOI: 10.1016/b978-0-12-416021-7.00006-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Type 1 diabetes is a metabolic disease resulting in the selective loss of pancreatic insulin-producing β-cells and affecting millions of people worldwide. The side effects of diabetes are varied and include cardiovascular, neuropathologic, and kidney diseases. Despite the most recent advances in diabetes care, patients suffering from type 1 diabetes still display a shortened life expectancy compared to their healthy counterparts. In an effort to improve β-cell-replacement therapies, numerous approaches are currently being pursued, most of these aiming at finding ways to differentiate stem/progenitor cells into β-like cells by mimicking embryonic development. Unfortunately, these efforts have hitherto not allowed the generation of fully functional β-cells. This chapter summarizes recent findings, allowing a better insight into the molecular mechanisms underlying the genesis of β-cells during the course of pancreatic morphogenesis. Furthermore, a focus is made on new research avenues concerning the conversion of pre-existing pancreatic cells into β-like cells, such approaches holding great promise for the development of type 1 diabetes therapies.
Collapse
Affiliation(s)
- Fabio Avolio
- Univ. Nice Sophia Antipolis, iBV, UMR 7277, Nice, France; Inserm, iBV, U1091, Nice, France; CNRS, iBV, UMR 7277, Nice, France
| | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Cano DA, Soria B, Martín F, Rojas A. Transcriptional control of mammalian pancreas organogenesis. Cell Mol Life Sci 2014; 71:2383-402. [PMID: 24221136 PMCID: PMC11113897 DOI: 10.1007/s00018-013-1510-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 10/19/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Abstract
The field of pancreas development has markedly expanded over the last decade, significantly advancing our understanding of the molecular mechanisms that control pancreas organogenesis. This growth has been fueled, in part, by the need to generate new therapeutic approaches for the treatment of diabetes. The creation of sophisticated genetic tools in mice has been instrumental in this progress. Genetic manipulation involving activation or inactivation of genes within specific cell types has allowed the identification of many transcription factors (TFs) that play critical roles in the organogenesis of the pancreas. Interestingly, many of these TFs act at multiple stages of pancreatic development, and adult organ function or repair. Interaction with other TFs, extrinsic signals, and epigenetic regulation are among the mechanisms by which TFs may play context-dependent roles during pancreas organogenesis. Many of the pancreatic TFs directly regulate each other and their own expression. These combinatorial interactions generate very specific gene regulatory networks that can define the different cell lineages and types in the developing pancreas. Here, we review recent progress made in understanding the role of pancreatic TFs in mouse pancreas formation. We also summarize our current knowledge of human pancreas development and discuss developmental pancreatic TFs that have been associated with human pancreatic diseases.
Collapse
Affiliation(s)
- David A. Cano
- Endocrinology Unit, Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Seville, Spain
| | - Bernat Soria
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Francisco Martín
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| | - Anabel Rojas
- Centro Andaluz de Biología Molecular y Medicina Regenerativa (CABIMER), Avda. Americo Vespucio s/n., Parque Científico Isla de la Cartuja, 41092 Seville, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Barcelona, Spain
| |
Collapse
|
59
|
Li A, Morton JP, Ma Y, Karim SA, Zhou Y, Faller WJ, Woodham EF, Morris HT, Stevenson RP, Juin A, Jamieson NB, MacKay CJ, Carter CR, Leung HY, Yamashiro S, Blyth K, Sansom OJ, Machesky LM. Fascin is regulated by slug, promotes progression of pancreatic cancer in mice, and is associated with patient outcomes. Gastroenterology 2014; 146:1386-96.e1-17. [PMID: 24462734 PMCID: PMC4000441 DOI: 10.1053/j.gastro.2014.01.046] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Revised: 01/16/2014] [Accepted: 01/17/2014] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) is often lethal because it is highly invasive and metastasizes rapidly. The actin-bundling protein fascin has been identified as a biomarker of invasive and advanced PDAC and regulates cell migration and invasion in vitro. We investigated fascin expression and its role in PDAC progression in mice. METHODS We used KRas(G12D) p53(R172H) Pdx1-Cre (KPC) mice to investigate the effects of fascin deficiency on development of pancreatic intraepithelial neoplasia (PanIn), PDAC, and metastasis. We measured levels of fascin in PDAC cell lines and 122 human resected PDAC samples, along with normal ductal and acinar tissues; we associated levels with patient outcomes. RESULTS Pancreatic ducts and acini from control mice and early-stage PanINs from KPC mice were negative for fascin, but approximately 6% of PanIN3 and 100% of PDAC expressed fascin. Fascin-deficient KRas(G12D) p53(R172H) Pdx1-Cre mice had longer survival times, delayed onset of PDAC, and a lower PDAC tumor burdens than KPC mice; loss of fascin did not affect invasion of PDAC into bowel or peritoneum in mice. Levels of slug and fascin correlated in PDAC cells; slug was found to regulate transcription of Fascin along with the epithelial-mesenchymal transition. In PDAC cell lines and cells from mice, fascin concentrated in filopodia and was required for their assembly and turnover. Fascin promoted intercalation of filopodia into mesothelial cell layers and cell invasion. Nearly all human PDAC samples expressed fascin, and higher fascin histoscores correlated with poor outcomes, vascular invasion, and time to recurrence. CONCLUSIONS The actin-bundling protein fascin is regulated by slug and involved in late-stage PanIN and PDAC formation in mice. Fascin appears to promote formation of filopodia and invasive activities of PDAC cells. Its levels in human PDAC correlate with outcomes and time to recurrence, indicating it might be a marker or therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Ang Li
