51
|
Zou C, Mallampalli RK. Regulation of histone modifying enzymes by the ubiquitin-proteasome system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:694-702. [PMID: 24389248 DOI: 10.1016/j.bbamcr.2013.12.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022]
Abstract
Histone post-translational modification is a key step that may result in an epigenetic mark that regulates chromatin structure and gene transcriptional activity thereby impacting many fundamental aspects of human biology. Subtypes of post-translational modification such as acetylation and methylation are executed by a variety of distinct modification enzymes. The cytoplasmic and nuclear concentrations of these enzymes are dynamically and tightly controlled at the protein level to precisely fine-tune transcriptional activity in response to environmental clues and during pathophysiological states. Recent data have emerged demonstrating that the life span of these critical nuclear enzymes involved in histone modification that impact chromatin structure and gene expression are controlled at the level of protein turnover by ubiquitin-proteasomal processing. This review focuses on the recent progress on mechanisms for ubiquitin-proteasomal degradation of histone modification enzymes and the potential pathophysiological significance of this process.
Collapse
Affiliation(s)
- Chunbin Zou
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | - Rama K Mallampalli
- Department of Medicine, The Acute Lung Injury Center of Excellence, University of Pittsburgh, Pittsburgh, PA 15213, USA; Department of Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15213, USA; Medical Specialty Service Line, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA 15240, USA.
| |
Collapse
|
52
|
Gurskiy DY, Nabirochkina EN, Kopytova DV. Role of multifunctional coactivator complex SAGA in regulation of eukaryotic gene expression. Mol Biol 2013. [DOI: 10.1134/s002689331306006x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
53
|
Abstract
Nuclear receptors are transcription factors that regulate gene expression through the ligand-controlled recruitment of a diverse group of proteins known as coregulators. Most nuclear receptor coregulators function in large multi-protein complexes that modify chromatin and thereby regulate the transcription of target genes. Structural and functional studies are beginning to reveal how these complexes are assembled bringing together multiple functionalities that mediate: recruitment to specific genomic loci through interaction with transcription factors; recruitment of enzymatic activities that either modify or remodel chromatin and targeting the complexes to their chromatin substrate. These activities are regulated by post-translational modifications, alternative splicing and small signalling molecules. This review focuses on our current understanding of coregulator complexes and aims to highlight the common principles that are beginning to emerge.
Collapse
Affiliation(s)
- Christopher J. Millard
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Peter J. Watson
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - Louise Fairall
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
| | - John W.R. Schwabe
- Henry Wellcome Laboratories of Structural Biology, Department of Biochemistry, University of Leicester, Leicester, LE1 9HN. UK
- Correspondence to:
| |
Collapse
|
54
|
Grünberg S, Hahn S. Structural insights into transcription initiation by RNA polymerase II. Trends Biochem Sci 2013; 38:603-11. [PMID: 24120742 DOI: 10.1016/j.tibs.2013.09.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/09/2013] [Accepted: 09/10/2013] [Indexed: 01/10/2023]
Abstract
Transcriptional regulation is one of the most important steps in control of cell identity, growth, differentiation, and development. Many signaling pathways controlling these processes ultimately target the core transcription machinery that, for protein coding genes, consists of RNA polymerase II (Pol II) and the general transcription factors (GTFs). New studies on the structure and mechanism of the core assembly and how it interfaces with promoter DNA and coactivator complexes have given tremendous insight into early steps in the initiation process, genome-wide binding, and mechanisms conserved for all nuclear and archaeal Pols. Here, we review recent developments in dissecting the architecture of the Pol II core machinery with a focus on early and regulated steps in transcription initiation.
Collapse
Affiliation(s)
- Sebastian Grünberg
- Fred Hutchinson Cancer Research Center, 1100 Fairview Ave N, PO Box 19024, Mailstop A1-162, Seattle, WA 98109, USA
| | | |
Collapse
|
55
|
Abstract
The Mediator complex is a multi-subunit assembly that appears to be required for regulating expression of most RNA polymerase II (pol II) transcripts, which include protein-coding and most non-coding RNA genes. Mediator and pol II function within the pre-initiation complex (PIC), which consists of Mediator, pol II, TFIIA, TFIIB, TFIID, TFIIE, TFIIF and TFIIH and is approximately 4.0 MDa in size. Mediator serves as a central scaffold within the PIC and helps regulate pol II activity in ways that remain poorly understood. Mediator is also generally targeted by sequence-specific, DNA-binding transcription factors (TFs) that work to control gene expression programs in response to developmental or environmental cues. At a basic level, Mediator functions by relaying signals from TFs directly to the pol II enzyme, thereby facilitating TF-dependent regulation of gene expression. Thus, Mediator is essential for converting biological inputs (communicated by TFs) to physiological responses (via changes in gene expression). In this review, we summarize an expansive body of research on the Mediator complex, with an emphasis on yeast and mammalian complexes. We focus on the basics that underlie Mediator function, such as its structure and subunit composition, and describe its broad regulatory influence on gene expression, ranging from chromatin architecture to transcription initiation and elongation, to mRNA processing. We also describe factors that influence Mediator structure and activity, including TFs, non-coding RNAs and the CDK8 module.
Collapse
Affiliation(s)
- Zachary C Poss
- Department of Chemistry and Biochemistry, University of Colorado , Boulder, CO , USA
| | | | | |
Collapse
|
56
|
Kamata K, Hatanaka A, Goswami G, Shinmyozu K, Nakayama JI, Urano T, Hatashita M, Uchida H, Oki M. C-terminus of the Sgf73 subunit of SAGA and SLIK is important for retention in the larger complex and for heterochromatin boundary function. Genes Cells 2013; 18:823-37. [DOI: 10.1111/gtc.12075] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022]
Affiliation(s)
- Kazuma Kamata
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Akira Hatanaka
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Gayatri Goswami
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | - Kaori Shinmyozu
- Center for Developmental Biology; Laboratory for Chromatin Dynamics; RIKEN; Kobe 650-0047; Japan
| | | | - Takeshi Urano
- Department of Biochemistry; Shimane University Faculty of Medicine; Izumo 693-8501; Japan
| | - Masanori Hatashita
- Research and Development Department; Wakasa Wan Energy Research Center; Tsuruga 914-0192; Japan
| | - Hiroyuki Uchida
- Department of Applied Chemistry & Biotechnology; Graduate School of Engineering; University of Fukui; Fukui 910-8507; Japan
| | | |
Collapse
|
57
|
Ryšlavá H, Doubnerová V, Kavan D, Vaněk O. Effect of posttranslational modifications on enzyme function and assembly. J Proteomics 2013; 92:80-109. [PMID: 23603109 DOI: 10.1016/j.jprot.2013.03.025] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/01/2013] [Accepted: 03/11/2013] [Indexed: 12/22/2022]
Abstract
The detailed examination of enzyme molecules by mass spectrometry and other techniques continues to identify hundreds of distinct PTMs. Recently, global analyses of enzymes using methods of contemporary proteomics revealed widespread distribution of PTMs on many key enzymes distributed in all cellular compartments. Critically, patterns of multiple enzymatic and nonenzymatic PTMs within a single enzyme are now functionally evaluated providing a holistic picture of a macromolecule interacting with low molecular mass compounds, some of them being substrates, enzyme regulators, or activated precursors for enzymatic and nonenzymatic PTMs. Multiple PTMs within a single enzyme molecule and their mutual interplays are critical for the regulation of catalytic activity. Full understanding of this regulation will require detailed structural investigation of enzymes, their structural analogs, and their complexes. Further, proteomics is now integrated with molecular genetics, transcriptomics, and other areas leading to systems biology strategies. These allow the functional interrogation of complex enzymatic networks in their natural environment. In the future, one might envisage the use of robust high throughput analytical techniques that will be able to detect multiple PTMs on a global scale of individual proteomes from a number of carefully selected cells and cellular compartments. This article is part of a Special Issue entitled: Posttranslational Protein modifications in biology and Medicine.
Collapse
Affiliation(s)
- Helena Ryšlavá
- Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, CZ-12840 Prague 2, Czech Republic.
| | | | | | | |
Collapse
|
58
|
Galán A, Rodríguez-Navarro S. Sus1/ENY2: a multitasking protein in eukaryotic gene expression. Crit Rev Biochem Mol Biol 2012; 47:556-68. [PMID: 23057668 DOI: 10.3109/10409238.2012.730498] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The purpose of this review is to provide a complete overview on the functions of the transcription/export factor Sus1. Sus1 is a tiny conserved factor in sequence and functions through the eukaryotic kingdom. Although it was discovered recently, research done to address the role of Sus1/ENY2 has provided in deep description of different mechanisms influencing gene expression. Initially found to interact with the transcription and mRNA export machinery in yeast, it is now clear that it has a broad role in mRNA biogenesis. Sus1 is necessary for histone H2B deubiquitination, mRNA export and gene gating. Moreover, interesting observations also suggest a link with the cytoplasmatic mRNP fate. Although the role of Sus1 in human cells is largely unknown, preliminary results suggest interesting links to pathological states that range from rare diseases to diabetes. We will describe what is known about Sus1/ENY2 in yeast and other eukaryotes and discuss some exciting open questions to be solved in the future.
