51
|
Lachiondo-Ortega S, Mercado-Gómez M, Serrano-Maciá M, Lopitz-Otsoa F, Salas-Villalobos TB, Varela-Rey M, Delgado TC, Martínez-Chantar ML. Ubiquitin-Like Post-Translational Modifications (Ubl-PTMs): Small Peptides with Huge Impact in Liver Fibrosis. Cells 2019; 8:1575. [PMID: 31817258 PMCID: PMC6953033 DOI: 10.3390/cells8121575] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/29/2019] [Accepted: 12/01/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is characterized by the excessive deposition of extracellular matrix proteins including collagen that occurs in most types of chronic liver disease. Even though our knowledge of the cellular and molecular mechanisms of liver fibrosis has deeply improved in the last years, therapeutic approaches for liver fibrosis remain limited. Profiling and characterization of the post-translational modifications (PTMs) of proteins, and more specifically NEDDylation and SUMOylation ubiquitin-like (Ubls) modifications, can provide a better understanding of the liver fibrosis pathology as well as novel and more effective therapeutic approaches. On this basis, in the last years, several studies have described how changes in the intermediates of the Ubl cascades are altered during liver fibrosis and how specific targeting of particular enzymes mediating these ubiquitin-like modifications can improve liver fibrosis, mainly in in vitro models of hepatic stellate cells, the main fibrogenic cell type, and in pre-clinical mouse models of liver fibrosis. The development of novel inhibitors of the Ubl modifications as well as novel strategies to assess the modified proteome can provide new insights into the overall role of Ubl modifications in liver fibrosis.
Collapse
Affiliation(s)
- Sofia Lachiondo-Ortega
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Maria Mercado-Gómez
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Marina Serrano-Maciá
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | | | - Tanya B Salas-Villalobos
- Department of Biochemistry and Molecular Medicine, School of Medicine, Autonomous University of Nuevo León, Monterrey, Nuevo León 66450, Mexico;
| | - Marta Varela-Rey
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - Teresa C. Delgado
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| | - María Luz Martínez-Chantar
- Liver Disease Lab, CIC bioGUNE, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 48160 Derio, Spain; (S.L.-O.); (M.M.-G.); (M.S.-M.); (M.V.-R.); (M.L.M.-C.)
| |
Collapse
|
52
|
Swayden M, Alzeeb G, Masoud R, Berthois Y, Audebert S, Camoin L, Hannouche L, Vachon H, Gayet O, Bigonnet M, Roques J, Silvy F, Carrier A, Dusetti N, Iovanna JL, Soubeyran P. PML hyposumoylation is responsible for the resistance of pancreatic cancer. FASEB J 2019; 33:12447-12463. [PMID: 31557059 DOI: 10.1096/fj.201901091r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The dismal prognosis of pancreatic ductal adenocarcinoma (PDAC) is mainly due to its rapidly acquired resistance to all conventional treatments. Despite drug-specific mechanisms of resistance, none explains how these cells resist the stress induced by any kind of anticancer treatment. Activation of stress-response pathways relies on the post-translational modifications (PTMs) of involved proteins. Among all PTMs, those mediated by the ubiquitin family of proteins play a central role. Our aim was to identify alterations of ubiquitination, neddylation, and sumoylation associated with the multiresistant phenotype and demonstrate their implications in the survival of PDAC cells undergoing treatment. This approach pointed at an alteration of promyelocytic leukemia (PML) protein sumoylation associated with both gemcitabine and oxaliplatin resistance. We could show that this alteration of PML sumoylation is part of a general mechanism of drug resistance, which in addition involves the abnormal activation of NF-κB and cAMP response element binding pathways. Importantly, using patient-derived tumors and cell lines, we identified a correlation between the levels of PML expression and sumoylation and the sensitivity of tumors to anticancer treatments.-Swayden, M., Alzeeb, G., Masoud, R., Berthois, Y., Audebert, S., Camoin, L., Hannouche, L., Vachon, H., Gayet, O., Bigonnet, M., Roques, J., Silvy, F., Carrier, A., Dusetti, N., Iovanna, J. L., Soubeyran, P. PML hyposumoylation is responsible for the resistance of pancreatic cancer.
Collapse
Affiliation(s)
- Mirna Swayden
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - George Alzeeb
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Rawand Masoud
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Yolande Berthois
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Stéphane Audebert
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Luc Camoin
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Laurent Hannouche
- Transcriptomique and Génomique Marseille Luminy (TGML), Théories et Approches de la Complexité Génomique (TAGC), INSERM, Aix-Marseille University, Marseille, France
| | - Hortense Vachon
- Transcriptomique and Génomique Marseille Luminy (TGML), Théories et Approches de la Complexité Génomique (TAGC), INSERM, Aix-Marseille University, Marseille, France
| | - Odile Gayet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Martin Bigonnet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Julie Roques
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Françoise Silvy
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Alice Carrier
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Juan L Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| | - Philippe Soubeyran
- Centre de Recherche en Cancérologie de Marseille (CRCM), Centre de Recherche en Cancérologie de Marseille (CRCM), Centre National de la Recherche Scientifique (CNRS), Institut Paoli-Calmettes, INSERM, Aix-Marseille University, Marseille, France
| |
Collapse
|
53
|
The SUMO Pathway in Hematomalignancies and Their Response to Therapies. Int J Mol Sci 2019; 20:ijms20163895. [PMID: 31405039 PMCID: PMC6721055 DOI: 10.3390/ijms20163895] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 07/31/2019] [Accepted: 08/06/2019] [Indexed: 12/21/2022] Open
Abstract
SUMO (Small Ubiquitin-related MOdifier) is a post-translational modifier of the ubiquitin family controlling the function and fate of thousands of proteins. SUMOylation is deregulated in various hematological malignancies, where it participates in both tumorigenesis and cancer cell response to therapies. This is the case for Acute Promyelocytic Leukemias (APL) where SUMOylation, and subsequent destruction, of the PML-RARα fusion oncoprotein are triggered by arsenic trioxide, which is used as front-line therapy in combination with retinoic acid to cure APL patients. A similar arsenic-induced SUMO-dependent degradation was also documented for Tax, a human T-cell lymphotropic virus type I (HTLV1) viral protein implicated in Adult T-cell Leukemogenesis. SUMOylation also participates in Acute Myeloid Leukemia (AML) response to both chemo- and differentiation therapies, in particular through its ability to regulate gene expression. In Multiple Myeloma, many enzymes of the SUMO pathway are overexpressed and their high expression correlates with lower response to melphalan-based chemotherapies. B-cell lymphomas overexpressing the c-Myc oncogene also overexpress most components of the SUMO pathway and are highly sensitive to SUMOylation inhibition. Targeting the SUMO pathway with recently discovered pharmacological inhibitors, alone or in combination with current therapies, might therefore constitute a powerful strategy to improve the treatment of these cancers.
Collapse
|
54
|
A role for S-nitrosylation of the SUMO-conjugating enzyme SCE1 in plant immunity. Proc Natl Acad Sci U S A 2019; 116:17090-17095. [PMID: 31371496 DOI: 10.1073/pnas.1900052116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
SUMOylation, the covalent attachment of the small ubiquitin-like modifier (SUMO) to target proteins, is emerging as a key modulator of eukaryotic immune function. In plants, a SUMO1/2-dependent process has been proposed to control the deployment of host defense responses. The molecular mechanism underpinning this activity remains to be determined, however. Here we show that increasing nitric oxide levels following pathogen recognition promote S-nitrosylation of the Arabidopsis SUMO E2 enzyme, SCE1, at Cys139. The SUMO-conjugating activities of both SCE1 and its human homolog, UBC9, were inhibited following this modification. Accordingly, mutation of Cys139 resulted in increased levels of SUMO1/2 conjugates, disabled immune responses, and enhanced pathogen susceptibility. Our findings imply that S-nitrosylation of SCE1 at Cys139 enables NO bioactivity to drive immune activation by relieving SUMO1/2-mediated suppression. The control of global SUMOylation is thought to occur predominantly at the level of each substrate via complex local machineries. Our findings uncover a parallel and complementary mechanism by suggesting that total SUMO conjugation may also be regulated directly by SNO formation at SCE1 Cys139. This Cys is evolutionary conserved and specifically S-nitrosylated in UBC9, implying that this immune-related regulatory process might be conserved across phylogenetic kingdoms.
Collapse
|
55
|
SUMOylation Evoked by Oxidative Stress Reduced Lens Epithelial Cell Antioxidant Functions by Increasing the Stability and Transcription of TP53INP1 in Age-Related Cataracts. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7898069. [PMID: 31281592 PMCID: PMC6590620 DOI: 10.1155/2019/7898069] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 05/05/2019] [Indexed: 01/13/2023]
Abstract
Oxidative stress plays an important role in the pathogenesis of cataracts. Small ubiquitin-like modifier (SUMO) proteins have great effects on cell stress response. Previous studies have shown that TP53INP1 can arrest cell growth and induce apoptosis by modulating p53 transcriptional activity and that both TP53INP1 and p53 are substrates of SUMOylation. However, no previous research has studied the effect of SUMOylation on the oxidative stress response in cataracts. This is the first study to investigate the effect of SUMOylation of TP53INP1 in oxidative stress-induced lens epithelial cell injury and age-related cataract formation. We found that the oxidative stress-induced endogenous SUMOylation of TP53INP1 promoted human lens epithelial cell (holed) apoptosis and regulated hLEC antioxidant effects by increasing the stability and transcription of TP53INP1 in age-related cataracts. SUMO-1, SUMOylation, and TP53INP1 were upregulated in lens tissues affected by age-related cataracts. A SUMO-1-specific protease, SENP1, acted as an oxidative stress-sensitive target gene in hLECs. This study identified for the first time that TP53INP1 can be SUMOylated in vivo, that the SUMOylation of TP53INP1 is induced by oxidative stress, and that SUMOylation/deSUMOylation can affect the stability and transcription of TP53INP1 in hLECs.
Collapse
|
56
|
Chachami G, Stankovic-Valentin N, Karagiota A, Basagianni A, Plessmann U, Urlaub H, Melchior F, Simos G. Hypoxia-induced Changes in SUMO Conjugation Affect Transcriptional Regulation Under Low Oxygen. Mol Cell Proteomics 2019; 18:1197-1209. [PMID: 30926672 PMCID: PMC6553927 DOI: 10.1074/mcp.ra119.001401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/14/2019] [Indexed: 12/20/2022] Open
Abstract
Hypoxia occurs in pathological conditions, such as cancer, as a result of the imbalance between oxygen supply and consumption by proliferating cells. HIFs are critical molecular mediators of the physiological response to hypoxia but also regulate multiple steps of carcinogenesis including tumor progression and metastasis. Recent data support that sumoylation, the covalent attachment of the Small Ubiquitin-related MOdifier (SUMO) to proteins, is involved in the activation of the hypoxic response and the ensuing signaling cascade. To gain insights into differences of the SUMO1 and SUMO2/3 proteome of HeLa cells under normoxia and cells grown for 48 h under hypoxic conditions, we employed endogenous SUMO-immunoprecipitation in combination with quantitative mass spectrometry (SILAC). The group of proteins whose abundance was increased both in the total proteome and in the SUMO IPs from hypoxic conditions was enriched in enzymes linked to the hypoxic response. In contrast, proteins whose SUMOylation status changed without concomitant change in abundance were predominantly transcriptions factors or transcription regulators. Particularly interesting was transcription factor TFAP2A (Activating enhancer binding Protein 2 alpha), whose sumoylation decreased on hypoxia. TFAP2A is known to interact with HIF-1 and we provide evidence that deSUMOylation of TFAP2A enhances the transcriptional activity of HIF-1 under hypoxic conditions. Overall, these results support the notion that SUMO-regulated signaling pathways contribute at many distinct levels to the cellular response to low oxygen.
