51
|
De Novo Polycomb Recruitment: Lessons from Latent Herpesviruses. Viruses 2021; 13:v13081470. [PMID: 34452335 PMCID: PMC8402699 DOI: 10.3390/v13081470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/24/2021] [Indexed: 12/11/2022] Open
Abstract
The Human Herpesviruses persist in the form of a latent infection in specialized cell types. During latency, the herpesvirus genomes associate with cellular histone proteins and the viral lytic genes assemble into transcriptionally repressive heterochromatin. Although there is divergence in the nature of heterochromatin on latent herpesvirus genomes, in general, the genomes assemble into forms of heterochromatin that can convert to euchromatin to permit gene expression and therefore reactivation. This reversible form of heterochromatin is known as facultative heterochromatin and is most commonly characterized by polycomb silencing. Polycomb silencing is prevalent on the cellular genome and plays a role in developmentally regulated and imprinted genes, as well as X chromosome inactivation. As herpesviruses initially enter the cell in an un-chromatinized state, they provide an optimal system to study how de novo facultative heterochromatin is targeted to regions of DNA and how it contributes to silencing. Here, we describe how polycomb-mediated silencing potentially assembles onto herpesvirus genomes, synergizing what is known about herpesvirus latency with facultative heterochromatin targeting to the cellular genome. A greater understanding of polycomb silencing of herpesviruses will inform on the mechanism of persistence and reactivation of these pathogenic human viruses and provide clues regarding how de novo facultative heterochromatin forms on the cellular genome.
Collapse
|
52
|
Schmücker A, Lei B, Lorković ZJ, Capella M, Braun S, Bourguet P, Mathieu O, Mechtler K, Berger F. Crosstalk between H2A variant-specific modifications impacts vital cell functions. PLoS Genet 2021; 17:e1009601. [PMID: 34086674 PMCID: PMC8208582 DOI: 10.1371/journal.pgen.1009601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/16/2021] [Accepted: 05/14/2021] [Indexed: 12/15/2022] Open
Abstract
Selection of C-terminal motifs participated in evolution of distinct histone H2A variants. Hybrid types of variants combining motifs from distinct H2A classes are extremely rare. This suggests that the proximity between the motif cases interferes with their function. We studied this question in flowering plants that evolved sporadically a hybrid H2A variant combining the SQ motif of H2A.X that participates in the DNA damage response with the KSPK motif of H2A.W that stabilizes heterochromatin. Our inventory of PTMs of H2A.W variants showed that in vivo the cell cycle-dependent kinase CDKA phosphorylates the KSPK motif of H2A.W but only in absence of an SQ motif. Phosphomimicry of KSPK prevented DNA damage response by the SQ motif of the hybrid H2A.W/X variant. In a synthetic yeast expressing the hybrid H2A.W/X variant, phosphorylation of KSPK prevented binding of the BRCT-domain protein Mdb1 to phosphorylated SQ and impaired response to DNA damage. Our findings illustrate that PTMs mediate interference between the function of H2A variant specific C-terminal motifs. Such interference could explain the mutual exclusion of motifs that led to evolution of H2A variants.
Collapse
Affiliation(s)
- Anna Schmücker
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Bingkun Lei
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Zdravko J. Lorković
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Matías Capella
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
| | - Sigurd Braun
- Biomedical Center, Department of Physiological Chemistry, Ludwig-Maximilians-University of Munich, Planegg-Martinsried, Germany
- International Max Planck Research School for Molecular and Cellular Life Sciences, Planegg-Martinsried, Germany
| | - Pierre Bourguet
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
- CNRS, Université Clermont Auvergne, Inserm, Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Olivier Mathieu
- CNRS, Université Clermont Auvergne, Inserm, Génétique Reproduction et Développement, Clermont-Ferrand, France
| | - Karl Mechtler
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| | - Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Vienna, Austria
| |
Collapse
|
53
|
Golson ML. Islet Epigenetic Impacts on β-Cell Identity and Function. Compr Physiol 2021; 11:1961-1978. [PMID: 34061978 DOI: 10.1002/cphy.c200004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The development and maintenance of differentiation is vital to the function of mature cells. Terminal differentiation is achieved by locking in the expression of genes essential for the function of those cells. Gene expression and its memory through generations of cell division is controlled by transcription factors and a host of epigenetic marks. In type 2 diabetes, β cells have altered gene expression compared to controls, accompanied by altered chromatin marks. Mutations, diet, and environment can all disrupt the implementation and preservation of the distinctive β-cell transcriptional signature. Understanding of the full complement of genomic control in β cells is still nascent. This article describes the known effects of histone marks and variants, DNA methylation, how they are regulated in the β cell, and how they affect cell-fate specification, maintenance, and lineage propagation. © 2021 American Physiological Society. Compr Physiol 11:1-18, 2021.
Collapse
Affiliation(s)
- Maria L Golson
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
54
|
Bacheva AV, Gotmanova NN, Belogurov AA, Kudriaeva AA. Control of Genome through Variative Nature of Histone-Modifying Ubiquitin Ligases. BIOCHEMISTRY (MOSCOW) 2021; 86:S71-S95. [PMID: 33827401 DOI: 10.1134/s0006297921140066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Covalent attachment of ubiquitin residue is not only the proteasomal degradation signal, but also a widespread posttranslational modification of cellular proteins in eukaryotes. One of the most important targets of the regulatory ubiquitination are histones. Localization of ubiquitin residue in different regions of the nucleosome attracts a strictly determined set of cellular factors with varied functionality. Depending on the type of histone and the particular lysine residue undergoing modification, histone ubiquitination can lead both to transcription activation and to gene repression, as well as contribute to DNA repair via different mechanisms. An extremely interesting feature of the family of RING E3 ubiquitin ligases catalyzing histone ubiquitination is the striking structural diversity of the domains providing high specificity of modification very similar initial targets. It is obvious that further elucidation of peculiarities of the ubiquitination system involved in histone modification, as well as understanding of physiological role of this process in the maintenance of homeostasis of both single cells and the entire organism, will substantially expand the possibilities of treating a number of socially significant diseases.
Collapse
Affiliation(s)
- Anna V Bacheva
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| | | | - Alexey A Belogurov
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.,Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Anna A Kudriaeva
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia.
| |
Collapse
|
55
|
Barrows JK, Fullbright G, Long D. BRCA1-BARD1 regulates transcription through BRD4 in Xenopus nucleoplasmic extract. Nucleic Acids Res 2021; 49:3263-3273. [PMID: 33660782 PMCID: PMC8034626 DOI: 10.1093/nar/gkab111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
The tumor suppressor BRCA1 is considered a master regulator of genome integrity. Although widely recognized for its DNA repair functions, BRCA1 has also been implicated in various mechanisms of chromatin remodeling and transcription regulation. However, the precise role that BRCA1 plays in these processes has been difficult to establish due to the widespread consequences of its cellular dysfunction. Here, we use nucleoplasmic extract derived from the eggs of Xenopus laevis to investigate the role of BRCA1 in a cell-free transcription system. We report that BRCA1-BARD1 suppresses transcription initiation independent of DNA damage signaling and its established role in histone H2A ubiquitination. BRCA1-BARD1 acts through a histone intermediate, altering acetylation of histone H4K8 and recruitment of the chromatin reader and oncogene regulator BRD4. Together, these results establish a functional relationship between an established (BRCA1) and emerging (BRD4) regulator of genome integrity.
Collapse
Affiliation(s)
- John K Barrows
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - George Fullbright
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - David T Long
- To whom correspondence should be addressed. Tel: +1 843 792 6949;
| |
Collapse
|
56
|
Fursova NA, Turberfield AH, Blackledge NP, Findlater EL, Lastuvkova A, Huseyin MK, Dobrinić P, Klose RJ. BAP1 constrains pervasive H2AK119ub1 to control the transcriptional potential of the genome. Genes Dev 2021; 35:749-770. [PMID: 33888563 PMCID: PMC8091973 DOI: 10.1101/gad.347005.120] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/02/2021] [Indexed: 12/21/2022]
Abstract
Histone-modifying systems play fundamental roles in gene regulation and the development of multicellular organisms. Histone modifications that are enriched at gene regulatory elements have been heavily studied, but the function of modifications found more broadly throughout the genome remains poorly understood. This is exemplified by histone H2A monoubiquitylation (H2AK119ub1), which is enriched at Polycomb-repressed gene promoters but also covers the genome at lower levels. Here, using inducible genetic perturbations and quantitative genomics, we found that the BAP1 deubiquitylase plays an essential role in constraining H2AK119ub1 throughout the genome. Removal of BAP1 leads to pervasive genome-wide accumulation of H2AK119ub1, which causes widespread reductions in gene expression. We show that elevated H2AK119ub1 preferentially counteracts Ser5 phosphorylation on the C-terminal domain of RNA polymerase II at gene regulatory elements and causes reductions in transcription and transcription-associated histone modifications. Furthermore, failure to constrain pervasive H2AK119ub1 compromises Polycomb complex occupancy at a subset of Polycomb target genes, which leads to their derepression, providing a potential molecular rationale for why the BAP1 ortholog in Drosophila has been characterized as a Polycomb group gene. Together, these observations reveal that the transcriptional potential of the genome can be modulated by regulating the levels of a pervasive histone modification.