Collapse
Affiliation(s)
- Amparo Galán
- Centro de Investigación Príncipe Felipe, CIPF. Gene Expression coupled to RNA Transport Laboratory, Eduardo Primo Yúfera, Valencia, Spain
| | | |
Collapse
|
59
|
Dastidar RG, Hooda J, Shah A, Cao TM, Henke RM, Zhang L. The nuclear localization of SWI/SNF proteins is subjected to oxygen regulation. Cell Biosci 2012; 2:30. [PMID: 22932476 PMCID: PMC3489556 DOI: 10.1186/2045-3701-2-30] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/17/2012] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Hypoxia is associated with many disease conditions in humans, such as cancer, stroke and traumatic injuries. Hypoxia elicits broad molecular and cellular changes in diverse eukaryotes. Our recent studies suggest that one likely mechanism mediating such broad changes is through changes in the cellular localization of important regulatory proteins. Particularly, we have found that over 120 nuclear proteins with important functions ranging from transcriptional regulation to RNA processing exhibit altered cellular locations under hypoxia. In this report, we describe further experiments to identify and evaluate the role of nuclear protein relocalization in mediating hypoxia responses in yeast. RESULTS To identify regulatory proteins that play a causal role in mediating hypoxia responses, we characterized the time courses of relocalization of hypoxia-altered nuclear proteins in response to hypoxia and reoxygenation. We found that 17 nuclear proteins relocalized in a significantly shorter time period in response to both hypoxia and reoxygenation. Particularly, several components of the SWI/SNF complex were fast responders, and analysis of gene expression data show that many targets of the SWI/SNF proteins are oxygen regulated. Furthermore, confocal fluorescent live cell imaging showed that over 95% of hypoxia-altered SWI/SNF proteins accumulated in the cytosol in hypoxic cells, while over 95% of the proteins were nuclear in normoxic cells, as expected. CONCLUSIONS SWI/SNF proteins relocalize in response to hypoxia and reoxygenation in a quick manner, and their relocalization likely accounts for, in part or in whole, oxygen regulation of many SWI/SNF target genes.
Collapse
Affiliation(s)
- Ranita Ghosh Dastidar
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Jagmohan Hooda
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Ajit Shah
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Thai M Cao
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Robert Michael Henke
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| | - Li Zhang
- Department of Molecular and Cell Biology, Center for Systems Biology, University of Texas at Dallas, Mail Stop RL11 800 W Campbell Road, Richardson, TX, 75080, USA
| |
Collapse
|
60
|
Zamostna B, Novak J, Vopalensky V, Masek T, Burysek L, Pospisek M. N-terminal domain of nuclear IL-1α shows structural similarity to the C-terminal domain of Snf1 and binds to the HAT/core module of the SAGA complex. PLoS One 2012; 7:e41801. [PMID: 22879895 PMCID: PMC3412866 DOI: 10.1371/journal.pone.0041801] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/25/2012] [Indexed: 02/02/2023] Open
Abstract
Interleukin-1α (IL-1α) is a proinflammatory cytokine and a key player in host immune responses in higher eukaryotes. IL-1α has pleiotropic effects on a wide range of cell types, and it has been extensively studied for its ability to contribute to various autoimmune and inflammation-linked disorders, including rheumatoid arthritis, Alzheimer’s disease, systemic sclerosis and cardiovascular disorders. Interestingly, a significant proportion of IL-1α is translocated to the cell nucleus, in which it interacts with histone acetyltransferase complexes. Despite the importance of IL-1α, little is known regarding its binding targets and functions in the nucleus. We took advantage of the histone acetyltransferase (HAT) complexes being evolutionarily conserved from yeast to humans and the yeast SAGA complex serving as an epitome of the eukaryotic HAT complexes. Using gene knock-out technique and co-immunoprecipitation of the IL-1α precursor with TAP-tagged subunits of the yeast HAT complexes, we mapped the IL-1α-binding site to the HAT/Core module of the SAGA complex. We also predicted the 3-D structure of the IL-1α N-terminal domain, and by employing structure similarity searches, we found a similar structure in the C-terminal regulatory region of the catalytic subunit of the AMP-activated/Snf1 protein kinases, which interact with HAT complexes both in mammals and yeast, respectively. This finding is further supported with the ability of the IL-1α precursor to partially rescue growth defects of snf1Δ yeast strains on media containing 3-Amino-1,2,4-triazole (3-AT), a competitive inhibitor of His3. Finally, the careful evaluation of our data together with other published data in the field allows us to hypothesize a new function for the ADA complex in SAGA complex assembly.
Collapse
Affiliation(s)
- Blanka Zamostna
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Josef Novak
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Vaclav Vopalensky
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Tomas Masek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | | | - Martin Pospisek
- Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
61
|
Helmlinger D. New insights into the SAGA complex from studies of the Tra1 subunit in budding and fission yeast. Transcription 2012; 3:13-8. [PMID: 22456315 DOI: 10.4161/trns.3.1.19271] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The SAGA complex is a conserved, multifunctional co-activator that controls the transcription of many inducible genes in response to environmental changes. Recent studies have provided new insights into the functions of one of its subunits, Tra1/TRRAP, and suggest that it controls SAGA activity in response to external stimuli.
Collapse
Affiliation(s)
- Dominique Helmlinger
- Macromolecular Biochemistry Research Center, CNRS UMR 5237, University of Montpellier 1 & 2, Montpellier, France.
| |
Collapse
|
62
|
Spedale G, Timmers HTM, Pijnappel WWMP. ATAC-king the complexity of SAGA during evolution. Genes Dev 2012; 26:527-41. [PMID: 22426530 DOI: 10.1101/gad.184705.111] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The yeast SAGA (Spt-Ada-Gcn5-acetyltransferase) coactivator complex exerts functions in gene expression, including activator interaction, histone acetylation, histone deubiquitination, mRNA export, chromatin recognition, and regulation of the basal transcription machinery. These diverse functions involve distinct modules within this multiprotein complex. It has now become clear that yeast SAGA has diverged during metazoan evolution into two related complexes, SAGA and ATAC, which exist in two flavors in vertebrates. The compositions of metazoan ATAC and SAGA complexes have been characterized, and functional analyses indicate that these complexes have important but distinct roles in transcription, histone modification, signaling pathways, and cell cycle regulation.
Collapse
Affiliation(s)
- Gianpiero Spedale
- Molecular Cancer Research, Netherlands Proteomics Center, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | | | | |
Collapse
|
63
|
Genetic evidence links the ASTRA protein chaperone component Tti2 to the SAGA transcription factor Tra1. Genetics 2012; 191:765-80. [PMID: 22505622 PMCID: PMC3389973 DOI: 10.1534/genetics.112.140459] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tra1 is a 3744-residue component of the Saccharomyces cerevisiae SAGA, NuA4, and ASTRA complexes. Tra1 contains essential C-terminal PI3K and FATC domains, but unlike other PIKK (phosphoinositide three-kinase–related kinase) family members, lacks kinase activity. To analyze functions of the FATC domain, we selected for suppressors of tra1-F3744A, an allele that results in slow growth under numerous conditions of stress. Two alleles of TTI2, tti2-F328S and tti2-I336F, acted in a partially dominant fashion to suppress the growth-related phenotypes associated with tra1-F3744A as well as its resulting defects in transcription. tti2-F328S suppressed an additional FATC domain mutation (tra1-L3733A), but not a mutation in the PI3K domain or deletions of SAGA or NuA4 components. We find eGFP-tagged Tti2 distributed throughout the cell. Tti2 is a component of the ASTRA complex, and in mammalian cells associates with molecular chaperones in complex with Tti1 and Tel2. Consistent with this finding, Tra1 levels are reduced in a strain with a temperature-sensitive allele of tel2. Further agreeing with a possible role for Tti2 in the folding or stabilization of Tra1, tra1-F3744A was mislocalized to the cytoplasm, particularly under conditions of stress. Since an intragenic mutation of tra1-R3590I also suppressed F3744A, we propose that Tti2 is required for the folding/stability of the C-terminal FATC and PI3K domains of Tra1 into their functionally active form.
Collapse
|
64
|
Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2012; 189:705-36. [PMID: 22084422 DOI: 10.1534/genetics.111.127019] [Citation(s) in RCA: 248] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Here we review recent advances in understanding the regulation of mRNA synthesis in Saccharomyces cerevisiae. Many fundamental gene regulatory mechanisms have been conserved in all eukaryotes, and budding yeast has been at the forefront in the discovery and dissection of these conserved mechanisms. Topics covered include upstream activation sequence and promoter structure, transcription factor classification, and examples of regulated transcription factor activity. We also examine advances in understanding the RNA polymerase II transcription machinery, conserved coactivator complexes, transcription activation domains, and the cooperation of these factors in gene regulatory mechanisms.
Collapse
|
65
|
Krebs AR, Karmodiya K, Lindahl-Allen M, Struhl K, Tora L. SAGA and ATAC histone acetyl transferase complexes regulate distinct sets of genes and ATAC defines a class of p300-independent enhancers. Mol Cell 2011; 44:410-423. [PMID: 22055187 DOI: 10.1016/j.molcel.2011.08.037] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/30/2011] [Accepted: 08/15/2011] [Indexed: 11/17/2022]
Abstract
Histone acetyltransferase (HAT) complexes are coactivators that are important for transcriptional activation by modifying chromatin. Metazoan SAGA and ATAC are distinct multisubunits complexes that share the same catalytic HAT subunit (GCN5 or PCAF). Here, we show that these human HAT complexes are targeted to different genomic loci representing functionally distinct regulatory elements both at broadly expressed and tissue-specific genes. While SAGA can principally be found at promoters, ATAC is recruited to promoters and enhancers, yet only its enhancer binding is cell-type specific. Furthermore, we show that ATAC functions at a set of enhancers that are not bound by p300, revealing a class of enhancers not yet identified. These findings demonstrate important functional differences between SAGA and ATAC coactivator complexes at the level of the genome and define a role for the ATAC complex in the regulation of a set of enhancers.