Collapse
Affiliation(s)
- Georgia Chachami
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece;
- ‡‡Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Nicolas Stankovic-Valentin
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - Angeliki Karagiota
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Angeliki Basagianni
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
| | - Uwe Plessmann
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Henning Urlaub
- ¶Bioanalytical Mass Spectrometry Group Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
- ‖Bioanalytics, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Frauke Melchior
- §Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ-ZMBH Alliance, Heidelberg University, 69120 Heidelberg, Germany
| | - George Simos
- From the ‡Laboratory of Biochemistry, Faculty of Medicine, University of Thessaly, 41500 Larissa, Greece
- **Gerald Bronfman Department of Oncology, Faculty of Medicine, McGill University, Montreal, Canada
| |
Collapse
|
57
|
SUMOylation of Csk Negatively Modulates its Tumor Suppressor Function. Neoplasia 2019; 21:676-688. [PMID: 31125786 PMCID: PMC6531875 DOI: 10.1016/j.neo.2019.04.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/28/2019] [Accepted: 04/30/2019] [Indexed: 11/24/2022] Open
Abstract
Csk, a non-receptor tyrosine kinase, serves as an indispensable negative regulator of the Src family kinases (SFKs). However, little is known about regulation of Csk expression so far. SUMOylation, a reversible post-translational modification, has been shown to regulate many biological processes especially in tumor progression. Here we report that Csk is covalently modified by SUMO1 at lysine 53 (K53) both in vitro and in vivo. Treatment with hydrogen peroxide inhibited this modification to a certain extent, but PIAS3, identified as the main specific SUMO E3 ligase for Csk, could significantly enhance SUMO1-Csk level. In addition, phosphorylation at Ser364, the active site in Csk, had no effect on this modification. Ectopic expression of SUMO-defective mutant, Csk K53R, inhibited tumor cell growth more potentially than Csk wild-type. Consistent with the biological phenotype, the SUMO modification of Csk impaired its activity to interact with Cbp (Csk binding protein) leading to decreased c-Src phosphorylation at Y527. Our results suggest that SUMOylation of Csk mainly at lysine 53 negatively modulates its tumor suppressor function by reducing its binding with Cbp and consequently, inducing c-Src activation.
Collapse
|
58
|
Sun W, Dai L, Yu H, Puspita B, Zhao T, Li F, Tan JL, Lim YT, Chen MW, Sobota RM, Tenen DG, Prabhu N, Nordlund P. Monitoring structural modulation of redox-sensitive proteins in cells with MS-CETSA. Redox Biol 2019; 24:101168. [PMID: 30925293 PMCID: PMC6439307 DOI: 10.1016/j.redox.2019.101168] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 03/07/2019] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Reactive oxygen species (ROS) induce different cellular stress responses but can also mediate cellular signaling. Augmented levels of ROS are associated with aging, cancer as well as various metabolic and neurological disorders. ROS can also affect the efficacy and adverse effects of drugs. Although proteins are key mediators of most ROS effects, direct studies of ROS-modulated-protein function in the cellular context are very challenging. Therefore the understanding of specific roles of different proteins in cellular ROS responses is still relatively rudimentary. In the present work we show that Mass Spectrometry-Cellular Thermal Shift Assay (MS-CETSA) can directly monitor ROS and redox modulations of protein structure at the proteome level. By altering ROS levels in cultured human hepatocellular carcinoma cell lysates and intact cells, we detected CETSA responses in many proteins known to be redox sensitive, and also revealed novel candidate ROS sensitive proteins. Studies in intact cells treated with hydrogen peroxide and sulfasalazine, a ROS modulating drug, identified not only proteins that are directly modified, but also proteins reporting on downstream cellular effects. Comprehensive changes are seen on rate-limiting proteins regulating key cellular processes, including known redox control systems, protein degradation, epigenetic control and protein translational processes. Interestingly, concerted shifts on ATP-binding proteins revealed redox-induced modulation of ATP levels, which likely control many cellular processes. Collectively, these studies establish CETSA as a novel method for cellular studies of redox modulations of proteins, which implicated in a wide range of processes and for the discovery of CETSA-based biomarkers reporting on the efficacy as well as adverse effects of drugs.
Collapse
Affiliation(s)
- Wendi Sun
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Lingyun Dai
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Han Yu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Brenda Puspita
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Tianyun Zhao
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Feng Li
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
| | - Justin L Tan
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Genome Institute of Singapore, A*STAR, 138672, Singapore
| | - Yan Ting Lim
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Ming Wei Chen
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | | | - Daniel G Tenen
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore; Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| | - Nayana Prabhu
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore
| | - Pär Nordlund
- School of Biological Sciences, Nanyang Technological University, 637551, Singapore; Institute of Molecular and Cell Biology, A*STAR, 138673, Singapore; Department of Oncology and Pathology, Karolinska Institutet, Stockholm, 17177, Sweden.
| |
Collapse
|
59
|
Song Y, Chi DY, Yu P, Lu JJ, Xu JR, Tan PP, Wang B, Cui YY, Chen HZ. Carbocisteine Improves Histone Deacetylase 2 Deacetylation Activity via Regulating Sumoylation of Histone Deacetylase 2 in Human Tracheobronchial Epithelial Cells. Front Pharmacol 2019; 10:166. [PMID: 30873037 PMCID: PMC6400890 DOI: 10.3389/fphar.2019.00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Accepted: 02/11/2019] [Indexed: 11/15/2022] Open
Abstract
Histone deacetylase (HDAC) 2 plays a vital role in modifying histones to mediate inflammatory responses, while HDAC2 itself is commonly regulated by post-translational modifications. Small ubiquitin-related modifier (SUMO), as an important PTM factor, is involved in the regulation of multiple protein functions. Our previous studies have shown that carbocisteine (S-CMC) reversed cigarette smoke extract (CSE)-induced down-regulation of HDAC2 expression/activity in a thiol/GSH-dependent manner and enhanced sensitivity of steroid therapy. However, the mechanism by which S-CMC regulates HDAC2 is worth further exploring. Our study aimed to investigate the relationships between HDAC2 sumoylation and its deacetylase activity under oxidative stress and the molecular mechanism of S-CMC to regulate HDAC2 activity that mediates inflammatory responses in human bronchial epithelial cells. We found that modification of HDAC2 by SUMO1 and SUMO2/3 occurred in 16HBE cells under physiological conditions, and CSE induced SUMO1 modification of HDAC2 in a dose and time-dependent manner. K462 and K51 of HDAC2 were the two major modification sites of SUMO1, and the K51 site mediated deacetylation activity and function of HDAC2 on histone H4 that regulates IL-8 secretion. S-CMC inhibited CSE-induced SUMO1 modification of HDAC2 in the presence of thiol/GSH, increased HDAC activity, and decreased IL-8 expression. Our study may provide novel mechanistic explanation of S-CMC to ameliorate steroid sensitivity treatment in chronic obstructive pulmonary disease.
Collapse
Affiliation(s)
- Yun Song
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Dan-Yi Chi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Ping Yu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan-Juan Lu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Rong Xu
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, China
| | - Yong-Yao Cui
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Zhuan Chen
- Department of Pharmacology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
60
|
Bramasole L, Sinha A, Gurevich S, Radzinski M, Klein Y, Panat N, Gefen E, Rinaldi T, Jimenez-Morales D, Johnson J, Krogan NJ, Reis N, Reichmann D, Glickman MH, Pick E. Proteasome lid bridges mitochondrial stress with Cdc53/Cullin1 NEDDylation status. Redox Biol 2019; 20:533-543. [PMID: 30508698 PMCID: PMC6279957 DOI: 10.1016/j.redox.2018.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 11/11/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023] Open
Abstract
Cycles of Cdc53/Cullin1 rubylation (a.k.a NEDDylation) protect ubiquitin-E3 SCF (Skp1-Cullin1-F-box protein) complexes from self-destruction and play an important role in mediating the ubiquitination of key protein substrates involved in cell cycle progression, development, and survival. Cul1 rubylation is balanced by the COP9 signalosome (CSN), a multi-subunit derubylase that shows 1:1 paralogy to the 26S proteasome lid. The turnover of SCF substrates and their relevance to various diseases is well studied, yet, the extent by which environmental perturbations influence Cul1 rubylation/derubylation cycles per se is still unclear. In this study, we show that the level of cellular oxidation serves as a molecular switch, determining Cullin1 rubylation/derubylation ratio. We describe a mutant of the proteasome lid subunit, Rpn11 that exhibits accumulated levels of Cullin1-Rub1 conjugates, a characteristic phenotype of csn mutants. By dissecting between distinct phenotypes of rpn11 mutants, proteasome and mitochondria dysfunction, we were able to recognize the high reactive oxygen species (ROS) production during the transition of cells into mitochondrial respiration, as a checkpoint of Cullin1 rubylation in a reversible manner. Thus, the study adds the rubylation cascade to the list of cellular pathways regulated by redox homeostasis.
Collapse
Affiliation(s)
- L Bramasole
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - A Sinha
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - S Gurevich
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - M Radzinski
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - Y Klein
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - N Panat
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - E Gefen
- Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel
| | - T Rinaldi
- Department of Biology and Biotechnology, University of Rome ''La Sapienza'', Rome 00185, Italy
| | - D Jimenez-Morales
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - J Johnson
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N J Krogan
- Quantitative Biosciences Institute (QBI), University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - N Reis
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - D Reichmann
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, Safra Campus Givat Ram, The Hebrew University of Jerusalem, Jerusalem 9190400, Israel
| | - M H Glickman
- Department of Biology, Technion-Israel Institute of Technology, 3200000 Haifa, Israel
| | - E Pick
- Department of Human Biology, The Faculty of Natural Sciences, University of Haifa, Haifa 3190500, Israel; Department of Biology and Environment, The Faculty of Natural Sciences, University of Haifa at Oranim, Tivon 3600600, Israel.
| |
Collapse
|
61
|
Gujrati M, Mittal R, Ekal L, Mishra RK. SUMOylation of periplakin is critical for efficient reorganization of keratin filament network. Mol Biol Cell 2018; 30:357-369. [PMID: 30516430 PMCID: PMC6589569 DOI: 10.1091/mbc.e18-04-0244] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The architecture of the cytoskeleton and its remodeling are tightly regulated by dynamic reorganization of keratin-rich intermediate filaments. Plakin family proteins associate with the network of intermediate filaments (IFs) and affect its reorganization during migration, differentiation, and response to stress. The smallest plakin, periplakin (PPL), interacts specifically with intermediate filament proteins K8, K18, and vimentin via its C-terminal linker domain. Here, we show that periplakin is SUMOylated at a conserved lysine in its linker domain (K1646) preferentially by small ubiquitin-like modifier 1 (SUMO1). Our data indicate that PPL SUMOylation is essential for the proper reorganization of the keratin IF network. Stresses perturbing intermediate-filament and cytoskeletal architecture induce hyper--SUMOylation of periplakin. Okadaic acid induced hyperphosphorylation-dependent collapse of the keratin IF network results in a similar hyper-SUMOylation of PPL. Strikingly, exogenous overexpression of a non-SUMOylatable periplakin mutant (K1646R) induced aberrant bundling and loose network interconnections of the keratin filaments. Time-lapse imaging of cells expressing the K1646R mutant showed the enhanced sensitivity of keratin filament collapse upon okadaic acid treatment. Our data identify an important regulatory role for periplakin SUMOylation in dynamic reorganization and stability of keratin IFs.