Collapse
Affiliation(s)
- Nadezda A Fursova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anne H Turberfield
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Neil P Blackledge
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Emma L Findlater
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Anna Lastuvkova
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Miles K Huseyin
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Paula Dobrinić
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
57
|
Induction of HOX Genes by Hepatitis C Virus Infection via Impairment of Histone H2A Monoubiquitination. J Virol 2021; 95:JVI.01784-20. [PMID: 33328315 DOI: 10.1128/jvi.01784-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes liver pathologies, including hepatocellular carcinoma (HCC). Homeobox (HOX) gene products regulate embryonic development and are associated with tumorigenesis, although the regulation of HOX genes by HCV infection has not been clarified in detail. We examined the effect of HCV infection on HOX gene expression. In this study, HCV infection induced more than half of the HOX genes and reduced the level of histone H2A monoubiquitination on lysine 119 (K119) (H2Aub), which represses HOX gene promoter activity. HCV infection also promoted proteasome-dependent degradation of RNF2, which is an E3 ligase mediating H2A monoubiquitination as a component of polycomb repressive complex 1. Since full-genomic replicon cells but not subgenomic replicon cells exhibited reduced RNF2 and H2Aub levels and induction of HOX genes, we focused on the core protein. Expression of the core protein reduced the amounts of RNF2 and H2Aub and induced HOX genes. Treatment with LY-411575, which can reduce HCV core protein expression via signal peptide peptidase (SPP) inhibition without affecting other viral proteins, dose-dependently restored the amounts of RNF2 and H2Aub in HCV-infected cells and impaired the induction of HOX genes and production of viral particles but not viral replication. The chromatin immunoprecipitation assay results also indicated infection- and proteasome-dependent reductions in H2Aub located in HOX gene promoters. These results suggest that HCV infection or core protein induces HOX genes by impairing histone H2A monoubiquitination via a reduction in the RNF2 level.IMPORTANCE Recently sustained virologic response can be achieved by direct-acting antiviral (DAA) therapy in most hepatitis C patients. Unfortunately, DAA therapy does not completely eliminate a risk of hepatocellular carcinoma (HCC). Several epigenetic factors, including histone modifications, are well known to contribute to hepatitis C virus (HCV)-associated HCC. However, the regulation of histone modifications by HCV infection has not been clarified in detail. In this study, our data suggest that HCV infection or HCV core protein expression impairs monoubiquitination of histone H2A K119 in the homeobox (HOX) gene promoter via destabilization of RNF2 and then induces HOX genes. Several lines of evidence suggest that the expression of several HOX genes is dysregulated in certain types of tumors. These findings reveal a novel mechanism of HCV-related histone modification and may provide information about new targets for diagnosis and prevention of HCC occurrence.
Collapse
|
58
|
Abstract
The innate immune response is a rapid response to pathogens or danger signals. It is precisely activated not only to efficiently eliminate pathogens but also to avoid excessive inflammation and tissue damage. cis-Regulatory element-associated chromatin architecture shaped by epigenetic factors, which we define as the epiregulome, endows innate immune cells with specialized phenotypes and unique functions by establishing cell-specific gene expression patterns, and it also contributes to resolution of the inflammatory response. In this review, we focus on two aspects: (a) how niche signals during lineage commitment or following infection and pathogenic stress program epiregulomes by regulating gene expression levels, enzymatic activities, or gene-specific targeting of chromatin modifiers and (b) how the programed epiregulomes in turn mediate regulation of gene-specific expression, which contributes to controlling the development of innate cells, or the response to infection and inflammation, in a timely manner. We also discuss the effects of innate immunometabolic rewiring on epiregulomes and speculate on several future challenges to be encountered during the exploration of the master regulators of epiregulomes in innate immunity and inflammation.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100005, China; , .,National Key Laboratory of Medical Immunology, Institute of Immunology, Navy Military Medical University, Shanghai 200433, China.,Laboratory of Immunity and Inflammation, College of Life Sciences, Nankai University, Tianjin 300071, China
| |
Collapse
|
59
|
Wu Y, Zhang W. The Role of E3s in Regulating Pluripotency of Embryonic Stem Cells and Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:1168. [PMID: 33503896 PMCID: PMC7865285 DOI: 10.3390/ijms22031168] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
Pluripotent embryonic stem cells (ESCs) are derived from early embryos and can differentiate into any type of cells in living organisms. Induced pluripotent stem cells (iPSCs) resemble ESCs, both of which serve as excellent sources to study early embryonic development and realize cell replacement therapies for age-related degenerative diseases and other cell dysfunction-related illnesses. To achieve these valuable applications, comprehensively understanding of the mechanisms underlying pluripotency maintenance and acquisition is critical. Ubiquitination modifies proteins with Ubiquitin (Ub) at the post-translational level to monitor protein stability and activity. It is extensively involved in pluripotency-specific regulatory networks in ESCs and iPSCs. Ubiquitination is achieved by sequential actions of the Ub-activating enzyme E1, Ub-conjugating enzyme E2, and Ub ligase E3. Compared with E1s and E2s, E3s are most abundant, responsible for substrate selectivity and functional diversity. In this review, we focus on E3 ligases to discuss recent progresses in understanding how they regulate pluripotency and somatic cell reprogramming through ubiquitinating core ESC regulators.
Collapse
Affiliation(s)
| | - Weiwei Zhang
- College of Life Sciences, Capital Normal University, Beijing 100048, China;
| |
Collapse
|
60
|
Wang H, Cui B, Sun H, Zhang F, Rao J, Wang R, Zhao S, Shen S, Liu Y. Aberrant GATA2 Activation in Pediatric B-Cell Acute Lymphoblastic Leukemia. Front Pediatr 2021; 9:795529. [PMID: 35087776 PMCID: PMC8787225 DOI: 10.3389/fped.2021.795529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/02/2021] [Indexed: 11/16/2022] Open
Abstract
GATA2 is a transcription factor that is critical for the generation and survival of hematopoietic stem cells (HSCs). It also plays an important role in the regulation of myeloid differentiation. Accordingly, GATA2 expression is restricted to HSCs and hematopoietic progenitors as well as early erythroid cells and megakaryocytic cells. Here we identified aberrant GATA2 expression in B-cell acute lymphoblastic leukemia (B-ALL) by analyzing transcriptome sequencing data obtained from St. Jude Cloud. Differentially expressed genes upon GATA2 activation showed significantly myeloid-like transcription signature. Further analysis identified several tumor-associated genes as targets of GATA2 activation including BAG3 and EPOR. In addition, the correlation between KMT2A-USP2 fusion and GATA2 activation not only indicates a potential trans-activating mechanism of GATA2 but also suggests that GATA2 is a target of KMT2A-USP2. Furthermore, by integrating whole-genome and transcriptome sequencing data, we showed that GATA2 is also cis activated. A somatic focal deletion located in the GATA2 neighborhood that disrupts the boundaries of topologically associating domains was identified in one B-ALL patient with GATA2 activation. These evidences support the hypothesis that GATA2 could be involved in leukemogenesis of B-ALL and can be transcriptionally activated through multiple mechanisms. The findings of aberrant activation of GATA2 and its molecular function extend our understanding of transcriptional factor dysregulation in B-ALL.
Collapse
Affiliation(s)
- Han Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bowen Cui
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huiying Sun
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fang Zhang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jianan Rao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ronghua Wang
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuang Zhao
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Key Laboratory of Pediatric Hematology & Oncology Ministry of Health, Department of Hematology & Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu Liu
- Pediatric Translational Medicine Institute, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
61
|
Wirth M, Schick M, Keller U, Krönke J. Ubiquitination and Ubiquitin-Like Modifications in Multiple Myeloma: Biology and Therapy. Cancers (Basel) 2020; 12:cancers12123764. [PMID: 33327527 PMCID: PMC7764993 DOI: 10.3390/cancers12123764] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Multiple myeloma is a cancer of plasma cells causing bone fractures, anemia, renal insufficiency and hypercalcemia. Despite the introduction of new drugs in the past years, it still remains incurable and most patients die from the disease. Multiple myeloma cells are characterized by the production of high amounts of monoclonal antibodies. Therefore, maintaining protein homeostasis from synthesis through folding to degradation is crucial for multiple myeloma cells. While protein ubiquitination and organized degradation are typically considered critical for cellular health, an emerging strategy is to block these processes to induce cell death in disease-state cells characterized by protein over-production. Recent development of compounds that alter the ubiquitin proteasome pathway and drugs that affect ubiquitin-like modifications appear promising in both preclinically and in clinical trials. This review summarizes the impact of protein modifications such as ubiquitination and ubiquitin-like modifications in the biology of multiple myeloma and how it can be exploited to develop new effective therapies for multiple myeloma. Abstract Multiple myeloma is a genetically heterogeneous plasma cell malignancy characterized by organ damage and a massive production of (in-)complete monoclonal antibodies. Coping with protein homeostasis and post-translational regulation is therefore essential for multiple myeloma cells to survive. Furthermore, post-translational modifications such as ubiquitination and SUMOylation play key roles in essential pathways in multiple myeloma, including NFκB signaling, epigenetic regulation, as well as DNA damage repair. Drugs modulating the ubiquitin–proteasome system, such as proteasome inhibitors and thalidomide analogs, are approved and highly effective drugs in multiple myeloma. In this review, we focus on ubiquitin and ubiquitin-like modifications in the biology and current developments of new treatments for multiple myeloma.