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Jennifer P Morton
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - YaFeng Ma
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Saadia A Karim
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Yan Zhou
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - William J Faller
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Emma F Woodham
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Hayley T Morris
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Richard P Stevenson
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Amelie Juin
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Nigel B Jamieson
- Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Colin J MacKay
- Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - C Ross Carter
- Department of Surgery, West of Scotland Pancreatic Unit, Glasgow Royal Infirmary, Glasgow, UK
| | - Hing Y Leung
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Shigeko Yamashiro
- Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey
| | - Karen Blyth
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Owen J Sansom
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Laura M Machesky
- CRUK Beatson Institute for Cancer Research, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
60
|
EMT in developmental morphogenesis. Cancer Lett 2013; 341:9-15. [DOI: 10.1016/j.canlet.2013.02.037] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 02/14/2013] [Accepted: 02/14/2013] [Indexed: 12/24/2022]
|
61
|
Shih HP, Wang A, Sander M. Pancreas organogenesis: from lineage determination to morphogenesis. Annu Rev Cell Dev Biol 2013; 29:81-105. [PMID: 23909279 DOI: 10.1146/annurev-cellbio-101512-122405] [Citation(s) in RCA: 218] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The pancreas is an essential organ for proper nutrient metabolism and has both endocrine and exocrine function. In the past two decades, knowledge of how the pancreas develops during embryogenesis has significantly increased, largely from developmental studies in model organisms. Specifically, the molecular basis of pancreatic lineage decisions and cell differentiation is well studied. Still not well understood are the mechanisms governing three-dimensional morphogenesis of the organ. Strategies to derive transplantable β-cells in vitro for diabetes treatment have benefited from the accumulated knowledge of pancreas development. In this review, we provide an overview of the current understanding of pancreatic lineage determination and organogenesis, and we examine future implications of these findings for treatment of diabetes mellitus through cell replacement.
Collapse
Affiliation(s)
- Hung Ping Shih
- Departments of Pediatrics and Cellular & Molecular Medicine, Pediatric Diabetes Research Center, University of California, San Diego, La Jolla, California 92093-0695;
| | | | | |
Collapse
|
62
|
Wolden-Kirk H, Overbergh L, Gysemans C, Brusgaard K, Naamane N, Van Lommel L, Schuit F, Eizirik DL, Christesen H, Mathieu C. Unraveling the effects of 1,25OH2D3 on global gene expression in pancreatic islets. J Steroid Biochem Mol Biol 2013; 136:68-79. [PMID: 23137852 DOI: 10.1016/j.jsbmb.2012.10.017] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Vitamin D deficiency has been linked to type 1 and 2 diabetes, whereas supplementation may prevent both diseases. However, the extent of the effects of vitamin D or its metabolites directly on pancreatic islets is still largely unknown. The aim of the present study was to investigate how active vitamin D, 1,25(OH)2D3, affects beta cells directly by establishing its effects on global gene expression in healthy murine islets. MATERIALS AND METHODS Pancreatic islets were isolated from 2 to 3 week old C57BL/6 mice and cultured in vitro with 1,25(OH)2D3 or vehicle for 6 and 24h. Total RNA was extracted from the islets and the effects on global gene expression were analyzed using Affymetrix microarrays. RESULTS AND DISCUSSION Exposure to 1,25(OH)2D3 compared to vehicle resulted in 306 and 151 differentially expressed genes after 6 and 24h, respectively (n=4, >1.3-fold, p<0.02). Of these 220 were up-regulated, whereas 86 displayed a decreased expression after 6h. Furthermore, expression levels were increased for 124 and decreased for 27 genes following 24h of exposure. Formation of intercellular junctions, cytoskeletal organization, and intracellular trafficking as well as lipid metabolism and ion transport were among the most affected gene classes. Effects on several genes already identified as being part of vitamin D signaling in other cell types were observed along with genes known to affect insulin release, although with our assay we were not able to detect any effects of 1,25(OH)2D3 on glucose-stimulated insulin release from healthy pancreatic islets. CONCLUSION The effects of 1,25(OH)2D3 on the expression of cytoskeletal and intracellular trafficking genes along with genes involved in ion transport may influence insulin exocytosis. However, an effect of 1,25(OH)2D3 on insulin release could not be detected for healthy islets in contrast to islets subjected to pathological conditions such as cytokine exposure and vitamin D deficiency as suggested by other studies. Thus, in addition to previously identified tolerogenic effects on the immune system, 1,25(OH)2D3 may affect basic functions of pancreatic beta cells, with the potential to render them more resistant to the detrimental conditions encountered during type 1 and 2 diabetes. This article is part of a Special Issue entitled 'Vitamin D Workshop'.