Collapse
Affiliation(s)
- Arnaud R Krebs
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | - Krishanpal Karmodiya
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| | - Marianne Lindahl-Allen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, C-315240 Longwood Avenue, Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, C-315240 Longwood Avenue, Boston, MA 02115, USA
| | - Làszlò Tora
- Program of Functional Genomics and Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique UMR 7104, Institut National de la Santé et de la Recherche Médicale U964, Université de Strasbourg, BP 10142, 67404 Illkirch Cedex, CU de Strasbourg, France
| |
Collapse
|
66
|
Weake VM, Workman JL. SAGA function in tissue-specific gene expression. Trends Cell Biol 2011; 22:177-84. [PMID: 22196215 DOI: 10.1016/j.tcb.2011.11.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Revised: 11/23/2011] [Accepted: 11/23/2011] [Indexed: 01/28/2023]
Abstract
The Spt-Ada-Gcn5-acetyltransferase (SAGA) transcription coactivator plays multiple roles in regulating transcription because of the presence of functionally independent modules of subunits within the complex. We have recently identified a role for the ubiquitin protease activity of SAGA in regulating tissue-specific gene expression in Drosophila. Here, we discuss the modular nature of SAGA and the different mechanisms through which SAGA is recruited to target promoters. We propose that the genes sensitive to loss of the ubiquitin protease activity of SAGA share functional characteristics that require deubiquitination of monoubiquitinated histone H2B (ubH2B) for full activation. We hypothesize that deubiquitination of ubH2B by SAGA destabilizes promoter nucleosomes, thus enhancing recruitment of RNA polymerase II (Pol II) to weak promoters. In addition, SAGA-mediated deubiquitination of ubH2B may facilitate binding of factors that are important for the transition of paused Pol II into transcription elongation.
Collapse
Affiliation(s)
- Vikki M Weake
- Stowers Institute for Medical Research, 1000 East 50th Street, Kansas City, MO 64110, USA
| | | |
Collapse
|
67
|
García-Oliver E, García-Molinero V, Rodríguez-Navarro S. mRNA export and gene expression: the SAGA-TREX-2 connection. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:555-65. [PMID: 22178374 DOI: 10.1016/j.bbagrm.2011.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 11/29/2011] [Accepted: 11/30/2011] [Indexed: 01/07/2023]
Abstract
In the gene expression field, different steps have been traditionally viewed as discrete and unconnected events. Nowadays, genetic and functional studies support the model of a coupled network of physical and functional connections to carry out mRNA biogenesis. Gene expression is a coordinated process that comprises different linked steps like transcription, RNA processing, export to the cytoplasm, translation and degradation of mRNAs. Its regulation is essential for cellular survival and can occur at many different levels. Transcription is the central function that occurs in the nucleus, and RNAPII plays an essential role in mRNA biogenesis. During transcription, nascent mRNA is associated with the mRNA-binding proteins involved in processing and export of the mRNA particle. Cells have developed a network of multi-protein complexes whose functions regulate the different factors involved both temporally and spatially. This coupling mechanism acts as a quality control to solve some of the organization problems of gene expression in vivo, where all the factors implicated ensure that mRNAs are ready to be exported and translated. In this review, we focus on the functional coupling of gene transcription and mRNA export, and place particular emphasis on the relationship between the NPC-associated complex, TREX2, and the transcription co-activator, SAGA. We have pinpointed the experimental evidence for Sus1's roles in transcription initiation, transcription elongation and mRNA export. In addition, we have reviewed other NPC-related processes such as gene gating to the nuclear envelope, the chromatin structure and the cellular context in which these processes take place. This article is part of a Special Issue entitled: Nuclear Transport and RNA Processing.
Collapse
Affiliation(s)
- Encar García-Oliver
- Centro de Investigación Príncipe Felipe (CIPF), Gene Expression coupled with RNA Transport Laboratory, Valencia, Spain
| | | | | |
Collapse
|
68
|
Chittuluru JR, Chaban Y, Monnet-Saksouk J, Carrozza MJ, Sapountzi V, Selleck W, Huang J, Utley RT, Cramet M, Allard S, Cai G, Workman JL, Fried MG, Tan S, Côté J, Asturias FJ. Structure and nucleosome interaction of the yeast NuA4 and Piccolo-NuA4 histone acetyltransferase complexes. Nat Struct Mol Biol 2011; 18:1196-203. [PMID: 21984211 PMCID: PMC3210417 DOI: 10.1038/nsmb.2128] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 07/27/2011] [Indexed: 11/09/2022]
Abstract
We have used EM and biochemistry to characterize the structure of NuA4, an essential yeast histone acetyltransferase (HAT) complex conserved throughout eukaryotes, and we have determined the interaction of NuA4 with the nucleosome core particle (NCP). The ATM-related Tra1 subunit, which is shared with the SAGA coactivator complex, forms a large domain joined to a second region that accommodates the catalytic subcomplex Piccolo and other NuA4 subunits. EM analysis of a NuA4-NCP complex shows the NCP bound at the periphery of NuA4. EM characterization of Piccolo and Piccolo-NCP provided further information about subunit organization and confirmed that histone acetylation requires minimal contact with the NCP. A small conserved region at the N terminus of Piccolo subunit enhancer of Polycomb-like 1 (Epl1) is essential for NCP interaction, whereas the subunit yeast homolog of mammalian Ing1 2 (Yng2) apparently positions Piccolo for efficient acetylation of histone H4 or histone H2A tails. Taken together, these results provide an understanding of the NuA4 subunit organization and the NuA4-NCP interactions.
Collapse
|
69
|
Combinatorial depletion analysis to assemble the network architecture of the SAGA and ADA chromatin remodeling complexes. Mol Syst Biol 2011; 7:503. [PMID: 21734642 PMCID: PMC3159981 DOI: 10.1038/msb.2011.40] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 05/22/2011] [Indexed: 12/12/2022] Open
Abstract
Despite the availability of several large-scale proteomics studies aiming to identify protein interactions on a global scale, little is known about how proteins interact and are organized within macromolecular complexes. Here, we describe a technique that consists of a combination of biochemistry approaches, quantitative proteomics and computational methods using wild-type and deletion strains to investigate the organization of proteins within macromolecular protein complexes. We applied this technique to determine the organization of two well-studied complexes, Spt-Ada-Gcn5 histone acetyltransferase (SAGA) and ADA, for which no comprehensive high-resolution structures exist. This approach revealed that SAGA/ADA is composed of five distinct functional modules, which can persist separately. Furthermore, we identified a novel subunit of the ADA complex, termed Ahc2, and characterized Sgf29 as an ADA family protein present in all Gcn5 histone acetyltransferase complexes. Finally, we propose a model for the architecture of the SAGA and ADA complexes, which predicts novel functional associations within the SAGA complex and provides mechanistic insights into phenotypical observations in SAGA mutants.
Collapse
|
70
|
Shah AN, Cadinu D, Henke RM, Xin X, Dastidar RG, Zhang L. Deletion of a subgroup of ribosome-related genes minimizes hypoxia-induced changes and confers hypoxia tolerance. Physiol Genomics 2011; 43:855-72. [PMID: 21586670 DOI: 10.1152/physiolgenomics.00232.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia is a widely occurring condition experienced by diverse organisms under numerous physiological and disease conditions. To probe the molecular mechanisms underlying hypoxia responses and tolerance, we performed a genome-wide screen to identify mutants with enhanced hypoxia tolerance in the model eukaryote, the yeast Saccharomyces cerevisiae. Yeast provides an excellent model for genomic and proteomic studies of hypoxia. We identified five genes whose deletion significantly enhanced hypoxia tolerance. They are RAI1, NSR1, BUD21, RPL20A, and RSM22, all of which encode functions involved in ribosome biogenesis. Further analysis of the deletion mutants showed that they minimized hypoxia-induced changes in polyribosome profiles and protein synthesis. Strikingly, proteomic analysis by using the iTRAQ profiling technology showed that a substantially fewer number of proteins were changed in response to hypoxia in the deletion mutants, compared with the parent strain. Computational analysis of the iTRAQ data indicated that the activities of a group of regulators were regulated by hypoxia in the wild-type parent cells, but such regulation appeared to be diminished in the deletion strains. These results show that the deletion of one of the genes involved in ribosome biogenesis leads to the reversal of hypoxia-induced changes in gene expression and related regulators. They suggest that modifying ribosomal function is an effective mechanism to minimize hypoxia-induced specific protein changes and to confer hypoxia tolerance. These results may have broad implications in understanding hypoxia responses and tolerance in diverse eukaryotes ranging from yeast to humans.