Collapse
Affiliation(s)
- Matthias Wirth
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Markus Schick
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
| | - Ulrich Keller
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Max-Delbrück Center for Molecular Medicine, 13092 Berlin, Germany
| | - Jan Krönke
- Department of Hematology, Oncology and Tumor Immunology, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, 12203 Berlin, Germany; (M.W.); (M.S.); (U.K.)
- German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-30-450-513-538
| |
Collapse
|
62
|
Vaughan RM, Kupai A, Rothbart SB. Chromatin Regulation through Ubiquitin and Ubiquitin-like Histone Modifications. Trends Biochem Sci 2020; 46:258-269. [PMID: 33308996 DOI: 10.1016/j.tibs.2020.11.005] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/27/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023]
Abstract
Chromatin functions are influenced by the addition, removal, and recognition of histone post-translational modifications (PTMs). Ubiquitin and ubiquitin-like (UBL) PTMs on histone proteins can function as signaling molecules by mediating protein-protein interactions. Fueled by the identification of novel ubiquitin and UBL sites and the characterization of the writers, erasers, and readers, the breadth of chromatin functions associated with ubiquitin signaling is emerging. Here, we highlight recently appreciated roles for histone ubiquitination in DNA methylation control, PTM crosstalk, nucleosome structure, and phase separation. We also discuss the expanding diversity and functions associated with histone UBL modifications. We conclude with a look toward the future and pose key questions that will drive continued discovery at the interface of epigenetics and ubiquitin signaling.
Collapse
Affiliation(s)
- Robert M Vaughan
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Ariana Kupai
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Scott B Rothbart
- Center for Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
63
|
Zhang YZ, Yuan J, Zhang L, Chen C, Wang Y, Zhang G, Peng L, Xie SS, Jiang J, Zhu JK, Du J, Duan CG. Coupling of H3K27me3 recognition with transcriptional repression through the BAH-PHD-CPL2 complex in Arabidopsis. Nat Commun 2020; 11:6212. [PMID: 33277495 PMCID: PMC7718874 DOI: 10.1038/s41467-020-20089-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Histone 3 Lys 27 trimethylation (H3K27me3)-mediated epigenetic silencing plays a critical role in multiple biological processes. However, the H3K27me3 recognition and transcriptional repression mechanisms are only partially understood. Here, we report a mechanism for H3K27me3 recognition and transcriptional repression. Our structural and biochemical data showed that the BAH domain protein AIPP3 and the PHD proteins AIPP2 and PAIPP2 cooperate to read H3K27me3 and unmodified H3K4 histone marks, respectively, in Arabidopsis. The BAH-PHD bivalent histone reader complex silences a substantial subset of H3K27me3-enriched loci, including a number of development and stress response-related genes such as the RNA silencing effector gene ARGONAUTE 5 (AGO5). We found that the BAH-PHD module associates with CPL2, a plant-specific Pol II carboxyl terminal domain (CTD) phosphatase, to form the BAH-PHD-CPL2 complex (BPC) for transcriptional repression. The BPC complex represses transcription through CPL2-mediated CTD dephosphorylation, thereby causing inhibition of Pol II release from the transcriptional start site. Our work reveals a mechanism coupling H3K27me3 recognition with transcriptional repression through the alteration of Pol II phosphorylation states, thereby contributing to our understanding of the mechanism of H3K27me3-dependent silencing.
Collapse
Affiliation(s)
- Yi-Zhe Zhang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jianlong Yuan
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Lingrui Zhang
- grid.169077.e0000 0004 1937 2197Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Chunxiang Chen
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Yuhua Wang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Guiping Zhang
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Li Peng
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China
| | - Si-Si Xie
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, 100049 Beijing, China
| | - Jing Jiang
- grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| | - Jian-Kang Zhu
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.169077.e0000 0004 1937 2197Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907 USA
| | - Jiamu Du
- grid.263817.9Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, 518055 Shenzhen, China
| | - Cheng-Guo Duan
- grid.9227.e0000000119573309Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 201602 Shanghai, China ,grid.256922.80000 0000 9139 560XState Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, 475004 Kaifeng, China
| |
Collapse
|
64
|
Dumasia NP, Pethe PS. Pancreas development and the Polycomb group protein complexes. Mech Dev 2020; 164:103647. [PMID: 32991980 DOI: 10.1016/j.mod.2020.103647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/02/2020] [Accepted: 09/17/2020] [Indexed: 02/07/2023]
Abstract
The dual nature of pancreatic tissue permits both endocrine and exocrine functions. Enzymatic secretions by the exocrine pancreas help digestive processes while the pancreatic hormones regulate glucose homeostasis and energy metabolism. Pancreas organogenesis is defined by a conserved array of signaling pathways that act on common gut progenitors to bring about the generation of diverse cell types. Multiple cellular processes characterize development of the mature organ. These processes are mediated by signaling pathways that regulate lineage-specific transcription factors and chromatin modifications guiding long-term gene expression programs. The chromatin landscape is altered chiefly by DNA or histone modifications, chromatin remodelers, and non-coding RNAs. Amongst histone modifiers, several studies have identified Polycomb group (PcG) proteins as crucial determinants mediating transcriptional repression of genes involved in developmental processes. Although PcG-mediated chromatin modifications define cellular transitions and influence cell identity of multipotent progenitors, much remains to be understood regarding coordination between extracellular signals and their impact on Polycomb functions during the pancreas lineage progression. In this review, we discuss interactions between sequence-specific DNA binding proteins and chromatin regulators underlying pancreas development and insulin producing β-cells, with particular focus on Polycomb group proteins. Understanding such basic molecular mechanisms would improve current strategies for stem cell-based differentiation while also help elucidate the pathogenesis of several pancreas-related maladies, including diabetes and pancreatic cancer.
Collapse
Affiliation(s)
- Niloufer P Dumasia
- Department of Biological Sciences, Sunandan Divatia School of Science, SVKM's NMIMS (deemed to-be) University, Mumbai 400 056, India
| | - Prasad S Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University, Lavale, Pune 412 115, India.
| |
Collapse
|
65
|
Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020; 11:5947. [PMID: 33230107 PMCID: PMC7683540 DOI: 10.1038/s41467-020-19722-9] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Histone posttranslational modifications are key regulators of chromatin-associated processes including gene expression, DNA replication and DNA repair. Monoubiquitinated histone H2A, H2Aub (K118 in Drosophila or K119 in vertebrates) is catalyzed by the Polycomb group (PcG) repressive complex 1 (PRC1) and reversed by the PcG-repressive deubiquitinase (PR-DUB)/BAP1 complex. Here we critically assess the current knowledge regarding H2Aub deposition and removal, its crosstalk with PcG repressive complex 2 (PRC2)-mediated histone H3K27 methylation, and the recent attempts toward discovering its readers and solving its enigmatic functions. We also discuss mounting evidence of the involvement of H2A ubiquitination in human pathologies including cancer, while highlighting some knowledge gaps that remain to be addressed. Histone H2A monoubiquitination on lysine 119 in vertebrate and lysine 118 in Drosophila (H2Aub) is an epigenomic mark usually associated with gene repression by Polycomb group factors. Here the authors review the current knowledge on the deposition and removal of H2Aub, its function in transcription and other DNA-associated processes as well as its relevance to human disease.
Collapse
|
66
|
Geng Z, Gao Z. Mammalian PRC1 Complexes: Compositional Complexity and Diverse Molecular Mechanisms. Int J Mol Sci 2020; 21:E8594. [PMID: 33202645 PMCID: PMC7697839 DOI: 10.3390/ijms21228594] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 12/13/2022] Open
Abstract
Polycomb group (PcG) proteins function as vital epigenetic regulators in various biological processes, including pluripotency, development, and carcinogenesis. PcG proteins form multicomponent complexes, and two major types of protein complexes have been identified in mammals to date, Polycomb Repressive Complexes 1 and 2 (PRC1 and PRC2). The PRC1 complexes are composed in a hierarchical manner in which the catalytic core, RING1A/B, exclusively interacts with one of six Polycomb group RING finger (PCGF) proteins. This association with specific PCGF proteins allows for PRC1 to be subdivided into six distinct groups, each with their own unique modes of action arising from the distinct set of associated proteins. Historically, PRC1 was considered to be a transcription repressor that deposited monoubiquitylation of histone H2A at lysine 119 (H2AK119ub1) and compacted local chromatin. More recently, there is increasing evidence that demonstrates the transcription activation role of PRC1. Moreover, studies on the higher-order chromatin structure have revealed a new function for PRC1 in mediating long-range interactions. This provides a different perspective regarding both the transcription activation and repression characteristics of PRC1. This review summarizes new advancements regarding the composition of mammalian PRC1 and accompanying explanations of how diverse PRC1-associated proteins participate in distinct transcription regulation mechanisms.