Collapse
Affiliation(s)
- H Wolden-Kirk
- Clinical and Experimental Endocrinology, University Hospital Gasthuisberg, Catholic University of Leuven, Herestraat 49, Box 902, B-3000 Leuven, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Al-Hasani K, Pfeifer A, Courtney M, Ben-Othman N, Gjernes E, Vieira A, Druelle N, Avolio F, Ravassard P, Leuckx G, Lacas-Gervais S, Ambrosetti D, Benizri E, Hecksher-Sorensen J, Gounon P, Ferrer J, Gradwohl G, Heimberg H, Mansouri A, Collombat P. Adult duct-lining cells can reprogram into β-like cells able to counter repeated cycles of toxin-induced diabetes. Dev Cell 2013; 26:86-100. [PMID: 23810513 DOI: 10.1016/j.devcel.2013.05.018] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/16/2013] [Accepted: 05/21/2013] [Indexed: 01/27/2023]
Abstract
It was recently demonstrated that embryonic glucagon-producing cells in the pancreas can regenerate and convert into insulin-producing β-like cells through the constitutive/ectopic expression of the Pax4 gene. However, whether α cells in adult mice display the same plasticity is unknown. Similarly, the mechanisms underlying such reprogramming remain unclear. We now demonstrate that the misexpression of Pax4 in glucagon(+) cells age-independently induces their conversion into β-like cells and their glucagon shortage-mediated replacement, resulting in islet hypertrophy and in an unexpected islet neogenesis. Combining several lineage-tracing approaches, we show that, upon Pax4-mediated α-to-β-like cell conversion, pancreatic duct-lining precursor cells are continuously mobilized, re-express the developmental gene Ngn3, and successively adopt a glucagon(+) and a β-like cell identity through a mechanism involving the reawakening of the epithelial-to-mesenchymal transition. Importantly, these processes can repeatedly regenerate the whole β cell mass and thereby reverse several rounds of toxin-induced diabetes, providing perspectives to design therapeutic regenerative strategies.
Collapse
|
64
|
Habener JF, Stanojevic V. Alpha cells come of age. Trends Endocrinol Metab 2013; 24:153-63. [PMID: 23260869 DOI: 10.1016/j.tem.2012.10.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 10/27/2012] [Accepted: 10/30/2012] [Indexed: 02/07/2023]
Abstract
The alpha cells that coinhabit the islets with the insulin-producing beta cells have recently captured the attention of diabetes researchers because of new breakthrough findings highlighting the importance of these cells in the maintenance of beta cell health and functions. In normal physiological conditions alpha cells produce glucagon but in conditions of beta cell injury they also produce glucagon-like peptide-1 (GLP-1), a growth and survival factor for beta cells. In this review we consider these new findings on the functions of alpha cells. Alpha cells remain somewhat enigmatic inasmuch as they now appear to be important in the maintenance of the health of beta cells, but their production of glucagon promotes diabetes. This circumstance prompts an examination of approaches to coax alpha cells to produce GLP-1 instead of glucagon.
Collapse
Affiliation(s)
- Joel F Habener
- Laboratory of Molecular Endocrinology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | |
Collapse
|
65
|
Afelik S, Jensen J. Notch signaling in the pancreas: patterning and cell fate specification. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:531-44. [DOI: 10.1002/wdev.99] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
66
|
Ioannou M, Serafimidis I, Arnes L, Sussel L, Singh S, Vasiliou V, Gavalas A. ALDH1B1 is a potential stem/progenitor marker for multiple pancreas progenitor pools. Dev Biol 2012; 374:153-63. [PMID: 23142317 DOI: 10.1016/j.ydbio.2012.10.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 10/26/2012] [Accepted: 10/31/2012] [Indexed: 01/09/2023]
Abstract
Aldehyde dehydrogenase (ALDH) genes are increasingly associated with stem/progenitor cell status but their role in the maintenance of pluripotency remains uncertain. In a screen conducted for downstream Ngn3 target genes using ES derived pancreas progenitors we identified Aldh1b1, encoding a mitochondrial enzyme, as one of the genes strongly up regulated in response to Ngn3 expression. We found both by in situ hybridization and immunofluorescence using a specific antibody that ALDH1B1 is exclusively expressed in the emerging pancreatic buds of the early embryo (9.5 dpc) in a Pdx1 dependent manner. Around the time of secondary transition, ALDH1B1 expression was restricted in the tip tripotent progenitors of the branching epithelium and in a subset of the trunk epithelium. Expression in the latter was Ngn3 dependent. Subsequently, ALDH1B1 expression persisted only in the tip cells that become restricted to the exocrine lineage and declined rapidly as these cells mature. In the adult pancreas we identified rare ALDH1B1(+) cells that become abundant following pancreas injury in either the caerulein or streptozotocin paradigms. Blocking ALDH catalytic activity in pancreas embryonic explants resulted in reduced size of the explants and accelerated differentiation suggesting for the first time that ALDH activity may be necessary in the developing pancreas for the maintenance and expansion of progenitor pools.
Collapse
Affiliation(s)
- Marilia Ioannou
- Developmental Biology Laboratory, Biomedical Research Foundation of the Academy of Athens, Athens 11527, Greece
| | | | | | | | | | | | | |
Collapse
|
67
|
Chui MH. Insights into cancer metastasis from a clinicopathologic perspective: Epithelial-Mesenchymal Transition is not a necessary step. Int J Cancer 2012; 132:1487-95. [PMID: 22833228 DOI: 10.1002/ijc.27745] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 06/25/2012] [Accepted: 07/10/2012] [Indexed: 12/12/2022]
Abstract
Epithelial-mesenchymal transition (EMT) has been implicated as the critical event initiating cancer invasion and metastasis. After disseminating through the circulation, the malignant cells have been proposed to undergo subsequent mesenchymal-epithelial transition (MET) to form secondary tumors. However, strong evidence from human tumor specimens for this paradigm is lacking. In carcinomas, cancers derived from epithelial tissues, epithelial morphology and gene expression are always retained to some degree. While mesenchymal transdifferentiation may be involved in the pathogenesis of carcinosarcomas, even in these neoplasms, as well as in germ cell tumors capable of multilineage differentiation, the mesenchymal phenotype does not facilitate metastatic progression. Indeed, most cancers invade and travel through lymphatic and blood vessels via cohesive epithelial migration, rather than going through the EMT-MET sequence. EMT gene expression is also consistently associated with high histologic grade and while the transcription factors, Snail, Slug and Twist have traditionally been thought of as inducers of EMT, under certain conditions, they also mediate dedifferentiation and maintenance of the stem cell state. In various malignancies, including basal-like breast cancer and colorectal cancer, the genetically unstable, undifferentiated phenotype predicts early metastatic spread and poor prognosis. This article discusses some of the controversies surrounding differentiation and metastasis from a clinicopathologic perspective and presents evidence that the epithelial phenotype is maintained throughout the process of cancer metastasis.