Collapse
Affiliation(s)
- Mansi Gujrati
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| | - Rohit Mittal
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Lakhan Ekal
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Ram Kumar Mishra
- Nups and SUMO Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Madhya Pradesh 462066, India
| |
Collapse
|
62
|
Ubiquitination and SUMOylation in the chronic inflammatory tumor microenvironment. Biochim Biophys Acta Rev Cancer 2018; 1870:165-175. [DOI: 10.1016/j.bbcan.2018.08.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/10/2018] [Accepted: 08/15/2018] [Indexed: 12/28/2022]
|
63
|
Chhunchha B, Singh P, Singh DP, Kubo E. Ginkgolic Acid Rescues Lens Epithelial Cells from Injury Caused by Redox Regulated-Aberrant Sumoylation Signaling by Reviving Prdx6 and Sp1 Expression and Activities. Int J Mol Sci 2018; 19:E3520. [PMID: 30413111 PMCID: PMC6274983 DOI: 10.3390/ijms19113520] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/04/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022] Open
Abstract
Sumoylation is a downstream effector of aging/oxidative stress; excess oxidative stress leads to dysregulation of a specificity protein1 (Sp1) and its target genes, such as Peroxiredoxin 6 (Prdx6), resulting in cellular damage. To cope with oxidative stress, cells rely on a signaling pathway involving redox-sensitive genes. Herein, we examined the therapeutic efficacy of the small molecule Ginkgolic acid (GA), a Sumoylation antagonist, to disrupt aberrant Sumoylation signaling in human and mouse lens epithelial cells (LECs) facing oxidative stress or aberrantly expressing Sumo1 (small ubiquitin-like modifier). We found that GA globally reduced aberrant Sumoylation of proteins. In contrast, Betulinic acid (BA), a Sumoylation agonist, augmented the process. GA increased Sp1 and Prdx6 expression by disrupting the Sumoylation signaling, while BA repressed the expression of both molecules. In vitro DNA binding, transactivation, Sumoylation and expression assays revealed that GA enhanced Sp1 binding to GC-boxes in the Prdx6 promoter and upregulated its transcription. Cell viability and intracellular redox status assays showed that LECs pretreated with GA gained resistance against oxidative stress-driven aberrant Sumoylation signaling. Overall, our study revealed an unprecedented role for GA in LECs and provided new mechanistic insights into the use of GA in rescuing LECs from aging/oxidative stress-evoked dysregulation of Sp1/Prdx6 protective molecules.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Prerna Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Science, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 9200293, Japan.
| |
Collapse
|
64
|
Chhunchha B, Kubo E, Singh P, Singh DP. Sumoylation-deficient Prdx6 repairs aberrant Sumoylation-mediated Sp1 dysregulation-dependent Prdx6 repression and cell injury in aging and oxidative stress. Aging (Albany NY) 2018; 10:2284-2315. [PMID: 30215601 PMCID: PMC6188488 DOI: 10.18632/aging.101547] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/06/2018] [Indexed: 12/16/2022]
Abstract
Progressive deterioration of antioxidant response in aging is a major culprit in the initiation of age-related pathobiology induced by oxidative stress. We previously reported that oxidative stress leads to a marked reduction in transcription factor Sp1 and its mediated Prdx6 expression in lens epithelial cells (LECs) leading to cell death. Herein, we examined how Sp1 activity goes awry during oxidative stress/aging, and whether it is remediable. We found that Sp1 is hyper-Sumoylated at lysine (K) 16 residue in aging LECs. DNA binding and promoter assays revealed, in aging and oxidative stress, a significant reduction in Sp1 overall binding, and specifically to Prdx6 promoter. Expression/overexpression assay revealed that the observed reduction in Sp1-DNA binding activity was connected to its hyper-Sumoylation due to increased reactive oxygen species (ROS) and Sumo1 levels, and reduced levels of Senp1, Prdx6 and Sp1. Mutagenesis of Sp1 at K16R (arginine) residue restored steady-state, and improved Sp1-DNA binding activity and transactivation potential. Extrinsic expression of Sp1K16R increased cell survival and reduced ROS levels by upregulating Prdx6 expression in LECs under aging/oxidative stress, demonstrating that Sp1K16R escapes the aberrant Sumoylation processes. Intriguingly, the deleterious processes are reversible by the delivery of Sumoylation-deficient Prdx6, an antioxidant, which would be a candidate molecule to restrict aging pathobiology.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Ishikawa 920-0293, Japan
| | - Prerna Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| | - Dhirendra P. Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center,
Omaha, NE 68198, USA
| |
Collapse
|
65
|
Chanda A, Sarkar A, Bonni S. The SUMO System and TGFβ Signaling Interplay in Regulation of Epithelial-Mesenchymal Transition: Implications for Cancer Progression. Cancers (Basel) 2018; 10:cancers10080264. [PMID: 30096838 PMCID: PMC6115711 DOI: 10.3390/cancers10080264] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/06/2018] [Accepted: 08/06/2018] [Indexed: 02/07/2023] Open
Abstract
Protein post-translational modification by the small ubiquitin-like modifier (SUMO), or SUMOylation, can regulate the stability, subcellular localization or interactome of a protein substrate with key consequences for cellular processes including the Epithelial-Mesenchymal Transition (EMT). The secreted protein Transforming Growth Factor beta (TGFβ) is a potent inducer of EMT in development and homeostasis. Importantly, the ability of TGFβ to induce EMT has been implicated in promoting cancer invasion and metastasis, resistance to chemo/radio therapy, and maintenance of cancer stem cells. Interestingly, TGFβ-induced EMT and the SUMO system intersect with important implications for cancer formation and progression, and novel therapeutics identification.
Collapse
Affiliation(s)
- Ayan Chanda
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Anusi Sarkar
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| | - Shirin Bonni
- Department of Biochemistry and Molecular Biology, The Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, AB T2N 4N1, Canada.
| |
Collapse
|
66
|
Stankovic-Valentin N, Melchior F. Control of SUMO and Ubiquitin by ROS: Signaling and disease implications. Mol Aspects Med 2018; 63:3-17. [PMID: 30059710 DOI: 10.1016/j.mam.2018.07.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/23/2018] [Accepted: 07/27/2018] [Indexed: 01/06/2023]
Abstract
Reversible post-translational modifications (PTMs) ensure rapid signal transmission from sensors to effectors. Reversible modification of proteins by the small proteins Ubiquitin and SUMO are involved in virtually all cellular processes and can modify thousands of proteins. Ubiquitination or SUMOylation is the reversible attachment of these modifiers to lysine residues of a target via isopeptide bond formation. These modifications require ATP and an enzymatic cascade composed of three classes of proteins: E1 activating enzymes, E2 conjugating enzymes and E3 ligases. The reversibility of the modification is ensured by specific isopeptidases. E1 and E2 enzymes, some E3 ligases and most isopeptidases have catalytic cysteine residues, which make them potentially susceptible for oxidation. Indeed, an increasing number of examples reveal regulation of ubiquitination and SUMOylation by reactive oxygen species, both in the context of redox signaling and in severe oxidative stress. Importantly, ubiquitination and SUMOylation play essential roles in the regulation of ROS homeostasis, participating in the control of ROS production and clearance. In this review, we will discuss the interplay between ROS homeostasis, Ubiquitin and SUMO pathways and the implications for the oxidative stress response and cell signaling.
Collapse
Affiliation(s)
- Nicolas Stankovic-Valentin
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| | - Frauke Melchior
- Zentrum für Molekulare Biologie der Universität Heidelberg (ZMBH), DKFZ - ZMBH Alliance, Heidelberg, Germany.
| |
Collapse
|
67
|
Hsu CY, Yeh LT, Fu SH, Chien MW, Liu YW, Miaw SC, Chang DM, Sytwu HK. SUMO-defective c-Maf preferentially transactivates Il21 to exacerbate autoimmune diabetes. J Clin Invest 2018; 128:3779-3793. [PMID: 30059018 DOI: 10.1172/jci98786] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 06/14/2018] [Indexed: 12/19/2022] Open
Abstract
SUMOylation is involved in the development of several inflammatory diseases, but the physiological significance of SUMO-modulated c-Maf in autoimmune diabetes is not completely understood. Here, we report that an age-dependent attenuation of c-Maf SUMOylation in CD4+ T cells is positively correlated with the IL-21-mediated diabetogenesis in NOD mice. Using 2 strains of T cell-specific transgenic NOD mice overexpressing wild-type c-Maf (Tg-WTc) or SUMOylation site-mutated c-Maf (Tg-KRc), we demonstrated that Tg-KRc mice developed diabetes more rapidly than Tg-WTc mice in a CD4+ T cell-autonomous manner. Moreover, SUMO-defective c-Maf preferentially transactivated Il21 to promote the development of CD4+ T cells with an extrafollicular helper T cell phenotype and expand the numbers of granzyme B-producing effector/memory CD8+ T cells. Furthermore, SUMO-defective c-Maf selectively inhibited recruitment of Daxx/HDAC2 to the Il21 promoter and enhanced histone acetylation mediated by CREB-binding protein (CBP) and p300. Using pharmacological interference with CBP/p300, we illustrated that CBP30 treatment ameliorated c-Maf-mediated/IL-21-based diabetogenesis. Taken together, our results show that the SUMOylation status of c-Maf has a stronger regulatory effect on IL-21 than the level of c-Maf expression, through an epigenetic mechanism. These findings provide new insights into how SUMOylation modulates the pathogenesis of autoimmune diabetes in a T cell-restricted manner and on the basis of a single transcription factor.
Collapse
Affiliation(s)
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Shin-Huei Fu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Wei Chien
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | - Yu-Wen Liu
- Graduate Institute of Life Sciences and.,Molecular Cell Biology, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
| | - Shi-Chuen Miaw
- Graduate Institute of Immunology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Huey-Kang Sytwu
- Graduate Institute of Life Sciences and.,Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan.,National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
68
|
Poirier I, Pallud M, Kuhn L, Hammann P, Demortière A, Jamali A, Chicher J, Caplat C, Gallon RK, Bertrand M. Toxicological effects of CdSe nanocrystals on the marine diatom Phaeodactylum tricornutum: The first mass spectrometry-based proteomic approach. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 152:78-90. [PMID: 29407785 DOI: 10.1016/j.ecoenv.2018.01.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/17/2018] [Accepted: 01/19/2018] [Indexed: 06/07/2023]
Abstract
UNLABELLED In the marine environment, benthic diatoms from estuarine and coastal sediments are among the first targets of nanoparticle pollution whose potential toxicity on marine organisms is still largely unknown. It is therefore relevant to improve our knowledge of interactions between these new pollutants and microalgae, the key players in the control of marine resources. In this study, the response of P. tricornutum to CdSe nanocrystals (CdSe NPs) of 5 nm (NP5) and 12 nm (NP12) in diameter was evaluated through microscopic, physiological, biochemical and proteomic approaches. NP5 and NP12 affected cell growth but oxygen production was only slightly decreased by NP5 after 1-d incubation time. In our experimental conditions, a high CdSe NP dissolution was observed during the first day of culture, leading to Cd bioaccumulation and oxidative stress, particularly with NP12. However, after a 7-day incubation time, proteomic analysis highlighted that P. tricornutum responded to CdSe NP toxicity by regulating numerous proteins involved in protection against oxidative stress, cellular redox homeostasis, Ca2+ regulation and signalling, S-nitrosylation and S-glutathionylation processes and cell damage repair. These proteome changes allowed algae cells to regulate their intracellular ROS level in contaminated cultures. P. tricornutum was also capable to control its intracellular Cd concentration at a sufficiently low level to preserve its growth. To our knowledge, this is the first work allowing the identification of proteins differentially expressed by P. tricornutum subjected to NPs and thus the understanding of some molecular pathways involved in its cellular response to nanoparticles. SIGNIFICANCE The microalgae play a key role in the control of marine resources. Moreover, they produce 50% of the atmospheric oxygen. CdSe NPs are extensively used in the industry of renewable energies and it is regrettably expected that these pollutants will sometime soon appear in the marine environment through surface runoff, urban effluents and rivers. Since estuarine and coastal sediments concentrate pollutants, benthic microalgae which live in superficial sediments will be among the first targets of nanoparticle pollution. Thus, it is relevant to improve our knowledge of interactions between diatoms and nanoparticles. Proteomics is a powerful tool for understanding the molecular mechanisms triggered by nanoparticle exposure, and our study is the first one to use this tool to identify proteins differentially expressed by P. tricornutum subjected to CdSe nanocrystals. This work is fundamental to improve our knowledge about the defence mechanisms developed by algae cells to counteract damage caused by CdSe NPs.