Collapse
Affiliation(s)
- Zhuangzhuang Geng
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Zhonghua Gao
- Departments of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033, USA;
- Penn State Hershey Cancer Institute, Hershey, PA 17033, USA
- The Stem Cell and Regenerative Biology Program, Penn State College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
67
|
Magaña-Acosta M, Valadez-Graham V. Chromatin Remodelers in the 3D Nuclear Compartment. Front Genet 2020; 11:600615. [PMID: 33329746 PMCID: PMC7673392 DOI: 10.3389/fgene.2020.600615] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/07/2020] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodeling complexes (CRCs) use ATP hydrolysis to maintain correct expression profiles, chromatin stability, and inherited epigenetic states. More than 20 CRCs have been described to date, which encompass four large families defined by their ATPase subunits. These complexes and their subunits are conserved from yeast to humans through evolution. Their activities depend on their catalytic subunits which through ATP hydrolysis provide the energy necessary to fulfill cellular functions such as gene transcription, DNA repair, and transposon silencing. These activities take place at the first levels of chromatin compaction, and CRCs have been recognized as essential elements of chromatin dynamics. Recent studies have demonstrated an important role for these complexes in the maintenance of higher order chromatin structure. In this review, we present an overview of the organization of the genome within the cell nucleus, the different levels of chromatin compaction, and importance of the architectural proteins, and discuss the role of CRCs and how their functions contribute to the dynamics of the 3D genome organization.
Collapse
Affiliation(s)
- Mauro Magaña-Acosta
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Viviana Valadez-Graham
- Departamento de Genética del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
68
|
Hu E, Du H, Shang S, Zhang Y, Lu X. Beta-Hydroxybutyrate Enhances BDNF Expression by Increasing H3K4me3 and Decreasing H2AK119ub in Hippocampal Neurons. Front Neurosci 2020; 14:591177. [PMID: 33192276 PMCID: PMC7655964 DOI: 10.3389/fnins.2020.591177] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 12/18/2022] Open
Abstract
Neurological evidence suggests that beta-hydroxybutyrate (BHBA) has positive effects on the central nervous system. Previous studies have explored the molecular mechanisms by which BHBA affects different brain functions, but the effects of BHBA on epigenetic modifications remain elusive. Here, we showed that BHBA enhanced brain-derived neurotrophic factor (BDNF) expression by increasing H3K4me3 and decreasing H2AK119ub occupancy at the Bdnf promoters I, II, IV, and VI in hippocampal neurons. Moreover, BHBA treatment induced the upregulation of H3K4me3 and downregulation of H2AK119ub on the global level, both of which were dependent on the L-type calcium channel. Additionally, the BHBA-activated L-type calcium channel subsequently triggered the activation of Ca2+/CaMKII/CREB signaling, and promoted the binding of p-CREB and CBP to Bdnf promoters. These results indicate that BHBA regulates cellular signaling and multiple histone modifications to cooperatively modulate BDNF, suggesting a wide range of regulatory effects of BHBA in the central nervous system.
Collapse
Affiliation(s)
- Erling Hu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Huan Du
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Sen Shang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Yali Zhang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyun Lu
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Sciences and Technology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
69
|
Li Z, Qu X, Liu X, Huan C, Wang H, Zhao Z, Yang X, Hua S, Zhang W. GBP5 Is an Interferon-Induced Inhibitor of Respiratory Syncytial Virus. J Virol 2020; 94:e01407-20. [PMID: 32796072 PMCID: PMC7565618 DOI: 10.1128/jvi.01407-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 08/04/2020] [Indexed: 01/26/2023] Open
Abstract
Guanylate binding protein 5 (GBP5) belongs to the GTPase subfamily, which is mainly induced by interferon gamma (IFN-γ) and is involved in many important cellular processes, including inflammasome activation and innate immunity against a wide variety of microbial pathogens. However, it is unknown whether GBP5 inhibits respiratory syncytial virus (RSV) infection. In this study, we identified GBP5 as an effector of the anti-RSV activity of IFN-γ and found that in children, the weaker immune response, especially the weaker IFN-γ response and the decreased GBP5 expression, leads to RSV susceptibility. Furthermore, we revealed that GBP5 reduced the cell-associated levels of the RSV small hydrophobic (SH) protein, which was identified as a viroporin. In contrast, overexpression of the SH protein rescued RSV replication in the presence of GBP5. The GBP5-induced decrease in intracellular SH protein levels is because GBP5 promotes the release of the SH protein into the cell culture. Moreover, the GBP5 C583A mutants with changes at the C terminus or the GBP5 ΔC mutant lacking the C-terminal region, which impairs GBP5 localization in the Golgi, could not inhibit RSV infection, whereas the GTPase-defective GBP5 maintained RSV inhibition, suggesting that Golgi localization but not the GTPase activity of GBP5 is required for RSV inhibition. Interestingly, we found that RSV infection or RSV G protein downregulates GBP5 expression by upregulating DZIP3, an E3 ligase, which induces GBP5 degradation through the K48 ubiquitination and proteasomal pathways. Thus, this study reveals a complicated interplay between host restrictive factor GBP5 and RSV infection and provides important information for understanding the pathogenesis of RSV.IMPORTANCE RSV is a highly contagious virus that causes multiple infections in infants within their first year of life. It can also easily cause infection in elderly or immunocompromised individuals, suggesting that individual differences in immunity play an important role in RSV infection. Therefore, exploring the pathogenic mechanisms of RSV and identifying essential genes which inhibit RSV infection are necessary to develop an effective strategy to control RSV infection. Here, we report that the IFN-inducible gene GBP5 potently inhibits RSV replication by reducing the cell-associated levels of the RSV small hydrophobic (SH) protein, which is a viroporin. In contrast, the RSV G protein was shown to upregulate the expression of the DZIP3 protein, an E3 ligase that degrades GBP5 through the proteasomal pathway. Our study provides important information for the understanding of the pathogenic mechanisms of RSV and host immunity as well as the complicated interplay between the virus and host.
Collapse
Affiliation(s)
- Zhaolong Li
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xinglong Qu
- Respiratory Department of the First Hospital of Jilin University, Changchun, People's Republic of China
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xin Liu
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Chen Huan
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Hong Wang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Zhilei Zhao
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Xu Yang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Shucheng Hua
- Respiratory Department of the First Hospital of Jilin University, Changchun, People's Republic of China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, the First Hospital of Jilin University, Changchun, People's Republic of China
| |
Collapse
|
70
|
Hait AS, Thomsen MM, Larsen SM, Helleberg M, Mardahl M, Barfod TS, Christiansen M, Brandt C, Mogensen TH. Whole-Exome Sequencing of Patients With Recurrent HSV-2 Lymphocytic Mollaret Meningitis. J Infect Dis 2020; 223:1776-1786. [PMID: 32946550 DOI: 10.1093/infdis/jiaa589] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/17/2020] [Indexed: 12/19/2022] Open
Abstract
Recurrent lymphocytic meningitis, also referred to as Mollaret meningitis, is a rare neurological disease characterized mainly by reactivation of herpes simplex virus 2 (HSV-2) from sensory ganglia. However, the underlying host immune determinants and viral factors rendering some individuals unable to maintain HSV-2 latency are largely unknown. We collected a cohort of 15 patients diagnosed with Mollaret meningitis. By whole-exome sequencing we identified rare host genetic variants predicted to be deleterious in molecules involved in (1) ubiquitin-proteasome pathways, (2) the autophagy machinery, and (3) cell proliferation/apoptosis. Moreover, infection of patient cells with HSV-2 or stimulation by virus-derived double-stranded DNA ligands revealed reduced antiviral interferon responses in most patients. These findings may contribute to a better understanding of disease pathogenesis and protective immunity to HSV in the central nervous system, and may ultimately be of importance for identification of targets for development of improved prophylaxis and treatment of this disease.
Collapse
Affiliation(s)
- Alon Schneider Hait
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Michelle M Thomsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Simon M Larsen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Marie Helleberg
- Department of Infectious Diseases, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maibritt Mardahl
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark
| | - Toke S Barfod
- Department of Internal medicine, Section for Infectious Diseases, Zealand University Hospital, Roskilde, Denmark
| | - Mette Christiansen
- Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Christian Brandt
- Department of Internal medicine, Section for Infectious Diseases, Zealand University Hospital, Roskilde, Denmark.,Department of Pulmonology and Infectious Diseases, Nordsjællands Hospital, Hillerød, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital, Aarhus, Denmark.,Department of Biomedicine, Aarhus University, Aarhus, Denmark.,Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
71
|
Francis NJ, Sihou D. Inheritance of Histone (H3/H4): A Binary Choice? Trends Biochem Sci 2020; 46:5-14. [PMID: 32917507 DOI: 10.1016/j.tibs.2020.08.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/09/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023]
Abstract
Histones carry information in the form of post-translational modifications (PTMs). For this information to be propagated through cell cycles, parental histones and their PTMs need to be maintained at the same genomic locations. Yet, during DNA replication, every nucleosome in the genome is disrupted to allow passage of the replisome. Recent data have identified histone chaperone activities that are intrinsic components of the replisome and implicate them in maintaining parental histones during DNA replication. We propose that structural and kinetic coordination between DNA replication and replisome-associated histone chaperone activities ensures positional inheritance of histones and their PTMs. When this coordination is perturbed, histones may instead be recycled to random genomic locations by alternative histone chaperones.