Collapse
Affiliation(s)
- Michael Herman Chui
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada.
| |
Collapse
|
68
|
Rieck S, Bankaitis ED, Wright CVE. Lineage determinants in early endocrine development. Semin Cell Dev Biol 2012; 23:673-84. [PMID: 22728667 DOI: 10.1016/j.semcdb.2012.06.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2012] [Accepted: 06/13/2012] [Indexed: 02/07/2023]
Abstract
Pancreatic endocrine cells are produced from a dynamic epithelium in a process that, as in any developing organ, is driven by interacting programs of spatiotemporally regulated intercellular signals and autonomous gene regulatory networks. These algorithms work to push progenitors and their transitional intermediates through a series of railroad-station-like switching decisions to regulate flux along specific differentiation tracks. Extensive research on pancreas organogenesis over the last 20 years, greatly spurred by the potential to restore functional β-cell mass in diabetic patients by transplantation therapy, is advancing our knowledge of how endocrine lineage bias is established and allocation is promoted. The field is working towards the goal of generating a detailed blueprint of how heterogeneous cell populations interact and respond to each other, and other influences such as the extracellular matrix, to move into progressively refined and mature cell states. Here, we highlight how signaling codes and transcriptional networks might determine endocrine lineage within a complex and dynamic architecture, based largely on studies in the mouse. The process begins with the designation of multipotent progenitor cells (MPC) to pancreatic buds that subsequently move through a newly proposed period involving epithelial plexus formation-remodeling, and ends with formation of clustered endocrine islets connected to the vascular and peripheral nervous systems. Developing this knowledge base, and increasing the emphasis on direct comparisons between mouse and human, will yield a more complete and focused picture of pancreas development, and thereby inform β-cell-directed differentiation from human embryonic stem or induced pluripotent stem cells (hESC, iPSC). Additionally, a deeper understanding may provide surprising therapeutic angles by defining conditions that allow the controllable reprogramming of endodermal or pancreatic cell populations.
Collapse
Affiliation(s)
- Sebastian Rieck
- Vanderbilt University Program in Developmental Biology, Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | | |
Collapse
|
69
|
Benitez CM, Goodyer WR, Kim SK. Deconstructing pancreas developmental biology. Cold Spring Harb Perspect Biol 2012; 4:cshperspect.a012401. [PMID: 22587935 DOI: 10.1101/cshperspect.a012401] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The relentless nature and increasing prevalence of human pancreatic diseases, in particular, diabetes mellitus and adenocarcinoma, has motivated further understanding of pancreas organogenesis. The pancreas is a multifunctional organ whose epithelial cells govern a diversity of physiologically vital endocrine and exocrine functions. The mechanisms governing the birth, differentiation, morphogenesis, growth, maturation, and maintenance of the endocrine and exocrine components in the pancreas have been discovered recently with increasing tempo. This includes recent studies unveiling mechanisms permitting unexpected flexibility in the developmental potential of immature and mature pancreatic cell subsets, including the ability to interconvert fates. In this article, we describe how classical cell biology, genetic analysis, lineage tracing, and embryological investigations are being complemented by powerful modern methods including epigenetic analysis, time-lapse imaging, and flow cytometry-based cell purification to dissect fundamental processes of pancreas development.
Collapse
Affiliation(s)
- Cecil M Benitez
- Department of Developmental Biology, Stanford University School of Medicine, California 94305-5329, USA
| | | | | |
Collapse
|
70
|
Metzger DE, Gasperowicz M, Otto F, Cross JC, Gradwohl G, Zaret KS. The transcriptional co-repressor Grg3/Tle3 promotes pancreatic endocrine progenitor delamination and β-cell differentiation. Development 2012; 139:1447-56. [PMID: 22434868 DOI: 10.1242/dev.072892] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Pancreatic β-cells arise from Ngn3(+) endocrine progenitors within the trunk epithelium of the embryonic pancreas. The emergence of endocrine cells requires E-cadherin downregulation, but the crucial steps that elicit such are not clear, yet probably important for ultimately being able to efficiently generate β-cells de novo from stem cells. Grg3 (groucho-related gene 3, also known as Tle3), encodes a member of the Groucho/TLE family of co-repressors and its function in various cell contexts is mediated by recruitment to target genes by different transcription factors. Grg proteins broadly regulate the progression of progenitor cells to differentiated cell types, but specific developmental mechanisms have not been clear. We find that Grg3 is expressed in most β-cells and a subset of other endocrine cell types in the pancreas. Grg3 is highly expressed in Ngn3(+) endocrine progenitor descendants just after transient Ngn3 expression. Grg3-null embryos die at E14.5, which is associated with placental defects, so we explanted E12.5 pancreata to allow endocrine differentiation to occur in culture. Grg3 knockout explants displayed a drastic decrease in the differentiation of all endocrine cell types owing to defects in the delamination of early endocrine progenitors from the trunk epithelium. We find that Grg3 normally suppresses E-cadherin gene expression, thereby allowing delamination of endocrine cells from the trunk epithelium and revealing how this transcriptional co-repressor modulates this crucial step of β-cell development.