Collapse
Affiliation(s)
- Ajit N Shah
- Department of Molecular and Cell Biology, University of Texas at Dallas, Richardson, Texas 75080, USA
| | | | | | | | | | | |
Collapse
|
71
|
Ashe MP, Bill RM. Mapping the yeast host cell response to recombinant membrane protein production: Relieving the biological bottlenecks. Biotechnol J 2011; 6:707-14. [DOI: 10.1002/biot.201000333] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 01/28/2011] [Accepted: 02/11/2011] [Indexed: 11/12/2022]
|
72
|
Domains of Tra1 important for activator recruitment and transcription coactivator functions of SAGA and NuA4 complexes. Mol Cell Biol 2010; 31:818-31. [PMID: 21149579 DOI: 10.1128/mcb.00687-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The Tra1 protein is a direct transcription activator target that is essential for coactivator function of both the SAGA and NuA4 histone acetyltransferase (HAT) complexes. The ∼400-kDa Saccharomyces cerevisiae Tra1 polypeptide and its human counterpart TRRAP contain 67 or 68 tandem α-helical HEAT and TPR protein repeats that extend from the N terminus to the conserved yet catalytically inactive phosphatidylinositol 3-kinase (PI3K) domain. We generated a series of mutations spanning the length of the protein and assayed for defects in transcription, coactivator recruitment, and histone acetylation at SAGA- and NuA4-dependent genes. Inviable TRA1 mutants all showed defects in SAGA and NuA4 complex stability, suggesting that similar surfaces of Tra1 mediate assembly of these two very different coactivator complexes. Nearly all of the viable Tra1 mutants showed transcription defects that fell into one of three classes: (i) defective recruitment to promoters, (ii) reduced stability of the SAGA and NuA4 HAT modules, or (iii) normal recruitment of Tra1-associated subunits but reduced HAT activity in vivo. Our results show that Tra1 recruitment at Gcn4-dependent and Rap1-dependent promoters requires the same regions of Tra1 and that separate regions of Tra1 contribute to the HAT activity and stability of the SAGA and NuA4 HAT modules.
Collapse
|
73
|
The structural plasticity of SCA7 domains defines their differential nucleosome-binding properties. EMBO Rep 2010; 11:612-8. [PMID: 20634802 DOI: 10.1038/embor.2010.98] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2009] [Revised: 06/01/2010] [Accepted: 06/07/2010] [Indexed: 11/08/2022] Open
Abstract
SAGA (Spt-Ada-Gcn5 acetyltransferase), a coactivator complex involved in chromatin remodelling, harbours both histone acetylation and deubiquitination activities. ATXN7/Sgf73 and ATXN7L3, two subunits of the SAGA deubiquitination module, contain an SCA7 domain characterized by an atypical zinc-finger. We show that the yeast Sgf73-SCA7 domain is not required to recruit Sgf73 into SAGA. Instead, it binds to nucleosomes, a property that is conserved in the human ATXN7-SCA7 domain but is lost in the ATXN7L3 domain. The solution structures of the SCA7 domain of both ATXN7 and ATXN7L3 reveal a new, common zinc-finger motif at the heart of two distinct folds, providing a molecular basis for the observed functional differences.
Collapse
|
74
|
Spedale G, Mischerikow N, Heck AJR, Timmers HTM, Pijnappel WWMP. Identification of Pep4p as the protease responsible for formation of the SAGA-related SLIK protein complex. J Biol Chem 2010; 285:22793-9. [PMID: 20498363 DOI: 10.1074/jbc.m110.108787] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Saccharomyces cerevisiae Spt-Ada-Gcn5 acetyltransferase (SAGA) protein complex is a coactivator for transcription by RNA polymerase II and has various activities, including acetylation and deubuiqitination of histones and recruitment of TATA-binding protein to promoters. The Spt7p subunit is subject to proteolytic cleavage at its C terminus resulting in removal of the Spt8p-binding domain and generation of the SAGA-related SALSA/SAGA-like (SLIK) protein complex. Here, we report identification of the protease responsible for this cleavage. Screening of a protease knock-out collection revealed PEP4 to be required for cleavage of Spt7p within SAGA in vitro. Endogenous formation of truncated Spt7p was abolished in cells lacking PEP4. Purified Pep4p but not catalytic dead mutant Pep4p or unrelated Prc1p protease specifically cleaved Spt7p within SAGA into SLIK-related Spt7p. Interestingly, SAGA lacking Spt8p was more sensitive to Pep4p-mediated truncation of Spt7p, suggesting that Spt8p counteracted its own release from SAGA. Strains mimicking constitutive SLIK formation showed increased resistance to rapamycin treatment, suggesting a role for SLIK in regulating cellular responses to nutrient stress.
Collapse
Affiliation(s)
- Gianpiero Spedale
- Department of Physiological Chemistry, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | | | | | | | | |
Collapse
|
75
|
Koutelou E, Hirsch CL, Dent SYR. Multiple faces of the SAGA complex. Curr Opin Cell Biol 2010; 22:374-82. [PMID: 20363118 DOI: 10.1016/j.ceb.2010.03.005] [Citation(s) in RCA: 193] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 01/26/2010] [Accepted: 03/03/2010] [Indexed: 02/07/2023]
Abstract
The SAGA complex provides a paradigm for multisubunit histone modifying complexes. Although first characterized as a histone acetyltransferase, because of the Gcn5 subunit, SAGA is now known to contain a second activity, a histone deubiquitinase, as well as subunits important for interactions with transcriptional activators and the general transcription machinery. The functions of SAGA in transcriptional activation are well-established in Saccharomyces cerevisiae. Recent studies in S. pombe, Drosophila, and mammalian systems reveal that SAGA also has important roles in transcript elongation, the regulation of protein stability, and telomere maintenance. These functions are essential for normal embryo development in flies and mice, and mutations or altered expression of SAGA subunits correlate with neurological disease and aggressive cancers in humans.
Collapse
Affiliation(s)
- Evangelia Koutelou
- Department of Biochemistry and Molecular Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
76
|
Mischerikow N, Spedale G, Altelaar AFM, Timmers HTM, Pijnappel WWMP, Heck AJR. In-depth profiling of post-translational modifications on the related transcription factor complexes TFIID and SAGA. J Proteome Res 2010; 8:5020-30. [PMID: 19731963 DOI: 10.1021/pr900449e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The basal transcription factor TFIID and the chromatin-modifying complex SAGA, which have several subunits in common, are crucial for transcription regulation. Here, we describe an in-depth profiling of post-translational modifications (PTMs) on both TFIID and SAGA from yeast. We took a multipronged approach using high-resolution mass spectrometry (LC-MS) in combination with the proteases Trypsin, Chymotrypsin and Glu-C. The cumulative peptide identification data, at a false discovery rate <1%, allowed us to cover most TFIID and SAGA subunit sequences to near completion. Additionally, for TFIID/SAGA subunits, we identified 118/102 unique phosphorylated and 54/61 unique lysine acetylated sites. Especially, several lysine residues on the SAGA subunits Spt7p and Sgf73p were found to be acetylated. Using a spectral counting approach, we found that the shared subunit TAF5p is phosphorylated to a significant greater extent in SAGA than in TFIID. Finally, we were able to map for the first time the cleavage site in Spt7p that is related to formation of the SAGA-like complex SLIK/SALSA. In general, our combination of tandem affinity enrichment, digestion with different proteases, extensive prefractionation and high-resolution LC-MS identifies a large number of PTMs of TFIID and SAGA/SLIK that might aid in future functional studies on these transcription factors.
Collapse
Affiliation(s)
- Nikolai Mischerikow
- Biomolecular Mass Spectrometry and Proteomics Group, Bijvoet Centre for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | | | | | |
Collapse
|
77
|
Abstract
The budding yeast Gcn5p is a prototypic histone acetyltransferase controlling transcription of diverse genes. Here we show that Gcn5p is itself regulated by Snf1p and Spt3p. Snf1p likely controls Gcn5p via direct interaction. Mutating four residues in the Gcn5p catalytic domain, T203, S204, T211, and Y212 (TSTY), phenocopies snf1 null cells, including Gcn5p hypophosphorylation, hypoacetylation at the HIS3 promoter, and transcriptional defects of the HIS3 gene. However, overexpressing Snf1p suppresses the above phenotypes associated with the phosphodeficient TSTY mutant, suggesting that it is the interaction with Snf1p important for Gcn5p to activate HIS3. A likely mechanism by which Snf1p potentiates Gcn5p function is to antagonize Spt3p, because the HIS3 expression defects caused by snf1 knockout, or by the TSTY gcn5 mutations, can be suppressed by deleting SPT3. In vitro, Spt3p binds Gcn5p, but the interaction is drastically enhanced by the TSTY mutations, indicating that a stabilized Spt3p-Gcn5p interaction may be an underlying cause for the aforementioned HIS3 transcriptional defects. These results suggest that Gcn5p is a target regulated by the competing actions of Snf1p and Spt3p.