Collapse
Affiliation(s)
- Nicole J Francis
- Institut de Recherche Clinique de Montréal, 110 Avenue des Pins, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada; Division of Experimental Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada.
| | - Djamouna Sihou
- Institut de Recherche Clinique de Montréal, 110 Avenue des Pins, Montréal, QC H2W 1R7, Canada; Département de Biochimie et Médecine Moléculaire, Université de Montréal, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
72
|
Przanowski P, Lou S, Tihagam RD, Mondal T, Conlan C, Shivange G, Saltani I, Singh C, Xing K, Morris BB, Mayo MW, Teixeira L, Lehmann-Che J, Tushir-Singh J, Bhatnagar S. Oncogenic TRIM37 Links Chemoresistance and Metastatic Fate in Triple-Negative Breast Cancer. Cancer Res 2020; 80:4791-4804. [PMID: 32855208 DOI: 10.1158/0008-5472.can-20-1459] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/21/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
Abstract
The majority of clinical deaths in patients with triple-negative breast cancer (TNBC) are due to chemoresistance and aggressive metastases, with high prevalence in younger women of African ethnicity. Although tumorigenic drivers are numerous and varied, the drivers of metastatic transition remain largely unknown. Here, we uncovered a molecular dependence of TNBC tumors on the TRIM37 network, which enables tumor cells to resist chemotherapeutic as well as metastatic stress. TRIM37-directed histone H2A monoubiquitination enforces changes in DNA repair that rendered TP53-mutant TNBC cells resistant to chemotherapy. Chemotherapeutic drugs triggered a positive feedback loop via ATM/E2F1/STAT signaling, amplifying the TRIM37 network in chemoresistant cancer cells. High expression of TRIM37 induced transcriptomic changes characteristic of a metastatic phenotype, and inhibition of TRIM37 substantially reduced the in vivo propensity of TNBC cells. Selective delivery of TRIM37-specific antisense oligonucleotides using antifolate receptor 1-conjugated nanoparticles in combination with chemotherapy suppressed lung metastasis in spontaneous metastatic murine models. Collectively, these findings establish TRIM37 as a clinically relevant target with opportunities for therapeutic intervention. SIGNIFICANCE: TRIM37 drives aggressive TNBC biology by promoting resistance to chemotherapy and inducing a prometastatic transcriptional program; inhibition of TRIM37 increases chemotherapy efficacy and reduces metastasis risk in patients with TNBC.
Collapse
Affiliation(s)
- Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Song Lou
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Rachisan Djiake Tihagam
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Tanmoy Mondal
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Caroline Conlan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Gururaj Shivange
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Ilyas Saltani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Chandrajeet Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Kun Xing
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Benjamin B Morris
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Marty W Mayo
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia.,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Luis Teixeira
- Breast Disease Unit, AP-HP, Hospital Saint Louis, Paris, France.,University of Paris, INSERM U976, HIPI, IRSL-Saint Louis, Paris, France
| | - Jacqueline Lehmann-Che
- University of Paris, INSERM U976, HIPI, IRSL-Saint Louis, Paris, France.,Molecular Oncology Unit, AP-HP Hospital Saint Louis, Paris, France
| | - Jogender Tushir-Singh
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia. .,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Laboratory of Novel Biologics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Sanchita Bhatnagar
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia. .,UVA Cancer Center, University of Virginia School of Medicine, Charlottesville, Virginia.,Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, Virginia
| |
Collapse
|
73
|
Regulation of Histone Ubiquitination in Response to DNA Double Strand Breaks. Cells 2020; 9:cells9071699. [PMID: 32708614 PMCID: PMC7407225 DOI: 10.3390/cells9071699] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/10/2020] [Accepted: 07/14/2020] [Indexed: 12/11/2022] Open
Abstract
Eukaryotic cells are constantly exposed to both endogenous and exogenous stressors that promote the induction of DNA damage. Of this damage, double strand breaks (DSBs) are the most lethal and must be efficiently repaired in order to maintain genomic integrity. Repair of DSBs occurs primarily through one of two major pathways: non-homologous end joining (NHEJ) or homologous recombination (HR). The choice between these pathways is in part regulated by histone post-translational modifications (PTMs) including ubiquitination. Ubiquitinated histones not only influence transcription and chromatin architecture at sites neighboring DSBs but serve as critical recruitment platforms for repair machinery as well. The reversal of these modifications by deubiquitinating enzymes (DUBs) is increasingly being recognized in a number of cellular processes including DSB repair. In this context, DUBs ensure proper levels of ubiquitin, regulate recruitment of downstream effectors, dictate repair pathway choice, and facilitate appropriate termination of the repair response. This review outlines the current understanding of histone ubiquitination in response to DSBs, followed by a comprehensive overview of the DUBs that catalyze the removal of these marks.
Collapse
|
74
|
Cohen I, Bar C, Ezhkova E. Activity of PRC1 and Histone H2AK119 Monoubiquitination: Revising Popular Misconceptions. Bioessays 2020; 42:e1900192. [PMID: 32196702 PMCID: PMC7585675 DOI: 10.1002/bies.201900192] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/12/2020] [Indexed: 12/21/2022]
Abstract
Polycomb group proteins are evolutionary conserved chromatin-modifying complexes, essential for the regulation of developmental and cell-identity genes. Polycomb-mediated transcriptional regulation is provided by two multi-protein complexes known as Polycomb repressive complex 1 (PRC1) and 2 (PRC2). Recent studies positioned PRC1 as a foremost executer of Polycomb-mediated transcriptional control. Mammalian PRC1 complexes can form multiple sub-complexes that vary in their core and accessory subunit composition, leading to fascinating and diverse transcriptional regulatory mechanisms employed by PRC1 complexes. These mechanisms include PRC1-catalytic activity toward monoubiquitination of histone H2AK119, a well-established hallmark of PRC1 complexes, whose importance has been long debated. In this review, the central roles that PRC1-catalytic activity plays in transcriptional repression are emphasized and the recent evidence supporting a role for PRC1 complexes in gene activation is discussed.
Collapse
Affiliation(s)
- Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
- These authors contributed equally to this work
| | - Carmit Bar
- Black Family Stem Cell Institute, Department of Cell, Developmental, and Regenerative Biology; Icahn School of Medicine at Mount Sinai; 1 Gustave L. Levy Place, New York, NY 10029; USA
- These authors contributed equally to this work
| | - Elena Ezhkova
- The Shraga Segal Department of Microbiology, Immunology and Genetics; Faculty of Health Science; Ben-Gurion University of the Negev; Beer Sheva 84105; Israel
| |
Collapse
|
75
|
Desai D, Pethe P. Polycomb repressive complex 1: Regulators of neurogenesis from embryonic to adult stage. J Cell Physiol 2020; 235:4031-4045. [PMID: 31608994 DOI: 10.1002/jcp.29299] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 09/27/2019] [Indexed: 02/05/2023]
Abstract
Development of vertebrate nervous system is a complex process which involves differential gene expression and disruptions in this process or in the mature brain, may lead to neurological disorders and diseases. Extensive work that spanned several decades using rodent models and recent work on stem cells have helped uncover the intricate process of neuronal differentiation and maturation. There are various morphological changes, genetic and epigenetic modifications which occur during normal mammalian neural development, one of the chromatin modifications that controls vital gene expression are the posttranslational modifications on histone proteins, that controls accessibility of translational machinery. Among the histone modifiers, polycomb group proteins (PcGs), such as Ezh2, Eed and Suz12 form large protein complexes-polycomb repressive complex 2 (PRC2); while Ring1b and Bmi1 proteins form core of PRC1 along with accessory proteins such as Cbx, Hph, Rybp and Pcgfs catalyse histone modifications such as H3K27me3 and H2AK119ub1. PRC1 proteins are known to play critical role in X chromosome inactivation in females but they also repress the expression of key developmental genes and tightly regulate the mammalian neuronal development. In this review we have discussed the signalling pathways, morphogens and nuclear factors that initiate, regulate and maintain cells of the nervous system. Further, we have extensively reviewed the recent literature on the role of Ring1b and Bmi1 in mammalian neuronal development and differentiation; as well as highlighted questions that are still unanswered.
