51
|
Jin M, Gu S, Ye D, Li Y, Jing F, Li Q, Chen K. Association between genetic variants in the promoter region of a novel antisense long noncoding RNA RP11-392P7.6 and colorectal cancer risk. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:434-442. [PMID: 28612367 DOI: 10.1002/em.22100] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 04/28/2017] [Indexed: 06/07/2023]
Abstract
There is a widespread occurrence of antisense transcripts' regulation on cancer-related genes in cancer biology. RP11-392P7.6 is antisense to the coding region of cancer-related gene GPRC5D, which has been found recently. The aim of this study was to investigate the associations of tagSNPs in the promoter region of RP11-392P7.6 with the risk of colorectal cancer. We conducted a two-stage case-control study, with a discovery set (320 cases and 319 controls) and a validation set (501 cases and 538 controls). Four tagSNPs (rs1531970, rs1642199, rs4763903, and rs10845671) were selected based on 1000 Genomes Project data and genotyped by using the Sequenom MassARRAY genotyping platform. In the discovery set, three tagSNPs (rs1642199, rs4763903, and rs10845671) were revealed promising associations with the risk of colorectal cancer, among which the rs10845671 variants were further replicated in the validation set (OR = 1.47, 95% CI = 1.10-1.20 in heterozygote codominant model; OR = 1.38, 95% CI = 1.04-1.83 in dominant model). When combined the two sets, the above positive associations remained unchanged. Rs10845671 was found to be associated with an increased risk of colorectal cancer (OR = 1.43, 95% CI = 1.14-1.81 in heterozygote codominant model; OR = 1.35, 95% CI = 1.08-1.69 in dominant model). These findings indicate that rs10845671 may contribute to the susceptibility to colorectal cancer and be a candidate biomarker for colorectal cancer risk prediction. Environ. Mol. Mutagen. 58:434-442, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mingjuan Jin
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Simeng Gu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Ding Ye
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Yingjun Li
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Fangyuan Jing
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| | - Qilong Li
- Institute for Cancer Prevention of Jiashan County, Zhejiang, China
| | - Kun Chen
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou, 310058, Zhejiang, China
| |
Collapse
|
52
|
Yamashita S, Takagi Y, Nagaike T, Tomita K. Crystal structures of U6 snRNA-specific terminal uridylyltransferase. Nat Commun 2017; 8:15788. [PMID: 28589955 PMCID: PMC5467268 DOI: 10.1038/ncomms15788] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/27/2017] [Indexed: 02/06/2023] Open
Abstract
The terminal uridylyltransferase, TUT1, builds or repairs the 3′-oligo-uridylylated tail of U6 snRNA. The 3′-oligo-uridylylated tail is the Lsm-binding site for U4/U6 di-snRNP formation and U6 snRNA recycling for pre-mRNA splicing. Here, we report crystallographic and biochemical analyses of human TUT1, which revealed the mechanisms for the specific uridylylation of the 3′-end of U6 snRNA by TUT1. The O2 and O4 atoms of the UTP base form hydrogen bonds with the conserved His and Asn in the catalytic pocket, respectively, and TUT1 preferentially incorporates UMP onto the 3′-end of RNAs. TUT1 recognizes the entire U6 snRNA molecule by its catalytic domains, N-terminal RNA-recognition motifs and a previously unidentified C-terminal RNA-binding domain. Each domain recognizes specific regions within U6 snRNA, and the recognition is coupled with the domain movements and U6 snRNA structural changes. Hence, TUT1 functions as the U6 snRNA-specific terminal uridylyltransferase required for pre-mRNA splicing. After transcription the 3′-end of U6 snRNA is oligo-uridylylated by the terminal uridylyltransferase TUT1. Here the authors present the crystal structure of human TUT1 and give insights into the mechanism of 3′-end uridylylation by the enzyme.
Collapse
Affiliation(s)
- Seisuke Yamashita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Yuko Takagi
- National Institute of Advanced Industrial Science and Technology, Biomedical Research Institute, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | - Takashi Nagaike
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Kozo Tomita
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, the University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| |
Collapse
|
53
|
Integrated structural biology to unravel molecular mechanisms of protein-RNA recognition. Methods 2017; 118-119:119-136. [PMID: 28315749 DOI: 10.1016/j.ymeth.2017.03.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Revised: 02/19/2017] [Accepted: 03/13/2017] [Indexed: 12/20/2022] Open
Abstract
Recent advances in RNA sequencing technologies have greatly expanded our knowledge of the RNA landscape in cells, often with spatiotemporal resolution. These techniques identified many new (often non-coding) RNA molecules. Large-scale studies have also discovered novel RNA binding proteins (RBPs), which exhibit single or multiple RNA binding domains (RBDs) for recognition of specific sequence or structured motifs in RNA. Starting from these large-scale approaches it is crucial to unravel the molecular principles of protein-RNA recognition in ribonucleoprotein complexes (RNPs) to understand the underlying mechanisms of gene regulation. Structural biology and biophysical studies at highest possible resolution are key to elucidate molecular mechanisms of RNA recognition by RBPs and how conformational dynamics, weak interactions and cooperative binding contribute to the formation of specific, context-dependent RNPs. While large compact RNPs can be well studied by X-ray crystallography and cryo-EM, analysis of dynamics and weak interaction necessitates the use of solution methods to capture these properties. Here, we illustrate methods to study the structure and conformational dynamics of protein-RNA complexes in solution starting from the identification of interaction partners in a given RNP. Biophysical and biochemical techniques support the characterization of a protein-RNA complex and identify regions relevant in structural analysis. Nuclear magnetic resonance (NMR) is a powerful tool to gain information on folding, stability and dynamics of RNAs and characterize RNPs in solution. It provides crucial information that is complementary to the static pictures derived from other techniques. NMR can be readily combined with other solution techniques, such as small angle X-ray and/or neutron scattering (SAXS/SANS), electron paramagnetic resonance (EPR), and Förster resonance energy transfer (FRET), which provide information about overall shapes, internal domain arrangements and dynamics. Principles of protein-RNA recognition and current approaches are reviewed and illustrated with recent studies.
Collapse
|
54
|
Chiliveri SC, Deshmukh MV. Recent excitements in protein NMR: Large proteins and biologically relevant dynamics. J Biosci 2017; 41:787-803. [PMID: 27966496 DOI: 10.1007/s12038-016-9640-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The advent of Transverse Relaxation Optimized SpectroscopY (TROSY) and perdeuteration allowed biomolecular NMR spectroscopists to overcome the size limitation barrier (approx. 20 kDa) in de novo structure determination of proteins. The utility of these techniques was immediately demonstrated on large proteins and protein complexes (e.g. GroELGroES, ClpP protease, Hsp90-p53, 20S proteasome, etc.). Further, recent methodological developments such as Residual Dipolar Couplings and Paramagnetic Relaxation Enhancement allowed accurate measurement of long-range structural restraints. Additionally, Carr-Purcell-Meiboom-Gill (CPMG), rotating frame relaxation experiments (R1(rho)) and saturation transfer experiments (CEST and DEST) created never-before accessibility to the (mu)s-ms timescale dynamic parameters that led to the deeper understanding of biological processes. Meanwhile, the excitement in the field continued with a series of developments in the fast data acquisition methods allowing rapid structural studies on less stable proteins. This review aims to discuss important developments in the field of biomolecular NMR spectroscopy in the recent past, i.e., in the post TROSY era. These developments not only gave access to the structural studies of large protein assemblies, but also revolutionized tools in the arsenal of today's biomolecular NMR and point to a bright future of biomolecular NMR spectroscopy.
Collapse
|
55
|
Loerch S, Kielkopf CL. Unmasking the U2AF homology motif family: a bona fide protein-protein interaction motif in disguise. RNA (NEW YORK, N.Y.) 2016; 22:1795-1807. [PMID: 27852923 PMCID: PMC5113200 DOI: 10.1261/rna.057950.116] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
U2AF homology motifs (UHM) that recognize U2AF ligand motifs (ULM) are an emerging family of protein-protein interaction modules. UHM-ULM interactions recur in pre-mRNA splicing factors including U2AF1 and SF3b1, which are frequently mutated in myelodysplastic syndromes. The core topology of the UHM resembles an RNA recognition motif and is often mistakenly classified within this large family. Here, we unmask the charade and review recent discoveries of UHM-ULM modules for protein-protein interactions. Diverse polypeptide extensions and selective phosphorylation of UHM and ULM family members offer new molecular mechanisms for the assembly of specific partners in the early-stage spliceosome.
Collapse
Affiliation(s)
- Sarah Loerch
- Center for RNA Biology and Department for Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| | - Clara L Kielkopf
- Center for RNA Biology and Department for Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642, USA
| |
Collapse
|
56
|
Recognition of the 3' splice site RNA by the U2AF heterodimer involves a dynamic population shift. Proc Natl Acad Sci U S A 2016; 113:E7169-E7175. [PMID: 27799531 DOI: 10.1073/pnas.1605873113] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An essential early step in the assembly of human spliceosomes onto pre-mRNA involves the recognition of regulatory RNA cis elements in the 3' splice site by the U2 auxiliary factor (U2AF). The large (U2AF65) and small (U2AF35) subunits of the U2AF heterodimer contact the polypyrimidine tract (Py-tract) and the AG-dinucleotide, respectively. The tandem RNA recognition motif domains (RRM1,2) of U2AF65 adopt closed/inactive and open/active conformations in the free form and when bound to bona fide Py-tract RNA ligands. To investigate the molecular mechanism and dynamics of 3' splice site recognition by U2AF65 and the role of U2AF35 in the U2AF heterodimer, we have combined single-pair FRET and NMR experiments. In the absence of RNA, the RRM1,2 domain arrangement is highly dynamic on a submillisecond time scale, switching between closed and open conformations. The addition of Py-tract RNA ligands with increasing binding affinity (strength) gradually shifts the equilibrium toward an open conformation. Notably, the protein-RNA complex is rigid in the presence of a strong Py-tract but exhibits internal motion with weak Py-tracts. Surprisingly, the presence of U2AF35, whose UHM domain interacts with U2AF65 RRM1, increases the population of the open arrangement of U2AF65 RRM1,2 in the absence and presence of a weak Py-tract. These data indicate that the U2AF heterodimer promotes spliceosome assembly by a dynamic population shift toward the open conformation of U2AF65 to facilitate the recognition of weak Py-tracts at the 3' splice site. The structure and RNA binding of the heterodimer was unaffected by cancer-linked myelodysplastic syndrome mutants.