Collapse
Affiliation(s)
- David E Metzger
- Institute for Regenerative Medicine, Institute for Diabetes Obesity and Metabolism, Epigenetics Program, Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine,1056 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104, USA.
| | | | | | | | | | | |
Collapse
|
71
|
Negi S, Jetha A, Aikin R, Hasilo C, Sladek R, Paraskevas S. Analysis of beta-cell gene expression reveals inflammatory signaling and evidence of dedifferentiation following human islet isolation and culture. PLoS One 2012; 7:e30415. [PMID: 22299040 PMCID: PMC3267725 DOI: 10.1371/journal.pone.0030415] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 12/15/2011] [Indexed: 12/20/2022] Open
Abstract
The stresses encountered during islet isolation and culture may have deleterious effects on beta-cell physiology. However, the biological response of human islet cells to isolation remains poorly characterized. A better understanding of the network of signaling pathways induced by islet isolation and culturing may lead to strategies aimed at improving islet graft survival and function. Laser capture microdissection (LCM) was used to extract beta-cell RNA from 1) intact pancreatic islets, 2) freshly isolated islets, 3) islets cultured for 3 days, and changes in gene expression were examined by microarray analysis. We identified a strong inflammatory response induced by islet isolation that continues during in-vitro culture manifested by upregulation of several cytokines and cytokine-receptors. The most highly upregulated gene, interleukin-8 (IL-8), was induced by 3.6-fold following islet isolation and 56-fold after 3 days in culture. Immunofluorescence studies showed that the majority of IL-8 was produced by beta-cells themselves. We also observed that several pancreas-specific transcription factors were down-regulated in cultured islets. Concordantly, several pancreatic progenitor cell-specific transcription factors like SOX4, SOX9, and ID2 were upregulated in cultured islets, suggesting progressive transformation of mature beta-cell phenotype toward an immature endocrine cell phenotype. Our findings suggest islet isolation and culture induces an inflammatory response and loss of the mature endocrine cell phenotype. A better understanding of the signals required to maintain a mature beta-cell phenotype may help improve the efficacy of islet transplantation.
Collapse
Affiliation(s)
- Sarita Negi
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Arif Jetha
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Reid Aikin
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Craig Hasilo
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
| | - Rob Sladek
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Steven Paraskevas
- Human Islet Transplantation Laboratory, McGill University Health Centre, Montreal, Quebec, Canada
- Department of Surgery, McGill University, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
72
|
El-Gohary Y, Tulachan S, Branca M, Sims-Lucas S, Guo P, Prasadan K, Shiota C, Gittes GK. Whole-Mount Imaging Demonstrates Hypervascularity of the Pancreatic Ducts and Other Pancreatic Structures. Anat Rec (Hoboken) 2012; 295:465-73. [DOI: 10.1002/ar.22420] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 01/05/2012] [Indexed: 01/07/2023]
|
73
|
Wilsch-Bräuninger M, Peters J, Paridaen JTML, Huttner WB. Basolateral rather than apical primary cilia on neuroepithelial cells committed to delamination. Development 2012; 139:95-105. [DOI: 10.1242/dev.069294] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Delamination of neural progenitors from the apical adherens junction belt of the neuroepithelium is a hallmark of cerebral cortex development and evolution. Specific cell biological processes preceding this delamination are largely unknown. Here, we identify a novel, pre-delamination state of neuroepithelial cells in mouse embryonic neocortex. Specifically, in a subpopulation of neuroepithelial cells that, like all others, exhibit apical-basal polarity and apical adherens junctions, the re-establishing of the primary cilium after mitosis occurs at the basolateral rather than the apical plasma membrane. Neuroepithelial cells carrying basolateral primary cilia appear at the onset of cortical neurogenesis, increase in abundance with its progression, selectively express the basal (intermediate) progenitor marker Tbr2, and eventually delaminate from the apical adherens junction belt to become basal progenitors, translocating their nucleus from the ventricular to the subventricular zone. Overexpression of insulinoma-associated 1, a transcription factor known to promote the generation of basal progenitors, increases the proportion of basolateral cilia. Basolateral cilia in cells delaminating from the apical adherens junction belt are preferentially found near spot-like adherens junctions, suggesting that the latter provide positional cues to basolateral ciliogenesis. We conclude that re-establishing a basolateral primary cilium constitutes the first known cell biological feature preceding neural progenitor delamination.
Collapse
Affiliation(s)
- Michaela Wilsch-Bräuninger
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | - Jula Peters
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | - Judith T. M. L. Paridaen
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| | - Wieland B. Huttner
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauer Strasse 108, D-01307 Dresden, Germany
| |
Collapse
|
74
|
Venkatesan V, Gopurappilly R, Goteti SK, Dorisetty RK, Bhonde RR. Pancreatic progenitors: The shortest route to restore islet cell mass. Islets 2011; 3:295-301. [PMID: 21934353 DOI: 10.4161/isl.3.6.17704] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The regenerative process of the pancreas is of interest because the main pathogenesis of diabetes mellitus is an inadequate number of insulin-producing β-cells. The functional mass of β-cells is decreased in most forms of diabetes, so replacing missing β-cells or triggering their regeneration may allow for improved diabetes treatment. Therefore, expansion of the β-cell mass from endogenous sources, either in vivo or in vitro, represents an area of increasing interest. The mechanism of islet regeneration remains poorly understood, but the identification of islet progenitor sources is critical for understanding β-cell regeneration. One potential source is the islet proper, via the de-differentiation, proliferation and redifferentiation of facultative progenitors residing within the islet. The new pancreatic islets derived from progenitor cells present within the ducts have been reported, but the existence and identity of the progenitor cells have been debated. In this mini-review, we focus primarily on pancreatic progenitors, which are islet progenitors capable of differentiating into insulin producing cells. We also emphasize the importance of pancreatic progenitors as a target for stem cell therapy for diabetes.
