51
|
The role of ubiquitin and ubiquitin-like modification systems in papillomavirus biology. Viruses 2014; 6:3584-611. [PMID: 25254385 PMCID: PMC4189040 DOI: 10.3390/v6093584] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 09/17/2014] [Accepted: 09/18/2014] [Indexed: 12/12/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA viruses that are important etiological agents of a spectrum of human skin lesions from benign to malignant. Because of their limited genome coding capacity they express only a small number of proteins, only one of which has enzymatic activity. Additionally, the HPV productive life cycle is intimately tied to the epithelial differentiation program and they must replicate in what are normally non-replicative cells, thus, these viruses must reprogram the cellular environment to achieve viral reproduction. Because of these limitations and needs, the viral proteins have evolved to co-opt cellular processes primarily through protein-protein interactions with critical host proteins. The ubiquitin post-translational modification system and the related ubiquitin-like modifiers constitute a widespread cellular regulatory network that controls the levels and functions of thousands of proteins, making these systems an attractive target for viral manipulation. This review describes the interactions between HPVs and the ubiquitin family of modifiers, both to regulate the viral proteins themselves and to remodel the host cell to facilitate viral survival and reproduction.
Collapse
|
52
|
Satpathy S, Guérillon C, Kim TS, Bigot N, Thakur S, Bonni S, Riabowol K, Pedeux R. SUMOylation of the ING1b tumor suppressor regulates gene transcription. Carcinogenesis 2014; 35:2214-23. [PMID: 24903338 DOI: 10.1093/carcin/bgu126] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The INhibitor of Growth (ING) proteins are encoded as multiple isoforms in five ING genes (ING1 -5) and act as type II tumor suppressors. They are growth inhibitory when overexpressed and are frequently mislocalized or downregulated in several forms of cancer. ING1 and ING2 are stoichiometric members of histone deacetylase complexes, whereas ING3-5 are stoichiometric components of different histone acetyltransferase complexes. The INGs target these complexes to histone marks, thus acting as epigenetic regulators. ING proteins affect angiogenesis, apoptosis, DNA repair, metastasis and senescence, but how the proteins themselves are regulated is not yet clear. Here, we find a small ubiquitin-like modification (SUMOylation) of the ING1b protein and identify lysine 193 (K193) as the preferred ING1b SUMO acceptor site. We also show that PIAS4 is the E3 SUMO ligase responsible for ING1b SUMOylation on K193. Sequence alignment reveals that the SUMO consensus site on ING1b contains a phosphorylation-dependent SUMOylation motif (PDSM) and our data indicate that the SUMOylation on K193 is enhanced by the S199D phosphomimic mutant. Using an ING1b protein mutated at the major SUMOylation site (ING1b E195A), we further demonstrate that ING1b SUMOylation regulates the binding of ING1b to the ISG15 and DGCR8 promoters, consequently regulating ISG15 and DGCR8 transcription. These results suggest a role for ING1b SUMOylation in the regulation of gene transcription.
Collapse
Affiliation(s)
- Shankha Satpathy
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada, Present address: The Novo Nordisk Foundation Center for Protein Research, Copenhagen, Denmark
| | - Claire Guérillon
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France, Université de Rennes 1, 350043 Rennes, France and
| | - Tae-Sun Kim
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nicolas Bigot
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France, Université de Rennes 1, 350043 Rennes, France and
| | - Satbir Thakur
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France
| | - Shirin Bonni
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Southern Alberta Cancer Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta T2N 4N1, Canada,
| | - Rémy Pedeux
- INSERM U917, Microenvironnement et Cancer, 350043 Rennes, France
| |
Collapse
|
53
|
Song N, Gu XD, Wang Y, Chen ZY, Shi LB. Lentivirus-mediated siRNA targeting SAE1 induces cell cycle arrest and apoptosis in colon cancer cell RKO. Mol Biol 2014. [DOI: 10.1134/s0026893314010129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
54
|
Abstract
Posttranslational modification with small ubiquitin-related modifier (SUMO) proteins is now established as one of the key regulatory protein modifications in eukaryotic cells. Hundreds of proteins involved in processes such as chromatin organization, transcription, DNA repair, macromolecular assembly, protein homeostasis, trafficking, and signal transduction are subject to reversible sumoylation. Hence, it is not surprising that disease links are beginning to emerge and that interference with sumoylation is being considered for intervention. Here, we summarize basic mechanisms and highlight recent developments in the physiology of sumoylation.
Collapse
Affiliation(s)
- Annette Flotho
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH, Heidelberg D-69120, Germany.
| | | |
Collapse
|
55
|
Agboola A, Musa A, Banjo A, Ayoade B, Deji-Agboola M, Nolan C, Rakha E, Ellis I, Green A. PIASγ expression in relation to clinicopathological, tumour factors and survival in indigenous black breast cancer women. J Clin Pathol 2013; 67:301-6. [DOI: 10.1136/jclinpath-2013-201658] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
56
|
PIAS4 is an activator of hypoxia signalling via VHL suppression during growth of pancreatic cancer cells. Br J Cancer 2013; 109:1795-804. [PMID: 24002598 PMCID: PMC3790182 DOI: 10.1038/bjc.2013.531] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 08/08/2011] [Accepted: 08/13/2013] [Indexed: 01/05/2023] Open
Abstract
Background: The PIAS4 protein belongs to the family of protein inhibitors of activated STAT, but has since been implicated in various biological activities including the post-translational modification known as sumoylation. In this study, we explored the roles of PIAS4 in pancreatic tumourigenesis. Methods: The expression levels of PIAS4 in pancreatic cancer cells were examined. Cell proliferation and invasion was studied after overexpression and gene silencing of PIAS4. The effect of PIAS4 on hypoxia signalling was investigated. Results: The protein was overexpressed in pancreatic cancer cells compared with the normal pancreas. Gene silencing by PIAS4 small interfering RNA (siRNA) suppressed pancreatic cancer cell growth and overexpression of PIAS4 induced expression of genes related to cell growth. The overexpression of PIAS4 is essential for the regulation of the hypoxia signalling pathway. PIAS4 interacts with the tumour suppressor von Hippel-Lindau (VHL) and leads to VHL sumoylation, oligomerization, and impaired function. Pancreatic cancer cells (Panc0327, MiaPaCa2) treated with PIAS4 siRNA suppressed expression of the hypoxia-inducible factor hypoxia-inducible factor 1 alpha and its target genes JMJD1A, VEGF, and STAT3. Conclusion: Our study elucidates the role of PIAS4 in the regulation of pancreatic cancer cell growth, where the suppression of its activity represents a novel therapeutic target for pancreatic cancers.
Collapse
|
57
|
Marcos-Villar L, Pérez-Girón JV, Vilas JM, Soto A, de la Cruz-Hererra CF, Lang V, Collado M, Vidal A, Rodríguez MS, Muñoz-Fontela C, Rivas C. SUMOylation of p53 mediates interferon activities. Cell Cycle 2013; 12:2809-16. [PMID: 23966171 DOI: 10.4161/cc.25868] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
There is growing evidence that many host proteins involved in innate and intrinsic immunity are regulated by SUMOylation, and that SUMO contributes to the regulatory process that governs the initiation of the type I interferon (IFN) response. The tumor suppressor p53 is a modulator of the IFN response that plays a role in virus-induced apoptosis and in IFN-induced senescence. Here we demonstrate that IFN treatment increases the levels of SUMOylated p53 and induces cellular senescence through a process that is partially dependent upon SUMOylation of p53. Similarly, we show that vesicular stomatitis virus (VSV) infection induces p53 SUMOylation, and that this modification favors the control of VSV replication. Thus, our study provides evidence that IFN signaling induces p53 SUMOylation, which results in the activation of a cellular senescence program and contributes to the antiviral functions of interferon.
Collapse
Affiliation(s)
- Laura Marcos-Villar
- Departamento Biología Molecular y Celular; Centro Nacional de Biotecnología-CSIC; Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Sasai N, Saitoh N, Saitoh H, Nakao M. The transcriptional cofactor MCAF1/ATF7IP is involved in histone gene expression and cellular senescence. PLoS One 2013; 8:e68478. [PMID: 23935871 PMCID: PMC3728336 DOI: 10.1371/journal.pone.0068478] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 05/31/2013] [Indexed: 12/27/2022] Open
Abstract
Cellular senescence is post-mitotic or oncogene-induced events combined with nuclear remodeling. MCAF1 (also known as hAM or ATF7IP), a transcriptional cofactor that is overexpressed in various cancers, functions in gene activation or repression, depending on interacting partners. In this study, we found that MCAF1 localizes to PML nuclear bodies in human fibroblasts and non-cancerous cells. Interestingly, depletion of MCAF1 in fibroblasts induced premature senescence that was characterized by cell cycle arrest, SA-β-gal activity, and senescence-associated heterochromatic foci (SAHF) formation. Under this condition, core histones and the linker histone H1 significantly decreased at both mRNA and protein levels, resulting in reduced nucleosome formation. Consistently, in activated Ras-induced senescent fibroblasts, the accumulation of MCAF1 in PML bodies was enhanced via the binding of this protein to SUMO molecules, suggesting that sequestration of MCAF1 to PML bodies promotes cellular senescence. Collectively, these results reveal that MCAF1 is an essential regulator of cellular senescence.