Collapse
|
78
|
Gunderson FQ, Johnson TL. Acetylation by the transcriptional coactivator Gcn5 plays a novel role in co-transcriptional spliceosome assembly. PLoS Genet 2009; 5:e1000682. [PMID: 19834536 PMCID: PMC2752994 DOI: 10.1371/journal.pgen.1000682] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2009] [Accepted: 09/14/2009] [Indexed: 11/23/2022] Open
Abstract
In the last several years, a number of studies have shown that spliceosome assembly and splicing catalysis can occur co-transcriptionally. However, it has been unclear which specific transcription factors play key roles in coupling splicing to transcription and the mechanisms through which they act. Here we report the discovery that Gcn5, which encodes the histone acetyltransferase (HAT) activity of the SAGA complex, has genetic interactions with the genes encoding the heterodimeric U2 snRNP proteins Msl1 and Lea1. These interactions are dependent upon the HAT activity of Gcn5, suggesting a functional relationship between Gcn5 HAT activity and Msl1/Lea1 function. To understand the relationship between Gcn5 and Msl1/Lea1, we carried out an analysis of Gcn5's role in co-transcriptional recruitment of Msl1 and Lea1 to pre-mRNA and found that Gcn5 HAT activity is required for co-transcriptional recruitment of the U2 snRNP (and subsequent snRNP) components to the branchpoint, while it is not required for U1 recruitment. Although previous studies suggest that transcription elongation can alter co-transcriptional pre-mRNA splicing, we do not observe evidence of defective transcription elongation for these genes in the absence of Gcn5, while Gcn5-dependent histone acetylation is enriched in the promoter regions. Unexpectedly, we also observe Msl1 enrichment in the promoter region for wild-type cells and cells lacking Gcn5, indicating that Msl1 recruitment during active transcription can occur independently of its association at the branchpoint region. These results demonstrate a novel role for acetylation by SAGA in co-transcriptional recruitment of the U2 snRNP and recognition of the intron branchpoint. Pre-messenger RNA splicing, the removal of non-coding RNA sequences (introns) that interrupt the protein-coding sequence of genes, is required for proper gene expression. While recent studies have revealed that intron recognition begins while the RNA is actively being synthesized by RNA polymerase II, little is known about how the proteins involved in gene transcription and RNA splicing interact to coordinate the two reactions. Here we show that the protein complex SAGA, which allows RNA polymerase II to navigate the three-dimensional structure of packaged DNA by acetylating histone proteins, has an additional role in pre-messenger RNA splicing. Our genetic analysis shows that the SAGA complex has functional interactions with specific components of the splicing machinery. Furthermore, SAGA's acetylation activity, which we find to be targeted toward promoter-bound histones of intron-containing genes, is required for proper recruitment of these components to RNA during active transcription. Our work supports a model whereby SAGA–dependent acetylation facilitates recruitment of the splicing machinery to the pre–mRNA for proper co-transcriptional splicing.
Collapse
Affiliation(s)
- Felizza Q. Gunderson
- Department of Biology, Molecular Biology Section, University of California San Diego, La Jolla, California, United States of America
| | - Tracy L. Johnson
- Department of Biology, Molecular Biology Section, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
79
|
Atanassov BS, Evrard YA, Multani AS, Zhang Z, Tora L, Devys D, Chang S, Dent SYR. Gcn5 and SAGA regulate shelterin protein turnover and telomere maintenance. Mol Cell 2009; 35:352-64. [PMID: 19683498 DOI: 10.1016/j.molcel.2009.06.015] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 05/02/2009] [Accepted: 06/10/2009] [Indexed: 12/17/2022]
Abstract
Histone acetyltransferases (HATs) play important roles in gene regulation and DNA repair by influencing the accessibility of chromatin to transcription factors and repair proteins. Here, we show that deletion of Gcn5 leads to telomere dysfunction in mouse and human cells. Biochemical studies reveal that depletion of Gcn5 or ubiquitin-specific protease 22 (Usp22), which is another bona fide component of the Gcn5-containing SAGA complex, increases ubiquitination and turnover of TRF1, a primary component of the telomeric shelterin complex. Inhibition of the proteasome or overexpression of USP22 opposes this effect. The USP22 deubiquitinating module requires association with SAGA complexes for activity, and we find that depletion of Gcn5 compromises this association in mammalian cells. Thus, our results indicate that Gcn5 regulates TRF1 levels through effects on Usp22 activity and SAGA integrity.
Collapse
Affiliation(s)
- Boyko S Atanassov
- Department of Biochemistry and Molecular Biology, University of Texas M.D. Anderson Cancer Center, Houston, 77030, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Zsindely N, Pankotai T, Ujfaludi Z, Lakatos D, Komonyi O, Bodai L, Tora L, Boros IM. The loss of histone H3 lysine 9 acetylation due to dSAGA-specific dAda2b mutation influences the expression of only a small subset of genes. Nucleic Acids Res 2009; 37:6665-80. [PMID: 19740772 PMCID: PMC2777428 DOI: 10.1093/nar/gkp722] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
In Drosophila, the dADA2b-containing dSAGA complex is involved in histone H3 lysine 9 and 14 acetylation. Curiously, although the lysine 9- and 14-acetylated histone H3 levels are drastically reduced in dAda2b mutants, these animals survive until a late developmental stage. To study the molecular consequences of the loss of histone H3 lysine 9 and 14 acetylation, we compared the total messenger ribonucleic acid (mRNA) profiles of wild type and dAda2b mutant animals at two developmental stages. Global gene expression profiling indicates that the loss of dSAGA-specific H3 lysine 9 and 14 acetylation results in the expression change (up- or down-regulation) of a rather small subset of genes and does not cause a general transcription de-regulation. Among the genes up-regulated in dAda2b mutants, particularly high numbers are those which play roles in antimicrobial defense mechanisms. Results of chromatin immunoprecipitation experiments indicate that in dAda2b mutants, the lysine 9-acetylated histone H3 levels are decreased both at dSAGA up- and down-regulated genes. In contrast to that, in the promoters of dSAGA-independent ribosomal protein genes a high level of histone H3K9ac is maintained in dAda2b mutants. Our data suggest that by acetylating H3 at lysine 9, dSAGA modifies Pol II accessibility to specific promoters differently.
Collapse
Affiliation(s)
- Nóra Zsindely
- Chromatin Research Group of HAS, Department of Biochemistry and Molecular Biology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Sikorski TW, Buratowski S. The basal initiation machinery: beyond the general transcription factors. Curr Opin Cell Biol 2009; 21:344-51. [PMID: 19411170 DOI: 10.1016/j.ceb.2009.03.006] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 03/26/2009] [Accepted: 03/29/2009] [Indexed: 01/19/2023]
Abstract
In vitro experiments led to a simple model in which basal transcription factors sequentially assembled with RNA Polymerase II to generate a preinitiation complex (PIC). Emerging evidence indicates that PIC composition is not universal, but promoter-dependent. Active promoters are occupied by a mixed population of complexes, including regulatory factors such as NC2, Mot1, Mediator, and TFIIS. Recent studies are expanding our understanding of the roles of these factors, demonstrating that their functions are both broader and more context dependent than previously realized.
Collapse
Affiliation(s)
- Timothy W Sikorski
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, United States
| | | |
Collapse
|
82
|
Anish R, Hossain MB, Jacobson RH, Takada S. Characterization of transcription from TATA-less promoters: identification of a new core promoter element XCPE2 and analysis of factor requirements. PLoS One 2009; 4:e5103. [PMID: 19337366 PMCID: PMC2659449 DOI: 10.1371/journal.pone.0005103] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2008] [Accepted: 03/09/2009] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND More than 80% of mammalian protein-coding genes are driven by TATA-less promoters which often show multiple transcriptional start sites (TSSs). However, little is known about the core promoter DNA sequences or mechanisms of transcriptional initiation for this class of promoters. METHODOLOGY/PRINCIPAL FINDINGS Here we identify a new core promoter element XCPE2 (X core promoter element 2) (consensus sequence: A/C/G-C-C/T-C-G/A-T-T-G/A-C-C/A(+1)-C/T) that can direct specific transcription from the second TSS of hepatitis B virus X gene mRNA. XCPE2 sequences can also be found in human promoter regions and typically appear to drive one of the start sites within multiple TSS-containing TATA-less promoters. To gain insight into mechanisms of transcriptional initiation from this class of promoters, we examined requirements of several general transcription factors by in vitro transcription experiments using immunodepleted nuclear extracts and purified factors. Our results show that XCPE2-driven transcription uses at least TFIIB, either TFIID or free TBP, RNA polymerase II (RNA pol II) and the MED26-containing mediator complex but not Gcn5. Therefore, XCPE2-driven transcription can be carried out by a mechanism which differs from previously described TAF-dependent mechanisms for initiator (Inr)- or downstream promoter element (DPE)-containing promoters, the TBP- and SAGA (Spt-Ada-Gcn5-acetyltransferase)-dependent mechanism for yeast TATA-containing promoters, or the TFTC (TBP-free-TAF-containing complex)-dependent mechanism for certain Inr-containing TATA-less promoters. EMSA assays using XCPE2 promoter and purified factors further suggest that XCPE2 promoter recognition requires a set of factors different from those for TATA box, Inr, or DPE promoter recognition. CONCLUSIONS/SIGNIFICANCE We identified a new core promoter element XCPE2 that are found in multiple TSS-containing TATA-less promoters. Mechanisms of promoter recognition and transcriptional initiation for XCPE2-driven promoters appear different from previously shown mechanisms for classical promoters that show single "focused" TSSs. Our studies provide insight into novel mechanisms of RNA Pol II transcription from multiple TSS-containing TATA-less promoters.