Collapse
|
57
|
Cretu C, Schmitzová J, Ponce-Salvatierra A, Dybkov O, De Laurentiis EI, Sharma K, Will CL, Urlaub H, Lührmann R, Pena V. Molecular Architecture of SF3b and Structural Consequences of Its Cancer-Related Mutations. Mol Cell 2016; 64:307-319. [PMID: 27720643 DOI: 10.1016/j.molcel.2016.08.036] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2016] [Accepted: 08/30/2016] [Indexed: 11/17/2022]
Abstract
SF3b is a heptameric protein complex of the U2 small nuclear ribonucleoprotein (snRNP) that is essential for pre-mRNA splicing. Mutations in the largest SF3b subunit, SF3B1/SF3b155, are linked to cancer and lead to alternative branch site (BS) selection. Here we report the crystal structure of a human SF3b core complex, revealing how the distinctive conformation of SF3b155's HEAT domain is maintained by multiple contacts with SF3b130, SF3b10, and SF3b14b. Protein-protein crosslinking enabled the localization of the BS-binding proteins p14 and U2AF65 within SF3b155's HEAT-repeat superhelix, which together with SF3b14b forms a composite RNA-binding platform. SF3b155 residues, the mutation of which leads to cancer, contribute to the tertiary structure of the HEAT superhelix and its surface properties in the proximity of p14 and U2AF65. The molecular architecture of SF3b reveals the spatial organization of cancer-related SF3b155 mutations and advances our understanding of their effects on SF3b structure and function.
Collapse
Affiliation(s)
- Constantin Cretu
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Jana Schmitzová
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Almudena Ponce-Salvatierra
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Max Planck Research Group Nucleic Acid Chemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Olexandr Dybkov
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Evelina I De Laurentiis
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Kundan Sharma
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Cindy L Will
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany; Bioanalytics Group, Institute for Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Reinhard Lührmann
- Department of Cellular Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | - Vladimir Pena
- Research Group Macromolecular Crystallography, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany.
| |
Collapse
|
58
|
The Evolutionarily-conserved Polyadenosine RNA Binding Protein, Nab2, Cooperates with Splicing Machinery to Regulate the Fate of pre-mRNA. Mol Cell Biol 2016; 36:2697-2714. [PMID: 27528618 PMCID: PMC5064217 DOI: 10.1128/mcb.00402-16] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Numerous RNA binding proteins are deposited onto an mRNA transcript to modulate post-transcriptional processing events ensuring proper mRNA maturation. Defining the interplay between RNA binding proteins that couple mRNA biogenesis events is crucial for understanding how gene expression is regulated. To explore how RNA binding proteins control mRNA processing, we investigated a role for the evolutionarily conserved polyadenosine RNA binding protein, Nab2, in mRNA maturation within the nucleus. This work reveals that nab2 mutant cells accumulate intron-containing pre-mRNA in vivo We extend this analysis to identify genetic interactions between mutant alleles of nab2 and genes encoding the splicing factor, MUD2, and the RNA exosome, RRP6, with in vivo consequences of altered pre-mRNA splicing and poly(A) tail length control. As further evidence linking Nab2 proteins to splicing, an unbiased proteomic analysis of vertebrate Nab2, ZC3H14, identifies physical interactions with numerous components of the spliceosome. We validated the interaction between ZC3H14 and U2AF2/U2AF65 Taking all the findings into consideration, we present a model where Nab2/ZC3H14 interacts with spliceosome components to allow proper coupling of splicing with subsequent mRNA processing steps contributing to a kinetic proofreading step that allows properly processed mRNA to exit the nucleus and escape Rrp6-dependent degradation.
Collapse
|
59
|
Two Polypyrimidine Tracts in Intron 4 of the Major Immediate Early Gene Are Critical for Gene Expression Switching from IE1 to IE2 and for Replication of Human Cytomegalovirus. J Virol 2016; 90:7339-7349. [PMID: 27252533 DOI: 10.1128/jvi.00837-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 05/25/2016] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED The human cytomegalovirus (HCMV) major immediate early (MIE) gene is essential for viral replication. The most abundant products encoded by the MIE gene include IE1 and IE2. Genes of IE1 and IE2 share the MIE promoter (MIEP), the first 3 exons, and the first 2 introns. IE1 is expressed earlier than IE2 after CMV infection or MIE gene transfection. In this study, we identified 2 polypyrimidine (Py) tracts in intron 4 (between exons 4 and 5) that are responsible for transcriptional switching from IE1 to IE2. The first Py is important and the second one is essential for the splicing and expression of IE2. In searching for the mechanisms of MIE gene switching from IE1 to IE2, we found that the second Py was required for the IE2's fourth intron to bind to a splicing factor such as U2AF65, as determined by an RNA electrophoretic mobility shift assay and a chromatin immunoprecipitation (ChIP) assay, while the first Py enhanced the binding of U2AF65 with the intron. An HCMV BACmid with the second Py mutated failed to produce any virus, while the HCMV with the first Py mutated replicated with a defective phenotype. Furthermore, we designed a small RNA (scRNAPy) that is complementary to the intron RNA covering the two Pys. The scRNAPy interfered with the interaction of U2AF65 with the intron and repressed the IE2 expression. Therefore, our studies implied that IE2 gene splicing might be an anti-CMV target. IMPORTANCE CMV is a ubiquitous herpesvirus and a significant cause of disease and death in the immunocompromised and elderly. Insights into its gene regulation will provide clues in designing anti-CMV strategies. The MIE gene is one of the earliest genes of CMV and is essential for CMV replication. It is known that the MIE gene needs to be spliced to produce more than two proteins; however, how MIE gene splicing is regulated remains elusive. In the present studies, we identified two Pys in intron 4 and found that the first Py is important and the second is required for the splicing and expression of IE2. We further investigated the mechanisms of gene switching from IE1 to IE2 and found that the two Pys are responsible for U2AF65's binding with intron 4. Therefore, the Pys in intron 4 are the cis elements that determine the fate of IE2 splicing. Furthermore, we found that a small RNA that is complementary to intron 4 repressed IE2 expression. Hence, we provide the first piece of evidence for a unique mechanism of MIE gene regulation at the splicing level.
Collapse
|
60
|
Mai S, Qu X, Li P, Ma Q, Cao C, Liu X. Global regulation of alternative RNA splicing by the SR-rich protein RBM39. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1014-24. [PMID: 27354116 DOI: 10.1016/j.bbagrm.2016.06.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023]
Abstract
BACKGROUND RBM39 is a serine/arginine-rich RNA-binding protein that is highly homologous to the splicing factor U2AF65. However, the role of RBM39 in alternative splicing is poorly understood. METHODS In this study, RBM39-mediated global alternative splicing was investigated using RNA-Seq and genome-wide RBM39-RNA interactions were mapped via cross-linking and immunoprecipitation coupled with deep sequencing (CLIP-Seq) in wild-type and RBM39-knockdown MCF-7 cells. RESULTS RBM39 was involved in the up- or down-regulation of the transcript levels of various genes. Hundreds of alternative splicing events regulated by endogenous RBM39 were identified. The majority of these events were cassette exons. Genes containing RBM39-regulated alternative exons were found to be linked to G2/M transition, cellular response to DNA damage, adherens junctions and endocytosis. CLIP-Seq analysis showed that the binding site of RBM39 was mainly in proximity to 5' and 3' splicing sites. Considerable RBM39 binding to mRNAs encoding proteins involved in translation was observed. Of particular importance, ~20% of the alternative splicing events that were significantly regulated by RBM39 were similarly regulated by U2AF65. CONCLUSIONS RBM39 is extensively involved in alternative splicing of RNA and helps regulate transcript levels. RBM39 may modulate alternative splicing similarly to U2AF65 by either directly binding to RNA or recruiting other splicing factors, such as U2AF65. GENERAL SIGNIFICANCE The current study offers a genome-wide view of RBM39's regulatory function in alternative splicing. RBM39 may play important roles in multiple cellular processes by regulating both alternative splicing of RNA molecules and transcript levels.
Collapse
Affiliation(s)
- Sanyue Mai
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Xiuhua Qu
- General Navy Hospital of PLA, 6 Fucheng Rd, Haidian District, Beijing 100037, China
| | - Ping Li
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Qingjun Ma
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, 27 Taiping Rd, Haidian District, Beijing 100850, China.
| |
Collapse
|
61
|
Abstract
A majority of human genes contain non-coding intervening sequences – introns that must be precisely excised from the pre-mRNA molecule. This event requires the coordinated action of five major small nuclear ribonucleoprotein particles (snRNPs) along with additional non-snRNP splicing proteins. Introns must be removed with nucleotidal precision, since even a single nucleotide mistake would result in a reading frame shift and production of a non-functional protein. Numerous human inherited diseases are caused by mutations that affect splicing, including mutations in proteins which are directly involved in splicing catalysis. One of the most common hereditary diseases associated with mutations in core splicing proteins is retinitis pigmentosa (RP). So far, mutations in more than 70 genes have been connected to RP. While the majority of mutated genes are expressed specifically in the retina, eight target genes encode for ubiquitous core snRNP proteins (Prpf3, Prpf4, Prpf6, Prpf8, Prpf31, and SNRNP200/Brr2) and splicing factors (RP9 and DHX38). Why mutations in spliceosomal proteins, which are essential in nearly every cell in the body, causes a disease that displays such a tissue-specific phenotype is currently a mystery. In this review, we recapitulate snRNP functions, summarize the missense mutations which are found in spliceosomal proteins as well as their impact on protein functions and discuss specific models which may explain why the retina is sensitive to these mutations.