Collapse
Affiliation(s)
- Nobuhiro Sasai
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Noriko Saitoh
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
| | - Hisato Saitoh
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Mitsuyoshi Nakao
- Department of Medical Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, Tokyo, Japan
- * E-mail:
| |
Collapse
|
59
|
Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res 2013; 23:1563-79. [PMID: 23893515 PMCID: PMC3787255 DOI: 10.1101/gr.154872.113] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite numerous studies on specific sumoylated transcriptional regulators, the global role of SUMO on chromatin in relation to transcription regulation remains largely unknown. Here, we determined the genome-wide localization of SUMO1 and SUMO2/3, as well as of UBC9 (encoded by UBE2I) and PIASY (encoded by PIAS4), two markers for active sumoylation, along with Pol II and histone marks in proliferating versus senescent human fibroblasts together with gene expression profiling. We found that, whereas SUMO alone is widely distributed over the genome with strong association at active promoters, active sumoylation occurs most prominently at promoters of histone and protein biogenesis genes, as well as Pol I rRNAs and Pol III tRNAs. Remarkably, these four classes of genes are up-regulated by inhibition of sumoylation, indicating that SUMO normally acts to restrain their expression. In line with this finding, sumoylation-deficient cells show an increase in both cell size and global protein levels. Strikingly, we found that in senescent cells, the SUMO machinery is selectively retained at histone and tRNA gene clusters, whereas it is massively released from all other unique chromatin regions. These data, which reveal the highly dynamic nature of the SUMO landscape, suggest that maintenance of a repressive environment at histone and tRNA loci is a hallmark of the senescent state. The approach taken in our study thus permitted the identification of a common biological output and uncovered hitherto unknown functions for active sumoylation at chromatin as a key mechanism that, in dynamically marking chromatin by a simple modifier, orchestrates concerted transcriptional regulation of a network of genes essential for cell growth and proliferation.
Collapse
|
60
|
Sun L, Li H, Chen J, Iwasaki Y, Kubota T, Matsuoka M, Shen A, Chen Q, Xu Y. PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells. J Cell Sci 2013; 126:3939-47. [PMID: 23843607 DOI: 10.1242/jcs.127381] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Epithelial-mesenchymal transition (EMT) has an essential role in organogenesis and contributes to a host of pathologies, including carcinogenesis. Hypoxia (low oxygen supply) aids tumor metastasis in part by promoting EMT in cancer cells. The underlying mechanism whereby hypoxia orchestrates EMT remains poorly defined. Here we report that SIRT1, a multifaceted player in tumorigenesis, opposed ovarian cancer metastasis in vitro and in vivo by impeding EMT. Hypoxic stress downregulated the expression of SIRT1, primarily at the transcriptional level, by reducing the occupancy of the transcriptional activator Sp1 on the proximal promoter of the SIRT1 gene in a SUMOylation-dependent manner. Further analysis revealed that the SUMO E3 ligase PIASy (also known as PIAS4) was induced by hypoxia and prevented Sp1 from binding to the SIRT1 promoter. Conversely, knockdown of PIASy by small interfering RNA (siRNA) restored Sp1 binding and SIRT1 expression in cancer cells challenged with hypobaric hypoxia, reversed cancer cell EMT, and attenuated metastasis in vivo in nude mice. Importantly, analysis of human ovarian tumor specimens indicated that PIASy expression was positively, whereas SIRT1 expression was inversely, correlated with cancer aggressiveness. In summary, our work has identified a new pathway that links downregulation of SIRT1 to hypoxia-induced EMT in ovarian cancer cells and, as such, sheds light on the development of novel anti-tumor therapeutics.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Reproductive Medicine, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Rd, Nanjing 210029, China
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Ivanschitz L, De Thé H, Le Bras M. PML, SUMOylation, and Senescence. Front Oncol 2013; 3:171. [PMID: 23847762 PMCID: PMC3701148 DOI: 10.3389/fonc.2013.00171] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 06/14/2013] [Indexed: 11/15/2022] Open
Abstract
Since its discovery, 25 years ago, promyelocytic leukemia (PML) has been an enigma. Implicated in the oncogenic PML/RARA fusion, forming elusive intranuclear domains, triggering cell death or senescence, controlled by and perhaps controlling SUMOylation… there are multiple PML-related issues. Here we review the reciprocal interactions between PML, senescence, and SUMOylation, notably in the context of cellular transformation.
Collapse
Affiliation(s)
- Lisa Ivanschitz
- University Paris Diderot, Sorbonne Paris Cité, Hôpital St. Louis , Paris , France ; INSERM UMR 944, Equipe labellisée par la Ligue Nationale contre le Cancer, Institut Universitaire d'Hématologie, Hôpital St. Louis , Paris , France ; CNRS UMR 7212, Hôpital St. Louis , Paris , France
| | | | | |
Collapse
|
62
|
Macdonald JI, Dick FA. Posttranslational modifications of the retinoblastoma tumor suppressor protein as determinants of function. Genes Cancer 2013; 3:619-33. [PMID: 23634251 DOI: 10.1177/1947601912473305] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The retinoblastoma tumor suppressor protein (pRB) plays an integral role in G1-S checkpoint control and consequently is a frequent target for inactivation in cancer. The RB protein can function as an adaptor, nucleating components such as E2Fs and chromatin regulating enzymes into the same complex. For this reason, pRB's regulation by posttranslational modifications is thought to be critical. pRB is phosphorylated by a number of different kinases such as cyclin dependent kinases (Cdks), p38 MAP kinase, Chk1/2, Abl, and Aurora b. Although phosphorylation of pRB by Cdks has been extensively studied, activities regulated through phosphorylation by other kinases are just starting to be understood. As well as being phosphorylated, pRB is acetylated, methylated, ubiquitylated, and SUMOylated. Acetylation, methylation, and SUMOylation play roles in pRB mediated gene silencing. Ubiquitinylation of pRB promotes its degradation and may be used to regulate apoptosis. Recent proteomic data have revealed that pRB is posttranslationally modified to a much greater extent than previously thought. This new information suggests that many unknown pathways affect pRB regulation. This review focuses on posttranslational modifications of pRB and how they influence its function. The final part of the review summarizes new phosphorylation sites from accumulated proteomic data and discusses the possibilities that might arise from this data.
Collapse
Affiliation(s)
- James I Macdonald
- Western University, London Regional Cancer Program, Department of Biochemistry, London, ON, Canada
| | | |
Collapse
|
63
|
Furman D, Jojic V, Kidd B, Shen-Orr S, Price J, Jarrell J, Tse T, Huang H, Lund P, Maecker HT, Utz PJ, Dekker CL, Koller D, Davis MM. Apoptosis and other immune biomarkers predict influenza vaccine responsiveness. Mol Syst Biol 2013; 9:659. [PMID: 23591775 PMCID: PMC3658270 DOI: 10.1038/msb.2013.15] [Citation(s) in RCA: 155] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/07/2013] [Indexed: 12/17/2022] Open
Abstract
Despite the importance of the immune system in many diseases, there are currently no objective benchmarks of immunological health. In an effort to identifying such markers, we used influenza vaccination in 30 young (20-30 years) and 59 older subjects (60 to >89 years) as models for strong and weak immune responses, respectively, and assayed their serological responses to influenza strains as well as a wide variety of other parameters, including gene expression, antibodies to hemagglutinin peptides, serum cytokines, cell subset phenotypes and in vitro cytokine stimulation. Using machine learning, we identified nine variables that predict the antibody response with 84% accuracy. Two of these variables are involved in apoptosis, which positively associated with the response to vaccination and was confirmed to be a contributor to vaccine responsiveness in mice. The identification of these biomarkers provides new insights into what immune features may be most important for immune health.