Collapse
Affiliation(s)
- Isabelle Poirier
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| | - Marie Pallud
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; IFREMER, LEAD NC, Equipe Ecophysiologie Station aquacole de Saint Vincent, Boulouparis, 98897 Nouvelle Calédonie Cedex, France.
| | - Lauriane Kuhn
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC 1589, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | - Philippe Hammann
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC 1589, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | - Arnaud Demortière
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex 1, France; Réseau sur le Stockage Electrochimique de l'Energie (RS2E), CNRS FR 3459, 80039 Amiens Cedex 1, France; Center for Nanoscale Materials, Argonne National Laboratory, Argonne, IL 60439, United States.
| | - Arash Jamali
- Laboratoire de Réactivité et Chimie des Solides, CNRS UMR 7314, Université de Picardie Jules Verne, 80039 Amiens Cedex 1, France.
| | - Johana Chicher
- Plateforme Protéomique Strasbourg Esplanade, CNRS FRC 1589, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | - Christelle Caplat
- UMR BOREA, UCBN, MNHN, UPMC, CNRS-7208, IRD-207, Institut de Biologie Fondamentale et Appliquée, Normandie Université, UNICAEN, 14032 Caen Cedex 5, France.
| | - Régis Kevin Gallon
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| | - Martine Bertrand
- Institut National des Sciences et Techniques de la Mer, Conservatoire National des Arts et Métiers, 50103 Cherbourg en Cotentin Cedex, France; Laboratoire Universitaire des Sciences Appliquées de Cherbourg, EA4253, Normandie Université, UNICAEN, 50130 Cherbourg en Cotentin, France.
| |
Collapse
|
69
|
An overview of the possible therapeutic role of SUMOylation in the treatment of Alzheimer’s disease. Pharmacol Res 2018; 130:420-437. [DOI: 10.1016/j.phrs.2017.12.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/13/2017] [Accepted: 12/21/2017] [Indexed: 02/07/2023]
|
70
|
Comprehensive list of SUMO targets in Caenorhabditis elegans and its implication for evolutionary conservation of SUMO signaling. Sci Rep 2018; 8:1139. [PMID: 29348603 PMCID: PMC5773548 DOI: 10.1038/s41598-018-19424-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 01/02/2018] [Indexed: 02/07/2023] Open
Abstract
Post-translational modification by small ubiquitin-related modifier (SUMO) is a key regulator of cell physiology, modulating protein-protein and protein-DNA interactions. Recently, SUMO modifications were postulated to be involved in response to various stress stimuli. We aimed to identify the near complete set of proteins modified by SUMO and the dynamics of the modification in stress conditions in the higher eukaryote, Caenorhabditis elegans. We identified 874 proteins modified by SUMO in the worm. We have analyzed the SUMO modification in stress conditions including heat shock, DNA damage, arsenite induced cellular stress, ER and osmotic stress. In all these conditions the global levels of SUMOylation was significantly increased. These results show the evolutionary conservation of SUMO modifications in reaction to stress. Our analysis showed that SUMO targets are highly conserved throughout species. By comparing the SUMO targets among species, we approximated the total number of proteins modified in a given proteome to be at least 15–20%. We developed a web server designed for convenient prediction of potential SUMO modification based on experimental evidences in other species.
Collapse
|
71
|
Liu D, Schwender H, Wang M, Wang H, Wang P, Zhu H, Zhou Z, Li J, Wu T, Beaty TH. Gene-gene interaction between MSX1 and TP63 in Asian case-parent trios with nonsyndromic cleft lip with or without cleft palate. Birth Defects Res 2018; 110:317-324. [PMID: 29341488 DOI: 10.1002/bdr2.1139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/27/2017] [Accepted: 09/06/2017] [Indexed: 01/10/2023]
Abstract
BACKGROUND Small ubiquitin-like modification, also known as sumoylation, is a crucial post-translational regulatory mechanisms involved in development of the lip and palate. Recent studies reported two sumoylation target genes, MSX1 and TP63, to have achieved genome-wide level significance in tests of association with nonsyndromic clefts. Here, we performed a candidate gene analysis considering gene-gene and gene-environment interaction for SUMO1, MSX1, and TP63 to further explore the etiology of nonsyndromic cleft lip with or without cleft palate (NSCL/P). METHODS A total of 130 single-nucleotide polymorphisms (SNPs) in or near SUMO1, MSX1, and TP63 was analyzed among 1,038 Asian NSCL/P trios ascertained through an international consortium. Conditional logistic regression models were used to explore gene-gene (G × G) and gene-environment (G × E) interaction involving maternal environmental tobacco smoke and multivitamin supplementation. Bonferroni correction was used for G × E analysis and permutation tests were used for G × G analysis. RESULTS While transmission disequilibrium tests and gene-environment interaction analysis showed no significant results, we did find signals of gene-gene interaction between SNPs near MSX1 and TP63. Three pairwise interactions yielded significant p values in permutation tests (rs884690 and rs9290890 with p = 9.34 × 10-5 and empirical p = 1.00 × 10-4 , rs1022136 and rs4687098 with p = 2.41 × 10-4 and empirical p = 2.95 × 10-4 , rs6819546 and rs9681004 with p = 5.15 × 10-4 and empirical p = 3.02 × 10-4 ). CONCLUSION Gene-gene interaction between MSX1 and TP63 may influence the risk of NSCL/P in Asian populations. Our study provided additional understanding of the genetic etiology of NSCL/P and underlined the importance of considering gene-gene interaction in the etiology of this common craniofacial malformation.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Holger Schwender
- Mathematical Institute, Heinrich Heine University Duesseldorf, Duesseldorf, Germany
| | - Mengying Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Hong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Ping Wang
- Department of Statistics and Information, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hongping Zhu
- School of Stomatology, Peking University, Beijing, China
| | - Zhibo Zhou
- School of Stomatology, Peking University, Beijing, China
| | - Jing Li
- School of Stomatology, Peking University, Beijing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China.,Key Laboratory of Reproductive Health, Ministry of Health, Beijing, China
| | - Terri H Beaty
- Department of Epidemiology, School of Public Health, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
72
|
Abstract
Reactive oxygen species (ROS), generated externally and during aerobic metabolism, are a potent cause of cell damage. Oxidative damage is a feature of many diseases and ageing, including age-associated diseases, such as diabetes, cancer, cardiovascular and neurodegenerative diseases. Indeed, this association helped lead to the widely expounded 'Free Radical Theory of Aging', proposing that the accumulation of ROS-induced damage is the underlying cause of ageing. In the last decade, it has become apparent that ROS play more complex roles in ageing than simply causing damage. This includes the induction of signalling pathways that protect against/repair cell damage. Cells encode a variety of enzymes that metabolise ROS, some of which reduce them to less reactive species. In this chapter, we review the evidence that manipulating the levels of these enzymes has any effect/s on ageing. We will also highlight a few examples illustrating why it is an over-simplification to describe the activities of some of these enzymes as 'antioxidants'. We discuss how these studies have helped refine our view of how ROS and ROS-metabolising enzymes contribute to the ageing process.
Collapse
Affiliation(s)
- Elizabeth Veal
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK.
| | - Thomas Jackson
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| | - Heather Latimer
- Institute for Cell and Molecular Biosciences and Institute for Ageing, Newcastle University, Tyne, UK
| |
Collapse
|
73
|
Ribet D, Boscaini S, Cauvin C, Siguier M, Mostowy S, Echard A, Cossart P. SUMOylation of human septins is critical for septin filament bundling and cytokinesis. J Cell Biol 2017; 216:4041-4052. [PMID: 29051266 PMCID: PMC5716278 DOI: 10.1083/jcb.201703096] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 08/23/2017] [Indexed: 01/22/2023] Open
Abstract
Septins are cytoskeletal proteins that assemble into nonpolar filaments. They are critical in diverse cellular functions, acting as scaffolds for protein recruitment and as diffusion barriers for subcellular compartmentalization. Human septins are encoded by 13 different genes and are classified into four groups based on sequence homology (SEPT2, SEPT3, SEPT6, and SEPT7 groups). In yeast, septins were among the first proteins reported to be modified by SUMOylation, a ubiquitin-like posttranslational modification. However, whether human septins could be modified by small ubiquitin-like modifiers (SUMOs) and what roles this modification may have in septin function remains unknown. In this study, we first show that septins from all four human septin groups can be covalently modified by SUMOs. We show in particular that endogenous SEPT7 is constitutively SUMOylated during the cell cycle. We then map SUMOylation sites to the C-terminal domain of septins belonging to the SEPT6 and SEPT7 groups and to the N-terminal domain of septins from the SEPT3 group. We finally demonstrate that expression of non-SUMOylatable septin variants from the SEPT6 and SEPT7 groups leads to aberrant septin bundle formation and defects in cytokinesis after furrow ingression. Altogether, our results demonstrate a pivotal role for SUMOylation in septin filament bundling and cell division.
Collapse
Affiliation(s)
- David Ribet
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Serena Boscaini
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Clothilde Cauvin
- Unité de Trafic Membranaire et Division Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR3691, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de Formation Doctorale, Paris, France
| | - Martin Siguier
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| | - Serge Mostowy
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London, London, England, UK
| | - Arnaud Echard
- Unité de Trafic Membranaire et Division Cellulaire, Département de Biologie Cellulaire et Infection, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique UMR3691, Paris, France
- Sorbonne Universités, Université Pierre et Marie Curie, Université Paris 06, Institut de Formation Doctorale, Paris, France
| | - Pascale Cossart
- Unité des Interactions Bactéries-Cellules, Institut Pasteur, Institut National de la Santé et de la Recherche Médicale, Institut National de la Recherche Agronomique, Paris, France
| |
Collapse
|
74
|
PML nuclear bodies, membrane-less domains acting as ROS sensors? Semin Cell Dev Biol 2017; 80:29-34. [PMID: 29157919 DOI: 10.1016/j.semcdb.2017.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 11/04/2017] [Accepted: 11/06/2017] [Indexed: 12/23/2022]
Abstract
PML Nuclear bodies (PML NBs) are spherical domains associated with a broad range of activities upon stress responses such as apoptosis, senescence DNA repair, epigenetic control, as well as control of oncogenesis. These bodies are considered as privileged sites for post-translational modifications, where sumoylation plays a key role. Here we summarize recent in vitro and in vivo findings on the link between PML NBs and ROS, in particular PML contributions to oxidative stress response. We discuss how it may regulate switch from cell protection against stress to cell arrest/cell death.