Collapse
Affiliation(s)
- Šárka Růžičková
- a Department of RNA Biology , Institute of Molecular Genetics AS CR , Prague , Czech Republic
| | - David Staněk
- a Department of RNA Biology , Institute of Molecular Genetics AS CR , Prague , Czech Republic
| |
Collapse
|
62
|
An extended U2AF(65)-RNA-binding domain recognizes the 3' splice site signal. Nat Commun 2016; 7:10950. [PMID: 26952537 PMCID: PMC4786784 DOI: 10.1038/ncomms10950] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 02/03/2016] [Indexed: 12/12/2022] Open
Abstract
How the essential pre-mRNA splicing factor U2AF65 recognizes the polypyrimidine (Py) signals of the major class of 3′ splice sites in human gene transcripts remains incompletely understood. We determined four structures of an extended U2AF65–RNA-binding domain bound to Py-tract oligonucleotides at resolutions between 2.0 and 1.5 Å. These structures together with RNA binding and splicing assays reveal unforeseen roles for U2AF65 inter-domain residues in recognizing a contiguous, nine-nucleotide Py tract. The U2AF65 linker residues between the dual RNA recognition motifs (RRMs) recognize the central nucleotide, whereas the N- and C-terminal RRM extensions recognize the 3′ terminus and third nucleotide. Single-molecule FRET experiments suggest that conformational selection and induced fit of the U2AF65 RRMs are complementary mechanisms for Py-tract association. Altogether, these results advance the mechanistic understanding of molecular recognition for a major class of splice site signals. The pre-mRNA splicing factor U2AF65 recognizes 3′ splice sites in human gene transcripts, but the details are not fully understood. Here, the authors report U2AF65 structures and single molecule FRET that reveal mechanistic insights into splice site recognition.
Collapse
|
63
|
Wan R, Yan C, Bai R, Wang L, Huang M, Wong CCL, Shi Y. The 3.8 Å structure of the U4/U6.U5 tri-snRNP: Insights into spliceosome assembly and catalysis. Science 2016; 351:466-75. [PMID: 26743623 DOI: 10.1126/science.aad6466] [Citation(s) in RCA: 131] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/24/2015] [Indexed: 01/08/2023]
Abstract
Splicing of precursor messenger RNA is accomplished by a dynamic megacomplex known as the spliceosome. Assembly of a functional spliceosome requires a preassembled U4/U6.U5 tri-snRNP complex, which comprises the U5 small nuclear ribonucleoprotein (snRNP), the U4 and U6 small nuclear RNA (snRNA) duplex, and a number of protein factors. Here we report the three-dimensional structure of a Saccharomyces cerevisiae U4/U6.U5 tri-snRNP at an overall resolution of 3.8 angstroms by single-particle electron cryomicroscopy. The local resolution for the core regions of the tri-snRNP reaches 3.0 to 3.5 angstroms, allowing construction of a refined atomic model. Our structure contains U5 snRNA, the extensively base-paired U4/U6 snRNA, and 30 proteins including Prp8 and Snu114, which amount to 8495 amino acids and 263 nucleotides with a combined molecular mass of ~1 megadalton. The catalytic nucleotide U80 from U6 snRNA exists in an inactive conformation, stabilized by its base-pairing interactions with U4 snRNA and protected by Prp3. Pre-messenger RNA is bound in the tri-snRNP through base-pairing interactions with U6 snRNA and loop I of U5 snRNA. This structure, together with that of the spliceosome, reveals the molecular choreography of the snRNAs in the activation process of the spliceosomal ribozyme.
Collapse
Affiliation(s)
- Ruixue Wan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Chuangye Yan
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Bai
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Lin Wang
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Min Huang
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Catherine C L Wong
- National Center for Protein Science Shanghai, Institute of Biochemistry and Cell Biology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Yigong Shi
- Ministry of Education Key Laboratory of Protein Science, Tsinghua-Peking Joint Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
64
|
Papasaikas P, Valcárcel J. The Spliceosome: The Ultimate RNA Chaperone and Sculptor. Trends Biochem Sci 2015; 41:33-45. [PMID: 26682498 DOI: 10.1016/j.tibs.2015.11.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/08/2023]
Abstract
The spliceosome, one of the most complex machineries of eukaryotic cells, removes intronic sequences from primary transcripts to generate functional messenger and long noncoding RNAs (lncRNA). Genetic, biochemical, and structural data reveal that the spliceosome is an RNA-based enzyme. Striking mechanistic and structural similarities strongly argue that pre-mRNA introns originated from self-catalytic group II ribozymes. However, in the spliceosome, protein components organize and activate the catalytic-site RNAs, and recognize and pair together splice sites at intron boundaries. The spliceosome is a dynamic, reversible, and flexible machine that chaperones small nuclear (sn) RNAs and a variety of pre-mRNA sequences into conformations that enable intron removal. This malleability likely contributes to the regulation of alternative splicing, a prevalent process contributing to cell differentiation, homeostasis, and disease.
Collapse
Affiliation(s)
- Panagiotis Papasaikas
- Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu-Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu-Fabra, Dr. Aiguader 88, 08003 Barcelona, Spain; ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
65
|
Cieniková Z, Jayne S, Damberger FF, Allain FHT, Maris C. Evidence for cooperative tandem binding of hnRNP C RRMs in mRNA processing. RNA (NEW YORK, N.Y.) 2015; 21:1931-42. [PMID: 26370582 PMCID: PMC4604433 DOI: 10.1261/rna.052373.115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/21/2015] [Indexed: 05/20/2023]
Abstract
The human hnRNP C is a ubiquitous cellular protein involved in mRNA maturation. Recently, we have shown that this protein specifically recognizes uridine (U) pentamers through its single RNA recognition motif (RRM). However, a large fraction of natural RNA targets of hnRNP C consists of much longer contiguous uridine stretches. To understand how these extended sites are recognized, we studied the binding of the RRM to U-tracts of 8-11 bases. In vivo investigation of internal translation activation of unr (upstream of N-ras) mRNA indicates that the conservation of the entire hnRNP C binding site, UC(U)8, is required for hnRNP C-dependent IRES activation. The assays further suggest a synergistic interplay between hnRNP C monomers, dependent on the protein's ability to oligomerize. In vitro spectroscopic and thermodynamic analyses show that isolated RRMs bind to (U)11 oligomers as dimers. Structural modeling of a ternary double-RRM/RNA complex indicates additionally that two RRM copies can be accommodated on the canonical sequence UC(U)8. The proposed tandem RRM binding is in very good agreement with the transcriptome-wide recognition of extended U-tracts by full-length hnRNP C, which displays a cross-linking pattern consistent with a positively cooperative RRM dimer binding model.
Collapse
Affiliation(s)
- Zuzana Cieniková
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Sandrine Jayne
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Fred Franz Damberger
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Frédéric Hai-Trieu Allain
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Christophe Maris
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| |
Collapse
|
66
|
Xiao X, Chen Y, Mugabe S, Gao C, Tkaczyk C, Mazor Y, Pavlik P, Wu H, Dall’Acqua W, Chowdhury PS. A Novel Dual Expression Platform for High Throughput Functional Screening of Phage Libraries in Product like Format. PLoS One 2015; 10:e0140691. [PMID: 26468955 PMCID: PMC4607404 DOI: 10.1371/journal.pone.0140691] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 09/28/2015] [Indexed: 11/18/2022] Open
Abstract
High throughput screenings of single chain Fv (scFv) antibody phage display libraries are currently done as soluble scFvs produced in E.coli. Due to endotoxin contaminations from bacterial cells these preparations cannot be reliably used in mammalian cell based assays. The monovalent nature and lack of Fc in soluble scFvs prevent functional assays that are dependent on target cross linking and/or Fc functions. A convenient approach is to convert scFvs into scFv.Fc fusion proteins and express them in mammalian cell lines for screening. This approach is low throughput and is only taken after primary screening of monovalent scFvs that are expressed in bacteria. There is no platform at present that combines the benefits of both bacterial and mammalian expression system for screening phage library output. We have, therefore, developed a novel dual expression vector, called pSplice, which can be used to express scFv.Fc fusion proteins both in E.coli and mammalian cell lines. The hallmark of the vector is an engineered intron which houses the bacterial promoter and signal peptide for expression and secretion of scFv.Fc in E.coli. When the vector is transfected into a mammalian cell line, the intron is efficiently spliced out resulting in a functional operon for expression and secretion of the scFv.Fc fusion protein into the culture medium. By applying basic knowledge of mammalian introns and splisosome, we designed this vector to enable screening of phage libraries in a product like format. Like IgG, the scFv.Fc fusion protein is bi-valent for the antigen and possesses Fc effector functions. Expression in E.coli maintains the speed of the bacterial expression platform and is used to triage clones based on binding and other assays that are not sensitive to endotoxin. Triaged clones are then expressed in a mammalian cell line without the need for any additional cloning steps. Conditioned media from the mammalian cell line containing the fusion proteins are then used for different types of cell based assays. Thus this system retains the speed of the current screening system for phage libraries and adds additional functionality to it.