Collapse
Affiliation(s)
- Vijayalakshmi Venkatesan
- Department of Biochemistry/Stem Cell Research, National Institute of Nutrition, Hyderabad, India.
| | | | | | | | | |
Collapse
|
75
|
Anderson KR, Singer RA, Balderes DA, Hernandez-Lagunas L, Johnson CW, Artinger KB, Sussel L. The L6 domain tetraspanin Tm4sf4 regulates endocrine pancreas differentiation and directed cell migration. Development 2011; 138:3213-24. [PMID: 21750032 DOI: 10.1242/dev.058693] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The homeodomain transcription factor Nkx2.2 is essential for pancreatic development and islet cell type differentiation. We have identified Tm4sf4, an L6 domain tetraspanin family member, as a transcriptional target of Nkx2.2 that is greatly upregulated during pancreas development in Nkx2.2(-/-) mice. Tetraspanins and L6 domain proteins recruit other membrane receptors to form active signaling centers that coordinate processes such as cell adhesion, migration and differentiation. In this study, we determined that Tm4sf4 is localized to the ductal epithelial compartment and is prominent in the Ngn3(+) islet progenitor cells. We also established that pancreatic tm4sf4 expression and regulation by Nkx2.2 is conserved during zebrafish development. Loss-of-function studies in zebrafish revealed that tm4sf4 inhibits α and β cell specification, but is necessary for ε cell fates. Thus, Tm4sf4 functional output opposes that of Nkx2.2. Further investigation of how Tm4sf4 functions at the cellular level in vitro showed that Tm4sf4 inhibits Rho-activated cell migration and actin organization in a ROCK-independent fashion. We propose that the primary role of Nkx2.2 is to inhibit Tm4sf4 in endocrine progenitor cells, allowing for delamination, migration and/or appropriate cell fate decisions. Identification of a role for Tm4sf4 during endocrine differentiation provides insight into islet progenitor cell behaviors and potential targetable regenerative mechanisms.
Collapse
Affiliation(s)
- Keith R Anderson
- Molecular Biology Program, University of Colorado Denver, Aurora, CO 80045, USA
| | | | | | | | | | | | | |
Collapse
|
76
|
G protein-coupled receptor signaling and sphingosine-1-phosphate play a phylogenetically conserved role in endocrine pancreas morphogenesis. Mol Cell Biol 2011; 31:4442-53. [PMID: 21911471 DOI: 10.1128/mcb.05702-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
During development pancreatic endocrine cells migrate in a coordinated fashion. This migration is necessary to form fully functional islets, but the mechanisms involved remain unknown. Therapeutic strategies to restore β-cell mass and islet functionality by reprogramming endogenous exocrine cells would be strengthened from simultaneous treatments that enhance endocrine cell clustering. We found that endocrine progenitors respond to and regulate G protein-coupled receptor (GPCR) signaling in order to cluster in islets. Rgs4, a dedicated regulator of GPCR signaling, was specifically expressed in early epithelial endocrine progenitors of both zebrafish and mouse, and its expression in the mouse endocrine progenitors was strictly dependent upon Ngn3, the key specification gene of the endocrine lineage. Rgs4 loss of function resulted in defects in islet cell aggregation. By genetically inactivating Gα(i)-mediated GPCR signaling in endocrine progenitors, we established its role in islet cell aggregation in both mouse and zebrafish. Finally, we identified sphingosine-1-phosphate (S1P) as a ligand mediating islet cell aggregation in both species acting through distinct but closely related receptors.
Collapse
|
77
|
Magenheim J, Klein AM, Stanger BZ, Ashery-Padan R, Sosa-Pineda B, Gu G, Dor Y. Ngn3(+) endocrine progenitor cells control the fate and morphogenesis of pancreatic ductal epithelium. Dev Biol 2011; 359:26-36. [PMID: 21888903 DOI: 10.1016/j.ydbio.2011.08.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/09/2011] [Accepted: 08/10/2011] [Indexed: 02/06/2023]
Abstract
During pancreas development, endocrine and exocrine cells arise from a common multipotent progenitor pool. How these cell fate decisions are coordinated with tissue morphogenesis is poorly understood. Here we have examined ductal morphology, endocrine progenitor cell fate and Notch signaling in Ngn3(-/-) mice, which do not produce islet cells. Ngn3 deficiency results in reduced branching and enlarged pancreatic duct-like structures, concomitant with Ngn3 promoter activation throughout the ductal epithelium and reduced Notch signaling. Conversely, forced generation of surplus endocrine progenitor cells causes reduced duct caliber and an excessive number of tip cells. Thus, endocrine progenitor cells normally provide a feedback signal to adjacent multipotent ductal progenitor cells that activates Notch signaling, inhibits further endocrine differentiation and promotes proper morphogenesis. These results uncover a novel layer of regulation coordinating pancreas morphogenesis and endocrine/exocrine differentiation, and suggest ways to enhance the yield of beta cells from stem cells.