Collapse
|
75
|
Usui N, Araujo DJ, Kulkarni A, Co M, Ellegood J, Harper M, Toriumi K, Lerch JP, Konopka G. Foxp1 regulation of neonatal vocalizations via cortical development. Genes Dev 2017; 31:2039-2055. [PMID: 29138280 PMCID: PMC5733496 DOI: 10.1101/gad.305037.117] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/25/2017] [Indexed: 12/25/2022]
Abstract
Usui et al. show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. The molecular mechanisms driving brain development at risk in autism spectrum disorders (ASDs) remain mostly unknown. Previous studies have implicated the transcription factor FOXP1 in both brain development and ASD pathophysiology. However, the specific molecular pathways both upstream of and downstream from FOXP1 are not fully understood. To elucidate the contribution of FOXP1-mediated signaling to brain development and, in particular, neocortical development, we generated forebrain-specific Foxp1 conditional knockout mice. We show that deletion of Foxp1 in the developing forebrain leads to impairments in neonatal vocalizations as well as neocortical cytoarchitectonic alterations via neuronal positioning and migration. Using a genomics approach, we identified the transcriptional networks regulated by Foxp1 in the developing neocortex and found that such networks are enriched for downstream targets involved in neurogenesis and neuronal migration. We also uncovered mechanistic insight into Foxp1 function by demonstrating that sumoylation of Foxp1 during embryonic brain development is necessary for mediating proper interactions between Foxp1 and the NuRD complex. Furthermore, we demonstrated that sumoylation of Foxp1 affects neuronal differentiation and migration in the developing neocortex. Together, these data provide critical mechanistic insights into the function of FOXP1 in the developing neocortex and may reveal molecular pathways at risk in ASD.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Division of Development of Mental Functions, Research Center for Child Mental Development, University of Fukui, Fukui 910-1193, Japan.,Division of Developmental Higher Brain Functions, Department of Child Development, United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University, and University of Fukui, Osaka 565-0871, Japan
| | - Daniel J Araujo
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Ashwinikumar Kulkarni
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Jacob Ellegood
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Kazuya Toriumi
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA.,Project for Schizophrenia Research, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Jason P Lerch
- Mouse Imaging Centre (MICe), Hospital for Sick Children, Toronto, Ontario M5S 1A1, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A1, Canada
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
76
|
Abstract
Reactive oxygen species (ROS) are important signaling molecules that mediate oxidative stress and cellular damage when improperly regulated. ROS and oxidative stress can activate autophagy, which generally serves as a cytoprotective negative feedback mechanism to selectively eliminate sources of ROS, including mitochondria and peroxisomes. In this review we describe the mechanisms by which ROS directly and indirectly activate autophagy, and conversely, how selective autophagy suppresses the formation of ROS. Furthermore, we highlight what appear to be contradictory examples in which ROS suppress, rather than activate, autophagy; and where selective autophagy promotes, rather than inhibits ROS production, thereby contributing to cell death. Given that ROS are implicated in cancer, diabetes, atherosclerosis, neurodegenerative diseases and ischemia/reperfusion injury, a deeper understanding of the connections linking ROS and autophagy is greatly needed.
Collapse
Affiliation(s)
- Daric J Wible
- The University of Texas MD Anderson Cancer Center, Science Park, Department of Molecular Carcinogenesis, Smithville, Texas 78957
| | - Shawn B Bratton
- The University of Texas MD Anderson Cancer Center, Science Park, Department of Molecular Carcinogenesis, Smithville, Texas 78957
| |
Collapse
|
77
|
Patil H, Yoon D, Bhowmick R, Cai Y, Cho KI, Ferreira PA. Impairments in age-dependent ubiquitin proteostasis and structural integrity of selective neurons by uncoupling Ran GTPase from the Ran-binding domain 3 of Ranbp2 and identification of novel mitochondrial isoforms of ubiquitin-conjugating enzyme E2I (ubc9) and Ranbp2. Small GTPases 2017; 10:146-161. [PMID: 28877029 DOI: 10.1080/21541248.2017.1356432] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Ran-binding protein 2 (Ranbp2/Nup358) is a cytoplasmic and peripheral nucleoporin comprised of 4 Ran-GTP-binding domains (RBDs) that are interspersed among diverse structural domains with multifunctional activities. Our prior studies found that the RBD2 and RBD3 of Ranbp2 control mitochondrial motility independently of Ran-GTP-binding in cultured cells, whereas loss of Ran-GTP-binding to RBD2 and RBD3 are essential to support cone photoreceptor development and the survival of mature retinal pigment epithelium (RPE) in mice. Here, we uncover that loss of Ran-GTP-binding to RBD3 alone promotes the robust age-dependent increase of ubiquitylated substrates and S1 subunit (Pmsd1) of the 19S cap of the proteasome in the retina and RPE and that such loss in RBD3 also compromises the structural integrity of the outer segment compartment of cone photoreceptors only and without affecting the viability of these neurons. We also found that the E2-ligase and partner of Ranbp2, ubc9, is localized prominently in the mitochondrial-rich ellipsoid compartment of photoreceptors, where Ranbp2 is also known to localize with and modulate the activity of mitochondrial proteins. However, the natures of Ranbp2 and ubc9 isoforms to the mitochondria are heretofore elusive. Subcellular fractionation, co-immunolocalization and immunoaffinity purification of Ranbp2 complexes show that novel isoforms of Ranbp2 and ubc9 with molecular masses distinct from the large Ranbp2 and unmodified ubc9 isoforms localize specifically to the mitochondrial fraction or associate with mitochondrial components, whereas unmodified and SUMOylated Ran GTPase are excluded from the mitochondrial fraction. Further, liposome-mediated intracellular delivery of an antibody against a domain shared by the mitochondrial and nuclear pore isoforms of Ranbp2 causes the profound fragmentation of mitochondria and their delocalization from Ranbp2 and without affecting Ranbp2 localization at the nuclear pores. Collectively, the data support that Ran GTPase-dependent and independent and moonlighting roles of Ranbp2 or domains thereof and ubc9 control selectively age-dependent, neural-type and mitochondrial functions.
Collapse
Affiliation(s)
- Hemangi Patil
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Dosuk Yoon
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Reshma Bhowmick
- b Department of Pharmacology and Toxicology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Yunfei Cai
- b Department of Pharmacology and Toxicology , Medical College of Wisconsin , Milwaukee , WI , USA
| | - Kyoung-In Cho
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA
| | - Paulo A Ferreira
- a Department of Ophthalmology , Duke University Medical Center , Durham , NC , USA.,c Department of Pathology , Duke University Medical Center , Durham , NC , USA
| |
Collapse
|
78
|
Ren W, Ma X, Liu X, Li Y, Jiang Z, Zhao Y, Li C, Li X. Moderate hypothermia induces protein SUMOylation in bone marrow stromal cells and enhances their tolerance to hypoxia. Mol Med Rep 2017; 16:7006-7012. [PMID: 28901483 DOI: 10.3892/mmr.2017.7425] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/13/2017] [Indexed: 11/05/2022] Open
Abstract
Acute cerebral infarction can progress rapidly, and there are limited specific and effective treatments. Small ubiquitin‑like modifiers (SUMOs) provide an important post‑translational modification of proteins. Following cerebral infarction, multiple proteins can combine with SUMOs to protect nerve cells. Furthermore, moderate hypothermia (core body temperature, 33‑34˚C) can increase the level of SUMOylation on multiple proteins. In the present study, it was examined whether moderate hypothermia increases the survival rate of bone marrow stromal stem cells (BMSCs) implanted in the cerebral ischemic penumbra via SUMOylation of multiple proteins. Firstly, BMSCs were exposed to oxygen‑glucose deprivation (OGD) under moderate hypothermic (33˚C) conditions. Subsequently, adult rats with middle cerebral artery occlusion were treated with a combination of BMSCs and moderate hypothermia (32‑34˚C). The results demonstrated that hypothermia promoted the combination of multiple proteins with SUMOs in BMSCs, and induced transport of SUMOs from the cytoplasm to the nucleus. Moderate hypothermia additionally reduced damage to BMSCs following OGD and improved BMSC survival following transplantation into the penumbra. These data suggest that moderate hypothermia may protect against BMSC injury via rapid SUMOylation of intracellular proteins. Thus, BMSC transplantation combined with moderate hypothermia may be a potential therapeutic strategy to treat cerebral infarction.
Collapse
Affiliation(s)
- Wenbo Ren
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| | - Xiaofang Ma
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xiaozhi Liu
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yanxia Li
- Central Laboratory, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Zhongmin Jiang
- Department of Pathology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Yujun Zhao
- Department of Neurology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Chen Li
- Department of Neurology, The Fifth Central Hospital of Tianjin, Tianjin 300450, P.R. China
| | - Xin Li
- Department of Neurology, The Second Hospital of Tianjin Medical University, Tianjin 300211, P.R. China
| |
Collapse
|
79
|
Lee JS, Choi HJ, Baek SH. Sumoylation and Its Contribution to Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:283-298. [PMID: 28197919 DOI: 10.1007/978-3-319-50044-7_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Post-translational modifications play an important role in regulating protein activity by altering their functions. Sumoylation is a highly dynamic process which is tightly regulated by a fine balance between conjugating and deconjugating enzyme activities. It affects intracellular localization and their interaction with their binding partners, thereby changing gene expression. Consequently, these changes in turn affect signaling mechanisms that regulate many cellular functions, such as cell growth, proliferation, apoptosis , DNA repair , and cell survival. It is becoming apparent that deregulation in the SUMO pathway contributes to oncogenic transformation by affecting sumoylation/desumoylation of many oncoproteins and tumor suppressors. Loss of balance between sumoylation and desumoylation has been reported in a number of studies in a variety of disease types including cancer. This chapter summarizes the mechanisms and functions of the deregulated SUMO pathway affecting oncogenes and tumor suppressor genes.
Collapse
Affiliation(s)
- Jason S Lee
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Hee June Choi
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea
| | - Sung Hee Baek
- Department of Biological Sciences, Seoul National University, Seoul, 151-742, South Korea.
| |
Collapse
|
80
|
Abstract
Protein modification with the small ubiquitin-related modifier (SUMO) can affect protein function, enzyme activity, protein-protein interactions, protein stability, protein targeting and cellular localization. SUMO influences the function and regulation of metabolic enzymes within pathways, and in some cases targets entire metabolic pathways by affecting the activity of transcription factors or by facilitating the translocation of entire metabolic pathways to subcellular compartments. SUMO modification is also a key component of nutrient- and metabolic-sensing mechanisms that regulate cellular metabolism. In addition to its established roles in maintaining metabolic homeostasis, there is increasing evidence that SUMO is a key factor in facilitating cellular stress responses through the regulation and/or adaptation of the most fundamental metabolic processes, including energy and nucleotide metabolism. This review focuses on the role of SUMO in cellular metabolism and metabolic disease.
Collapse
|
81
|
Linher-Melville K, Singh G. The complex roles of STAT3 and STAT5 in maintaining redox balance: Lessons from STAT-mediated xCT expression in cancer cells. Mol Cell Endocrinol 2017; 451:40-52. [PMID: 28202313 DOI: 10.1016/j.mce.2017.02.014] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 02/09/2017] [Indexed: 12/12/2022]
Abstract
STAT3 and STAT5 mediate diverse cellular processes, transcriptionally regulating gene expression and interacting with cytoplasmic proteins. Their canonical activity is stimulated by cytokines/growth factors through JAK-STAT signaling. As targets of oncogenes with intrinsic tyrosine kinase activity, STAT3 and STAT5 become constitutively active in hematologic neoplasms and solid tumors, promoting cell proliferation and survival and modulating redox homeostasis. This review summarizes reactive oxygen species (ROS)-regulated STAT activation and how STATs influence ROS production. ROS-induced effects on post-translational modifications are presented, and STAT3/5-mediated regulation of xCT, a redox-sensitive target up-regulated in numerous cancers, is discussed with regard to transcriptional cross-talk.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario L8S 4L8, Canada.
| |
Collapse
|
82
|
Wang Z, Zhu WG, Xu X. Ubiquitin-like modifications in the DNA damage response. Mutat Res 2017; 803-805:56-75. [PMID: 28734548 DOI: 10.1016/j.mrfmmm.2017.07.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/03/2017] [Accepted: 07/03/2017] [Indexed: 12/14/2022]
Abstract
Genomic DNA is damaged at an extremely high frequency by both endogenous and environmental factors. An improper response to DNA damage can lead to genome instability, accelerate the aging process and ultimately cause various human diseases, including cancers and neurodegenerative disorders. The mechanisms that underlie the cellular DNA damage response (DDR) are complex and are regulated at many levels, including at the level of post-translational modification (PTM). Since the discovery of ubiquitin in 1975 and ubiquitylation as a form of PTM in the early 1980s, a number of ubiquitin-like modifiers (UBLs) have been identified, including small ubiquitin-like modifiers (SUMOs), neural precursor cell expressed, developmentally down-regulated 8 (NEDD8), interferon-stimulated gene 15 (ISG15), human leukocyte antigen (HLA)-F adjacent transcript 10 (FAT10), ubiquitin-fold modifier 1 (UFRM1), URM1 ubiquitin-related modifier-1 (URM1), autophagy-related protein 12 (ATG12), autophagy-related protein 8 (ATG8), fan ubiquitin-like protein 1 (FUB1) and histone mono-ubiquitylation 1 (HUB1). All of these modifiers have known roles in the cellular response to various forms of stress, and delineating their underlying molecular mechanisms and functions is fundamental in enhancing our understanding of human disease and longevity. To date, however, the molecular mechanisms and functions of these UBLs in the DDR remain largely unknown. This review summarizes the current status of PTMs by UBLs in the DDR and their implication in cancer diagnosis, therapy and drug discovery.