Collapse
Affiliation(s)
- David Furman
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Vladimir Jojic
- Department of Computer Science, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Brian Kidd
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Shai Shen-Orr
- Department of Immunology, Faculty of Medicine, Technion, Technion City, Haifa, Israel
| | - Jordan Price
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Justin Jarrell
- Division of Immunology and Rheumatology, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Tiffany Tse
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Huang Huang
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Peder Lund
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Holden T Maecker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Paul J Utz
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
- Division of Immunology and Rheumatology, Department of Medicine, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Cornelia L Dekker
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
- Department of Pediatrics, Division of Infectious Diseases, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Daphne Koller
- Department of Computer Science, School of Medicine, Stanford University, Palo Alto, CA, USA
| | - Mark M Davis
- Department of Microbiology and Immunology, School of Medicine, Stanford University, Palo Alto, CA, USA
- Institute for Immunity, Transplantation and Infection, School of Medicine, Stanford University, Palo Alto, CA, USA
- The Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
64
|
Plourde MB, Morchid A, Iranezereza L, Berthoux L. The Bcl-2/Bcl-xL inhibitor BH3I-2′ affects the dynamics and subcellular localization of sumoylated proteins. Int J Biochem Cell Biol 2013; 45:826-35. [DOI: 10.1016/j.biocel.2013.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 01/04/2013] [Accepted: 01/17/2013] [Indexed: 11/17/2022]
|
65
|
Heo KS, Chang E, Le NT, Cushman H, Yeh ETH, Fujiwara K, Abe JI. De-SUMOylation enzyme of sentrin/SUMO-specific protease 2 regulates disturbed flow-induced SUMOylation of ERK5 and p53 that leads to endothelial dysfunction and atherosclerosis. Circ Res 2013; 112:911-23. [PMID: 23381569 DOI: 10.1161/circresaha.111.300179] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE Disturbed flow induces proinflammatory and apoptotic responses in endothelial cells, causing them to become dysfunctional and subsequently proatherogenic. OBJECTIVE Although a possible link between SUMOylation of p53 and ERK5 detected during endothelial apoptosis and inflammation has been suggested, the mechanistic insights, especially under the proatherogenic flow condition, remain largely unknown. METHODS AND RESULTS SUMOylation of p53 and ERK5 was induced by disturbed flow but not by steady laminar flow. To examine the role of the disturbed flow-induced p53 and ERK5 SUMOylation, we used de-SUMOylation enzyme of sentrin/Small Ubiquitin-like MOdifier (SUMO)-specific protease 2 deficiency (Senp2(+/-)) mice and observed a significant increase in endothelial apoptosis and adhesion molecule expression both in vitro and in vivo. These increases, however, were significantly inhibited in endothelial cells overexpressing p53 and ERK5 SUMOylation site mutants. Senp2(+/-) mice exhibited increased leukocyte rolling along the endothelium, and accelerated formation of atherosclerotic lesions was observed in Senp2(+/-)/Ldlr(-/-), but not in Senp2(+/+)/Ldlr(-/-), mice fed a high-cholesterol diet. Notably, the extent of lesion size in the aortic arch of Senp2(+/-)/Ldlr(-/-) mice was much larger than that in the descending aorta, also suggesting a crucial role of the disturbed flow-induced SUMOylation of proteins, including p53 and ERK5 in atherosclerosis formation. CONCLUSIONS These data show the unique role of sentrin/SUMO-specific protease 2 on endothelial function under disturbed flow and suggest that SUMOylation of p53 and ERK5 by disturbed flow contributes to the atherosclerotic plaque formation. Molecules involved in this newly discovered signaling will be useful targets for controlling endothelial cells dysfunction and consequently atherosclerosis formation.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Aab Cardiovascular Research Institute and Department of Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Micel LN, Tentler JJ, Smith PG, Eckhardt GS. Role of ubiquitin ligases and the proteasome in oncogenesis: novel targets for anticancer therapies. J Clin Oncol 2013; 31:1231-8. [PMID: 23358974 DOI: 10.1200/jco.2012.44.0958] [Citation(s) in RCA: 142] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The ubiquitin proteasome system (UPS) regulates the ubiquitination, and thus degradation and turnover, of many proteins vital to cellular regulation and function. The UPS comprises a sequential series of enzymatic processes using four key enzyme families: E1 (ubiquitin-activating enzymes), E2 (ubiquitin-carrier proteins), E3 (ubiquitin-protein ligases), and E4 (ubiquitin chain assembly factors). Because the UPS is a crucial regulator of the cell cycle, and abnormal cell-cycle control can lead to oncogenesis, aberrancies within the UPS pathway can result in a malignant cellular phenotype and thus has become an attractive target for novel anticancer agents. This article will provide an overall review of the mechanics of the UPS, describe aberrancies leading to cancer, and give an overview of current drug therapies selectively targeting the UPS.
Collapse
|
67
|
Zhang H, Kuai X, Ji Z, Li Z, Shi R. Over-expression of small ubiquitin-related modifier-1 and sumoylated p53 in colon cancer. Cell Biochem Biophys 2013; 67:1081-1087. [PMID: 23640307 DOI: 10.1007/s12013-013-9612-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we investigated whether the cellular accumulation of p53 protein caused by over-expression of small ubiquitin-related modifier-1 (SUMO-1) could be used as a predictive marker for prognosis in colon cancer. We detected SUMO-1 and p53 protein levels in 46 cases of colon cancer and adjacent tissues by immunohistochemistry and found that SUMO-1 was expressed at much higher levels in colon cancer compared with that in normal colon tissue. Immunoprecipitation and Western blot analysis revealed that the tumor suppressor p53 was present predominantly in the sumoylated rather than the non-sumoylated form in the colon cancer cell lines. A small interfering RNA targeted to SUMO-1 mRNA sequences was used to observe the levels of the p53 protein. Patients who showed high dual expressions of SUMO-1 and p53 tended to experience metastasis more frequently. These results suggest that the cellular accumulation of p53 protein caused by over-expression of SUMO-1 may be involved in tumor aggressiveness. Multivariate analysis confirmed that the high dual expression of SUMO-1 and p53 was an independent factor for evaluating prognosis. SUMO-1 may be useful as a novel target for therapy in colon cancer as well as a clinical indicator for tumor aggressiveness.
Collapse
Affiliation(s)
- Hongjie Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | | | | | | | | |
Collapse
|
68
|
Reactive Oxygen Species, SUMOylation, and Endothelial Inflammation. Int J Inflam 2012; 2012:678190. [PMID: 22991685 PMCID: PMC3443607 DOI: 10.1155/2012/678190] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/26/2012] [Indexed: 12/14/2022] Open
Abstract
Although the exact mechanism through which NADPH oxidases (Nox's) generate reactive oxygen species (ROS) is still not completely understood, it is widely considered that ROS accumulation is the cause of oxidative stress in endothelial cells. Increasing pieces of evidence strongly indicate the role for ROS in endothelial inflammation and dysfunction and subsequent development of atherosclerotic plaques, which are causes of various pathological cardiac events. An overview for a causative relationship between ROS and endothelial inflammation will be provided in this review. Particularly, a crucial role for specific protein SUMOylation in endothelial inflammation will be presented. Given that SUMOylation of specific proteins leads to increased endothelial inflammation, targeting specific SUMOylated proteins may be an elegant, effective strategy to control inflammation. In addition, the involvement of ROS production in increasing the risk of recurrent coronary events in a sub-group of non-diabetic, post-infarction patients with elevated levels of HDL-cholesterol will be presented with the emphasis that elevated HDL-cholesterol under certain inflammatory conditions can lead to increased incidence of cardiovascular events.
Collapse
|
69
|
Sohn SY, Hearing P. Adenovirus regulates sumoylation of Mre11-Rad50-Nbs1 components through a paralog-specific mechanism. J Virol 2012; 86:9656-65. [PMID: 22740413 PMCID: PMC3446602 DOI: 10.1128/jvi.01273-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 06/19/2012] [Indexed: 01/09/2023] Open
Abstract
The Mre11-Rad50-Nbs1 (MRN) complex plays a key role in the DNA damage response, presenting challenges for DNA viruses and retroviruses. To inactivate this complex, adenovirus (Ad) makes use of the E1B-55K and E4-open reading frame 6 (ORF6) proteins for ubiquitin (Ub)-mediated, proteasome-dependent degradation of MRN and the E4-ORF3 protein for relocalization and sequestration of MRN within infected-cell nuclei. Here, we report that Mre11 is modified by the Ub-related modifier SUMO-2 and Nbs1 is modified by both SUMO-1 and SUMO-2. We found that Mre11 and Nbs1 are sumoylated during Ad5 infection and that the E4-ORF3 protein is necessary and sufficient to induce SUMO conjugation. Relocalization of Mre11 and Nbs1 into E4-ORF3 nuclear tracks is required for this modification to occur. E4-ORF3-mediated SUMO-1 conjugation to Nbs1 and SUMO-2 conjugation to Mre11 and Nbs1 are transient during wild-type Ad type 5 (Ad5) infection. In contrast, SUMO-1 conjugation to Nbs1 is stable in cells infected with E1B-55K or E4-ORF6 mutant viruses, suggesting that Ad regulates paralog-specific desumoylation of Nbs1. Inhibition of viral DNA replication blocks deconjugation of SUMO-2 from Mre11 and Nbs1, indicating that a late-phase process is involved in Mre11 and Nbs1 desumoylation. Our results provide direct evidence of Mre11 and Nbs1 sumoylation induced by the Ad5 E4-ORF3 protein and an important example showing that modification of a single substrate by both SUMO-1 and SUMO-2 is regulated through distinct mechanisms. Our findings suggest how E4-ORF3-mediated relocalization of the MRN complex influences the cellular DNA damage response.
Collapse
Affiliation(s)
- Sook-Young Sohn
- Department of Molecular Genetics and Microbiology, School of Medicine, Stony Brook University, Stony Brook, New York, USA
| | | |
Collapse
|
70
|
Mukherjee S, Cruz-Rodríguez O, Bolton E, Iñiguez-Lluhí JA. The in vivo role of androgen receptor SUMOylation as revealed by androgen insensitivity syndrome and prostate cancer mutations targeting the proline/glycine residues of synergy control motifs. J Biol Chem 2012; 287:31195-206. [PMID: 22829593 DOI: 10.1074/jbc.m112.395210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR) mediates the effects of male sexual hormones on development and physiology. Alterations in AR function are central to reproductive disorders, prostate cancer, and Kennedy disease. AR activity is influenced by post-translational modifications, but their role in AR-based diseases is poorly understood. Conjugation by small ubiquitin-like modifier (SUMO) proteins at two synergy control (SC) motifs in AR exerts a promoter context-dependent inhibitory role. SC motifs are composed of a four-amino acid core that is often preceded and/or followed by nearby proline or glycine residues. The function of these flanking residues, however, has not been examined directly. Remarkably, several AR mutations associated with oligospermia and androgen insensitivity syndrome map to Pro-390, the conserved proline downstream of the first SC motif in AR. Similarly, mutations at Gly-524, downstream of the second SC motif, were recovered in recurrent prostate cancer samples. We now provide evidence that these clinically isolated substitutions lead to a partial loss of SC motif function and AR SUMOylation that affects multiple endogenous genes. Consistent with a structural role as terminators of secondary structure elements, substitution of Pro-390 by Gly fully supports both SC motif function and SUMOylation. As predicted from the functional properties of SC motifs, the clinically isolated mutations preferentially enhance transcription driven by genomic regions harboring multiple AR binding sites. The data support the view that alterations in AR SUMOylation play significant roles in AR-based diseases and offer novel SUMO-based therapeutic opportunities.