Collapse
Affiliation(s)
- Ramakrishnan Anish
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Mohammad B. Hossain
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Raymond H. Jacobson
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
| | - Shinako Takada
- Department of Biochemistry and Molecular Biology, Genes and Development Program of the Graduate School of Biomedical Sciences, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
83
|
Helmlinger D, Marguerat S, Villén J, Gygi SP, Bähler J, Winston F. The S. pombe SAGA complex controls the switch from proliferation to sexual differentiation through the opposing roles of its subunits Gcn5 and Spt8. Genes Dev 2009; 22:3184-95. [PMID: 19056896 DOI: 10.1101/gad.1719908] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The SAGA complex is a conserved multifunctional coactivator known to play broad roles in eukaryotic transcription. To gain new insights into its functions, we performed biochemical and genetic analyses of SAGA in the fission yeast, Schizosaccharomyces pombe. Purification of the S. pombe SAGA complex showed that its subunit composition is identical to that of Saccharomyces cerevisiae. Analysis of S. pombe SAGA mutants revealed that SAGA has two opposing roles regulating sexual differentiation. First, in nutrient-rich conditions, the SAGA histone acetyltransferase Gcn5 represses ste11(+), which encodes the master regulator of the mating pathway. In contrast, the SAGA subunit Spt8 is required for the induction of ste11(+) upon nutrient starvation. Chromatin immunoprecipitation experiments suggest that these regulatory effects are direct, as SAGA is physically associated with the ste11(+) promoter independent of nutrient levels. Genetic tests suggest that nutrient levels do cause a switch in SAGA function, as spt8Delta suppresses gcn5Delta with respect to ste11(+) derepression in rich medium, whereas the opposite relationship, gcn5Delta suppression of spt8Delta, occurs during starvation. Thus, SAGA plays distinct roles in the control of the switch from proliferation to differentiation in S. pombe through the dynamic and opposing activities of Gcn5 and Spt8.
Collapse
Affiliation(s)
- Dominique Helmlinger
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
84
|
Lee KK, Swanson SK, Florens L, Washburn MP, Workman JL. Yeast Sgf73/Ataxin-7 serves to anchor the deubiquitination module into both SAGA and Slik(SALSA) HAT complexes. Epigenetics Chromatin 2009; 2:2. [PMID: 19226466 PMCID: PMC2657900 DOI: 10.1186/1756-8935-2-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Accepted: 02/18/2009] [Indexed: 11/27/2022] Open
Abstract
Spinocerebellar ataxia (SCA) is a physically devastating, genetically inherited disorder characterized by abnormal brain function that results in the progressive loss of the ability to coordinate movements. There are many types of SCAs as there are various gene mutations that can cause this disease. SCA types 1–3, 6–10, 12, and 17 result from a trinucleotide repeat expansion in the DNA-coding sequence. Intriguingly, recent work has demonstrated that increased trinucleotde expansions in the SCA7 gene result in defect in the function of the SAGA histone acetyltransferase complex. The SCA7 gene encodes a subunit of the SAGA complex. This subunit is conserved in yeast as the SGF73 gene. We demonstrate that Sgf73 is required to recruit the histone deubiquitination module into both SAGA and the related SliK(SALSA) complex, and to maintain levels of histone ubiquitination, which is necessary for regulation of transcription at a number of genes.
Collapse
Affiliation(s)
- Kenneth K Lee
- Stowers Institute for Medical Research, E, 50th Street Kansas City, MO 64110, USA.
| | | | | | | | | |
Collapse
|
85
|
Li S, Shogren-Knaak MA. The Gcn5 bromodomain of the SAGA complex facilitates cooperative and cross-tail acetylation of nucleosomes. J Biol Chem 2009; 284:9411-7. [PMID: 19218239 DOI: 10.1074/jbc.m809617200] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bromodomains are acetyl lysine binding modules found in many complexes that regulate gene transcription. In budding yeast, the coactivator complex SAGA (Spt-Ada-Gcn5-acetyl-transferase) predominantly facilitates transcription of stress-activated genes and requires the bromodomain of the Gcn5 subunit for full activation of a number of these genes. This bromodomain has previously been shown to promote retention of the complex to H3 and H4 acetylated nucleosomes. Because the SAGA complex mediates histone H3 acetylation, we sought to determine to what extent the Gcn5 bromodomain directly modulates histone acetylation activity. Kinetic analysis of SAGA-mediated acetylation of nucleosomal substrates reveals that this bromodomain: 1) is required for the cooperative acetylation of nucleosomes, 2) enhances acetylation of an H3 histone tail when the other H3 tail within a nucleosome is already acetylated, and 3) augments the acetylation turnover of nucleosomes previously acetylated at lysine 16 of the histone H4 tails. These results indicate that the Gcn5 bromodomain promotes the establishment of nucleosome acetylation through multiple mechanisms and more generally show how chromatin recognition domains can modulate the enzymatic activity of chromatin modifying complexes.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
86
|
Masatsugu T, Yamamoto K. Multiple lysine methylation of PCAF by Set9 methyltransferase. Biochem Biophys Res Commun 2009; 381:22-6. [PMID: 19351588 DOI: 10.1016/j.bbrc.2009.01.185] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Accepted: 01/26/2009] [Indexed: 11/16/2022]
Abstract
The molecular functions of several non-histone proteins are regulated through lysine modification by histone methyltransferases. The p300/CBP-associated factor (PCAF) is an acetyltransferase that has been implicated in many cellular processes. Here, we report that PCAF is a novel substrate of Set9 methyltransferase. In vitro mapping experiments revealed six lysine residues could be methylated by Set9. A comparison of amino acid sequences of target sites revealed the novel consensus motif which differs from previously identified Set9-consensus sequence. Further methyltransferase assays focusing on the six lysine residues showed that K78 and K89 are preferentially methylated in full-length PCAF in vitro. Using specific antibodies recognizing mono-methylated K89, in vivo PCAF methylation and its nuclear localization were demonstrated. Our data may lead to a new insight into PCAF functions and provide additional information to identify unknown targets of Set9.
Collapse
Affiliation(s)
- Toshihiro Masatsugu
- Department of Molecular Genetics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | | |
Collapse
|
87
|
Bonander N, Darby RA, Grgic L, Bora N, Wen J, Brogna S, Poyner DR, O'Neill MA, Bill RM. Altering the ribosomal subunit ratio in yeast maximizes recombinant protein yield. Microb Cell Fact 2009; 8:10. [PMID: 19178690 PMCID: PMC2654770 DOI: 10.1186/1475-2859-8-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 01/29/2009] [Indexed: 11/10/2022] Open
Abstract
Background The production of high yields of recombinant proteins is an enduring bottleneck in the post-genomic sciences that has yet to be addressed in a truly rational manner. Typically eukaryotic protein production experiments have relied on varying expression construct cassettes such as promoters and tags, or culture process parameters such as pH, temperature and aeration to enhance yields. These approaches require repeated rounds of trial-and-error optimization and cannot provide a mechanistic insight into the biology of recombinant protein production. We published an early transcriptome analysis that identified genes implicated in successful membrane protein production experiments in yeast. While there has been a subsequent explosion in such analyses in a range of production organisms, no one has yet exploited the genes identified. The aim of this study was to use the results of our previous comparative transcriptome analysis to engineer improved yeast strains and thereby gain an understanding of the mechanisms involved in high-yielding protein production hosts. Results We show that tuning BMS1 transcript levels in a doxycycline-dependent manner resulted in optimized yields of functional membrane and soluble protein targets. Online flow microcalorimetry demonstrated that there had been a substantial metabolic change to cells cultured under high-yielding conditions, and in particular that high yielding cells were more metabolically efficient. Polysome profiling showed that the key molecular event contributing to this metabolically efficient, high-yielding phenotype is a perturbation of the ratio of 60S to 40S ribosomal subunits from approximately 1:1 to 2:1, and correspondingly of 25S:18S ratios from 2:1 to 3:1. This result is consistent with the role of the gene product of BMS1 in ribosome biogenesis. Conclusion This work demonstrates the power of a rational approach to recombinant protein production by using the results of transcriptome analysis to engineer improved strains, thereby revealing the underlying biological events involved.
Collapse
Affiliation(s)
- Nicklas Bonander
- School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
88
|
The human SPT20-containing SAGA complex plays a direct role in the regulation of endoplasmic reticulum stress-induced genes. Mol Cell Biol 2008; 29:1649-60. [PMID: 19114550 DOI: 10.1128/mcb.01076-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One of the central questions in eukaryotic transcription is how activators can transmit their signal to stimulate gene expression in the context of chromatin. The multisubunit SAGA coactivator complex has both histone acetyltransferase and deubiquitination activities and remodels chromatin to allow transcription. Whether and how SAGA is able to regulate transcription at specific loci is poorly understood. Using mass spectrometry, immunoprecipitation, and Western blot analysis, we have identified human SPT20 (hSPT20) as the human homologue of the yeast Spt20 and show that hSPT20 is a bona fide subunit of the human SAGA (hSAGA; previously called TFTC/STAGA/PCAF) complex and that hSPT20 is required for the integrity of the hSAGA complex. We demonstrate that hSPT20 and other hSAGA subunits, together with RNA polymerase II, are specifically recruited to genes induced by endoplasmic reticulum (ER) stress. In good agreement with the recruitment of hSAGA to the ER stress-regulated genes, knockdown of hSTP20 hampers ER stress response. Surprisingly, hSPT20 recruitment was not observed for genes induced by another type of stress. These results provide evidence for a direct and specific role of the hSPT20-containing SAGA complex in transcriptional induction of ER stress-responsive genes. Thus, hSAGA regulates the transcription of stress-responsive genes in a stress type-dependent manner.