Collapse
Affiliation(s)
- Divya Desai
- Department of Biological Sciences, Sunandan Divatia School of Science (SDSOS), Narsee Monjee Institute of Management Studies (NMIMS) deemed-to-be University, Mumbai, India
| | - Prasad Pethe
- Symbiosis Centre for Stem Cell Research (SCSCR), Symbiosis International University (SIU), Pune, India
| |
Collapse
|
76
|
Blackledge NP, Fursova NA, Kelley JR, Huseyin MK, Feldmann A, Klose RJ. PRC1 Catalytic Activity Is Central to Polycomb System Function. Mol Cell 2020; 77:857-874.e9. [PMID: 31883950 PMCID: PMC7033600 DOI: 10.1016/j.molcel.2019.12.001] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/21/2019] [Accepted: 12/02/2019] [Indexed: 01/01/2023]
Abstract
The Polycomb repressive system is an essential chromatin-based regulator of gene expression. Despite being extensively studied, how the Polycomb system selects its target genes is poorly understood, and whether its histone-modifying activities are required for transcriptional repression remains controversial. Here, we directly test the requirement for PRC1 catalytic activity in Polycomb system function. To achieve this, we develop a conditional mutation system in embryonic stem cells that completely removes PRC1 catalytic activity. Using this system, we demonstrate that catalysis by PRC1 drives Polycomb chromatin domain formation and long-range chromatin interactions. Furthermore, we show that variant PRC1 complexes with DNA-binding activities occupy target sites independently of PRC1 catalytic activity, providing a putative mechanism for Polycomb target site selection. Finally, we discover that Polycomb-mediated gene repression requires PRC1 catalytic activity. Together these discoveries provide compelling evidence that PRC1 catalysis is central to Polycomb system function and gene regulation.
Collapse
Affiliation(s)
- Neil P Blackledge
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, UK
| | - Nadezda A Fursova
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, UK
| | - Jessica R Kelley
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, UK
| | - Miles K Huseyin
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, UK
| | - Angelika Feldmann
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, UK
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, South Parks Rd., Oxford OX1 3QU, UK.
| |
Collapse
|
77
|
Fouad AF, Khan AA, Silva RM, Kang MK. Genetic and Epigenetic Characterization of Pulpal and Periapical Inflammation. Front Physiol 2020; 11:21. [PMID: 32116745 PMCID: PMC7010935 DOI: 10.3389/fphys.2020.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 01/13/2020] [Indexed: 12/18/2022] Open
Abstract
Pulpal and periapical diseases affect a large segment of the population. The role of microbial infections and host effector molecules in these diseases is well established. However, the interaction between host genes and environmental factors in disease susceptibility and progression is less well understood. Studies of genetic polymorphisms in disease relevant genes have suggested that individual predisposition may contribute to susceptibility to pulpal and periapical diseases. Other studies have explored the contribution of epigenetic mechanisms to these diseases. Ongoing research expands the spectrum of non-coding RNAs in pulpal disease to include viral microRNAs as well. This review summarizes recent advances in the genetic and epigenetic characterization of pulpal and periapical disease, with special emphasis on recent data that address the pathogenesis of irreversible pulpal pathosis and apical periodontitis. Specifically, proinflammatory and anti-inflammatory gene expression and gene polymorphism, as well as recent data on DNA methylation and microRNAs are reviewed. Improved understanding of these mechanisms may aid in disease prevention as well as in improved treatment outcomes.
Collapse
Affiliation(s)
- Ashraf F Fouad
- Division of Comprehensive Oral Health, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Asma A Khan
- Department of Endodontics, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Renato M Silva
- Department of Endodontics, The University of Texas Health Science Center at Houston, Houston, TX, United States
| | - Mo K Kang
- Section of Endodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
78
|
Xiao X, Liu C, Pei Y, Wang YZ, Kong J, Lu K, Ma L, Dou SX, Wang PY, Li G, Chen P, Li W. Histone H2A Ubiquitination Reinforces Mechanical Stability and Asymmetry at the Single-Nucleosome Level. J Am Chem Soc 2020; 142:3340-3345. [DOI: 10.1021/jacs.9b12448] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Xue Xiao
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yingxin Pei
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Zhou Wang
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Synthetic Biology Center, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, China
| | - Jingwei Kong
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Lu
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Ma
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuo-Xing Dou
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng-Ye Wang
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Chen
- School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100054, China
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Li
- National Laboratory for Condensed Matter Physics and Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
79
|
Machour FE, Ayoub N. Transcriptional Regulation at DSBs: Mechanisms and Consequences. Trends Genet 2020; 36:981-997. [PMID: 32001024 DOI: 10.1016/j.tig.2020.01.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/31/2019] [Accepted: 01/03/2020] [Indexed: 12/11/2022]
Abstract
Defective double-strand break (DSB) repair leads to genomic instabilities that may augment carcinogenesis. DSBs trigger transient transcriptional silencing in the vicinity of transcriptionally active genes through multilayered processes instigated by Ataxia telangiectasia mutated (ATM), DNA-dependent protein kinase (DNA-PK), and poly-(ADP-ribose) polymerase 1 (PARP1). Novel factors have been identified that ensure DSB-induced silencing via two distinct pathways: direct inhibition of RNA Polymerase II (Pol II) mediated by negative elongation factor (NELF), and histone code editing by CDYL1 and histone deacetylases (HDACs) that catalyze H3K27me3 and erase lysine crotonylation, respectively. Here, we highlight major advances in understanding the mechanisms underlying transcriptional silencing at DSBs, and discuss its functional implications on repair. Furthermore, we discuss consequential links between DSB-silencing factors and carcinogenesis and discuss the potential of exploiting them for targeted cancer therapy.
Collapse
Affiliation(s)
- Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa 3200003, Israel.
| |
Collapse
|
80
|
Johansen S, Gjerstorff MF. Interaction between Polycomb and SSX Proteins in Pericentromeric Heterochromatin Function and Its Implication in Cancer. Cells 2020; 9:cells9010226. [PMID: 31963307 PMCID: PMC7016822 DOI: 10.3390/cells9010226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/13/2020] [Accepted: 01/14/2020] [Indexed: 01/10/2023] Open
Abstract
The stability of pericentromeric heterochromatin is maintained by repressive epigenetic control mechanisms, and failure to maintain this stability may cause severe diseases such as immune deficiency and cancer. Thus, deeper insight into the epigenetic regulation and deregulation of pericentromeric heterochromatin is of high priority. We and others have recently demonstrated that pericentromeric heterochromatin domains are often epigenetically reprogrammed by Polycomb proteins in premalignant and malignant cells to form large subnuclear structures known as Polycomb bodies. This may affect the regulation and stability of pericentromeric heterochromatin domains and/or the distribution of Polycomb factors to support tumorigeneses. Importantly, Polycomb bodies in cancer cells may be targeted by the cancer/testis-related SSX proteins to cause derepression and genomic instability of pericentromeric heterochromatin. This review will discuss the interplay between SSX and Polycomb factors in the repression and stability of pericentromeric heterochromatin and its possible implications for tumor biology.
Collapse
Affiliation(s)
- Simone Johansen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
| | - Morten Frier Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, 5000 Odense, Denmark;
- Department of Oncology, Odense University Hospital, 5000 Odense, Denmark
- Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, 5000 Odense, Denmark
- Correspondence: ; Tel.: +45-21261563
| |
Collapse
|
81
|
A negative feedback mechanism links UBC gene expression to ubiquitin levels by affecting RNA splicing rather than transcription. Sci Rep 2019; 9:18556. [PMID: 31811203 PMCID: PMC6898720 DOI: 10.1038/s41598-019-54973-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 11/20/2019] [Indexed: 12/16/2022] Open
Abstract
UBC gene plays a critical role in maintaining ubiquitin (Ub) homeostasis. It is upregulated under stress conditions, and herein we report that it is downregulated upon Ub overexpression. Downregulation occurs in a dose-dependent manner, suggesting the existence of a fine-tuned Ub sensing mechanism. This “sensor” requires a conjugation competent ubiquitin to detect Ub levels. Searching the sensor among the transcription factors involved in basal and stress-induced UBC gene expression was unsuccessful. Neither HSF1 and HSF2, nor Sp1 and YY1 are affected by the increased Ub levels. Moreover, mutagenesis of their binding sites in the UBC promoter-driven reporter constructs does not impair the downmodulation effect. Epigenetic studies show that H2A and H2B ubiquitination within the UBC promoter region is unchanged upon ubiquitin overexpression. Noteworthy, quantification of nascent RNA molecules excludes that the downmodulation arises in the transcription initiation step, rather pointing towards a post-transcriptional mechanism. Indeed, a significantly higher fraction of unspliced UBC mRNA is detected in ubiquitin overexpressing cells, compared to empty vector transfected cells. Our findings suggest how increasing cellular ubiquitin levels may control the expression of UBC gene by negatively affecting the splicing of its pre-mRNA, providing a straightforward feedback strategy for the homeostatic control of ubiquitin pools.