Collapse
Affiliation(s)
- Xiaodong Xiao
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Yan Chen
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Sheila Mugabe
- Dept. of Biopharmaceutical Development, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Changshou Gao
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Christine Tkaczyk
- Dept. of Infectious Diseases, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Yariv Mazor
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Peter Pavlik
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Herren Wu
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - William Dall’Acqua
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| | - Partha Sarathi Chowdhury
- Dept. of Antibody Discovery and Protein Engineering, MedImmune, LLC., Gaithersburg, MD, 20878, United States of America
| |
Collapse
|
67
|
Yan C, Hang J, Wan R, Huang M, Wong CCL, Shi Y. Structure of a yeast spliceosome at 3.6-angstrom resolution. Science 2015; 349:1182-91. [DOI: 10.1126/science.aac7629] [Citation(s) in RCA: 278] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/10/2015] [Indexed: 12/20/2022]
|
68
|
Abstract
The pre-mRNA splicing reaction of eukaryotic cells has to be carried out extremely accurately, as failure to recognize the splice sites correctly causes serious disease. The small subunit of the U2AF heterodimer is essential for the determination of 3' splice sites in pre-mRNA splicing, and several single-residue mutations of the U2AF small subunit cause severe disorders such as myelodysplastic syndromes. However, the mechanism of RNA recognition is poorly understood. Here we solved the crystal structure of the U2AF small subunit (U2AF23) from fission yeast, consisting of an RNA recognition motif (RRM) domain flanked by two conserved CCCH-type zinc fingers (ZFs). The two ZFs are positioned side by side on the β sheet of the RRM domain. Further mutational analysis revealed that the ZFs bind cooperatively to the target RNA sequence, but the RRM domain acts simply as a scaffold to organize the ZFs and does not itself contact the RNA directly. This completely novel and unexpected mode of RNA-binding mechanism by the U2AF small subunit sheds light on splicing errors caused by mutations of this highly conserved protein.
Collapse
|
69
|
Abstract
U2 snRNP auxiliary factor 65 kDa (U2AF(65)) is a general splicing factor that contacts polypyrimidine (Py) tract and promotes prespliceosome assembly. In this report, we show that U2AF(65) stimulates alternative exon skipping in spinal muscular atrophy (SMA)-related survival motor neuron (SMN) pre-mRNA. A stronger 5' splice-site mutation of alternative exon abolishes the stimulatory effects of U2AF(65). U2AF(65) overexpression promotes its own binding only on the weaker, not the stronger, Py tract. We further demonstrate that U2AF(65) inhibits splicing of flanking introns of alternative exon in both three-exon and two-exon contexts. Similar U2AF(65) effects were observed in Fas (Apo-1/CD95) pre-mRNA. Strikingly, we demonstrate that U2AF(65) even inhibits general splicing of adenovirus major late (Ad ML) or β-globin pre-mRNA. Thus, we conclude that U2AF(65) possesses a splicing Inhibitory function that leads to alternative exon skipping.
Collapse
|
70
|
Hennig J, Sattler M. Deciphering the protein-RNA recognition code: Combining large-scale quantitative methods with structural biology. Bioessays 2015; 37:899-908. [DOI: 10.1002/bies.201500033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology; Helmholtz Zentrum M; ü; nchen; München Germany
- Department Chemie; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy; Technische Universität München; Garching Germany
| | - Michael Sattler
- Institute of Structural Biology; Helmholtz Zentrum M; ü; nchen; München Germany
- Department Chemie; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy; Technische Universität München; Garching Germany
| |
Collapse
|
71
|
Hrossova D, Sikorsky T, Potesil D, Bartosovic M, Pasulka J, Zdrahal Z, Stefl R, Vanacova S. RBM7 subunit of the NEXT complex binds U-rich sequences and targets 3'-end extended forms of snRNAs. Nucleic Acids Res 2015; 43:4236-48. [PMID: 25852104 PMCID: PMC4417160 DOI: 10.1093/nar/gkv240] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/06/2015] [Indexed: 01/09/2023] Open
Abstract
The Nuclear Exosome Targeting (NEXT) complex is a key cofactor of the mammalian nuclear exosome in the removal of Promoter Upstream Transcripts (PROMPTs) and potentially aberrant forms of other noncoding RNAs, such as snRNAs. NEXT is composed of three subunits SKIV2L2, ZCCHC8 and RBM7. We have recently identified the NEXT complex in our screen for oligo(U) RNA-binding factors. Here, we demonstrate that NEXT displays preference for U-rich pyrimidine sequences and this RNA binding is mediated by the RNA recognition motif (RRM) of the RBM7 subunit. We solved the structure of RBM7 RRM and identified two phenylalanine residues that are critical for interaction with RNA. Furthermore, we showed that these residues are required for the NEXT interaction with snRNAs in vivo. Finally, we show that depletion of components of the NEXT complex alone or together with exosome nucleases resulted in the accumulation of mature as well as extended forms of snRNAs. Thus, our data suggest a new scenario in which the NEXT complex is involved in the surveillance of snRNAs and/or biogenesis of snRNPs.
Collapse
Affiliation(s)
- Dominika Hrossova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Tomas Sikorsky
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - David Potesil
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Marek Bartosovic
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Zbynek Zdrahal
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, 62500, Czech Republic
| | - Stepanka Vanacova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, 62500, Czech Republic
| |
Collapse
|
72
|
Hennig J, Warner LR, Simon B, Geerlof A, Mackereth CD, Sattler M. Structural Analysis of Protein-RNA Complexes in Solution Using NMR Paramagnetic Relaxation Enhancements. Methods Enzymol 2015; 558:333-362. [PMID: 26068746 DOI: 10.1016/bs.mie.2015.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biological activity in the cell is predominantly mediated by large multiprotein and protein-nucleic acid complexes that act together to ensure functional fidelity. Nuclear magnetic resonance (NMR) spectroscopy is the only method that can provide information for high-resolution three-dimensional structures and the conformational dynamics of these complexes in solution. Mapping of binding interfaces and molecular interactions along with the characterization of conformational dynamics is possible for very large protein complexes. In contrast, de novo structure determination by NMR becomes very time consuming and difficult for protein complexes larger than 30 kDa as data are noisy and sparse. Fortunately, high-resolution structures are often available for individual domains or subunits of a protein complex and thus sparse data can be used to define their arrangement and dynamics within the assembled complex. In these cases, NMR can therefore be efficiently combined with complementary solution techniques, such as small-angle X-ray or neutron scattering, to provide a comprehensive description of the structure and dynamics of protein complexes in solution. Particularly useful are NMR-derived paramagnetic relaxation enhancements (PREs), which provide long-range distance restraints (ca. 20Å) for structural analysis of large complexes and also report on conformational dynamics in solution. Here, we describe the use of PREs from sample production to structure calculation, focusing on protein-RNA complexes. On the basis of recent examples from our own research, we demonstrate the utility, present protocols, and discuss potential pitfalls when using PREs for studying the structure and dynamic features of protein-RNA complexes.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Lisa R Warner
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Bernd Simon
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Arie Geerlof
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany
| | - Cameron D Mackereth
- Institut Européen de Chimie et Biologie, IECB, Univ. Bordeaux, Pessac, France; Inserm, U869, ARNA Laboratory, Bordeaux, France
| | - Michael Sattler
- Institute of Structural Biology, Helmholtz Zentrum München, Oberschleißheim, Germany; Center for Integrated Protein Science Munich at Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Garching, Germany.
| |
Collapse
|
73
|
Abstract
Ribonucleoprotein complexes involved in pre-mRNA splicing and mRNA decay are often regulated by phosphorylation of RNA-binding proteins. Cells use phosphorylation-dependent signaling pathways to turn on and off gene expression. Not much is known about how phosphorylation-dependent signals transmitted by exogenous factors or cell cycle checkpoints regulate RNA-mediated gene expression at the atomic level. Several human diseases are linked to an altered phosphorylation state of an RNA binding protein. Understanding the structural response to the phosphorylation "signal" and its effect on ribonucleoprotein assembly provides mechanistic understanding, as well as new information for the design of novel drugs. In this review, I highlight recent structural studies that reveal the mechanisms by which phosphorylation can regulate protein-protein and protein-RNA interactions in ribonucleoprotein complexes.
Collapse
Affiliation(s)
- Roopa Thapar
- BioSciences
at Rice, Biochemistry
and Cell Biology, Rice University, Houston, Texas 77251-1892, United States
| |
Collapse
|
74
|
Abstract
RRM-containing proteins are involved in most of the RNA metabolism steps. Their functions are closely related to their mode of RNA recognition, which has been studied by structural biologists for more than 20 years. In this chapter, we report on high-resolution structures of single and multi RRM-RNA complexes to explain the numerous strategies used by these domains to interact specifically with a large repertoire of RNA sequences. We show that multiple variations of their canonical fold can be used to adapt to different single-stranded sequences with a large range of affinities. Furthermore, we describe the consequences on RNA binding of the different structural arrangements found in tandem RRMs and higher order RNPs. Importantly, these structures also reveal with very high accuracy the RNA motifs bound specifically by RRM-containing proteins, which correspond very often to consensus sequences identified with genome-wide approaches. Finally, we show how structural and cellular biology can benefit from each other and pave a way for understanding, defining, and predicting a code of RNA recognition by the RRMs.