Collapse
Affiliation(s)
- Sarmistha Mukherjee
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
71
|
Naidu SR, Lakhter AJ, Androphy EJ. PIASy-mediated Tip60 sumoylation regulates p53-induced autophagy. Cell Cycle 2012; 11:2717-28. [PMID: 22751435 DOI: 10.4161/cc.21091] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Posttranslational modifications of p53 integrate diverse stress signals and regulate its activity, but their combinatorial contribution to overall p53 function is not clear. We investigated the roles of lysine (K) acetylation and sumoylation on p53 and their relation to apoptosis and autophagy. Here we describe the collaborative role of the SUMO E3 ligase PIASy and the lysine acetyltransferase Tip60 in p53-mediated autophagy. PIASy binding to p53 and PIASy-activated Tip60 lead to K386 sumoylation and K120 acetylation of p53, respectively. Even though these two modifications are not dependent on each other, together they act as a "binary death signal" to promote cytoplasmic accumulation of p53 and execution of PUMA-independent autophagy. PIASy-induced Tip60 sumoylation augments p53 K120 acetylation and apoptosis. In addition to p14(ARF) inactivation, impairment in this intricate signaling may explain why p53 mutations are not found in nearly 50% of malignancies.
Collapse
Affiliation(s)
- Samisubbu R Naidu
- Department of Dermatology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | |
Collapse
|
72
|
Correlation of increased hippocampal Sumo3 with spatial learning ability in old C57BL/6 mice. Neurosci Lett 2012; 518:75-9. [PMID: 22595540 DOI: 10.1016/j.neulet.2012.04.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 04/05/2012] [Accepted: 04/20/2012] [Indexed: 12/21/2022]
Abstract
Age-related impairment of learning and memory is a common phenomenon in humans and animals, yet the underlying mechanism remains unclear. We hypothesize that a small ubiquitin-related modifier (Sumo) might correlate with age-related loss of learning and memory. To test this hypothesis, the present study evaluated age-related spatial learning and memory in C57BL/6 mice (25 aged 7 months and 21 aged 25 months) using a radial six-arm water maze (RAWM). After the behavioral test, the protein expression of Sumo3 was determined in different brain regions using Western blotting. The results showed that the 25-month-old mice had longer latency and a higher number of errors in both learning and memory phases in the RAWM task than the 7-month-old mice. Compared to the latter, the former's level of Sumo3 protein was significantly increased in the dorsal and ventral hippocampus. For the 25-month-old mice, the number of errors and the latency in the learning phase negatively correlated with the Sumo3 level in the dorsal hippocampus. These results suggest that increased Sumo3 in the hippocampus may be correlated with spatial learning ability in old C57BL/6 mice.
Collapse
|
73
|
Kudryashova E, Kramerova I, Spencer MJ. Satellite cell senescence underlies myopathy in a mouse model of limb-girdle muscular dystrophy 2H. J Clin Invest 2012; 122:1764-76. [PMID: 22505452 DOI: 10.1172/jci59581] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2011] [Accepted: 02/29/2012] [Indexed: 12/25/2022] Open
Abstract
Mutations in the E3 ubiquitin ligase tripartite motif-containing 32 (TRIM32) are responsible for the disease limb-girdle muscular dystrophy 2H (LGMD2H). Previously, we generated Trim32 knockout mice (Trim32-/- mice) and showed that they display a myopathic phenotype accompanied by neurogenic features. Here, we used these mice to investigate the muscle-specific defects arising from the absence of TRIM32, which underlie the myopathic phenotype. Using 2 models of induced atrophy, we showed that TRIM32 is dispensable for muscle atrophy. Conversely, TRIM32 was necessary for muscle regrowth after atrophy. Furthermore, TRIM32-deficient primary myoblasts underwent premature senescence and impaired myogenesis due to accumulation of PIAS4, an E3 SUMO ligase and TRIM32 substrate that was previously shown to be associated with senescence. Premature senescence of myoblasts was also observed in vivo in an atrophy/regrowth model. Trim32-/- muscles had substantially fewer activated satellite cells, increased PIAS4 levels, and growth failure compared with wild-type muscles. Moreover, Trim32-/- muscles exhibited features of premature sarcopenia, such as selective type II fast fiber atrophy. These results imply that premature senescence of muscle satellite cells is an underlying pathogenic feature of LGMD2H and reveal what we believe to be a new mechanism of muscular dystrophy associated with reductions in available satellite cells and premature sarcopenia.
Collapse
Affiliation(s)
- Elena Kudryashova
- Department of Neurology, Center for Duchenne Muscular Dystrophy at UCLA, David Geffen School of Medicine at UCLA, Los Angeles, California 90095-1606, USA
| | | | | |
Collapse
|
74
|
Wilson VG. Sumoylation at the host-pathogen interface. Biomolecules 2012; 2:203-27. [PMID: 23795346 PMCID: PMC3685863 DOI: 10.3390/biom2020203] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 03/21/2012] [Accepted: 03/27/2012] [Indexed: 12/11/2022] Open
Abstract
Many viral proteins have been shown to be sumoylated with corresponding regulatory effects on their protein function, indicating that this host cell modification process is widely exploited by viral pathogens to control viral activity. In addition to using sumoylation to regulate their own proteins, several viral pathogens have been shown to modulate overall host sumoylation levels. Given the large number of cellular targets for SUMO addition and the breadth of critical cellular processes that are regulated via sumoylation, viral modulation of overall sumoylation presumably alters the cellular environment to ensure that it is favorable for viral reproduction and/or persistence. Like some viruses, certain bacterial plant pathogens also target the sumoylation system, usually decreasing sumoylation to disrupt host anti-pathogen responses. The recent demonstration that Listeria monocytogenes also disrupts host sumoylation, and that this is required for efficient infection, extends the plant pathogen observations to a human pathogen and suggests that pathogen modulation of host sumoylation may be more widespread than previously appreciated. This review will focus on recent aspects of how pathogens modulate the host sumoylation system and how this benefits the pathogen.
Collapse
Affiliation(s)
- Van G Wilson
- Department of Microbial & Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, 8447 HWY 47, Bryan, TX 77807-1359
| |
Collapse
|
75
|
Grande E, Earl J, Fuentes R, Carrato A. New targeted approaches against the ubiquitin–proteasome system in gastrointestinal malignancies. Expert Rev Anticancer Ther 2012; 12:457-467. [DOI: 10.1586/era.12.26] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
76
|
Senescence is an endogenous trigger for microRNA-directed transcriptional gene silencing in human cells. Nat Cell Biol 2012; 14:266-75. [PMID: 22366686 DOI: 10.1038/ncb2443] [Citation(s) in RCA: 197] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Accepted: 01/16/2012] [Indexed: 12/13/2022]
Abstract
Cellular senescence is a tumour-suppressor mechanism that is triggered by cancer-initiating or promoting events in mammalian cells. The molecular underpinnings for this stable arrest involve transcriptional repression of proliferation-promoting genes regulated by the retinoblastoma (RB1)/E2F repressor complex. Here, we demonstrate that AGO2, RB1 and microRNAs (miRNAs), as exemplified here by let-7, physically and functionally interact to repress RB1/E2F-target genes in senescence, a process that we call senescence-associated transcriptional gene silencing (SA-TGS). Herein, AGO2 acts as the effector protein for let-7-directed implementation of silent-state chromatin modifications at target promoters, and inhibition of the let-7/AGO2 effector complex perturbs the timely execution of senescence. Thus, we identify cellular senescence as the an endogenous signal of miRNA/AGO2-mediated TGS in human cells. Our results suggest that miRNA/AGO2-mediated SA-TGS may contribute to tumour suppression by stably repressing proliferation-promoting genes in premalignant cancer cells.