Collapse
Affiliation(s)
- Zhifeng Wang
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Wei-Guo Zhu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China
| | - Xingzhi Xu
- Guangdong Key Laboratory of Genome Stability & Disease Prevention, Shenzhen University School of Medicine, Shenzhen, Guangdong 518060, China; Beijing Key Laboratory of DNA Damage Response, Capital Normal University College of Life Sciences, Beijing 100048, China.
| |
Collapse
|
83
|
Peters M, Wielsch B, Boltze J. The role of SUMOylation in cerebral hypoxia and ischemia. Neurochem Int 2017; 107:66-77. [DOI: 10.1016/j.neuint.2017.03.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 03/09/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
|
84
|
Baczyk D, Audette MC, Drewlo S, Levytska K, Kingdom JC. SUMO-4: A novel functional candidate in the human placental protein SUMOylation machinery. PLoS One 2017; 12:e0178056. [PMID: 28545138 PMCID: PMC5435238 DOI: 10.1371/journal.pone.0178056] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 05/08/2017] [Indexed: 11/19/2022] Open
Abstract
Background Small ubiquitin-like modifiers (SUMOs) conjugate to proteins post-translationally, thereby affecting target localization, activity and stability. Functional SUMO family members identified in the human placenta include SUMO-1 to SUMO-3, which are elevated in pre-eclampsia. Whether the fourth isoform, SUMO-4, plays a role in placental development and function remains unknown. Objectives We tested the hypothesis that SUMO-4 is expressed in the human placenta and demonstrates altered SUMOylation in pre-eclamptic pregnancies. Methods SUMO-4 mRNA (qRT-PCR) and protein (Western blot and immunohistochemistry) were measured in Jar cells, BeWo cells, first trimester placental villous explants and placental tissues across normal gestation and in pre-eclampsia. SUMO-4 expression in response to oxidative stress (H2O2: 0, 0.1, 1 and 5mM), as well as, hypoxia-reperfusion (O2: 1%, 8% and 20%) was measured. Lastly, SUMO-4 binding (covalently vs. non-covalently) to target proteins was investigated. Results SUMO-4 mRNA and protein were unchanged across gestation. SUMO-4 was present in the villous trophoblast layer throughout gestation. SUMO-4 mRNA expression and protein levels were increased ~2.2-fold and ~1.8-fold in pre-eclamptic placentas compared to age-matched controls, respectively (p<0.01). SUMO-4 mRNA and protein expression increased in Jars, BeWos and first trimester placental explants with 5mM H2O2 treatment, as well as with exposure to hypoxia-reperfusion. SUMO-1 to SUMO-3 did not show consistent trends across models. SUMO-4 hyper-SUMOylation was predominantly covalent in nature. Conclusions SUMO-4 is expressed in normal placental development. SUMO-4 expression was increased in pre-eclamptic placentas and in models of oxidative stress and hypoxic injury. These data suggests that SUMO-4 hyper-SUMOylation may be a potential post-translational mechanism in the stressed pre-eclamptic placenta.
Collapse
Affiliation(s)
- Dora Baczyk
- Program in Development and Fetal Health, Lunenfeld–Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Melanie C. Audette
- Program in Development and Fetal Health, Lunenfeld–Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
- * E-mail:
| | - Sascha Drewlo
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Khrystyna Levytska
- Program in Development and Fetal Health, Lunenfeld–Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - John C. Kingdom
- Program in Development and Fetal Health, Lunenfeld–Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Faculty of Medicine, University of Toronto, Toronto, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Maternal-Fetal Medicine Division, Department of Obstetrics and Gynecology, Mount Sinai Hospital, Toronto, Canada
- Department of Obstetrics and Gynecology, University of Toronto, Toronto, Canada
| |
Collapse
|
85
|
Wang DP, Liu KJ, Kasper G, Lin Q, Hai J. Inhibition of SENP3 by URB597 ameliorates neurovascular unit dysfunction in rats with chronic cerebral hypoperfusion. Biomed Pharmacother 2017; 91:872-879. [PMID: 28501776 DOI: 10.1016/j.biopha.2017.05.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/20/2017] [Accepted: 05/04/2017] [Indexed: 12/14/2022] Open
Abstract
Disruption of the neurovascular unit (NVU), induced by chronic cerebral hypoperfusion (CCH), has been broadly found in various neurological disorders. SUMO-specific protease 3 (SENP3) is expressed in neurons, astrocytes, and microglia, and regulates a variety of cell events. However, whether SENP3 is involved in neurovascular injury under the condition of CCH is still elusive. To address this issue, we investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on NVU and the role of SENP3 in this process, as well as the underling mechanisms. The expression of SENP3 was detected by immunochemistry. The function and structure of the NVU was assessed by Western blot analysis and transmission electron microscopy. CCH caused the upregulation of SENP3, the disruption of cell and non-cell components at the protein level within the NVU, and ultrastructural deterioration. The NVU impairment as well as overexpression of SENP3 were reversed by treatment with URB597. These results reveal a novel neuroprotective role in URB597, which implicates URB597 in the amelioration of CCH-induced NVU impairment by inhibiting SENP3.
Collapse
Affiliation(s)
- Da-Peng Wang
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China; Department of Neurology and Neurosurgery, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Ke-Jia Liu
- Department of Cell Biology, Key Laboratory of Education Ministry for Cell Differentiation and Apoptosis, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Graham Kasper
- McGill Neuroscience, McGill University, Montreal, Quebec, H3A 2B4, Canada
| | - Qi Lin
- Department of Pharmacy, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jian Hai
- Department of Neurosurgery, Tong Ji Hospital, Tong Ji University School of Medicine, Shanghai 200065, China.
| |
Collapse
|
86
|
Jung HY, Kim DW, Kwon HJ, Yoo DY, Hwang IK, Won MH, Cho TG, Choi SY, Moon SM. SUMO-1 delays neuronal damage in the spinal cord following ischemia/reperfusion. Mol Med Rep 2017; 15:4312-4318. [PMID: 28487986 DOI: 10.3892/mmr.2017.6527] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Accepted: 02/15/2017] [Indexed: 11/06/2022] Open
Abstract
The present study investigated the protective effects of small ubiquitin-like modifier 1 (SUMO-1) on spinal cord ischemic damage in rabbits. A trans‑activator of transcription (Tat)‑SUMO‑1 fusion protein was prepared, and transient spinal cord ischemia was induced by occlusion of the abdominal aorta for 15 min. Vehicle (glycerol) or 1 mg/kg Tat-1-SUMO‑1 was administered intraperitoneally to the rabbits immediately following ischemia/reperfusion. Administration of Tat-SUMO-1 did not lead to significant alterations in arterial blood gases [partial pressure (Pa)CO2 and PaO2], pH, or blood glucose levels prior to ischemia, 10 min after occlusion or 10 min after reperfusion. Mean arterial pressure was significantly decreased only during occlusion. Motor behaviors were assessed at 24, 48 and 72 h after ischemia/reperfusion using Tarlov's criteria. Administration of Tat‑SUMO‑1 significantly improved Tarlov scores 24 h after ischemia/reperfusion and the number of cresyl violet positive neurons was significantly increased in the ventral horn of the spinal cord compared with the vehicle‑treated group. However, Tarlov scores were consistently decreased at 48 and 72 h after ischemia/reperfusion in the Tat‑SUMO‑1‑treated group, and Tarlov scores and the number of cresyl violet positive neurons were not significantly different between the vehicle‑ and Tat‑SUMO‑1‑treated groups after 72 h. Tat-SUMO‑1 administration significantly ameliorated a reduction in Cu, Zn‑superoxide dismutase activity and an increase in lipid peroxidation 24 h after ischemia/reperfusion; however, these effects were not present at 72 h. These results suggested that Tat‑SUMO‑1 may delay, although not protect against, neuronal death by regulating oxidative stress in the ventral horn of the spinal cord and that combination therapy using Tat‑SUMO‑1 with other compounds may provide a therapeutic approach to decrease neuronal damage.
Collapse
Affiliation(s)
- Hyo Young Jung
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Hyun Jung Kwon
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung‑Wonju National University, Gangneung, Gangwon 25457, Republic of Korea
| | - Dae Young Yoo
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - In Koo Hwang
- Department of Anatomy and Cell Biology, College of Veterinary Medicine, Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Moo-Ho Won
- Department of Neurobiology, School of Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Republic of Korea
| | - Tack-Geun Cho
- Department of Neurosurgery, Kangnam Sacred Heart Hospital, College of Medicine, Hallym University, Seoul 07441, Republic of Korea
| | - Soo Young Choi
- Department of Biomedical Sciences, Research Institute for Bioscience and Biotechnology, Hallym University, Chuncheon, Gangwon 24252, Republic of Korea
| | - Seung Myung Moon
- Department of Neurosurgery, Dongtan Sacred Heart Hospital, College of Medicine, Hallym University, Hwaseong, Gyeonggi 18450, Republic of Korea
| |
Collapse
|
87
|
Li J, Callegari S, Masucci MG. The Epstein-Barr virus miR-BHRF1-1 targets RNF4 during productive infection to promote the accumulation of SUMO conjugates and the release of infectious virus. PLoS Pathog 2017; 13:e1006338. [PMID: 28414785 PMCID: PMC5413087 DOI: 10.1371/journal.ppat.1006338] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/02/2017] [Accepted: 04/06/2017] [Indexed: 12/21/2022] Open
Abstract
Post-translational modification by the Small Ubiquitin-like Modifier (SUMO) regulates a variety of cellular functions, and is hijacked by viruses to remodel the host cell during latent and productive infection. Here we have monitored the activity of the SUMO conjugation machinery in cells productively infected with Epstein-Barr virus (EBV). We found that SUMO2/3 conjugates accumulate during the late phase of the productive virus cycle, and identified several viral proteins as bone fide SUMOylation substrates. Analysis of the mechanism involved in the accumulation of SUMOylated proteins revealed upregulation of several components of the SUMO-conjugation machinery and post-transcriptional downregulation of the SUMO-targeted ubiquitin ligase RNF4. The latter effect was mediated by selective inhibition of RNF4 protein expression by the viral miR-BHRF1-1. Reconstitution of RNF4 in cells expressing an inducible miR-BHRF1-1 sponge or a miR-BHRF1-1 resistant RNF4 was associated with reduced levels of early and late viral proteins and impaired virus release. These findings illustrate a novel strategy for viral interference with the SUMO pathway, and identify the EBV miR-BHRF1-1 and the cellular RNF4 as regulators of the productive virus cycle. We have investigated the activity of the SUMOylation machinery in cells infected with Epstein-Barr virus (EBV), a human herpesvirus that infects B-lymphocytes and is associated with malignancies. We found that activation of the productive virus cycle is accompanied by accumulation of SUMO conjugates, upregulation of components of the SUMO conjugation machinery, and downregulation of the SUMO-targeted ubiquitin ligase RNF4. The decrease of RNF4 is due to post-transcriptional downregulation by miR-BHRF1-1, a member of the BHRF1 microRNA cluster that is upregulated during productive infection. The effect of miR-BHRF1-1 was confirmed in luciferase reported assays, by mutation of the RNF4 3’UTR seed site, by transfection of a synthetic miR-BHRF1-1 mimic, by ectopic expression of miR-BHRF1-1 and by the reversal of RNF4 downregulation in cells expressing a miR-BHRF1-1 sponge. We also found that several early and late viral proteins are bona fide SUMOylation substrates. Reconstitution of RNF4 in productively infected cells was accompanied by proteasome-dependent degradation of the SUMOylated viral protein and by a significantly reduced virus yield. These findings illustrate a new strategy for viral interference with the SUMO pathway, an unexpected contribution of miR-BHRF1-1 to the productive cycle of EBV and a previously unrecognized role of the RNF4 ligase in the regulation of virus production.