Collapse
|
75
|
Combining NMR and EPR to Determine Structures of Large RNAs and Protein–RNA Complexes in Solution. Methods Enzymol 2015; 558:279-331. [DOI: 10.1016/bs.mie.2015.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
76
|
Structure-guided U2AF65 variant improves recognition and splicing of a defective pre-mRNA. Proc Natl Acad Sci U S A 2014; 111:17420-5. [PMID: 25422459 DOI: 10.1073/pnas.1412743111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Purine interruptions of polypyrimidine (Py) tract splice site signals contribute to human genetic diseases. The essential splicing factor U2AF(65) normally recognizes a Py tract consensus sequence preceding the major class of 3' splice sites. We found that neurofibromatosis- or retinitis pigmentosa-causing mutations in the 5' regions of Py tracts severely reduce U2AF(65) affinity. Conversely, we identified a preferred binding site of U2AF(65) for purine substitutions in the 3' regions of Py tracts. Based on a comparison of new U2AF(65) structures bound to either A- or G-containing Py tracts with previously identified pyrimidine-containing structures, we expected to find that a D231V amino acid change in U2AF(65) would specify U over other nucleotides. We found that the crystal structure of the U2AF(65)-D231V variant confirms favorable packing between the engineered valine and a target uracil base. The D231V amino acid change restores U2AF(65) affinity for two mutated splice sites that cause human genetic diseases and successfully promotes splicing of a defective retinitis pigmentosa-causing transcript. We conclude that reduced U2AF(65) binding is a molecular consequence of disease-relevant mutations, and that a structure-guided U2AF(65) variant is capable of manipulating gene expression in eukaryotic cells.
Collapse
|
77
|
Cieniková Z, Damberger FF, Hall J, Allain FHT, Maris C. Structural and mechanistic insights into poly(uridine) tract recognition by the hnRNP C RNA recognition motif. J Am Chem Soc 2014; 136:14536-44. [PMID: 25216038 DOI: 10.1021/ja507690d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
HnRNP C is a ubiquitous RNA regulatory factor and the principal constituent of the nuclear hnRNP core particle. The protein contains one amino-terminal RNA recognition motif (RRM) known to bind uridine (U)-rich sequences. This work provides a molecular and mechanistic understanding of this interaction. We solved the solution structures of the RRM in complex with poly(U) oligomers of five and seven nucleotides. The five binding pockets of RRM recognize uridines with an unusual 5'-to-3' gradient of base selectivity. The target recognition is therefore strongly sensitive to base clustering, explaining the preference for contiguous uridine tracts. Using a novel approach integrating the structurally derived recognition consensus of the RRM with a thermodynamic description of its multi-register binding, we modeled the saturation of cellular uridine tracts by this protein. The binding pattern is remarkably consistent with the experimentally observed transcriptome-wide cross-link distribution of the full-length hnRNP C on short uridine tracts. This result re-establishes the RRM as the primary RNA-binding domain of the hnRNP C tetramer and provides a proof of concept for interpreting high-throughput interaction data using structural approaches.
Collapse
Affiliation(s)
- Zuzana Cieniková
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zürich , 8093 Zürich, Switzerland
| | | | | | | | | |
Collapse
|
78
|
Bacikova V, Pasulka J, Kubicek K, Stefl R. Structure and semi-sequence-specific RNA binding of Nrd1. Nucleic Acids Res 2014; 42:8024-38. [PMID: 24860164 PMCID: PMC4081072 DOI: 10.1093/nar/gku446] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In Saccharomyces cerevisiae, the Nrd1-dependent termination and processing pathways play an important role in surveillance and processing of non-coding ribonucleic acids (RNAs). The termination and subsequent processing is dependent on the Nrd1 complex consisting of two RNA-binding proteins Nrd1 and Nab3 and Sen1 helicase. It is established that Nrd1 and Nab3 cooperatively recognize specific termination elements within nascent RNA, GUA[A/G] and UCUU[G], respectively. Interestingly, some transcripts do not require GUA[A/G] motif for transcription termination in vivo and binding in vitro, suggesting the existence of alternative Nrd1-binding motifs. Here we studied the structure and RNA-binding properties of Nrd1 using nuclear magnetic resonance (NMR), fluorescence anisotropy and phenotypic analyses in vivo. We determined the solution structure of a two-domain RNA-binding fragment of Nrd1, formed by an RNA-recognition motif and helix–loop bundle. NMR and fluorescence data show that not only GUA[A/G] but also several other G-rich and AU-rich motifs are able to bind Nrd1 with affinity in a low micromolar range. The broad substrate specificity is achieved by adaptable interaction surfaces of the RNA-recognition motif and helix–loop bundle domains that sandwich the RNA substrates. Our findings have implication for the role of Nrd1 in termination and processing of many non-coding RNAs arising from bidirectional pervasive transcription.
Collapse
Affiliation(s)
- Veronika Bacikova
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Josef Pasulka
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Karel Kubicek
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| | - Richard Stefl
- CEITEC-Central European Institute of Technology, Masaryk University, Brno 62500, Czech Republic National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno 62500, Czech Republic
| |
Collapse
|
79
|
Tsai YS, Gomez SM, Wang Z. Prevalent RNA recognition motif duplication in the human genome. RNA (NEW YORK, N.Y.) 2014; 20:702-712. [PMID: 24667216 PMCID: PMC3988571 DOI: 10.1261/rna.044081.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 02/17/2014] [Indexed: 06/03/2023]
Abstract
The sequence-specific recognition of RNA by proteins is mediated through various RNA binding domains, with the RNA recognition motif (RRM) being the most frequent and present in >50% of RNA-binding proteins (RBPs). Many RBPs contain multiple RRMs, and it is unclear how each RRM contributes to the binding specificity of the entire protein. We found that RRMs within the same RBP (i.e., sibling RRMs) tend to have significantly higher similarity than expected by chance. Sibling RRM pairs from RBPs shared by multiple species tend to have lower similarity than those found only in a single species, suggesting that multiple RRMs within the same protein might arise from domain duplication followed by divergence through random mutations. This finding is exemplified by a recent RRM domain duplication in DAZ proteins and an ancient duplication in PABP proteins. Additionally, we found that different similarities between sibling RRMs are associated with distinct functions of an RBP and that the RBPs tend to contain repetitive sequences with low complexity. Taken together, this study suggests that the number of RBPs with multiple RRMs has expanded in mammals and that the multiple sibling RRMs may recognize similar target motifs in a cooperative manner.
Collapse
Affiliation(s)
| | - Shawn M. Gomez
- Curriculum in Bioinformatics and Computational Biology
- Department of Pharmacology
- Department of Computer Science
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zefeng Wang
- Curriculum in Bioinformatics and Computational Biology
- Department of Pharmacology
| |
Collapse
|
80
|
Huang JR, Warner LR, Sanchez C, Gabel F, Madl T, Mackereth CD, Sattler M, Blackledge M. Transient electrostatic interactions dominate the conformational equilibrium sampled by multidomain splicing factor U2AF65: a combined NMR and SAXS study. J Am Chem Soc 2014; 136:7068-76. [PMID: 24734879 DOI: 10.1021/ja502030n] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Multidomain proteins containing intrinsically disordered linkers exhibit large-scale dynamic modes that play key roles in a multitude of molecular recognition and signaling processes. Here, we determine the conformational space sampled by the multidomain splicing factor U2AF65 using complementary nuclear magnetic resonance spectroscopy and small-angle scattering data. Available degrees of conformational freedom are initially stochastically sampled and experimental data then used to delineate the potential energy landscape in terms of statistical probability. The spatial distribution of U2AF65 conformations is found to be highly anisotropic, comprising significantly populated interdomain contacts that appear to be electrostatic in origin. This hypothesis is supported by the reduction of signature PREs reporting on expected interfaces with increasing salt concentration. The described spatial distribution reveals the complete spectrum of the unbound forms of U2AF65 that coexist with the small percentage of a preformed RNA-bound domain arrangement required for polypyrimidine-tract recognition by conformational selection. More generally, the proposed approach to describing conformational equilibria of multidomain proteins can be further combined with other experimental data that are sensitive to domain dynamics.
Collapse
Affiliation(s)
- Jie-rong Huang
- University Grenoble Alpes, ‡CNRS, and §CEA, Protein Dynamics and Flexibility, Institut de Biologie Structurale , 38000 Grenoble, France
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Hennig J, Sattler M. The dynamic duo: combining NMR and small angle scattering in structural biology. Protein Sci 2014; 23:669-82. [PMID: 24687405 DOI: 10.1002/pro.2467] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2014] [Revised: 03/25/2014] [Accepted: 03/28/2014] [Indexed: 12/12/2022]
Abstract
Structural biology provides essential information for elucidating molecular mechanisms that underlie biological function. Advances in hardware, sample preparation, experimental methods, and computational approaches now enable structural analysis of protein complexes with increasing complexity that more closely represent biologically entities in the cellular environment. Integrated multidisciplinary approaches are required to overcome limitations of individual methods and take advantage of complementary aspects provided by different structural biology techniques. Although X-ray crystallography remains the method of choice for structural analysis of large complexes, crystallization of flexible systems is often difficult and does typically not provide insights into conformational dynamics present in solution. Nuclear magnetic resonance spectroscopy (NMR) is well-suited to study dynamics at picosecond to second time scales, and to map binding interfaces even of large systems at residue resolution but suffers from poor sensitivity with increasing molecular weight. Small angle scattering (SAS) methods provide low resolution information in solution and can characterize dynamics and conformational equilibria complementary to crystallography and NMR. The combination of NMR, crystallography, and SAS is, thus, very useful for analysis of the structure and conformational dynamics of (large) protein complexes in solution. In high molecular weight systems, where NMR data are often sparse, SAS provides additional structural information and can differentiate between NMR-derived models. Scattering data can also validate the solution conformation of a crystal structure and indicate the presence of conformational equilibria. Here, we review current state-of-the-art approaches for combining NMR, crystallography, and SAS data to characterize protein complexes in solution.