Collapse
|
77
|
Bennett RL, Pan Y, Christian J, Hui T, May WS. The RAX/PACT-PKR stress response pathway promotes p53 sumoylation and activation, leading to G₁ arrest. Cell Cycle 2012; 11:407-17. [PMID: 22214662 DOI: 10.4161/cc.11.2.18999] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Cellular stresses, including growth factor deprivation, inflammatory cytokines or viral infection promote RAX/PACT-dependent activation of the double-stranded RNA-dependent protein kinase, PKR, to phosphorylate eIF2α, resulting in translation inhibition and apoptosis. In addition, PKR has been reported to regulate p53, STAT1 and NFκB. Here, we report that RAX/PACT interacts with the SUMO E2 ligase Ubc9 to stimulate p53-Ubc9 association and reversible p53 sumoylation on lysine 386. In addition, expression of RAX/PACT in a variety of cell lines promotes p53 stability and activity to increase p53 target gene expression. Significantly, while the expression of RAX/PACT, PKR or p53 alone has little effect on the cell cycle of p53-null H1299 cells, co-expression of p53 with either RAX/PACT or PKR promotes a 25-35% increase of cells in G₁. In contrast, co-expression of RAX/PACT with the sumoylation-deficient p53(K386R) mutant or with the desumoylase SENP1 fails to induce such a G₁ arrest. Furthermore, co-expression of p53, RAX/PACT and the dominantnegative PKR(K296R) mutant inhibits RAX/PACT-induced, p53-dependent G₁ growth arrest and expression of RAX/PACT in pkr(+/+) but not pkr(-/-) MEF cells promotes p53 and p21 expression following gamma irradiation. Significantly, p53 stability is decreased in cells with reduced RAX/PACT or PKR following doxorubicin treatment, and expression of exogenous RAX/ PACT promotes phosphorylation of wild-type but not p53(K386R) on serine 392. Collectively, results indicate that, in response to stress, the RAX/PACT-PKR signaling pathway may inhibit p53 protein turnover by a sumoylation-dependent mechanism with promotion of p53 phosphorylation and translational activation leading to G₁ cell cycle arrest.
Collapse
Affiliation(s)
- Richard L Bennett
- Department of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | | | | | | | | |
Collapse
|
78
|
Felberbaum R, Wilson NR, Cheng D, Peng J, Hochstrasser M. Desumoylation of the endoplasmic reticulum membrane VAP family protein Scs2 by Ulp1 and SUMO regulation of the inositol synthesis pathway. Mol Cell Biol 2012; 32:64-75. [PMID: 22025676 PMCID: PMC3255706 DOI: 10.1128/mcb.05878-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/11/2011] [Indexed: 11/20/2022] Open
Abstract
Posttranslational protein modification by the ubiquitin-like SUMO protein is critical to eukaryotic cell regulation, but much remains unknown regarding its operation and substrates. Here we report that specific mutations in the Saccharomyces cerevisiae Ulp1 SUMO protease, including its coiled-coil (CC) domain, lead to the accumulation of distinct sumoylated proteins in vivo. A prominent ~50-kDa sumoylated protein accumulates in a Ulp1 CC mutant. The protein was identified as Scs2, an endoplasmic reticulum (ER) membrane protein that regulates phosphatidylinositol synthesis and lipid trafficking. Mutation of lysine 180 of Scs2 abolishes its sumoylation. Notably, impairment of either cellular sumoylation or cellular desumoylation mechanisms inhibits cell growth in the absence of inositol and exacerbates the inositol auxotrophy caused by deletion of SCS2. Mutants lacking the Ulp2 SUMO protease are the most severely affected, and this defect was traced to the mutants' impaired ability to induce transcription of INO1, which encodes the rate-limiting enzyme of inositol biosynthesis. Conversely, inositol starvation induces a striking change in the profiles of total cellular SUMO conjugates. These results provide the first evidence of cross-regulation between the SUMO and inositol pathways, including the sumoylation of an ER membrane protein central to phospholipid synthesis and phosphoinositide signaling.
Collapse
Affiliation(s)
| | - Nicole R. Wilson
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Dongmei Cheng
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Junmin Peng
- Department of Human Genetics, Center for Neurodegenerative Diseases, Emory University, Atlanta, Georgia, USA
| | - Mark Hochstrasser
- Departments of Molecular, Cell, & Developmental Biology
- Molecular Biophysics & Biochemistry, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
79
|
Bettermann K, Benesch M, Weis S, Haybaeck J. SUMOylation in carcinogenesis. Cancer Lett 2011; 316:113-25. [PMID: 22138131 DOI: 10.1016/j.canlet.2011.10.036] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 10/15/2011] [Accepted: 10/26/2011] [Indexed: 10/15/2022]
Abstract
SUMOylation is a post-translational modification characterized by covalent and reversible binding of small ubiquitin-like modifier (SUMO) to a target protein. In mammals, four different isoforms, termed SUMO-1, -2, -3 and -4 have been identified so far. SUMO proteins are critically involved in the modulation of nuclear organization and cell viability. Their expression is significantly increased in processes associated with carcinogenesis such as cell growth, differentiation, senescence, oxidative stress and apoptosis. Little is known about the role of SUMOylation in cancer development. Therefore the present review focuses on possible implications of SUMOylation in carcinogenesis highlighting its impact as an important regulatory cell cycle protein. Moreover, novel opportunities for therapeutic approaches are discussed. The differential expression levels, the target protein preferences and the function of the SUMO pathway in different cancer subtypes raises unexpected issues questioning our understanding of the implication of SUMO in carcinogenesis.
Collapse
|
80
|
Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, d'Hayer B, Mohamdi H, Remenieras A, Maubec E, de la Fouchardière A, Molinié V, Vabres P, Dalle S, Poulalhon N, Martin-Denavit T, Thomas L, Andry-Benzaquen P, Dupin N, Boitier F, Rossi A, Perrot JL, Labeille B, Robert C, Escudier B, Caron O, Brugières L, Saule S, Gardie B, Gad S, Richard S, Couturier J, Teh BT, Ghiorzo P, Pastorino L, Puig S, Badenas C, Olsson H, Ingvar C, Rouleau E, Lidereau R, Bahadoran P, Vielh P, Corda E, Blanché H, Zelenika D, Galan P, Aubin F, Bachollet B, Becuwe C, Berthet P, Bignon YJ, Bonadona V, Bonafe JL, Bonnet-Dupeyron MN, Cambazard F, Chevrant-Breton J, Coupier I, Dalac S, Demange L, d'Incan M, Dugast C, Faivre L, Vincent-Fétita L, Gauthier-Villars M, Gilbert B, Grange F, Grob JJ, Humbert P, Janin N, Joly P, Kerob D, Lasset C, Leroux D, Levang J, Limacher JM, Livideanu C, Longy M, Lortholary A, Stoppa-Lyonnet D, Mansard S, Mansuy L, Marrou K, Matéus C, Maugard C, Meyer N, Nogues C, Souteyrand P, Venat-Bouvet L, Zattara H, Chaudru V, Lenoir GM, Lathrop M, Davidson I, Avril MF, Demenais F, Ballotti R, Bressac-de Paillerets B. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480:94-98. [PMID: 22012259 DOI: 10.1038/nature10539] [Citation(s) in RCA: 381] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 09/02/2011] [Indexed: 12/13/2022]
Abstract
So far, no common environmental and/or phenotypic factor has been associated with melanoma and renal cell carcinoma (RCC). The known risk factors for melanoma include sun exposure, pigmentation and nevus phenotypes; risk factors associated with RCC include smoking, obesity and hypertension. A recent study of coexisting melanoma and RCC in the same patients supports a genetic predisposition underlying the association between these two cancers. The microphthalmia-associated transcription factor (MITF) has been proposed to act as a melanoma oncogene; it also stimulates the transcription of hypoxia inducible factor (HIF1A), the pathway of which is targeted by kidney cancer susceptibility genes. We therefore proposed that MITF might have a role in conferring a genetic predisposition to co-occurring melanoma and RCC. Here we identify a germline missense substitution in MITF (Mi-E318K) that occurred at a significantly higher frequency in genetically enriched patients affected with melanoma, RCC or both cancers, when compared with controls. Overall, Mi-E318K carriers had a higher than fivefold increased risk of developing melanoma, RCC or both cancers. Codon 318 is located in a small-ubiquitin-like modifier (SUMO) consensus site (ΨKXE) and Mi-E318K severely impaired SUMOylation of MITF. Mi-E318K enhanced MITF protein binding to the HIF1A promoter and increased its transcriptional activity compared to wild-type MITF. Further, we observed a global increase in Mi-E318K-occupied loci. In an RCC cell line, gene expression profiling identified a Mi-E318K signature related to cell growth, proliferation and inflammation. Lastly, the mutant protein enhanced melanocytic and renal cell clonogenicity, migration and invasion, consistent with a gain-of-function role in tumorigenesis. Our data provide insights into the link between SUMOylation, transcription and cancer.
Collapse
Affiliation(s)
- Corine Bertolotto
- 1] INSERM, U895 (équipe 1), Equipe labélisée Ligue Contre le Cancer, C3M, 06204 Nice, France [2] Université of Nice Sophia-Antipolis, UFR Médecine, 06204 Nice, France [3] Centre Hospitalier Universitaire de Nice, Service de Dermatologie, 06204 Nice, France [4]
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Physical and functional interaction between PML and TBX2 in the establishment of cellular senescence. EMBO J 2011; 31:95-109. [PMID: 22002537 DOI: 10.1038/emboj.2011.370] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 09/19/2011] [Indexed: 11/09/2022] Open
Abstract
Cellular senescence acts as a potent barrier for tumour initiation and progression. Previous studies showed that the PML tumour suppressor promotes senescence, although the precise mechanisms remain to be elucidated. Combining gene expression profiling with chromatin-binding analyses and promoter reporter studies, we identify TBX2, a T-box transcription factor frequently overexpressed in cancer, as a novel and direct PML-repressible E2F-target gene in senescence but not quiescence. Recruitment of PML to the TBX2 promoter is dependent on a functional p130/E2F4 repressor complex ultimately implementing a transcriptionally inactive chromatin environment at the TBX2 promoter. TBX2 repression actively contributes to senescence induction as cells depleted for TBX2 trigger PML pro-senescence function(s) and enter senescence. Reciprocally, elevated TBX2 levels antagonize PML pro-senescence function through direct protein-protein interaction. Collectively, our findings indicate that PML and TBX2 act in an autoregulatory loop to control the effective execution of the senescence program.