Collapse
|
82
|
Bangham CRM, Miura M, Kulkarni A, Matsuoka M. Regulation of Latency in the Human T Cell Leukemia Virus, HTLV-1. Annu Rev Virol 2019; 6:365-385. [PMID: 31283437 DOI: 10.1146/annurev-virology-092818-015501] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The human T cell leukemia virus persists in vivo in 103 to 106 clones of T lymphocytes that appear to survive for the lifetime of the host. The plus strand of the provirus is typically transcriptionally silent in freshly isolated lymphocytes, but the strong, persistently activated cytotoxic T lymphocyte (CTL) response to the viral antigens indicates that the virus is not constantly latent in vivo. There is now evidence that the plus strand is transcribed in intense intermittent bursts that are triggered by cellular stress, modulated by hypoxia and glycolysis, and inhibited by polycomb repressive complex 1 (PRC1). The minus-strand gene hbz is transcribed at a lower, more constant level but is silent in a proportion of infected cells at a given time. Viral genes in the sense and antisense strands of the provirus play different respective roles in latency and de novo infection: Expression of the plus-strand gene tax is essential for de novo infection, whereas hbz appears to facilitate survival of the infected T cell clone in vivo.
Collapse
Affiliation(s)
- Charles R M Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Michi Miura
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Anurag Kulkarni
- Division of Infectious Diseases, Department of Medicine, Imperial College London, London W2 1PG, United Kingdom;
| | - Masao Matsuoka
- Laboratory of Virus Control, Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan.,Department of Hematology, Rheumatology and Infectious Diseases, Kumamoto University School of Medicine, Kumamoto 860-8556, Japan;
| |
Collapse
|
83
|
Wu J, Wang H, Li Q, Guo QY, Tao SQ, Shen YX, Wu ZS. The oncogenic impact of RNF2 on cell proliferation, invasion and migration through EMT on mammary carcinoma. Pathol Res Pract 2019; 215:152523. [DOI: 10.1016/j.prp.2019.152523] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 06/06/2019] [Accepted: 06/27/2019] [Indexed: 11/16/2022]
|
84
|
Tsuboi M, Hirabayashi Y, Gotoh Y. Diverse gene regulatory mechanisms mediated by Polycomb group proteins during neural development. Curr Opin Neurobiol 2019; 59:164-173. [PMID: 31398486 DOI: 10.1016/j.conb.2019.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
Abstract
While all the developmental genes are temporarily repressed for future activation in the pluripotent stem cells, non-neural genes become persistently repressed in the course of commitment to the neuronal lineage. Although Polycomb group proteins (PcG) are key factors for both temporary and persistent repression of the developmental genes, how the same group of proteins can differentially repress target genes remains unclarified. The identification of a variety of PcG complexes and activities sheds light on these issues. In this review, based on the recent findings including those with the use of interactome and Chromosome Conformation Capture (3C)-type analyses, we summarize the molecular mechanisms of PcG-mediated gene regulation and discuss how PcG regulates cell fate specification during neural development.
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Yusuke Hirabayashi
- Graduate School of Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
85
|
Chen P, Wang H, Zhang W, Chen Y, Lv Y, Wu D, Guo M, Deng H. Loss of BAP1 Results in Growth Inhibition and Enhances Mesenchymal-Epithelial Transition in Kidney Tumor Cells. Mol Cell Proteomics 2019; 18:1320-1329. [PMID: 30992312 PMCID: PMC6601205 DOI: 10.1074/mcp.ra119.001457] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Indexed: 12/11/2022] Open
Abstract
BRCA1-associated protein 1 (BAP1) is a member of the ubiquitin C-terminal hydrolase family of deubiquitinating enzymes and is implicated in transcriptional regulation. The BAP1 gene is mutated in about 10% of patients with ccRCC, the most common form of renal cancer, suggesting that BAP1 is a tumor suppressor. However, whether BAP1 influences the progression of ccRCC tumors expressing wild-type (WT) BAP1 is unclear. Here, we assessed the expression and function of BAP1 using human ccRCC specimens and cell lines. Analysis of datasets in The Cancer Genome Atlas revealed that lower BAP1 expression is correlated with longer overall survival of ccRCC patients. We established human ccRCC cell lines with stable BAP1 knockout and performed multiomic analysis of BAP1-mediated cellular processes. BAP1 knockout downregulated proteins associated with protein synthesis, resulting in decreased cell growth. Importantly, loss of BAP1 decreased the formation of stress fibers and membrane protrusions and induced migration and invasion defects. BAP1 knockout in ccRCC cells also downregulated the expression of transcriptional repressor protein Snail and decreased the activity of Rho family GTPases, promoting the cells to undergo mesenchymal-epithelial transition. Unexpectedly, quantitative proteomics also showed that BAP1 knockout increased expression of several amino acid transporters and multiple tyrosine kinases, including the epidermal growth factor receptor. Overall, our results suggest that BAP1 regulates multiple cellular processes, and we also uncover a new role for BAP1 in controlling mesenchymal-epithelial transition in ccRCC cells.
Collapse
Affiliation(s)
- Pengsheng Chen
- From the ‡MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences
| | - Huan Wang
- §MOE Key Laboratory for Protein Science, School of Life Sciences, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- From the ‡MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences
| | - Yuling Chen
- From the ‡MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences;; ¶Tsinghua University-Peking University Joint Center for Life Sciences, Beijing, China
| | - Yang Lv
- ‖Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Di Wu
- ‖Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Mingzhou Guo
- ‖Department of Gastroenterology and Hepatology, and Center of Nephrology, Chinese PLA General Hospital, Beijing, China
| | - Haiteng Deng
- From the ‡MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systematic Biology, School of Life Sciences;.
| |
Collapse
|
86
|
Jangal M, Lebeau B, Witcher M. Beyond EZH2: is the polycomb protein CBX2 an emerging target for anti-cancer therapy? Expert Opin Ther Targets 2019; 23:565-578. [PMID: 31177918 DOI: 10.1080/14728222.2019.1627329] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Epigenetic modifications are important regulators of transcription and appropriate gene expression answering an environmental stimulus. In cancer, these epigenetic modifications are altered, which impact the transcriptome, promoting initiation and cancer progression. Thus, targeting epigenetic machinery has proven to be an efficient cancer therapy. Areas covered: We review CBX2 as a therapeutic target. CBX2 is a polycomb protein, responsible for polycomb-repressive complex 1 (PRC1) targeting to chromatin via recognition of the repressive mark H3K27me3. Mechanistically, CBX2 overexpression may be implicated in poor survival by maintaining cancer stem cells in an undifferentiated state and via repression of tumor suppressors. We discuss strategies used to target CBX proteins and provide insights into biomarker considerations that may be important when targeting CBX family members for anti-cancer therapy. Expert opinion: CBX2 inhibition is a promising approach for the targeting of polycomb complexes in the cancer stem cell niche. However, extensive optimization of the current field of small molecules targeting CBX family proteins will be critical to reach in vivo, or clinical, utility.
Collapse
Affiliation(s)
- Maïka Jangal
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| | - Benjamin Lebeau
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| | - Michael Witcher
- a The Lady Davis Institute of the Jewish General Hospital, Department of Oncology , McGill University , Montreal , Canada
| |
Collapse
|
87
|
Yang L, Ma Z, Wang H, Niu K, Cao Y, Sun L, Geng Y, Yang B, Gao F, Chen Z, Wu Z, Li Q, Shen Y, Zhang X, Jiang H, Chen Y, Liu R, Liu N, Zhang Y. Ubiquitylome study identifies increased histone 2A ubiquitylation as an evolutionarily conserved aging biomarker. Nat Commun 2019; 10:2191. [PMID: 31113955 PMCID: PMC6529468 DOI: 10.1038/s41467-019-10136-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 04/12/2019] [Indexed: 12/31/2022] Open
Abstract
The long-lived proteome constitutes a pool of exceptionally stable proteins with limited turnover. Previous studies on ubiquitin-mediated protein degradation primarily focused on relatively short-lived proteins; how ubiquitylation modifies the long-lived proteome and its regulatory effect on adult lifespan is unclear. Here we profile the age-dependent dynamics of long-lived proteomes in Drosophila by mass spectrometry using stable isotope switching coupled with antibody-enriched ubiquitylome analysis. Our data describe landscapes of long-lived proteins in somatic and reproductive tissues of Drosophila during adult lifespan, and reveal a preferential ubiquitylation of older long-lived proteins. We identify an age-modulated increase of ubiquitylation on long-lived histone 2A protein in Drosophila, which is evolutionarily conserved in mouse, monkey, and human. A reduction of ubiquitylated histone 2A in mutant flies is associated with longevity and healthy lifespan. Together, our data reveal an evolutionarily conserved biomarker of aging that links epigenetic modulation of the long-lived histone protein to lifespan.