Collapse
Affiliation(s)
- Janosch Hennig
- Institute of Structural Biology, Helmholtz Zentrum München, Ingolstädter Landstr.1, D-85764, Neuherberg, Germany; Center for Integrated Protein Science Munich at Chair Biomolecular NMR Spectroscopy, Department Chemie, Technische Universität München, Lichtenbergstr. 4, D-85747, Garching, Germany
| | | |
Collapse
|
82
|
Grodecká L, Lockerová P, Ravčuková B, Buratti E, Baralle FE, Dušek L, Freiberger T. Exon first nucleotide mutations in splicing: evaluation of in silico prediction tools. PLoS One 2014; 9:e89570. [PMID: 24586880 PMCID: PMC3931810 DOI: 10.1371/journal.pone.0089570] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 01/21/2014] [Indexed: 12/20/2022] Open
Abstract
Mutations in the first nucleotide of exons (E+1) mostly affect pre-mRNA splicing when found in AG-dependent 3′ splice sites, whereas AG-independent splice sites are more resistant. The AG-dependency, however, may be difficult to assess just from primary sequence data as it depends on the quality of the polypyrimidine tract. For this reason, in silico prediction tools are commonly used to score 3′ splice sites. In this study, we have assessed the ability of sequence features and in silico prediction tools to discriminate between the splicing-affecting and non-affecting E+1 variants. For this purpose, we newly tested 16 substitutions in vitro and derived other variants from literature. Surprisingly, we found that in the presence of the substituting nucleotide, the quality of the polypyrimidine tract alone was not conclusive about its splicing fate. Rather, it was the identity of the substituting nucleotide that markedly influenced it. Among the computational tools tested, the best performance was achieved using the Maximum Entropy Model and Position-Specific Scoring Matrix. As a result of this study, we have now established preliminary discriminative cut-off values showing sensitivity up to 95% and specificity up to 90%. This is expected to improve our ability to detect splicing-affecting variants in a clinical genetic setting.
Collapse
Affiliation(s)
- Lucie Grodecká
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Pavla Lockerová
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Barbora Ravčuková
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | | | - Ladislav Dušek
- Institute of Biostatistics and Analyses, Masaryk University, Brno, Czech Republic
| | - Tomáš Freiberger
- Molecular Genetics Laboratory, Centre for Cardiovascular Surgery and Transplantation, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- Institute of Clinical Immunology and Allergology, St. Anne’s University Hospital and Masaryk University, Brno, Czech Republic
- * E-mail:
| |
Collapse
|
83
|
Cereda M, Pozzoli U, Rot G, Juvan P, Schweitzer A, Clark T, Ule J. RNAmotifs: prediction of multivalent RNA motifs that control alternative splicing. Genome Biol 2014; 15:R20. [PMID: 24485098 PMCID: PMC4054596 DOI: 10.1186/gb-2014-15-1-r20] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2013] [Accepted: 01/31/2014] [Indexed: 12/16/2022] Open
Abstract
RNA-binding proteins (RBPs) regulate splicing according to position-dependent principles, which can be exploited for analysis of regulatory motifs. Here we present RNAmotifs, a method that evaluates the sequence around differentially regulated alternative exons to identify clusters of short and degenerate sequences, referred to as multivalent RNA motifs. We show that diverse RBPs share basic positional principles, but differ in their propensity to enhance or repress exon inclusion. We assess exons differentially spliced between brain and heart, identifying known and new regulatory motifs, and predict the expression pattern of RBPs that bind these motifs. RNAmotifs is available at https://bitbucket.org/rogrro/rna_motifs.
Collapse
|
84
|
Manipulation of RNA Using Engineered Proteins with Customized Specificity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:199-225. [DOI: 10.1007/978-1-4939-1221-6_6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
85
|
The thermodynamic patterns of eukaryotic genes suggest a mechanism for intron-exon recognition. Nat Commun 2013; 4:2101. [PMID: 23817463 DOI: 10.1038/ncomms3101] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 06/03/2013] [Indexed: 12/11/2022] Open
Abstract
The essential cis- and trans-acting elements required for RNA splicing have been defined, however, the detailed molecular mechanisms underlying intron-exon recognition are still unclear. Here we demonstrate that the ratio between stability of mRNA/DNA and DNA/DNA duplexes near 3'-spice sites is a characteristic feature that can contribute to intron-exon differentiation. Remarkably, throughout all transcripts, the most unstable mRNA/DNA duplexes, compared with the corresponding DNA/DNA duplexes, are situated upstream of the 3'-splice sites and include the polypyrimidine tracts. This characteristic instability is less pronounced in weak alternative splice sites and disease-associated cryptic 3'-splice sites. Our results suggest that this thermodynamic pattern can prevent the re-annealing of mRNA to the DNA template behind the RNA polymerase to ensure access of the splicing machinery to the polypyrimidine tract and the branch point. In support of this mechanism, we demonstrate that RNA/DNA duplex formation at this region prevents pre-spliceosome A complex assembly.
Collapse
|
86
|
Lin J, Lu J, Feng Y, Sun M, Ye K. An RNA-binding complex involved in ribosome biogenesis contains a protein with homology to tRNA CCA-adding enzyme. PLoS Biol 2013; 11:e1001669. [PMID: 24130456 PMCID: PMC3794860 DOI: 10.1371/journal.pbio.1001669] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 08/15/2013] [Indexed: 01/15/2023] Open
Abstract
A multitude of proteins and small nucleolar RNAs transiently associate with eukaryotic ribosomal RNAs to direct their modification and processing and the assembly of ribosomal proteins. Utp22 and Rrp7, two interacting proteins with no recognizable domain, are components of the 90S preribosome or the small subunit processome that conducts early processing of 18S rRNA. Here, we determine the cocrystal structure of Utp22 and Rrp7 complex at 1.97 Å resolution and the NMR structure of a C-terminal fragment of Rrp7, which is not visible in the crystal structure. The structure reveals that Utp22 surprisingly resembles a dimeric class I tRNA CCA-adding enzyme yet with degenerate active sites, raising an interesting evolutionary connection between tRNA and rRNA processing machineries. Rrp7 binds extensively to Utp22 using a deviant RNA recognition motif and an extended linker. Functional sites on the two proteins were identified by structure-based mutagenesis in yeast. We show that Rrp7 contains a flexible RNA-binding C-terminal tail that is essential for association with preribosomes. RNA-protein crosslinking shows that Rrp7 binds at the central domain of 18S rRNA and shares a neighborhood with two processing H/ACA snoRNAs snR30 and snR10. Depletion of snR30 prevents the stable assembly of Rrp7 into preribosomes. Our results provide insight into the evolutionary origin and functional context of Utp22 and Rrp7.
Collapse
Affiliation(s)
- Jinzhong Lin
- National Institute of Biological Sciences, Beijing, China
| | - Jing Lu
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yingang Feng
- Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shangdong, China
| | - Mengyi Sun
- National Institute of Biological Sciences, Beijing, China
| | - Keqiong Ye
- National Institute of Biological Sciences, Beijing, China
- Graduate School of Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
87
|
Zhang L, Li X, Zhao R. Structural analyses of the pre-mRNA splicing machinery. Protein Sci 2013; 22:677-92. [PMID: 23592432 DOI: 10.1002/pro.2266] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/03/2023]
Abstract
Pre-mRNA splicing is a critical event in the gene expression pathway of all eukaryotes. The splicing reaction is catalyzed by the spliceosome, a huge protein-RNA complex that contains five snRNAs and hundreds of different protein factors. Understanding the structure of this large molecular machinery is critical for understanding its function. Although the highly dynamic nature of the spliceosome, in both composition and conformation, posed daunting challenges to structural studies, there has been significant recent progress on structural analyses of the splicing machinery, using electron microscopy, crystallography, and nuclear magnetic resonance. This review discusses key recent findings in the structural analyses of the spliceosome and its components and how these findings advance our understanding of the function of the splicing machinery.