Collapse
|
82
|
Stindt MH, Carter S, Vigneron AM, Ryan KM, Vousden KH. MDM2 promotes SUMO-2/3 modification of p53 to modulate transcriptional activity. Cell Cycle 2011; 10:3176-88. [PMID: 21900752 PMCID: PMC3218624 DOI: 10.4161/cc.10.18.17436] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 07/28/2011] [Accepted: 07/28/2011] [Indexed: 01/02/2023] Open
Abstract
The tumor suppressor p53 is extensively regulated by post-translational modification, including modification by the small ubiquitin-related modifier SUMO. We show here that MDM2, previously shown to promote ubiquitin, Nedd8 and SUMO-1 modification of p53, can also enhance conjugation of endogenous SUMO-2/3 to p53. Sumoylation activity requires p53-MDM2 binding but does not depend on an intact RING finger. Both ARF and L11 can promote SUMO-2/3 conjugation of p53. However, unlike the previously described SUMO-1 conjugation of p53 by an MDM2-ARF complex, this activity does not depend on the ability of MDM2 to relocalize to the nucleolus. Interestingly, the SUMO consensus is not conserved in mouse p53, which is therefore not modified by SUMO-2/3. Finally, we show that conjugation of SUMO-2/3 to p53 correlates with a reduction of both activation and repression of a subset of p53-target genes.
Collapse
|
83
|
Heo KS, Lee H, Nigro P, Thomas T, Le NT, Chang E, McClain C, Reinhart-King CA, King MR, Berk BC, Fujiwara K, Woo CH, Abe JI. PKCζ mediates disturbed flow-induced endothelial apoptosis via p53 SUMOylation. ACTA ACUST UNITED AC 2011; 193:867-84. [PMID: 21624955 PMCID: PMC3105539 DOI: 10.1083/jcb.201010051] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Disturbed flow-mediated PKCζ–PIASy association is critical for p53 SUMOylation and induces p53 nuclear export and endothelial cell apoptosis. Atherosclerosis is readily observed in regions of blood vessels where disturbed blood flow (d-flow) is known to occur. A positive correlation between protein kinase C ζ (PKCζ) activation and d-flow has been reported, but the exact role of d-flow–mediated PKCζ activation in atherosclerosis remains unclear. We tested the hypothesis that PKCζ activation by d-flow induces endothelial cell (EC) apoptosis by regulating p53. We found that d-flow–mediated peroxynitrite (ONOO−) increased PKCζ activation, which subsequently induced p53 SUMOylation, p53–Bcl-2 binding, and EC apoptosis. Both d-flow and ONOO− increased the association of PKCζ with protein inhibitor of activated STATy (PIASy) via the Siz/PIAS-RING domain (amino acids 301–410) of PIASy, and overexpression of this domain of PIASy disrupted the PKCζ–PIASy interaction and PKCζ-mediated p53 SUMOylation. En face confocal microscopy revealed increases in nonnuclear p53 expression, nitrotyrosine staining, and apoptosis in aortic EC located in d-flow areas in wild-type mice, but these effects were significantly decreased in p53−/− mice. We propose a novel mechanism for p53 SUMOylation mediated by the PKCζ–PIASy interaction during d-flow–mediated EC apoptosis, which has potential relevance to early events of atherosclerosis.
Collapse
Affiliation(s)
- Kyung-Sun Heo
- Aab Cardiovascular Research Institute, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
p53 regulation by ubiquitin. FEBS Lett 2011; 585:2803-9. [PMID: 21624367 DOI: 10.1016/j.febslet.2011.05.022] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 05/04/2011] [Accepted: 05/05/2011] [Indexed: 12/31/2022]
Abstract
The ubiquitination pathway is a highly dynamic and coordinated process that regulates degradation as well as numerous processes of proteins within a cell. The p53 tumor suppressor and several factors in the pathway are regulated by ubiquitin as well as ubiquitin-like proteins. These modifications are critical for the function of p53 and control both the degradation of the protein as well as localization and activity. Importantly, more recent studies have identified deubiquitination enzymes that can specifically remove ubiquitin moieties from p53 or other factors in the pathway, and the reversible nature of this process adds yet another layer of regulatory control of p53. This review highlights the recent advances in our knowledge of ubiquitin and the p53 pathway.
Collapse
|
85
|
Heaton PR, Deyrieux AF, Bian XL, Wilson VG. HPV E6 proteins target Ubc9, the SUMO conjugating enzyme. Virus Res 2011; 158:199-208. [PMID: 21510985 DOI: 10.1016/j.virusres.2011.04.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2011] [Revised: 04/03/2011] [Accepted: 04/04/2011] [Indexed: 12/31/2022]
Abstract
The human papillomavirus oncogenic protein, E6, interacts with a number of cellular proteins, and for some targets, E6 directs their degradation through the ubiquitin-proteasome pathway. Post-translational modification with ubiquitin-like modifiers, such as SUMO, also influences protein activities, protein-protein interactions, and protein stability. We report that the high risk HPVE6 proteins reduce the intracellular quantity of the sole SUMO conjugation enzyme, Ubc9, concomitant with decreased host sumoylation. E6 did not significantly influence transcription of Ubc9, indicating that the effects were likely at the protein level. Consistent with typical E6-mediated proteasomal degradation, E6 bound to Ubc9 in vitro, and required E6AP for reduction of Ubc9 levels. Under stable E6 expression conditions in differentiating keratinocytes there was a decrease in Ubc9 and a loss of numerous sumoylated targets indicating a significant perturbation of the normal sumoylation profile. While E6 is known to inhibit PIASy, a SUMO ligase, our results suggest that HPV E6 also targets the Ubc9 protein to modulate host cell sumoylation, suggesting that the sumoylation system may be an important target during viral reproduction and possibly the subsequent development of cervical cancer.
Collapse
Affiliation(s)
- Phillip R Heaton
- Department of Microbial and Molecular Pathogenesis, College of Medicine, Texas A&M Health Science Center, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
86
|
Cell cycle-dependent conjugation of endogenous BRCA1 protein with SUMO-2/3. Biochim Biophys Acta Gen Subj 2011; 1810:432-8. [DOI: 10.1016/j.bbagen.2010.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2009] [Revised: 10/21/2010] [Accepted: 12/07/2010] [Indexed: 12/19/2022]
|
87
|
Dai C, Gu W. p53 post-translational modification: deregulated in tumorigenesis. Trends Mol Med 2011; 16:528-36. [PMID: 20932800 DOI: 10.1016/j.molmed.2010.09.002] [Citation(s) in RCA: 405] [Impact Index Per Article: 28.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/07/2010] [Accepted: 09/08/2010] [Indexed: 12/17/2022]
Abstract
The p53 tumor suppressor protein has well-established roles in monitoring various types of stress signals by activating specific transcriptional targets that control cell cycle arrest and apoptosis, although some activities are also mediated in a transcription-independent manner. Here, we review the recent advances in our understanding of the wide spectrum of post-translational modifications that act as epigenetic-like codes for modulating specific functions of p53 in vivo and how deregulation of these modifications might contribute to tumorigenesis. We also discuss future research priorities to further understand p53 post-translational modifications and the interpretation of genetic data in appreciation of the increasing evidence that p53 regulates cellular metabolism, autophagy and many unconventional tumor suppressor activities.
Collapse
Affiliation(s)
- Chao Dai
- Institute for Cancer Genetics, College of Physicians and Surgeons, Columbia University, 1130 St. Nicholas Avenue, New York, NY 10032, USA
| | | |
Collapse
|
88
|
Demarque MD, Nacerddine K, Neyret-Kahn H, Andrieux A, Danenberg E, Jouvion G, Bomme P, Hamard G, Romagnolo B, Terris B, Cumano A, Barker N, Clevers H, Dejean A. Sumoylation by Ubc9 regulates the stem cell compartment and structure and function of the intestinal epithelium in mice. Gastroenterology 2011; 140:286-96. [PMID: 20951138 DOI: 10.1053/j.gastro.2010.10.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 09/02/2010] [Accepted: 10/01/2010] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Small ubiquitin-like modifiers (SUMOs) are attached to other proteins to regulate their function (sumoylation). We investigated the role of Ubc9, which covalently attaches SUMOs to proteins, in the gastrointestinal tract of adult mice. METHODS We investigated the effects of decreased sumoylation in adult mammals by generating mice with an inducible knockout (by injection of 4-hydroxytamoxifen) of the E2 enzyme Ubc9 (Ubc9fl/-/ROSA26-CreERT2 mice). We analyzed the phenotypes using a range of histologic techniques. RESULTS Loss of Ubc9 from adult mice primarily affected the small intestine. Ubc9fl/-/ROSA26-CreERT2 mice died within 6 days of 4-hydroxytamoxifen injection, losing 20% or less of their body weight and developing severe diarrhea on the second day after injection. Surprisingly, other epithelial tissues appeared to be unaffected at that stage. Decreased sumoylation led to the depletion of the intestinal proliferative compartment and to the rapid disappearance of stem cells. Sumoylation was required to separate the proliferative and differentiated compartments from the crypt and control differentiation and function of the secretory lineage. Sumoylation was required for nucleus positioning and polarized organization of actin in the enterocytes. Loss of sumoylation caused detachment of the enterocytes from the basal lamina, as observed in tissue fragility diseases. We identified the intermediate filament keratin 8 as a SUMO substrate in epithelial cells. CONCLUSIONS Sumoylation maintains intestinal stem cells and the architecture, mechanical stability, and function of the intestinal epithelium of mice.