Collapse
Affiliation(s)
- Judith Magenheim
- Department of Developmental Biology and Cancer Research, The institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Allon M Klein
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, 69978 Ramat Aviv, Tel Aviv, Israel
| | - Beatriz Sosa-Pineda
- Department of Genetics and Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Guoqiang Gu
- Program in Developmental Biology and Department of Cell and Developmental Biology, Center for Stem Cell Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yuval Dor
- Department of Developmental Biology and Cancer Research, The institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel.
| |
Collapse
|
78
|
Abstract
Pancreas oganogenesis comprises a coordinated and highly complex interplay of signaling events and transcriptional networks that guide a step-wise process of organ development from early bud specification all the way to the final mature organ state. Extensive research on pancreas development over the last few years, largely driven by a translational potential for pancreatic diseases (diabetes, pancreatic cancer, and so on), is markedly advancing our knowledge of these processes. It is a tenable goal that we will one day have a clear, complete picture of the transcriptional and signaling codes that control the entire organogenetic process, allowing us to apply this knowledge in a therapeutic context, by generating replacement cells in vitro, or perhaps one day to the whole organ in vivo. This review summarizes findings in the past 5 years that we feel are amongst the most significant in contributing to the deeper understanding of pancreas development. Rather than try to cover all aspects comprehensively, we have chosen to highlight interesting new concepts, and to discuss provocatively some of the more controversial findings or proposals. At the end of the review, we include a perspective section on how the whole pancreas differentiation process might be able to be unwound in a regulated fashion, or redirected, and suggest linkages to the possible reprogramming of other pancreatic cell-types in vivo, and to the optimization of the forward-directed-differentiation of human embryonic stem cells (hESC), or induced pluripotential cells (iPSC), towards mature β-cells.
Collapse
|
79
|
Gouzi M, Kim YH, Katsumoto K, Johansson K, Grapin-Botton A. Neurogenin3 initiates stepwise delamination of differentiating endocrine cells during pancreas development. Dev Dyn 2011; 240:589-604. [PMID: 21287656 DOI: 10.1002/dvdy.22544] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2010] [Indexed: 12/23/2022] Open
Abstract
During development, pancreatic endocrine cells are specified within the pancreatic epithelium. They subsequently delaminate out of the epithelium and cluster in the mesenchyme to form the islets of Langerhans. Neurogenin3 (Ngn3) is a transcription factor required for the differentiation of all endocrine cells and we investigated its role in their delamination. We observed in the mouse pancreas that most Ngn3-positive cells have lost contact with the lumen of the epithelium, showing that the delamination from the progenitor layer is initiated in endocrine progenitors. Subsequently, in both mouse and chick newly born endocrine cells at the periphery of the epithelium strongly decrease E-cadherin, break-down the basal lamina and cluster into islets of Langerhans. Repression of E-cadherin is sufficient to promote delamination from the epithelium. We further demonstrate that Ngn3 indirectly controls Snail2 protein expression post-transcriptionally to repress E-cadherin. In the chick embryo, Ngn3 independently controls epithelium delamination and differentiation programs.
Collapse
|
80
|
Bell CE, Watson AJ. SNAI1 and SNAI2 are asymmetrically expressed at the 2-cell stage and become segregated to the TE in the mouse blastocyst. PLoS One 2009; 4:e8530. [PMID: 20046880 PMCID: PMC2796167 DOI: 10.1371/journal.pone.0008530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Accepted: 12/01/2009] [Indexed: 11/19/2022] Open
Abstract
SNAI1 and SNAI2 are transcription factors that initiate Epithelial-to-Mesenchymal cell transitions throughout development and in cancer metastasis. Here we show novel expression of SNAI1 and SNAI2 throughout mouse preimplantation development revealing asymmetrical localization of both SNAI1 and SNAI2 in individual blastomeres beginning at the 2-cell stage through to the 8-cell stage where SNAI1 and SNAI2 are then only detected in outer cells and not inner cells of the blastocyst. This study implicates SNAI1 and SNAI2 in the lineage segregation of the trophectoderm and inner cell mass, and provides new insight into these oncogenes.
Collapse
Affiliation(s)
- Christine E Bell
- Department of Obstetrics and Gynaecology, The University of Western Ontario, London, Ontario, Canada.
| | | |
Collapse
|
81
|
Solar M, Cardalda C, Houbracken I, Martín M, Maestro MA, De Medts N, Xu X, Grau V, Heimberg H, Bouwens L, Ferrer J. Pancreatic exocrine duct cells give rise to insulin-producing beta cells during embryogenesis but not after birth. Dev Cell 2009; 17:849-60. [PMID: 20059954 DOI: 10.1016/j.devcel.2009.11.003] [Citation(s) in RCA: 371] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2009] [Revised: 10/05/2009] [Accepted: 11/10/2009] [Indexed: 02/07/2023]
Abstract
A longstanding unsettled question is whether pancreatic beta cells originate from exocrine duct cells. We have now used genetic labeling to fate map embryonic and adult pancreatic duct cells. We show that Hnf1beta+ cells of the trunk compartment of the early branching pancreas are precursors of acinar, duct, and endocrine lineages. Hnf1beta+ cells subsequent form the embryonic duct epithelium, which gives rise to both ductal and endocrine lineages, but not to acinar cells. By the end of gestation, the fate of Hnf1beta+ duct cells is further restrained. We provide compelling evidence that the ductal epithelium does not make a significant contribution to acinar or endocrine cells during neonatal growth, during a 6 month observation period, or during beta cell growth triggered by ligation of the pancreatic duct or by cell-specific ablation with alloxan followed by EGF/gastrin treatment. Thus, once the ductal epithelium differentiates it has a restricted plasticity, even under regenerative settings.