Collapse
Affiliation(s)
- Jinlin Li
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Simone Callegari
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria G. Masucci
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
88
|
Zlotkowski K, Hewitt WM, Yan P, Bokesch HR, Peach ML, Nicklaus MC, O’Keefe BR, McMahon JB, Gustafson KR, Schneekloth JS. Macrophilone A: Structure Elucidation, Total Synthesis, and Functional Evaluation of a Biologically Active Iminoquinone from the Marine Hydroid Macrorhynchia philippina. Org Lett 2017; 19:1726-1729. [PMID: 28345939 PMCID: PMC6318790 DOI: 10.1021/acs.orglett.7b00496] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A previously uncharacterized pyrroloiminoquinone natural product, macrophilone A, was isolated from the stinging hydroid Macrorhynchia philippina. The structure was assigned utilizing long-range NMR couplings and DFT calculations and proved by a concise, five-step total synthesis. Macrophilone A and a synthetic analogue displayed potent biological activity, including increased intracellular reactive oxygen species levels and submicromolar cytotoxicity toward lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Katherine Zlotkowski
- Chemical Biology Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - William M. Hewitt
- Chemical Biology Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Pengcheng Yan
- Molecular Targets Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People’s Republic of China
| | - Heidi R. Bokesch
- Molecular Targets Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Megan L. Peach
- Chemical Biology Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- Basic Science Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States
| | - Marc C. Nicklaus
- Chemical Biology Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Barry R. O’Keefe
- Molecular Targets Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
- Natural Products Branch, Developmental Therapeutics Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - James B. McMahon
- Molecular Targets Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Kirk R. Gustafson
- Molecular Targets Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| | - John S. Schneekloth
- Chemical Biology Laboratory, Center for Cancer Research, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Frederick, Maryland 21702, United States
| |
Collapse
|
89
|
Tessier S, Martin-Martin N, de Thé H, Carracedo A, Lallemand-Breitenbach V. Promyelocytic Leukemia Protein, a Protein at the Crossroad of Oxidative Stress and Metabolism. Antioxid Redox Signal 2017; 26:432-444. [PMID: 27758112 DOI: 10.1089/ars.2016.6898] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
SIGNIFICANCE Cellular metabolic activity impacts the production of reactive oxygen species (ROS), both positively through mitochondrial oxidative processes and negatively by promoting the production of reducing agents (including NADPH and reduced glutathione). A defined metabolic state in cancer cells is critical for cell growth and long-term self-renewal, and such state is intrinsically associated with redox balance. Promyelocytic leukemia protein (PML) regulates several biological processes, at least in part, through its ability to control the assembly of PML nuclear bodies (PML NBs). Recent Advances: PML is oxidation-prone, and oxidative stress promotes NB biogenesis. These nuclear subdomains recruit many nuclear proteins and regulate their SUMOylation and other post-translational modifications. Some of these cargos-such as p53, SIRT1, AKT, and mammalian target of rapamycin (mTOR)-are key regulators of cell fate. PML was also recently shown to regulate oxidation. CRITICAL ISSUES While it was long considered primarily as a tumor suppressor protein, PML-regulated metabolic switch uncovered that this protein could promote survival and/or stemness of some normal or cancer cells. In this study, we review the recent findings on this multifunctional protein. FUTURE DIRECTIONS Studying PML scaffolding functions as well as its fine role in the activation of p53 or fatty acid oxidation will bring new insights in how PML could bridge oxidative stress, senescence, cell death, and metabolism. Antioxid. Redox Signal. 26, 432-444.
Collapse
Affiliation(s)
- Sarah Tessier
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| | | | - Hugues de Thé
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France .,6 AP-HP, Service de Biochimie, Hôpital St. Louis , Paris, France
| | - Arkaitz Carracedo
- 5 CIC bioGUNE , Bizkaia Technology Part, Derio, Spain .,7 IKERBASQUE , Basque Foundation for Science, Bilbao, Spain .,8 Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU) , Bilbao, Spain
| | - Valérie Lallemand-Breitenbach
- 1 Collège de France , Paris, France .,2 INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie , Paris, France .,3 CNRS UMR 7212 , Paris France .,4 Université Paris Diderot-Sorbonne Paris Cité , Paris, France
| |
Collapse
|
90
|
Mattoscio D, Casadio C, Miccolo C, Maffini F, Raimondi A, Tacchetti C, Gheit T, Tagliabue M, Galimberti VE, De Lorenzi F, Pawlita M, Chiesa F, Ansarin M, Tommasino M, Chiocca S. Autophagy regulates UBC9 levels during viral-mediated tumorigenesis. PLoS Pathog 2017; 13:e1006262. [PMID: 28253371 PMCID: PMC5349695 DOI: 10.1371/journal.ppat.1006262] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 03/14/2017] [Accepted: 02/26/2017] [Indexed: 02/06/2023] Open
Abstract
UBC9, the sole E2-conjugating enzyme required for SUMOylation, is a key regulator of essential cellular functions and, as such, is frequently altered in cancers. Along these lines, we recently reported that its expression gradually increases during early stages of human papillomavirus (HPV)-mediated cervical lesions transformation. However, a better understanding of how UBC9 is exploited by transforming viral oncoproteins is still needed. In the present study, we show that in human samples HPV drives UBC9 up-regulation also in very early steps of head and neck tumorigenesis, pointing to the important role for UBC9 in the HPV-mediated carcinogenic program. Moreover, using HPV-infected pre-cancerous tissues and primary human keratinocytes as the natural host of the virus, we investigate the pathological meaning and the cellular mechanisms responsible for UBC9 de-regulation in an oncoviral context. Our results show that UBC9 overexpression is promoted by transforming viral proteins to increase host cells' resistance to apoptosis. In addition, ultrastuctural, pharmacological and genetic approaches crucially unveil that UBC9 is physiologically targeted by autophagy in human cells. However, the presence of HPV E6/E7 oncoproteins negatively impacts the autophagic process through selective inhibition of autophagosome-lysosome fusion, finally leading to p53 dependent UBC9 accumulation during viral-induced cellular transformation. Therefore, our study elucidates how UBC9 is manipulated by HPV oncoproteins, details the physiological mechanism by which UBC9 is degraded in cells, and identifies how HPV E6/E7 impact on autophagy. These findings point to UBC9 and autophagy as novel hallmarks of HPV oncogenesis, and open innovative avenues towards the treatment of HPV-related malignancies.
Collapse
Affiliation(s)
- Domenico Mattoscio
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy
| | - Chiara Casadio
- European Institute of Oncology, Department of Pathology, Milan, Italy
| | - Claudia Miccolo
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy
| | - Fausto Maffini
- European Institute of Oncology, Department of Pathology, Milan, Italy
| | - Andrea Raimondi
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carlo Tacchetti
- Experimental Imaging Center, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Tarik Gheit
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Marta Tagliabue
- European Institute of Oncology, Division of Otolaryngology and Head and Neck Surgery, Milan, Italy
| | | | | | - Michael Pawlita
- Division of Molecular Diagnostics of Oncogenic Infections, Research Program Infection, Inflammation and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Fausto Chiesa
- European Institute of Oncology, Division of Otolaryngology and Head and Neck Surgery, Milan, Italy
| | - Mohssen Ansarin
- European Institute of Oncology, Division of Otolaryngology and Head and Neck Surgery, Milan, Italy
| | - Massimo Tommasino
- Infections and Cancer Biology Group, International Agency for Research on Cancer, Lyon, France
| | - Susanna Chiocca
- European Institute of Oncology, Department of Experimental Oncology, Milan, Italy
| |
Collapse
|
91
|
Pichler A, Fatouros C, Lee H, Eisenhardt N. SUMO conjugation - a mechanistic view. Biomol Concepts 2017; 8:13-36. [PMID: 28284030 DOI: 10.1515/bmc-2016-0030] [Citation(s) in RCA: 189] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/06/2017] [Indexed: 02/08/2023] Open
Abstract
The regulation of protein fate by modification with the small ubiquitin-related modifier (SUMO) plays an essential and crucial role in most cellular pathways. Sumoylation is highly dynamic due to the opposing activities of SUMO conjugation and SUMO deconjugation. SUMO conjugation is performed by the hierarchical action of E1, E2 and E3 enzymes, while its deconjugation involves SUMO-specific proteases. In this review, we summarize and compare the mechanistic principles of how SUMO gets conjugated to its substrate. We focus on the interplay of the E1, E2 and E3 enzymes and discuss how specificity could be achieved given the limited number of conjugating enzymes and the thousands of substrates.
Collapse
Affiliation(s)
- Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Chronis Fatouros
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Heekyoung Lee
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| | - Nathalie Eisenhardt
- Max Planck Institute of Immunobiology and Epigenetics, Department of Epigenetics, Stübeweg 51, D-79108 Freiburg, Germany
| |
Collapse
|
92
|
Abstract
Post-translational protein modification by small ubiquitin-like modifier (SUMO), termed sumoylation, is an important mechanism in cellular responses to stress and one that appears to be upregulated in many cancers. Here, we examine the role of sumoylation in tumorigenesis as a possibly necessary safeguard that protects the stability and functionality of otherwise easily misregulated gene expression programmes and signalling pathways of cancer cells.
Collapse
Affiliation(s)
- Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, INSERM U993, Institut Pasteur, 28 rue de Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
93
|
Abstract
Ubiquitin-like proteins (Ubl's) are conjugated to target proteins or lipids to regulate their activity, stability, subcellular localization, or macromolecular interactions. Similar to ubiquitin, conjugation is achieved through a cascade of activities that are catalyzed by E1 activating enzymes, E2 conjugating enzymes, and E3 ligases. In this review, we will summarize structural and mechanistic details of enzymes and protein cofactors that participate in Ubl conjugation cascades. Precisely, we will focus on conjugation machinery in the SUMO, NEDD8, ATG8, ATG12, URM1, UFM1, FAT10, and ISG15 pathways while referring to the ubiquitin pathway to highlight common or contrasting themes. We will also review various strategies used to trap intermediates during Ubl activation and conjugation.