Collapse
Affiliation(s)
- Maud D Demarque
- Nuclear Organisation and Oncogenesis Unit, INSERM U993, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Mallette FA, Calabrese V, Ilangumaran S, Ferbeyre G. SOCS1, a novel interaction partner of p53 controlling oncogene-induced senescence. Aging (Albany NY) 2010; 2:445-52. [PMID: 20622265 PMCID: PMC2933891 DOI: 10.18632/aging.100163] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Members of the signal transducers and activators of transcription (STATs) family of proteins, which connect cytokine signaling to activation of transcription, are frequently activated in human cancers. Suppressors of cytokine signaling (SOCS) are transcriptional targets of activated STAT proteins that negatively control STAT signaling. SOCS1 expression is silenced in multiple human cancers suggesting a tumor suppressor role for this protein. However, SOCS1 not only regulates STAT signaling but can also localize to the nucleus and directly interact with the p53 tumor suppressor through its central SH2 domain. Furthermore, SOCS1 contributes to p53 activation and phosphorylation on serine 15 by forming a ternary complex with ATM or ATR. Through this mechanism SOCS1 regulates the process of oncogene-induced senescence, which is a very important tumor suppressor response. A mutant SOCS1 lacking the SOCS box cannot interact with ATM/ATR, stimulate p53 or induce the senescence phenotype, suggesting that the SOCS box recruits DNA damage activated kinases to its interaction partners bound to its SH2 domain. Proteomic analysis of SOCS1 interaction partners revealed other potential targets of SOCS1 in the DNA damage response. These newly discovered functions of SOCS1 help to explain the increased susceptibility of Socs1 null mice to develop cancer as well as their propensity to develop autoimmune diseases. Consistently, we found that mice lacking SOCS1 displayed defects in the regulation of p53 target genes including Mdm2, Pmp22, PUMA and Gadd45a. The involvement of SOCS1 in p53 activation and the DNA damage response defines a novel tumor suppressor pathway and intervention point for future cancer therapeutics.
Collapse
|
90
|
Grillari J, Grillari-Voglauer R, Jansen-Dürr P. Post-translational modification of cellular proteins by ubiquitin and ubiquitin-like molecules: role in cellular senescence and aging. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 694:172-96. [PMID: 20886764 DOI: 10.1007/978-1-4419-7002-2_13] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ubiquitination ofendogenous proteins is one of the key regulatory steps that guides protein degradation through regulation of proteasome activity. During the last years evidence has accumulated that proteasome activity is decreased during the aging process in various model systems and that these changes might be causally related to aging and age-associated diseases. Since in most instances ubiquitination is the primary event in target selection, the system ofubiquitination and deubiquitination might be of similar importance. Furthermore, ubiquitination and proteasomal degradation are not completely congruent, since ubiquitination confers also functions different from targeting proteins for degradation. Depending on mono- and polyubiquitination and on how ubiquitin chains are linked together, post-translational modifications of cellular proteins by covalent attachment of ubiquitin and ubiquitin-like proteins are involved in transcriptional regulation, receptor internalization, DNA repair, stabilization of protein complexes and autophagy. Here, we summarize the current knowledge regarding the ubiquitinome and the underlying ubiquitin ligases and deubiquitinating enzymes in replicative senescence, tissue aging as well as in segmental progeroid syndromes and discuss potential causes and consequences for aging.
Collapse
Affiliation(s)
- Johannes Grillari
- Institute of Applied Microbiology, Department of Biotechnology, University for Natural Resources and Applied Life Sciences, Vienna, Muthgasse 18, A-1190 Vienna, Austria.
| | | | | |
Collapse
|
91
|
Cheema A, Knights CD, Rao M, Catania J, Perez R, Simons B, Dakshanamurthy S, Kolukula VK, Tilli M, Furth PA, Albanese C, Avantaggiati ML. Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD. J Cell Physiol 2010; 225:371-84. [PMID: 20458745 DOI: 10.1002/jcp.22224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The ubiquitin-like molecule, SUMO-1, a small protein essential for a variety of biological processes, is covalently conjugated to many intracellular proteins, especially to regulatory components of the transcriptional machinery, such as histones and transcription factors. Sumoylation provides either a stimulatory or an inhibitory signal for proliferation and for transcription, but the molecular mechanisms by which SUMO-1 achieves such versatility of effects are incompletely defined. The tumor suppressor and transcription regulator p53 is a relevant SUMO-1 target. Particularly, the C-terminal tail of p53 undergoes both sumoylation and acetylation. While the effects of sumoylation are still controversial, acetylation modifies p53 interaction with chromatin embedded promoters, and enforces p53 apoptotic activity. In this study, we show that the N-terminal region of SUMO-1 might functionally mimic this activity of the p53 C-terminal tail. We found that this SUMO-1 domain possesses similarity with the C-terminal acetylable p53 tail as well as with acetylable domains of other transcription factors. SUMO-1 is, indeed, acetylated when conjugated to its substrates and to p53. In the acetylable form SUMO-1 tunes the p53 response by modifying p53 transcriptional program, by promoting binding onto selected promoters and by favoring apoptosis. By contrast, when non-acetylable, SUMO-1 enforces cell-cycle arrest and p53 binding to a different sets of genes. These data demonstrate for the first time that SUMO-1, a post-translational modification is, in turn, modified by acetylation. Further, they imply that the pleiotropy of effects by which SUMO-1 influences various cellular outcomes and the activity of p53 depends upon its acetylation state.
Collapse
Affiliation(s)
- Amrita Cheema
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, District of Columbia, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Terada K, Furukawa T. Sumoylation controls retinal progenitor proliferation by repressing cell cycle exit in Xenopus laevis. Dev Biol 2010; 347:180-94. [PMID: 20801111 DOI: 10.1016/j.ydbio.2010.08.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/07/2010] [Accepted: 08/20/2010] [Indexed: 10/19/2022]
Abstract
Precisely controlled progenitor proliferation is essential for normal development. However, molecular mechanisms, which control the correct timing of cell cycle withdrawal during development, have been poorly understood. We show here that ubc9, a sumo-conjugating enzyme, controls the cell cycle exit of retinal progenitors. We found that ubc9 is highly expressed in retinal progenitors and stem cells in Xenopus embryos. Ubc9 physically and functionally associates with Xenopus hmgb3, which is required for retinal cell proliferation, and prolonged expression of ubc9 and hmgb3 results in suppression of the cell cycle exit of retinal progenitors in a sumoylation-dependent manner. Overexpression of ubc9 and hmgb3 decreased expression of the cell-cycle inhibitor p27(Xic1). Furthermore, progenitor proliferation is regulated, at least in part, by sumoylation of transcription factor Sp1. These results suggest a significant role of sumoylation for cell cycle regulation in retinal progenitors.
Collapse
Affiliation(s)
- Koji Terada
- Department of Developmental Biology, Osaka Bioscience Institute, 6-2-4 Furuedai, Suita, Osaka 565-0874, Japan
| | | |
Collapse
|
93
|
Abstract
The human papillomavirus (HPV) minor capsid protein L2 plays important roles in the generation of infectious viral particles and in the initial steps of infection. Here we show that HPV-16 L2 protein is sumoylated at lysine 35 and that sumoylation affects its stability. Interestingly, the sumoylated form of L2 cannot bind to the major capsid protein L1, suggesting a mechanism by which capsid assembly may be modulated in an infected cell. Additionally, L2 appears to modulate the overall sumoylation status of the host cell. These observations indicate a complex interplay between the HPV L2 protein and the host sumoylation machinery.
Collapse
|
94
|
Yan D, Davis FJ, Sharrocks AD, Im HJ. Emerging roles of SUMO modification in arthritis. Gene 2010; 466:1-15. [PMID: 20627123 DOI: 10.1016/j.gene.2010.07.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 07/07/2010] [Indexed: 12/31/2022]
Abstract
Dynamic modification involving small ubiquitin-like modifier (SUMO) has emerged as a new mechanism of protein regulation in mammalian biology. Sumoylation is an ATP-dependent, reversible post-translational modification which occurs under both basal and stressful cellular conditions. Sumoylation profoundly influences protein functions and pertinent biological processes. For example, sumoylation modulates multiple components in the NFkappaB pathway and exerts an anti-inflammatory effect. Likewise, sumoylation of peroxisome proliferator-activated receptor gamma (PPARgamma) augments its anti-inflammatory activity. Current evidence suggests a role of sumoylation for resistance to apoptosis in synovial fibroblasts. Dynamic SUMO regulation controls the biological outcomes initiated by various growth factors involved in cartilage homeostasis, including basic fibroblast growth factors (bFGF or FGF-2), transforming growth factor-beta (TGF-beta) and insulin-like growth factor-1 (IGF-1). The impact of these growth factors on cartilage are through sumoylation-dependent control of the transcription factors (e.g., Smad, Elk-1, HIF-1) that are key regulators of matrix components (e.g., aggrecan, collagen) or cartilage-degrading enzymes (e.g., MMPs, aggrecanases). Thus, SUMO modification appears to profoundly affect chondrocyte and synovial fibroblast biology, including cell survival, inflammatory responses, matrix metabolism and hypoxic responses. More recently, evidence suggests that, in addition to their nuclear roles, the SUMO pathways play crucial roles in mitochondrial activity, cellular senescence, and autophagy. With an increasing number of reports linking SUMO to human diseases like arthritis, it is probable that novel and equally important functions of the sumoylation pathway will be elucidated in the near future.