Collapse
|
89
|
Fuxreiter M, Tompa P, Simon I, Uversky VN, Hansen JC, Asturias FJ. Malleable machines take shape in eukaryotic transcriptional regulation. Nat Chem Biol 2008; 4:728-37. [PMID: 19008886 DOI: 10.1038/nchembio.127] [Citation(s) in RCA: 168] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Transcriptional control requires the spatially and temporally coordinated action of many macromolecular complexes. Chromosomal proteins, transcription factors, co-activators and components of the general transcription machinery, including RNA polymerases, often use structurally or stoichiometrically ill-defined regions for interactions that convey regulatory information in processes ranging from chromatin remodeling to mRNA processing. Determining the functional significance of intrinsically disordered protein regions and developing conceptual models of their action will help to illuminate their key role in transcription regulation. Complexes comprising disordered regions often display short recognition elements embedded in flexible and sequentially variable environments that can lead to structural and functional malleability. This provides versatility to recognize multiple targets having different structures, facilitate conformational rearrangements and physically communicate with many partners in response to environmental changes. All these features expand the capacities of ordered complexes and give rise to efficient regulatory mechanisms.
Collapse
Affiliation(s)
- Monika Fuxreiter
- Institute of Enzymology, Biological Research Center, Hungarian Academy of Sciences, Karolina ut 29, H-1113, H-1518 Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
90
|
Krycer JR, Pang CNI, Wilkins MR. High throughput protein-protein interaction data: clues for the architecture of protein complexes. Proteome Sci 2008; 6:32. [PMID: 19032795 PMCID: PMC2621150 DOI: 10.1186/1477-5956-6-32] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2008] [Accepted: 11/26/2008] [Indexed: 11/23/2022] Open
Abstract
Background High-throughput techniques are becoming widely used to study protein-protein interactions and protein complexes on a proteome-wide scale. Here we have explored the potential of these techniques to accurately determine the constituent proteins of complexes and their architecture within the complex. Results Two-dimensional representations of the 19S and 20S proteasome, mediator, and SAGA complexes were generated and overlaid with high quality pairwise interaction data, core-module-attachment classifications from affinity purifications of complexes and predicted domain-domain interactions. Pairwise interaction data could accurately determine the members of each complex, but was unexpectedly poor at deciphering the topology of proteins in complexes. Core and module data from affinity purification studies were less useful for accurately defining the member proteins of these complexes. However, these data gave strong information on the spatial proximity of many proteins. Predicted domain-domain interactions provided some insight into the topology of proteins within complexes, but was affected by a lack of available structural data for the co-activator complexes and the presence of shared domains in paralogous proteins. Conclusion The constituent proteins of complexes are likely to be determined with accuracy by combining data from high-throughput techniques. The topology of some proteins in the complexes will be able to be clearly inferred. We finally suggest strategies that can be employed to use high throughput interaction data to define the membership and understand the architecture of proteins in novel complexes.
Collapse
|
91
|
Hausmann S, Zheng S, Costanzo M, Brost RL, Garcin D, Boone C, Shuman S, Schwer B. Genetic and biochemical analysis of yeast and human cap trimethylguanosine synthase: functional overlap of 2,2,7-trimethylguanosine caps, small nuclear ribonucleoprotein components, pre-mRNA splicing factors, and RNA decay pathways. J Biol Chem 2008; 283:31706-18. [PMID: 18775984 PMCID: PMC2581544 DOI: 10.1074/jbc.m806127200] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/04/2008] [Indexed: 12/26/2022] Open
Abstract
Trimethylguanosine synthase (Tgs1) is the enzyme that converts standard m(7)G caps to the 2,2,7-trimethylguanosine (TMG) caps characteristic of spliceosomal small nuclear RNAs. Fungi and mammalian somatic cells are able to grow in the absence of Tgs1 and TMG caps, suggesting that an essential function of the TMG cap might be obscured by functional redundancy. A systematic screen in budding yeast identified nonessential genes that, when deleted, caused synthetic growth defects with tgs1Delta. The Tgs1 interaction network embraced proteins implicated in small nuclear ribonucleoprotein function and spliceosome assembly, including Mud2, Nam8, Brr1, Lea1, Ist3, Isy1, Cwc21, and Bud13. Complementation of the synthetic lethality of mud2Delta tgs1Delta and nam8Delta tgs1Delta strains by wild-type TGS1, but not by catalytically defective mutants, indicated that the TMG cap is essential for mitotic growth when redundant splicing factors are missing. Our genetic analysis also highlighted synthetic interactions of Tgs1 with proteins implicated in RNA end processing and decay (Pat1, Lsm1, and Trf4) and regulation of polymerase II transcription (Rpn4, Spt3, Srb2, Soh1, Swr1, and Htz1). We find that the C-terminal domain of human Tgs1 can function in lieu of the yeast protein in vivo. We present a biochemical characterization of the human Tgs1 guanine-N2 methyltransferase reaction and identify individual amino acids required for methyltransferase activity in vitro and in vivo.
Collapse
Affiliation(s)
- Stéphane Hausmann
- Department of Microbiology and Molecular Medicine, University of Geneva, CH1211 Geneva, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Cross-talk between histone H3 tails produces cooperative nucleosome acetylation. Proc Natl Acad Sci U S A 2008; 105:18243-8. [PMID: 19004784 DOI: 10.1073/pnas.0804530105] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acetylation of histone proteins by the yeast Spt-Ada-Gcn5-acetyltansferase (SAGA) complex has served as a paradigm for understanding how posttranslational modifications of chromatin regulate eukaryotic gene expression. Nonetheless, it has been unclear to what extent the structural complexity of the chromatin substrate modulates SAGA activity. By using chromatin model systems, we have found that SAGA-mediated histone acetylation is highly cooperative (cooperativity constant of 1.97 +/- 0.15), employing the binding of multiple noncontiguous nucleosomes to facilitate maximal acetylation activity. Studies with various chromatin substrates, including those containing novel asymmetric histone octamers, indicate that this cooperativity occurs only when both H3 histone tails within a nucleosome are properly oriented and unacetylated. We propose that modulation of maximal SAGA activity through this dual-tail recognition could facilitate coregulation of spatially proximal genes by promoting cooperative nucleosome acetylation between genes.
Collapse
|
93
|
Brosch G, Loidl P, Graessle S. Histone modifications and chromatin dynamics: a focus on filamentous fungi. FEMS Microbiol Rev 2008; 32:409-39. [PMID: 18221488 PMCID: PMC2442719 DOI: 10.1111/j.1574-6976.2007.00100.x] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 11/13/2007] [Indexed: 12/19/2022] Open
Abstract
The readout of the genetic information of eukaryotic organisms is significantly regulated by modifications of DNA and chromatin proteins. Chromatin alterations induce genome-wide and local changes in gene expression and affect a variety of processes in response to internal and external signals during growth, differentiation, development, in metabolic processes, diseases, and abiotic and biotic stresses. This review aims at summarizing the roles of histone H1 and the acetylation and methylation of histones in filamentous fungi and links this knowledge to the huge body of data from other systems. Filamentous fungi show a wide range of morphologies and have developed a complex network of genes that enables them to use a great variety of substrates. This fact, together with the possibility of simple and quick genetic manipulation, highlights these organisms as model systems for the investigation of gene regulation. However, little is still known about regulation at the chromatin level in filamentous fungi. Understanding the role of chromatin in transcriptional regulation would be of utmost importance with respect to the impact of filamentous fungi in human diseases and agriculture. The synthesis of compounds (antibiotics, immunosuppressants, toxins, and compounds with adverse effects) is also likely to be regulated at the chromatin level.
Collapse
Affiliation(s)
- Gerald Brosch
- Division of Molecular Biology, Biocenter, Innsbruck Medical University, Fritz-Pregl-Strasse 3, Innsbruck, Austria
| | | | | |
Collapse
|
94
|
Gamper AM, Roeder RG. Multivalent binding of p53 to the STAGA complex mediates coactivator recruitment after UV damage. Mol Cell Biol 2008; 28:2517-27. [PMID: 18250150 PMCID: PMC2293101 DOI: 10.1128/mcb.01461-07] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Revised: 10/22/2007] [Accepted: 01/28/2008] [Indexed: 12/29/2022] Open
Abstract
The recruitment of transcriptional coactivators, including histone modifying enzymes, is an important step in transcription regulation. A typical activator is thought to interact with several cofactors, presumably in a sequential manner. The common use of several cofactors raises the question of how activators achieve both cofactor selectivity and diversity. Human STAGA is a multiprotein complex with the acetyltransferase GCN5L as the catalytic subunit. Here, we first show, through RNA interference-mediated knock-down and chromatin immunoprecipitation assays, that GCN5 plays a role in p53-dependent gene activation. We then employ p53 mutagenesis, in vitro binding, protein-protein cross-linking, and chromatin immunoprecipitation assays to establish a novel role for the second p53 activation subdomain (AD2) in STAGA recruitment and, further, to demonstrate that optimal binding of STAGA to p53 involves interactions of STAGA subunits TAF9, GCN5, and ADA2b, respectively, with AD1, AD2, and carboxy-terminal domains of p53. These results provide concrete evidence for mediation of transcription factor binding to coactivator complexes through multiple interactions. Based on our data, we propose a cooperative and modular binding mode for the recruitment of coactivator complexes to promoters.