Collapse
Affiliation(s)
- Laurent Cappadocia
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States
| | - Christopher D Lima
- Structural Biology Program, Sloan Kettering Institute , New York, New York 10021, United States.,Howard Hughes Medical Institute, Sloan Kettering Institute , New York, New York 10021, United States
| |
Collapse
|
94
|
Usui N, Co M, Harper M, Rieger MA, Dougherty JD, Konopka G. Sumoylation of FOXP2 Regulates Motor Function and Vocal Communication Through Purkinje Cell Development. Biol Psychiatry 2017; 81:220-230. [PMID: 27009683 PMCID: PMC4983264 DOI: 10.1016/j.biopsych.2016.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 01/29/2016] [Accepted: 02/01/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND Mutations in the gene encoding the transcription factor forkhead box P2 (FOXP2) result in brain developmental abnormalities, including reduced gray matter in both human patients and rodent models and speech and language deficits. However, neither the region-specific function of FOXP2 in the brain, in particular the cerebellum, nor the effects of any posttranslational modifications of FOXP2 in the brain and disorders have been explored. METHODS We characterized sumoylation of FOXP2 biochemically and analyzed the region-specific function and sumoylation of FOXP2 in the developing mouse cerebellum. Using in utero electroporation to manipulate the sumoylation state of FOXP2 as well as Foxp2 expression levels in Purkinje cells of the cerebellum in vivo, we reduced Foxp2 expression approximately 40% in the mouse cerebellum. Such a reduction approximates the haploinsufficiency observed in human patients who demonstrate speech and language impairments. RESULTS We identified sumoylation of FOXP2 at K674 (K673 in mice) in the cerebellum of neonates. In vitro co-immunoprecipitation and in vivo colocalization experiments suggest that PIAS3 acts as the small ubiquitin-like modifier E3 ligase for FOXP2 sumoylation. This sumoylation modifies transcriptional regulation by FOXP2. We demonstrated that FOXP2 sumoylation is required for regulation of cerebellar motor function and vocal communication, likely through dendritic outgrowth and arborization of Purkinje cells in the mouse cerebellum. CONCLUSIONS Sumoylation of FOXP2 in neonatal mouse cerebellum regulates Purkinje cell development and motor functions and vocal communication, demonstrating evidence for sumoylation in regulating mammalian behaviors.
Collapse
Affiliation(s)
- Noriyoshi Usui
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Marissa Co
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Matthew Harper
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390-911, USA
| | - Michael A. Rieger
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph D. Dougherty
- Department of Genetics and Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Genevieve Konopka
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
95
|
Chhunchha B, Kubo E, Fatma N, Singh DP. Sumoylation-deficient Prdx6 gains protective function by amplifying enzymatic activity and stability and escapes oxidative stress-induced aberrant Sumoylation. Cell Death Dis 2017; 8:e2525. [PMID: 28055018 PMCID: PMC5386354 DOI: 10.1038/cddis.2016.424] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 10/17/2016] [Accepted: 11/14/2016] [Indexed: 01/08/2023]
Abstract
Aberrant Sumoylation of protein(s) in response to oxidative stress or during aging is known to be involved in etiopathogenesis of many diseases. Upon oxidative stress, Peroxiredoxin (Prdx) 6 is aberrantly Sumoylated by Sumo1, resulting in loss of functions and cell death. We identified lysines (K) 122 and 142 as the major Sumo1 conjugation sites in Prdx6. Intriguingly, the mutant Prdx6 K122/142 R (arginine) gained protective efficacy, increasing in abundance and promoting glutathione (GSH) peroxidase and acidic calcium-independent phospholipase A2 (aiPLA2) activities. Using lens epithelial cells derived from targeted inactivation of Prdx6−/− gene and relative enzymatic and stability assays, we discovered dramatic increases in GSH-peroxidase (30%) and aiPLA2 (37%) activities and stability in the K122/142 R mutant, suggesting Sumo1 destabilized Prdx6 integrity. Prdx6−/−LECs with EGFP-Sumo1 transduced or co-expressed with mutant TAT-HA-Prdx6K122/142 R or pGFP-Prdx6K122/142 R were highly resistant to oxidative stress, demonstrating mutant protein escaped and interrupted the Prdx6 aberrant Sumoylation-mediated cell death pathway. Mutational analysis of functional sites showed that both peroxidase and PLA2 active sites were necessary for mutant Prdx6 function, and that Prdx6 phosphorylation (at T177 residue) was essential for optimum PLA2 activity. Our work reveals the involvement of oxidative stress-induced aberrant Sumoylation in dysregulation of Prdx6 function. Mutant Prdx6 at its Sumo1 sites escapes and abates this adverse process by maintaining its integrity and gaining function. We propose that the K122/142R mutant of Prdx6 in the form of a TAT-fusion protein may be an easily applicable intervention for pathobiology of cells related to aberrant Sumoylation signaling in aging or oxidative stress.
Collapse
Affiliation(s)
- Bhavana Chhunchha
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Eri Kubo
- Department of Ophthalmology, Kanazawa Medical University, Kanazawa, Ishikawa, Japan
| | - Nigar Fatma
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| | - Dhirendra P Singh
- Department of Ophthalmology and Visual Sciences, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
96
|
Pauws E, Stanier P. Sumoylation in Craniofacial Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 963:323-335. [PMID: 28197921 DOI: 10.1007/978-3-319-50044-7_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Craniofacial development requires a complex series of coordinated and finely tuned events to take place, during a relatively short time frame. These events are set in motion by switching on and off transcriptional cascades that involve the use of numerous signalling pathways and a multitude of factors that act at the site of gene transcription. It is now well known that amidst the subtlety of this process lies the intricate world of protein modification, and the posttranslational addition of the small ubiquitin -like modifier, SUMO, is an example that has been implicated in this process. Many proteins that are required for formation of various structures in the embryonic head and face adapt specific functions with SUMO modification. Interestingly, the main clinical phenotype reported for a disruption of the SUMO1 locus is the common birth defect cleft lip and palate. In this chapter therefore, we discuss the role of SUMO1 in craniofacial development, with emphasis on orofacial clefts. We suggest that these defects can be a sensitive indication of down regulated SUMO modification at a critical stage during embryogenesis. As well as specific mutations affecting the ability of particular proteins to be sumoylated, non-genetic events may have the effect of down-regulating the SUMO pathway to give the same result. Enzymes regulating the SUMO pathway may become important therapeutic targets in the preventative and treatment therapies for craniofacial defects in the future.
Collapse
Affiliation(s)
- Erwin Pauws
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK
| | - Philip Stanier
- Institute of Child Health, University College London, 30 Guilford Street, London, WC1N 1EH, UK.
| |
Collapse
|
97
|
Ferdaoussi M, MacDonald PE. Toward Connecting Metabolism to the Exocytotic Site. Trends Cell Biol 2016; 27:163-171. [PMID: 27932063 DOI: 10.1016/j.tcb.2016.10.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 12/14/2022]
Abstract
Within cells the regulated exocytosis of secretory granules controls multiple physiological functions, including endocrine hormone secretion. Release of the glucose-regulating hormone insulin from pancreatic islet β cells is critical for whole-body metabolic homeostasis. Impaired insulin secretion appears early in the progression to type 2 diabetes (T2D). Key mechanisms that control the β-cell exocytotic response, mediating the long-known but little understood metabolic amplification of insulin secretion, are becoming clearer. Recent insights indicate a convergence of metabolism-driven signals, such as lipid-derived messengers and redox-dependent deSUMOylation, at the plasma membrane to augment Ca2+-dependent insulin exocytosis. These pathways have important implications for the metabolic control of hormone secretion, for the functional compensation that occurs in obesity, and for impaired insulin secretion in diabetes.
Collapse
Affiliation(s)
- Mourad Ferdaoussi
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1
| | - Patrick E MacDonald
- Department of Pharmacology and Alberta Diabetes Institute, University of Alberta, Edmonton, AB, Canada T6G 2E1.
| |
Collapse
|
98
|
Inhibition of protein SUMOylation by natural quinones. J Antibiot (Tokyo) 2016; 69:776-779. [PMID: 26956790 DOI: 10.1038/ja.2016.23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 02/02/2016] [Accepted: 02/03/2016] [Indexed: 11/08/2022]
|
99
|
Linher-Melville K, Nashed MG, Ungard RG, Haftchenary S, Rosa DA, Gunning PT, Singh G. Chronic Inhibition of STAT3/STAT5 in Treatment-Resistant Human Breast Cancer Cell Subtypes: Convergence on the ROS/SUMO Pathway and Its Effects on xCT Expression and System xc- Activity. PLoS One 2016; 11:e0161202. [PMID: 27513743 PMCID: PMC4981357 DOI: 10.1371/journal.pone.0161202] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/01/2016] [Indexed: 12/15/2022] Open
Abstract
Pharmacologically targeting activated STAT3 and/or STAT5 has been an active area of cancer research. The cystine/glutamate antiporter, system xc-, contributes to redox balance and export of intracellularly produced glutamate in response to up-regulated glutaminolysis in cancer cells. We have previously shown that blocking STAT3/5 using the small molecule inhibitor, SH-4-54, which targets the SH2 domains of both proteins, increases xCT expression, thereby increasing system xc- activity in human breast cancer cells. The current investigation demonstrates that chronic SH-4-54 administration, followed by clonal selection of treatment-resistant MDA-MB-231 and T47D breast cancer cells, elicits distinct subtype-dependent effects. xCT mRNA and protein levels, glutamate release, and cystine uptake are decreased relative to untreated passage-matched controls in triple-negative MDA-MB-231 cells, with the inverse occurring in estrogen-responsive T47D cells. This “ying-yang” effect is linked with a shifted balance between the phosphorylation status of STAT3 and STAT5, intracellular ROS levels, and STAT5 SUMOylation/de-SUMOylation. STAT5 emerged as a definitive negative regulator of xCT at the transcriptional level, while STAT3 activation is coupled with increased system xc- activity. We propose that careful classification of a patient’s breast cancer subtype is central to effectively targeting STAT3/5 as a therapeutic means of treating breast cancer, particularly given that xCT is emerging as an important biomarker of aggressive cancers.
Collapse
Affiliation(s)
- Katja Linher-Melville
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Mina G. Nashed
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Robert G. Ungard
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
| | - Sina Haftchenary
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - David A. Rosa
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Patrick T. Gunning
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, L5L 1C6, Canada
| | - Gurmit Singh
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, L8S 4L8, Canada
- * E-mail:
| |
Collapse
|
100
|
Xiao Y, Lucas B, Molcho E, Schiff T, Vigodner M. Inhibition of CDK1 activity by sumoylation. Biochem Biophys Res Commun 2016; 478:919-23. [PMID: 27520372 DOI: 10.1016/j.bbrc.2016.08.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
Sumoylation (a covalent modification by Small Ubiquitin-like Modifiers or SUMO proteins) has been implicated in the regulation of various cellular events including cell cycle progression. We have recently identified CDK1, a master regulator of mitosis and meiosis, as a SUMO target both in vivo and in vitro, supporting growing evidence concerning a close cross talk between sumoylation and phosphorylation during cell cycle progression. However, any data regarding the effect of sumoylation upon CDK1 activity have been missing. In this study, we performed a series of in vitro experiments to inhibit sumoylation by three different means (ginkgolic acid, physiological levels of oxidative stress, and using an siRNA approach) and assessed the changes in CDK1 activity using specific antibodies and a kinase assay. We have also tested for an interaction between SUMO and active and/or inactive CDK1 isoforms in addition to having assessed the status of CDK1-interacting sumoylated proteins upon inhibition of sumoylation. Our data suggest that inhibition of sumoylation increases the activity of CDK1 probably through changes in sumoylated status and/or the ability of specific proteins to bind CDK1 and inhibit its activity.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Benjamin Lucas
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Elana Molcho
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Tania Schiff
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA
| | - Margarita Vigodner
- Department of Biology, Stern College, Yeshiva University, New York, NY, USA; Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|