Collapse
Affiliation(s)
- Dongyao Yan
- Department of Biochemistry, Rush University Medical Center, USA
| | | | | | | |
Collapse
|
95
|
Regulation of the p53 pathway by ubiquitin and related proteins. Int J Biochem Cell Biol 2010; 42:1618-21. [PMID: 20601087 DOI: 10.1016/j.biocel.2010.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 06/01/2010] [Accepted: 06/10/2010] [Indexed: 02/07/2023]
Abstract
The p53 tumour suppressor protein is subject to many levels of control, including modification with ubiquitin and related proteins such as SUMO and NEDD8. These modifications regulate p53 at a number of levels, including control of protein turnover, alterations in sub-cellular localization and changes in the ability to regulate gene expression. Numerous E3 ligases that can mediate these modifications of p53 have been described, some of which promote conjugation with more than one ubiquitin-like protein. Understanding the complexity of this mechanism of p53 regulation will help in the development of therapeutic drugs that function to modulate these events.
Collapse
|
96
|
Listeria monocytogenes impairs SUMOylation for efficient infection. Nature 2010; 464:1192-5. [PMID: 20414307 DOI: 10.1038/nature08963] [Citation(s) in RCA: 178] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/24/2010] [Indexed: 12/30/2022]
Abstract
During infection, pathogenic bacteria manipulate the host cell in various ways to allow their own replication, propagation and escape from host immune responses. Post-translational modifications are unique mechanisms that allow cells to rapidly, locally and specifically modify activity or interactions of key proteins. Some of these modifications, including phosphorylation and ubiquitylation, can be induced by pathogens. However, the effects of pathogenic bacteria on SUMOylation, an essential post-translational modification in eukaryotic cells, remain largely unknown. Here we show that infection with Listeria monocytogenes leads to a decrease in the levels of cellular SUMO-conjugated proteins. This event is triggered by the bacterial virulence factor listeriolysin O (LLO), which induces a proteasome-independent degradation of Ubc9, an essential enzyme of the SUMOylation machinery, and a proteasome-dependent degradation of some SUMOylated proteins. The effect of LLO on Ubc9 is dependent on the pore-forming capacity of the toxin and is shared by other bacterial pore-forming toxins like perfringolysin O (PFO) and pneumolysin (PLY). Ubc9 degradation was also observed in vivo in infected mice. Furthermore, we show that SUMO overexpression impairs bacterial infection. Together, our results reveal that Listeria, and probably other pathogens, dampen the host response by decreasing the SUMOylation level of proteins critical for infection.
Collapse
|
97
|
Cai Q, Verma SC, Kumar P, Ma M, Robertson ES. Hypoxia inactivates the VHL tumor suppressor through PIASy-mediated SUMO modification. PLoS One 2010; 5:e9720. [PMID: 20300531 PMCID: PMC2838797 DOI: 10.1371/journal.pone.0009720] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Accepted: 02/21/2010] [Indexed: 12/15/2022] Open
Abstract
The hypoxic microenvironment contributes to embryonic development and tumor progression through stabilization of the potent transcriptional factor HIFα. In normoxia, the tumor suppressor protein VHL acts as an E3 ubiquitin ligase to target HIFα for proteolytic destruction. Increasing evidence shows that VHL is a multifunctional adaptor involved in inhibition of HIFα-dependent and independent cellular processes. However, the molecular effect of hypoxic stress on VHL functions remains elusive. Here we report that PIASy, a SUMO E3 ligase upregulated in hypoxia, interacts with VHL and induces VHL SUMOylation on lysine residue 171. Moreover, PIASy-mediated SUMO1 modification induces VHL oligomerization and abrogates its inhibitory function on tumor cell growth, migration and clonogenicity. Knockdown of PIASy by small interfering RNA leads to reduction of VHL oligomerization and increases HIF1α degradation. These findings reveal a unique molecular strategy for inactivation of VHL under hypoxic stress.
Collapse
Affiliation(s)
- Qiliang Cai
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Suhbash C. Verma
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Pankaj Kumar
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michelle Ma
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Erle S. Robertson
- Abramson Comprehensive Cancer Center and Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
98
|
Abstract
SUMOylation is a highly transient post-translational protein modification. Attachment of SUMO to target proteins occurs via a number of specific activating and ligating enzymes that form the SUMO-substrate complex, and other SUMO-specific proteases that cleave the covalent bond, thus leaving both SUMO and target protein free for the next round of modification. SUMO modification has major effects on numerous aspects of substrate function, including subcellular localisation, regulation of their target genes, and interactions with other molecules. The modified SUMO-protein complex is a very transient state, and it thus facilitates rapid response and actions by the cell, when needed. Like phosphorylation, acetylation and ubiquitination, SUMOylation has been associated with a number of cellular processes. In addition to its nuclear role, important sides of mitochondrial activity, stress response signalling and the decision of cells to undergo senescence or apoptosis, have now been shown to involve the SUMO pathway. With ever increasing numbers of reports linking SUMO to human disease, like neurodegeneration and cancer metastasis, it is highly likely that novel and equally important functions of components of the SUMOylation process in cell signalling pathways will be elucidated in the near future.
Collapse
Affiliation(s)
- Artemisia M Andreou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Crete, Greece
| | | |
Collapse
|
99
|
Janer A, Werner A, Takahashi-Fujigasaki J, Daret A, Fujigasaki H, Takada K, Duyckaerts C, Brice A, Dejean A, Sittler A. SUMOylation attenuates the aggregation propensity and cellular toxicity of the polyglutamine expanded ataxin-7. Hum Mol Genet 2010; 19:181-95. [PMID: 19843541 DOI: 10.1093/hmg/ddp478] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Post-translational modification by SUMO (small ubiquitin-like modifier) was proposed to modulate the pathogenesis of several neurodegenerative diseases. Spinocerebellar ataxia type 7 (SCA7) is a neurodegenerative disorder, whose pathology is caused by an expansion of a polyglutamine stretch in the protein ataxin-7 (ATXN7). Here, we identified ATXN7 as new target for SUMOylation in vitro and in vivo. The major SUMO acceptor site was mapped to lysine 257, which is part of an evolutionarily conserved consensus SUMOylation motif. SUMOylation did not influence the subcellular localization of ATXN7 nor its interaction with components of the TFTC/STAGA complex. Expansion of the polyglutamine stretch did not impair the SUMOylation of ATXN7. Furthermore, SUMO1 and SUMO2 colocalized with ATXN7 in a subset of neuronal intranuclear inclusions in the brain of SCA7 patients and SCA7 knock-in mice. In a COS-7 cellular model of SCA7, in addition to diffuse nucleoplasmic staining we identified two populations of nuclear inclusions: homogenous or non-homogenous. Non-homogenous inclusions showed significantly reduced colocalization with SUMO1 and SUMO2, but were highly enriched in Hsp70, 19S proteasome and ubiquitin. Interestingly, they were characterized by increased staining with the apoptotic marker caspase-3 and by disruption of PML nuclear bodies. Importantly, preventing the SUMOylation of expanded ATXN7 by mutating the SUMO site increased both the amount of SDS-insoluble aggregates and of caspase-3 positive non-homogenous inclusions, which act toxic to the cells. Our results demonstrate an influence of SUMOylation on the multistep aggregation process of ATXN7 and implicate a role for ATXN7 SUMOylation in SCA7 pathogenesis.
Collapse
|
100
|
Calabrese V, Mallette FA, Deschênes-Simard X, Ramanathan S, Gagnon J, Moores A, Ilangumaran S, Ferbeyre G. SOCS1 links cytokine signaling to p53 and senescence. Mol Cell 2010; 36:754-67. [PMID: 20005840 DOI: 10.1016/j.molcel.2009.09.044] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 08/14/2009] [Accepted: 09/24/2009] [Indexed: 01/22/2023]
Abstract
SOCS1 is lost in many human tumors, but its tumor suppression activities are not well understood. We report that SOCS1 is required for transcriptional activity, DNA binding, and serine 15 phosphorylation of p53 in the context of STAT5 signaling. In agreement, inactivation of SOCS1 disabled p53-dependent senescence in response to oncogenic STAT5A and radiation-induced apoptosis in T cells. In addition, SOCS1 was sufficient to induce p53-dependent senescence in fibroblasts. The mechanism of activation of p53 by SOCS1 involved a direct interaction between the SH2 domain of SOCS1 and the N-terminal transactivation domain of p53, while the C-terminal domain of SOCS1 containing the SOCS Box mediated interaction with the DNA damage-regulated kinases ATM/ATR. Also, SOCS1 colocalized with ATM at DNA damage foci induced by oncogenic STAT5A. Collectively, these results add another component to the p53 and DNA damage networks and reveal a mechanism by which SOCS1 functions as a tumor suppressor.
Collapse
Affiliation(s)
- Viviane Calabrese
- Département de Biochimie, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| | | | | | | | | | | | | | | |
Collapse
|