Collapse
Affiliation(s)
- Myriam Solar
- Genomic Programming of Beta Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Huang CYC, Pelaez D, Bendala JD, Garcia-Godoy F, Cheung HS, Cheung HS. Plasticity of stem cells derived from adult periodontal ligament. Regen Med 2009; 4:809-21. [DOI: 10.2217/rme.09.55] [Citation(s) in RCA: 107] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
83
|
Cole L, Anderson M, Antin PB, Limesand SW. One process for pancreatic beta-cell coalescence into islets involves an epithelial-mesenchymal transition. J Endocrinol 2009; 203:19-31. [PMID: 19608613 PMCID: PMC3071757 DOI: 10.1677/joe-09-0072] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Islet replacement is a promising therapy for treating diabetes mellitus, but the supply of donor tissue for transplantation is limited. To overcome this limitation, endocrine tissue can be expanded, but this requires an understanding of normal developmental processes that regulate islet formation. In this study, we compare pancreas development in sheep and human, and provide evidence that an epithelial-mesenchymal transition (EMT) is involved in beta-cell differentiation and islet formation. Transcription factors know to regulate pancreas formation, pancreatic duodenal homeobox factor 1, neurogenin 3, NKX2-2, and NKX6-1, which were expressed in the appropriate spatial and temporal pattern to coordinate pancreatic bud outgrowth and direct endocrine cell specification in sheep. Immunofluorescence staining of the developing pancreas was used to co-localize insulin and epithelial proteins (cytokeratin, E-cadherin, and beta-catenin) or insulin and a mesenchymal protein (vimentin). In sheep, individual beta-cells become insulin-positive in the progenitor epithelium, then lose epithelial characteristics, and migrate out of the epithelial layer to form islets. As beta-cells exit the epithelial progenitor cell layer, they acquire mesenchymal characteristics, shown by their acquisition of vimentin. In situ hybridization expression analysis of the SNAIL family members of transcriptional repressors (SNAIL1, -2, and -3; listed as SNAI1, -2, -3 in the HUGO Database) showed that each of the SNAIL genes was expressed in the ductal epithelium during development, and SNAIL-1 and -2 were co-expressed with insulin. Our findings provide strong evidence that the movement of beta-cells from the pancreatic ductal epithelium involves an EMT.
Collapse
Affiliation(s)
- Lori Cole
- Department of Animal Sciences, Agricultural Research Complex, University of Arizona, 1650 East Limberlost Drive, Tucson, Arizona 85719, USA
| | | | | | | |
Collapse
|
84
|
Servitja JM, Pignatelli M, Maestro MA, Cardalda C, Boj SF, Lozano J, Blanco E, Lafuente A, McCarthy MI, Sumoy L, Guigó R, Ferrer J. Hnf1alpha (MODY3) controls tissue-specific transcriptional programs and exerts opposed effects on cell growth in pancreatic islets and liver. Mol Cell Biol 2009; 29:2945-59. [PMID: 19289501 PMCID: PMC2682018 DOI: 10.1128/mcb.01389-08] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Revised: 10/29/2008] [Accepted: 03/02/2009] [Indexed: 01/08/2023] Open
Abstract
Heterozygous HNF1A mutations cause pancreatic-islet beta-cell dysfunction and monogenic diabetes (MODY3). Hnf1alpha is known to regulate numerous hepatic genes, yet knowledge of its function in pancreatic islets is more limited. We now show that Hnf1a deficiency in mice leads to highly tissue-specific changes in the expression of genes involved in key functions of both islets and liver. To gain insights into the mechanisms of tissue-specific Hnf1alpha regulation, we integrated expression studies of Hnf1a-deficient mice with identification of direct Hnf1alpha targets. We demonstrate that Hnf1alpha can bind in a tissue-selective manner to genes that are expressed only in liver or islets. We also show that Hnf1alpha is essential only for the transcription of a minor fraction of its direct-target genes. Even among genes that were expressed in both liver and islets, the subset of targets showing functional dependence on Hnf1alpha was highly tissue specific. This was partly explained by the compensatory occupancy by the paralog Hnf1beta at selected genes in Hnf1a-deficient liver. In keeping with these findings, the biological consequences of Hnf1a deficiency were markedly different in islets and liver. Notably, Hnf1a deficiency led to impaired large-T-antigen-induced growth and oncogenesis in beta cells yet enhanced proliferation in hepatocytes. Collectively, these findings show that Hnf1alpha governs broad, highly tissue-specific genetic programs in pancreatic islets and liver and reveal key consequences of Hnf1a deficiency relevant to the pathophysiology of monogenic diabetes.
Collapse
Affiliation(s)
- Joan-Marc Servitja
- Genomic Programming of Beta-Cells Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Nammo T, Yamagata K, Tanaka T, Kodama T, Sladek FM, Fukui K, Katsube F, Sato Y, Miyagawa JI, Shimomura I. Expression of HNF-4α (MODY1), HNF-1β (MODY5), and HNF-1α (MODY3) proteins in the developing mouse pancreas. Gene Expr Patterns 2008; 8:96-106. [DOI: 10.1016/j.modgep.2007.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Revised: 09/19/2007] [Accepted: 09/27/2007] [Indexed: 01/14/2023]
|