Collapse
Affiliation(s)
- Armin M Gamper
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|
95
|
A TFTC/STAGA module mediates histone H2A and H2B deubiquitination, coactivates nuclear receptors, and counteracts heterochromatin silencing. Mol Cell 2008; 29:92-101. [PMID: 18206972 DOI: 10.1016/j.molcel.2007.12.011] [Citation(s) in RCA: 296] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 11/02/2007] [Accepted: 12/15/2007] [Indexed: 01/21/2023]
Abstract
Transcriptional activators, several different coactivators, and general transcription factors are necessary to access specific loci in the dense chromatin structure to allow precise initiation of RNA polymerase II (Pol II) transcription. Histone acetyltransferase (HAT) complexes were implicated in loosening the chromatin around promoters and thus in gene activation. Here we demonstrate that the 2 MDa GCN5 HAT-containing metazoan TFTC/STAGA complexes contain a histone H2A and H2B deubiquitinase activity. We have identified three additional subunits of TFTC/STAGA (ATXN7L3, USP22, and ENY2) that form the deubiquitination module. Importantly, we found that this module is an enhancer of position effect variegation in Drosophila. Furthermore, we demonstrate that ATXN7L3, USP22, and ENY2 are required as cofactors for the full transcriptional activity by nuclear receptors. Thus, the deubiquitinase activity of the TFTC/STAGA HAT complex is necessary to counteract heterochromatin silencing and acts as a positive cofactor for activation by nuclear receptors in vivo.
Collapse
|
96
|
Characterization of new Spt3 and TATA-binding protein mutants of Saccharomyces cerevisiae: Spt3 TBP allele-specific interactions and bypass of Spt8. Genetics 2008; 177:2007-17. [PMID: 18073420 DOI: 10.1534/genetics.107.081976] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The Spt-Ada-Gcn5-acetyltransferase (SAGA) complex of Saccharomyces cerevisiae is a multifunctional coactivator complex that has been shown to regulate transcription by distinct mechanisms. Previous results have shown that the Spt3 and Spt8 components of SAGA regulate initiation of transcription of particular genes by controlling the level of TATA-binding protein (TBP/Spt15) associated with the TATA box. While biochemical evidence exists for direct Spt8-TBP interactions, similar evidence for Spt3-TBP interactions has been lacking. To learn more about Spt3-TBP interactions in vivo, we have isolated a new class of spt3 mutations that cause a dominant-negative phenotype when overexpressed. These mutations all cluster within a conserved region of Spt3. The isolation of extragenic suppressors of one of these spt3 mutations has identified two new spt15 mutations that show allele-specific interactions with spt3 mutations with respect to transcription and the recruitment of TBP to particular promoters. In addition, these new spt15 mutations partially bypass an spt8 null mutation. Finally, we have examined the level of SAGA-TBP physical interaction in these mutants. While most spt3, spt8, and spt15 mutations do not alter SAGA-TBP interactions, one spt3 mutation, spt3-401, causes a greatly increased level of SAGA-TBP physical association. These results, taken together, suggest that a direct Spt3-TBP interaction is required for normal TBP levels at Spt3-dependent promoters in vivo.
Collapse
|
97
|
Maraziotis IA, Dimitrakopoulou K, Bezerianos A. Growing functional modules from a seed protein via integration of protein interaction and gene expression data. BMC Bioinformatics 2007; 8:408. [PMID: 17956603 PMCID: PMC2233647 DOI: 10.1186/1471-2105-8-408] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2007] [Accepted: 10/23/2007] [Indexed: 11/18/2022] Open
Abstract
Background Nowadays modern biology aims at unravelling the strands of complex biological structures such as the protein-protein interaction (PPI) networks. A key concept in the organization of PPI networks is the existence of dense subnetworks (functional modules) in them. In recent approaches clustering algorithms were applied at these networks and the resulting subnetworks were evaluated by estimating the coverage of well-established protein complexes they contained. However, most of these algorithms elaborate on an unweighted graph structure which in turn fails to elevate those interactions that would contribute to the construction of biologically more valid and coherent functional modules. Results In the current study, we present a method that corroborates the integration of protein interaction and microarray data via the discovery of biologically valid functional modules. Initially the gene expression information is overlaid as weights onto the PPI network and the enriched PPI graph allows us to exploit its topological aspects, while simultaneously highlights enhanced functional association in specific pairs of proteins. Then we present an algorithm that unveils the functional modules of the weighted graph by expanding a kernel protein set, which originates from a given 'seed' protein used as starting-point. Conclusion The integrated data and the concept of our approach provide reliable functional modules. We give proofs based on yeast data that our method manages to give accurate results in terms both of structural coherency, as well as functional consistency.
Collapse
Affiliation(s)
- Ioannis A Maraziotis
- Department of Medical Physics, School of Medicine, University of Patras, GR26500 Patras, Greece.
| | | | | |
Collapse
|
98
|
Baker SP, Grant PA. The SAGA continues: expanding the cellular role of a transcriptional co-activator complex. Oncogene 2007; 26:5329-40. [PMID: 17694076 PMCID: PMC2746020 DOI: 10.1038/sj.onc.1210603] [Citation(s) in RCA: 149] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Throughout the last decade, great advances have been made in our understanding of how DNA-templated cellular processes occur in the native chromatin environment. Proteins that regulate transcription, replication, DNA repair, mitosis and other processes must be targeted to specific regions of the genome and granted access to DNA, which is normally tightly packaged in the higher-order chromatin structure of eukaryotic nuclei. Massive multiprotein complexes have been discovered, which facilitate access to DNA and recruitment of downstream effectors through three distinct mechanisms: chemical modification of histone amino-acid residues, ATP-dependent chromatin remodeling and histone exchange. The yeast Spt-Ada-Gcn5-Acetyl transferase (SAGA) transcriptional co-activator complex regulates numerous cellular processes through coordination of multiple histone post-translational modifications. SAGA is known to generate and interact with a number of histone modifications, including acetylation, methylation, ubiquitylation and phosphorylation. Although best characterized for its role in regulating transcriptional activation, SAGA is also required for optimal transcription elongation, mRNA export and perhaps nucleotide excision repair. Here, we discuss findings from recent years that have elucidated the function of this 1.8-MDa complex in multiple cellular processes, and how misregulation of the homologous complexes in humans may ultimately play a role in development of disease.
Collapse
Affiliation(s)
- S P Baker
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | | |
Collapse
|
99
|
Nagy Z, Tora L. Distinct GCN5/PCAF-containing complexes function as co-activators and are involved in transcription factor and global histone acetylation. Oncogene 2007; 26:5341-57. [PMID: 17694077 DOI: 10.1038/sj.onc.1210604] [Citation(s) in RCA: 323] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Transcription in eukaryotes is a tightly regulated, multistep process. Gene-specific transcriptional activators, several different co-activators and general transcription factors are necessary to access specific loci to allow precise initiation of RNA polymerase II transcription. As the dense chromatin folding of the genome does not allow the access of these sites by the huge multiprotein transcription machinery, remodelling is required to loosen up the chromatin structure for successful transcription initiation. In the present review, we summarize the recent evolution of our understanding of the function of two histone acetyl transferases (ATs) from metazoan organisms: GCN5 and PCAF. Their overall structure and the multiprotein complexes in which they are carrying out their activities are discussed. Metazoan GCN5 and PCAF are subunits of at least two types of multiprotein complexes, one having a molecular weight of 2 MDa (SPT3-TAF9-GCN5 acetyl transferase/TATA binding protein (TBP)-free-TAF complex/PCAF complexes) and a second type with about a size of 700 kDa (ATAC complex). These complexes possess global histone acetylation activity and locus-specific co-activator functions together with AT activity on non-histone substrates. Thus, their biological functions cover a wide range of tasks and render them indispensable for the normal function of cells. That deregulation of the global and/or specific AT activities of these complexes leads to the cancerous transformation of the cells highlights their importance in cellular processes. The possible effects of GCN5 and PCAF in tumorigenesis are also discussed.
Collapse
Affiliation(s)
- Z Nagy
- Transcription Department, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS UMR7104, France
| | | |
Collapse
|
100
|
Hoke SMT, Liang G, Mutiu AI, Genereaux J, Brandl CJ. C-terminal processing of yeast Spt7 occurs in the absence of functional SAGA complex. BMC BIOCHEMISTRY 2007; 8:16. [PMID: 17686179 PMCID: PMC1976419 DOI: 10.1186/1471-2091-8-16] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Accepted: 08/08/2007] [Indexed: 12/03/2022]
Abstract
Background Spt7 is an integral component of the multi-subunit SAGA complex that is required for the expression of ~10% of yeast genes. Two forms of Spt7 have been identified, the second of which is truncated at its C-terminus and found in the SAGA-like (SLIK) complex. Results We have found that C-terminal processing of Spt7 to its SLIK form (Spt7SLIK) and to a distinct third form (Spt7Form3) occurs in the absence of the SAGA complex components Gcn5, Spt8, Ada1 and Spt20, the latter two of which are required for the integrity of the complex. In addition, N-terminally truncated derivatives of Spt7, including a derivative lacking the histone fold, are processed, indicating that the C-terminus of Spt7 is sufficient for processing and that processing does not require functional Spt7. Using galactose inducible Spt7 expression, we show that the three forms of Spt7 appear and disappear at approximately the same rate with full-length Spt7 not being chased into Spt7SLIK or Spt7Form3. Interestingly, reduced levels of Spt7SLIK and Spt7Form3 were observed in a strain lacking the SAGA component Ubp8, suggesting a regulatory role for Ubp8 in the truncation of Spt7. Conclusion We conclude that truncation of Spt7 occurs early in the biosynthesis of distinct Spt7 containing complexes rather than being a dynamic process linked to the action of the SAGA complex in transcriptional regulation.
Collapse
Affiliation(s)
- Stephen MT Hoke
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Gaoyang Liang
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, 27599-7295, USA
| | - A Irina Mutiu
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Julie Genereaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| | - Christopher J Brandl
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, N6A5C1, Canada
| |
Collapse
|