Collapse
Affiliation(s)
- Lingdi Zhang
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
88
|
Jenkins JL, Agrawal AA, Gupta A, Green MR, Kielkopf CL. U2AF65 adapts to diverse pre-mRNA splice sites through conformational selection of specific and promiscuous RNA recognition motifs. Nucleic Acids Res 2013; 41:3859-73. [PMID: 23376934 PMCID: PMC3616741 DOI: 10.1093/nar/gkt046] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Degenerate splice site sequences mark the intron boundaries of pre-mRNA transcripts in multicellular eukaryotes. The essential pre-mRNA splicing factor U2AF65 is faced with the paradoxical tasks of accurately targeting polypyrimidine (Py) tracts preceding 3′ splice sites while adapting to both cytidine and uridine nucleotides with nearly equivalent frequencies. To understand how U2AF65 recognizes degenerate Py tracts, we determined six crystal structures of human U2AF65 bound to cytidine-containing Py tracts. As deoxy-ribose backbones were required for co-crystallization with these Py tracts, we also determined two baseline structures of U2AF65 bound to the deoxy-uridine counterparts and compared the original, RNA-bound structure. Local structural changes suggest that the N-terminal RNA recognition motif 1 (RRM1) is more promiscuous for cytosine-containing Py tracts than the C-terminal RRM2. These structural differences between the RRMs were reinforced by the specificities of wild-type and site-directed mutant U2AF65 for region-dependent cytosine- and uracil-containing RNA sites. Small-angle X-ray scattering analyses further demonstrated that Py tract variations select distinct inter-RRM spacings from a pre-existing ensemble of U2AF65 conformations. Our results highlight both local and global conformational selection as a means for universal 3′ splice site recognition by U2AF65.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Center for RNA Biology and Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | | | |
Collapse
|
89
|
Barraud P, Allain FHT. Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. JOURNAL OF BIOMOLECULAR NMR 2013; 55:119-38. [PMID: 23247503 DOI: 10.1007/s10858-012-9696-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/11/2012] [Indexed: 05/21/2023]
Abstract
Human hnRNP A1 is a multi-functional protein involved in many aspects of nucleic-acid processing such as alternative splicing, micro-RNA biogenesis, nucleo-cytoplasmic mRNA transport and telomere biogenesis and maintenance. The N-terminal region of hnRNP A1, also named unwinding protein 1 (UP1), is composed of two closely related RNA recognition motifs (RRM), and is followed by a C-terminal glycine rich region. Although crystal structures of UP1 revealed inter-domain interactions between RRM1 and RRM2 in both the free and bound form of UP1, these interactions have never been established in solution. Moreover, the relative orientation of hnRNP A1 RRMs is different in the free and bound crystal structures of UP1, raising the question of the biological significance of this domain movement. In the present study, we have used NMR spectroscopy in combination with segmental isotope labeling techniques to carefully analyze the inter-RRM contacts present in solution and subsequently determine the structure of UP1 in solution. Our data unambiguously demonstrate that hnRNP A1 RRMs interact in solution, and surprisingly, the relative orientation of the two RRMs observed in solution is different from the one found in the crystal structure of free UP1 and rather resembles the one observed in the nucleic-acid bound form of the protein. This strongly supports the idea that the two RRMs of hnRNP A1 have a single defined relative orientation which is the conformation previously observed in the bound form and now observed in solution using NMR. It is likely that the conformation in the crystal structure of the free form is a less stable form induced by crystal contacts. Importantly, the relative orientation of the RRMs in proteins containing multiple-RRMs strongly influences the RNA binding topologies that are practically accessible to these proteins. Indeed, RRM domains are asymmetric binding platforms contacting single-stranded nucleic acids in a single defined orientation. Therefore, the path of the nucleic acid molecule on the multiple RRM domains is strongly dependent on whether the RRMs are interacting with each other. The different nucleic acid recognition modes by multiple-RRM domains are briefly reviewed and analyzed on the basis of the current structural information.
Collapse
Affiliation(s)
- Pierre Barraud
- Institute of Molecular Biology and Biophysics, ETH Zurich, Schafmattstrasse 20, 8093 Zurich, Switzerland
| | | |
Collapse
|
90
|
RRM-RNA recognition: NMR or crystallography…and new findings. Curr Opin Struct Biol 2012; 23:100-8. [PMID: 23253355 DOI: 10.1016/j.sbi.2012.11.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 11/02/2012] [Accepted: 11/20/2012] [Indexed: 12/27/2022]
Abstract
To characterize protein-RNA recognition at the molecular level, structural biology has turned out to be an indispensable approach. Detailed and direct insights into the mechanism of RNA binding and specificity have emerged from protein-RNA structures, especially from the most abundant RNA recognition motif (RRM). Although this protein domain has a very conserved α-β fold, it can recognize a large number of different RNA sequences and shapes and can be involved in a multitude of biological processes. Here, we report on recent single and multiple RRM-RNA structures and point out those features that provide novel insights into the mechanism of RNA recognition by RRMs. We further outline inherent problems to both NMR spectroscopy and X-ray crystallography methods and review recent strategies that emphasize the need to use both methodologies for more rapid and accurate structure determinations.
Collapse
|
91
|
Zhang Y, Madl T, Bagdiul I, Kern T, Kang HS, Zou P, Mäusbacher N, Sieber SA, Krämer A, Sattler M. Structure, phosphorylation and U2AF65 binding of the N-terminal domain of splicing factor 1 during 3'-splice site recognition. Nucleic Acids Res 2012; 41:1343-54. [PMID: 23175611 PMCID: PMC3553976 DOI: 10.1093/nar/gks1097] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Recognition of the 3'-splice site is a key step in pre-mRNA splicing and accomplished by a dynamic complex comprising splicing factor 1 (SF1) and the U2 snRNP auxiliary factor 65-kDa subunit (U2AF65). Both proteins mediate protein-protein and protein-RNA interactions for cooperative RNA-binding during spliceosome assembly. Here, we report the solution structure of a novel helix-hairpin domain in the N-terminal region of SF1 (SF1(NTD)). The nuclear magnetic resonance- and small-angle X-ray scattering-derived structure of a complex of the SF1(NTD) with the C-terminal U2AF homology motif domain of U2AF65 (U2AF65(UHM)) reveals that, in addition to the known U2AF65(UHM)-SF1 interaction, the helix-hairpin domain forms a secondary, hydrophobic interface with U2AF65(UHM), which locks the orientation of the two subunits. Mutational analysis shows that the helix hairpin is essential for cooperative formation of the ternary SF1-U2AF65-RNA complex. We further show that tandem serine phosphorylation of a conserved Ser80-Pro81-Ser82-Pro83 motif rigidifies a long unstructured linker in the SF1 helix hairpin. Phosphorylation does not significantly alter the overall conformations of SF1, SF1-U2AF65 or the SF1-U2AF65-RNA complexes, but slightly enhances RNA binding. Our results indicate that the helix-hairpin domain of SF1 is required for cooperative 3'-splice site recognition presumably by stabilizing a unique quaternary arrangement of the SF1-U2AF65-RNA complex.
Collapse
Affiliation(s)
- Yun Zhang
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Ortuño-Pineda C, Galindo-Rosales JM, Calderón-Salinas JV, Villegas-Sepúlveda N, Saucedo-Cárdenas O, De Nova-Ocampo M, Valdés J. Binding of hnRNP H and U2AF65 to respective G-codes and a poly-uridine tract collaborate in the N50-5'ss selection of the REST N exon in H69 cells. PLoS One 2012; 7:e40315. [PMID: 22792276 PMCID: PMC3390395 DOI: 10.1371/journal.pone.0040315] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/04/2012] [Indexed: 11/19/2022] Open
Abstract
The splicing of the N exon in the pre-mRNA coding for the RE1-silencing transcription factor (REST) results in a truncated protein that modifies the expression pattern of some of its target genes. A weak 3'ss, three alternative 5'ss (N4-, N50-, and N62-5'ss) and a variety of putative target sites for splicing regulatory proteins are found around the N exon; two GGGG codes (G2-G3) and a poly-Uridine tract (N-PU) are found in front of the N50-5'ss. In this work we analyzed some of the regulatory factors and elements involved in the preferred selection of the N50-5'ss (N50 activation) in the small cell lung cancer cell line H69. Wild type and mutant N exon/β-globin minigenes recapitulated N50 exon splicing in H69 cells, and showed that the N-PU and the G2-G3 elements are required for N50 exon splicing. Biochemical and knockdown experiments identified these elements as U2AF65 and hnRNP H targets, respectively, and that they are also required for N50 exon activation. Compared to normal MRC5 cells, and in keeping with N50 exon activation, U2AF65, hnRNP H and other splicing factors were highly expressed in H69 cells. CLIP experiments revealed that hnRNP H RNA-binding occurs first and is a prerequisite for U2AF65 RNA binding, and EMSA and CLIP experiments suggest that U2AF65-RNA recognition displaces hnRNP H and helps to recruit other splicing factors (at least U1 70K) to the N50-5'ss. Our results evidenced novel hnRNP H and U2AF65 functions: respectively, U2AF65-recruiting to a 5'ss in humans and the hnRNP H-displacing function from two juxtaposed GGGG codes.
Collapse
Affiliation(s)
- Carlos Ortuño-Pineda
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| | | | | | - Nicolás Villegas-Sepúlveda
- D1epartamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
| | - Odila Saucedo-Cárdenas
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo Léon, Monterrey N.L. México
- División de Genética, Centro de Investigación Biomédica del Noreste, Instituto Mexicano del Seguro Social, Monterrey N.L., México
| | - Mónica De Nova-Ocampo
- Programa Institucional de Biomedicina Molecular, Escuela Nacional de Medicina y Homeopatía-IPN, México D.F., México
| | - Jesús Valdés
- Departamento de Bioquímica, Centro de Investigación y de Estudios Avanzados del I.P.N., México D.F., México
- * E-mail:
| |
Collapse
|
93
|
Shao W, Zhao QY, Wang XY, Xu XY, Tang Q, Li M, Li X, Xu YZ. Alternative splicing and trans-splicing events revealed by analysis of the Bombyx mori transcriptome. RNA (NEW YORK, N.Y.) 2012; 18:1395-1407. [PMID: 22627775 PMCID: PMC3383970 DOI: 10.1261/rna.029751.111] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2011] [Accepted: 05/02/2012] [Indexed: 06/01/2023]
Abstract
Alternative splicing and trans-splicing events have not been systematically studied in the silkworm Bombyx mori. Here, the silkworm transcriptome was analyzed by RNA-seq. We identified 320 novel genes, modified 1140 gene models, and found thousands of alternative splicing and 58 trans-splicing events. Studies of three SR proteins show that both their alternative splicing patterns and mRNA products are conserved from insect to human, and one isoform of Srsf6 with a retained intron is expressed sex-specifically in silkworm gonads. Trans-splicing of mod(mdg4) in silkworm was experimentally confirmed. We identified integrations from a common 5'-gene with 46 newly identified alternative 3'-exons that are located on both DNA strands over a 500-kb region. Other trans-splicing events in B. mori were predicted by bioinformatic analysis, in which 12 events were confirmed by RT-PCR, six events were further validated by chimeric SNPs, and two events were confirmed by allele-specific RT-PCR in F(1) hybrids from distinct silkworm lines of JS and L10, indicating that trans-splicing is more widespread in insects than previously thought. Analysis of the B. mori transcriptome by RNA-seq provides valuable information of regulatory alternative splicing events. The conservation of splicing events across species and newly identified trans-splicing events suggest that B. mori is a good model for future studies.
Collapse
Affiliation(s)
- Wei Shao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qiong-Yi Zhao
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Ye Wang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xin-Yan Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Qing Tang
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Muwang Li
- Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang, Jiangsu 212018, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yong-Zhen Xu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
94
|
Jenkins JL, Laird KM, Kielkopf CL. A Broad range of conformations contribute to the solution ensemble of the essential splicing factor U2AF(65). Biochemistry 2012; 51:5223-5. [PMID: 22702716 DOI: 10.1021/bi300277t] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
U2AF(65) is essential for pre-mRNA splicing in most eukaryotes. Two consecutive RNA recognition motifs (RRM) of U2AF(65) recognize a polypyrimidine tract at the 3' splice site. Here, we use small-angle X-ray scattering to demonstrate that the tandem U2AF(65) RRMs exhibit a broad range of conformations in the solution ensemble. The majority of U2AF(65) conformations exhibit few contacts between the RRMs, such as observed in the crystal structure. A subpopulation adopts tight inter-RRM contacts, such as independently reported based on paramagnetic relaxation enhancements. These complementary structural methods demonstrate that diverse splice sites have the opportunity to select compact or extended inter-RRM proximities from the U2AF(65) conformational pool.
Collapse
Affiliation(s)
- Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | |
Collapse
|
95
|
Mackereth CD, Sattler M. Dynamics in multi-domain protein recognition of RNA. Curr Opin Struct Biol 2012; 22:287-96. [DOI: 10.1016/j.sbi.2012.03.013] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 03/25/2012] [Indexed: 12/28/2022]
|
96
|
Chang J, Schwer B, Shuman S. Structure-function analysis and genetic interactions of the yeast branchpoint binding protein Msl5. Nucleic Acids Res 2012; 40:4539-52. [PMID: 22287628 PMCID: PMC3378887 DOI: 10.1093/nar/gks049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Saccharomyces cerevisiae Msl5 (branchpoint binding protein) orchestrates spliceosome assembly by binding the branchpoint sequence 5′-UACUAAC and establishing cross intron-bridging interactions with other components of the splicing machinery. Reciprocal tandem affinity purifications verify that Msl5 exists in vivo as a heterodimer with Mud2 and that the Msl5–Mud2 complex is associated with the U1 snRNP. By gauging the ability of mutants of Msl5 to complement msl5Δ, we find that the Mud2-binding (amino acids 35–54) and putative Prp40-binding (PPxY100) elements of the Msl5 N-terminal domain are inessential, as are the C-terminal proline-rich domain (amino acids 382–476) and two zinc-binding CxxCxxxxHxxxxC motifs (amino acids 273–286 and 299–312). A subset of conserved branchpoint RNA-binding amino acids in the central KH-QUA2 domain (amino acids 146–269) are essential pairwise (Ile198–Arg190; Leu256–Leu259) or in trios (Leu169–Arg172–Leu176), whereas other pairs of RNA-binding residues are dispensable. We used our collection of viable Msl5 mutants to interrogate synthetic genetic interactions, in cis between the inessential structural elements of the Msl5 polypeptide and in trans between Msl5 and yeast splicing factors (Mud2, Nam8 and Tgs1) that are optional for vegetative growth. The results suggest a network of important but functionally buffered protein–protein and protein–RNA interactions between the Mud2–Msl5 complex at the branchpoint and the U1 snRNP at the 5′ splice site.
Collapse
Affiliation(s)
- Jonathan Chang
- Molecular Biology Program, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | |
Collapse
|
97
|
Muto Y, Yokoyama S. Structural insight into RNA recognition motifs: versatile molecular Lego building blocks for biological systems. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 3:229-46. [PMID: 22278943 DOI: 10.1002/wrna.1107] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
'RNA recognition motifs (RRMs)' are common domain-folds composed of 80-90 amino-acid residues in eukaryotes, and have been identified in many cellular proteins. At first they were known as RNA binding domains. Through discoveries over the past 20 years, however, the RRMs have been shown to exhibit versatile molecular recognition activities and to behave as molecular Lego building blocks to construct biological systems. Novel RNA/protein recognition modes by RRMs are being identified, and more information about the molecular recognition by RRMs is becoming available. These RNA/protein recognition modes are strongly correlated with their biological significance. In this review, we would like to survey the recent progress on these versatile molecular recognition modules.
Collapse
Affiliation(s)
- Yutaka Muto
- Systems and Structural Biology Center, RIKEN, Tsurumi, Japan.
| | | |
Collapse
|
98
|
Boehr DD. Promiscuity in protein-RNA interactions: conformational ensembles facilitate molecular recognition in the spliceosome: conformational diversity in U2AF⁶⁵ facilitates binding to diverse RNA sequences. Bioessays 2011; 34:174-80. [PMID: 22144099 DOI: 10.1002/bies.201100152] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here I discuss findings that suggest a universal mechanism for proteins (and RNA) to recognize and interact with various binding partners by selectively binding to different conformations that pre-exist in the free protein's conformational ensemble. The tandem RNA recognition motif domains of splicing factor U2AF⁶⁵ fluctuate in solution between a predominately closed conformation in which the RNA binding site of one of the domains is blocked, and a lowly populated open conformation in which both RNA binding pockets are accessible. RNA binding to U2AF⁶⁵ may thus occur through the weakly populated open conformation, and the binding interaction stabilizes the open conformation. The conformational diversity observed in U2AF⁶⁵ might also facilitate binding to diverse RNA sequences as found in the polypyrimidine tracts that help define 3' splice sites. Similar binding pathways in other systems have important consequences in biological regulation, molecular evolution, and information storage.
Collapse
Affiliation(s)
- David D Boehr
- Department of Chemistry, The Pennsylvania State University, 240 Chemistry Building, University Park, PA, USA.
| |
Collapse
|
99
|
Bauer WJ, Heath J, Jenkins JL, Kielkopf CL. Three RNA recognition motifs participate in RNA recognition and structural organization by the pro-apoptotic factor TIA-1. J Mol Biol 2011; 415:727-40. [PMID: 22154808 DOI: 10.1016/j.jmb.2011.11.040] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Revised: 10/03/2011] [Accepted: 11/22/2011] [Indexed: 01/10/2023]
Abstract
T-cell intracellular antigen-1 (TIA-1) regulates developmental and stress-responsive pathways through distinct activities at the levels of alternative pre-mRNA splicing and mRNA translation. The TIA-1 polypeptide contains three RNA recognition motifs (RRMs). The central RRM2 and C-terminal RRM3 associate with cellular mRNAs. The N-terminal RRM1 enhances interactions of a C-terminal Q-rich domain of TIA-1 with the U1-C splicing factor, despite linear separation of the domains in the TIA-1 sequence. Given the expanded functional repertoire of the RRM family, it was unknown whether TIA-1 RRM1 contributes to RNA binding as well as documented protein interactions. To address this question, we used isothermal titration calorimetry and small-angle X-ray scattering to dissect the roles of the TIA-1 RRMs in RNA recognition. Notably, the fas RNA exhibited two binding sites with indistinguishable affinities for TIA-1. Analyses of TIA-1 variants established that RRM1 was dispensable for binding AU-rich fas sites, yet all three RRMs were required to bind a polyU RNA with high affinity. Small-angle X-ray scattering analyses demonstrated a "V" shape for a TIA-1 construct comprising the three RRMs and revealed that its dimensions became more compact in the RNA-bound state. The sequence-selective involvement of TIA-1 RRM1 in RNA recognition suggests a possible role for RNA sequences in regulating the distinct functions of TIA-1. Further implications for U1-C recruitment by the adjacent TIA-1 binding sites of the fas pre-mRNA and the bent TIA-1 shape, which organizes the N- and C-termini on the same side of the protein, are discussed.
Collapse
Affiliation(s)
- William J Bauer
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | | | | | | |
Collapse
|
100
|
Ohyama T, Nagata T, Tsuda K, Kobayashi N, Imai T, Okano H, Yamazaki T, Katahira M. Structure of Musashi1 in a complex with target RNA: the role of aromatic stacking interactions. Nucleic Acids Res 2011; 40:3218-31. [PMID: 22140116 PMCID: PMC3326303 DOI: 10.1093/nar/gkr1139] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Mammalian Musashi1 (Msi1) is an RNA-binding protein that regulates the translation of target mRNAs, and participates in the maintenance of cell ‘stemness’ and tumorigenesis. Msi1 reportedly binds to the 3′-untranslated region of mRNA of Numb, which encodes Notch inhibitor, and impedes initiation of its translation by competing with eIF4G for PABP binding, resulting in triggering of Notch signaling. Here, the mechanism by which Msi1 recognizes the target RNA sequence using its Ribonucleoprotein (RNP)-type RNA-binding domains (RBDs), RBD1 and RBD2 has been revealed on identification of the minimal binding RNA for each RBD and determination of the three-dimensional structure of the RBD1:RNA complex. Unique interactions were found for the recognition of the target sequence by Msi1 RBD1: adenine is sandwiched by two phenylalanines and guanine is stacked on the tryptophan in the loop between β1 and α1. The minimal recognition sequences that we have defined for Msi1 RBD1 and RBD2 have actually been found in many Msi1 target mRNAs reported to date. The present study provides molecular clues for understanding the biology involving Musashi family proteins.
Collapse
Affiliation(s)
- Takako Ohyama
- RIKEN Systems and Structural Biology Center, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | | | | | |
Collapse
|