Collapse
Affiliation(s)
- Lu Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zaijun Ma
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Wang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kongyan Niu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Ye Cao
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Le Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Geng
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Bo Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Feng Gao
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, China
| | - Zuolong Chen
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, China
| | - Zhen Wu
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Qingqing Li
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Yong Shen
- Neurodegenerative Disorder Research Center, University of Science and Technology of China, No.96, JinZhai Road Baohe District, Hefei, Anhui, 230026, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering, Department of Biochemistry, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Hong Jiang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Yelin Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China
| | - Rui Liu
- Singlera Genomics, 781 Cailun Road, Rm 1208, Pudong, Shanghai, 201203, China
| | - Nan Liu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China.
| | - Yaoyang Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd., Pudong, Shanghai, 201210, China.
| |
Collapse
|
88
|
Tsuboi M, Kishi Y, Yokozeki W, Koseki H, Hirabayashi Y, Gotoh Y. Ubiquitination-Independent Repression of PRC1 Targets during Neuronal Fate Restriction in the Developing Mouse Neocortex. Dev Cell 2019; 47:758-772.e5. [PMID: 30562514 DOI: 10.1016/j.devcel.2018.11.018] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 08/05/2018] [Accepted: 11/13/2018] [Indexed: 02/06/2023]
Abstract
Polycomb repressive complex (PRC) 1 maintains developmental genes in a poised state through monoubiquitination (Ub) of histone H2A. Although Ub-independent functions of PRC1 have also been suggested, it has remained unclear whether Ub-dependent and -independent functions of PRC1 operate differentially in a developmental context. Here, we show that the E3 ubiquitin ligase activity of Ring1B, a core component of PRC1, is necessary for the temporary repression of key neuronal genes in neurogenic (early-stage) neural stem or progenitor cells (NPCs) but is dispensable for the persistent repression of these genes associated with the loss of neurogenic potential in astrogliogenic (late-stage) NPCs. Our results also suggest that histone deacetylase (HDAC) activity of the NuRD/MBD3 complex and Phc2-dependent PRC1 clustering are necessary for the transition from the Ub-dependent to -independent function of PRC1. Together, these results indicate that Ub-independent mode of repression by PRC1 plays a key role in mammalian development during cell fate restriction.
Collapse
Affiliation(s)
- Masafumi Tsuboi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan.
| | - Wakana Yokozeki
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan
| | - Haruhiko Koseki
- RIKEN Center for Integrative Medical Sciences, Kanagawa 230-0045, Japan
| | - Yusuke Hirabayashi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; PRESTO, JST, TokyoJapan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo 113-0033, Japan; International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Tokyo 113-0033, Japan.
| |
Collapse
|
89
|
Single Nucleotide Polymorphisms of CBX4 and CBX7 Decrease the Risk of Hepatocellular Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:6436825. [PMID: 31211140 PMCID: PMC6532305 DOI: 10.1155/2019/6436825] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 04/02/2019] [Accepted: 04/18/2019] [Indexed: 12/17/2022]
Abstract
Background The chromobox (CBX) proteins CBX2, CBX4, CBX6, CBX7, and CBX8, also known as Polycomb (Pc) proteins, are canonical components of the Polycomb repressive complex 1 (PRC1). Abundant evidence indicates that abnormal expression of Pc proteins is associated with a variety of tumors, but their role in the pathogenesis of hepatocellular carcinoma (HCC) has not been fully elucidated. In the present study, we performed a case-control study to investigate the relationship between single nucleotide polymorphisms (SNPs) of CBX genes and HCC. Methods Nine SNPs on CBX genes (rs7217395, rs2036316 of CBX2; rs3764374, rs1285251, rs2289728 of CBX4; rs7292074 of CBX6; and rs710190, rs139394, rs5750753 of CBX7) were screened and genotyped using MassARRAY technology in 334 HCC cases and 321 controls. The association between SNPs and their corresponding gene expressions was analyzed through bioinformatics methods using the Ensembl database and Blood eQTL browser online tools. Results The results indicated that rs2289728 (G>A) of CBX4 (P = 0.03, OR = 0.56, 95% CI: 0.33-0.94) and rs139394 (C>A) of CBX7 (P = 0.02, OR = 0.55, 95% CI: 0.33-0.90) decreased the risk of HCC. Interaction between rs2036316 and HBsAg increased the risk of HCC (P = 0.02, OR = 6.88, 95% CI: 5.20-9.11), whereas SNP-SNP interaction between rs710190 and rs139394 reduced the risk of HCC (P = 0.03, OR = 0.33, 95% CI: 0.12-0.91). Gene expression analyses showed that the rs2289728 A allele and the rs139394 A allele significantly reduced CBX4 and CBX7 expression, respectively. Conclusion Our findings suggest that CBX4 rs2289728 and CBX7 rs139394 are protective SNPs against HCC. The two SNPs may reduce the risk of HCC while suppressing the expression of CBX4 and CBX7.
Collapse
|
90
|
Roy D, Chakrabarty J, Mallik R, Chaudhuri S. Rice Trithorax factor ULTRAPETALA 1 (OsULT1) specifically binds to “GAGAG” sequence motif present in Polycomb response elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:582-597. [DOI: 10.1016/j.bbagrm.2019.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 02/07/2023]
|
91
|
|
92
|
Abstract
Cancer can be identified as a chaotic cell state, which breaks the rules that govern growth and reproduction, with main characteristics such as uncontrolled division, invading other tissues, usurping resources, and eventually killing its host. It was once believed that cancer is caused by a progressive series of genetic aberrations, and certain mutations of genes, including oncogenes and tumor suppressor genes, have been identified as the cause of cancer. However, piling evidence suggests that epigenetic modifications working in concert with genetic mechanisms to regulate transcriptional activity are dysregulated in many diseases, including cancer. Cancer epigenetics explain a wide range of heritable changes in gene expression, which do not come from any alteration in DNA sequences. Aberrant DNA methylation, histone modifications, and expression of long non-coding RNAs (lncRNAs) are key epigenetic mechanisms associated with tumor initiation, cancer progression, and metastasis. Within the past decade, cancer epigenetics have enabled us to develop novel biomarkers and therapeutic target for many types of cancers. In this review, we will summarize the major epigenetic changes involved in cancer biology along with clinical and preclinical results developed as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jong Woo Park
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeung-Whan Han
- Research Center for Epigenome Regulation, School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
93
|
Loubiere V, Martinez AM, Cavalli G. Cell Fate and Developmental Regulation Dynamics by Polycomb Proteins and 3D Genome Architecture. Bioessays 2019; 41:e1800222. [PMID: 30793782 DOI: 10.1002/bies.201800222] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/22/2018] [Indexed: 12/14/2022]
Abstract
Targeted transitions in chromatin states at thousands of genes are essential drivers of eukaryotic development. Therefore, understanding the in vivo dynamics of epigenetic regulators is crucial for deciphering the mechanisms underpinning cell fate decisions. This review illustrates how, in addition to its cell memory function, the Polycomb group of transcriptional regulators orchestrates temporal, cell and tissue-specific expression of master genes during development. These highly sophisticated developmental transitions are dependent on the context- and tissue-specific assembly of the different types of Polycomb Group (PcG) complexes, which regulates their targeting and/or activities on chromatin. Here, an overview is provided of how PcG complexes function at multiple scales to regulate transcription, local chromatin environment, and higher order structures that support normal differentiation and are perturbed in tumorigenesis.
Collapse
Affiliation(s)
- Vincent Loubiere
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Anne-Marie Martinez
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| | - Giacomo Cavalli
- Institute of Human Genetics, UMR 9002, CNRS and University of Montpellier, 34396, Montpellier, France
| |
Collapse
|
94
|
Jeusset LMP, McManus KJ. Developing Targeted Therapies That Exploit Aberrant Histone Ubiquitination in Cancer. Cells 2019; 8:cells8020165. [PMID: 30781493 PMCID: PMC6406838 DOI: 10.3390/cells8020165] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 02/12/2019] [Accepted: 02/13/2019] [Indexed: 12/13/2022] Open
Abstract
Histone ubiquitination is a critical epigenetic mechanism regulating DNA-driven processes such as gene transcription and DNA damage repair. Importantly, the cellular machinery regulating histone ubiquitination is frequently altered in cancers. Moreover, aberrant histone ubiquitination can drive oncogenesis by altering the expression of tumor suppressors and oncogenes, misregulating cellular differentiation and promoting cancer cell proliferation. Thus, targeting aberrant histone ubiquitination may be a viable strategy to reprogram transcription in cancer cells, in order to halt cellular proliferation and induce cell death, which is the basis for the ongoing development of therapies targeting histone ubiquitination. In this review, we present the normal functions of histone H2A and H2B ubiquitination and describe the role aberrant histone ubiquitination has in oncogenesis. We also describe the key benefits and challenges associated with current histone ubiquitination targeting strategies. As these strategies are predicted to have off-target effects, we discuss additional efforts aimed at developing synthetic lethal strategies and epigenome editing tools, which may prove pivotal in achieving effective and selective therapies targeting histone ubiquitination, and ultimately improving the lives and outcomes of those living with cancer.
Collapse
Affiliation(s)
- Lucile M-P Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
- Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada.
| |
Collapse
|
95
|
Marsh DJ, Dickson KA. Writing Histone Monoubiquitination in Human Malignancy-The Role of RING Finger E3 Ubiquitin Ligases. Genes (Basel) 2019; 10:genes10010067. [PMID: 30669413 PMCID: PMC6356280 DOI: 10.3390/genes10010067] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 01/09/2023] Open
Abstract
There is growing evidence highlighting the importance of monoubiquitination as part of the histone code. Monoubiquitination, the covalent attachment of a single ubiquitin molecule at specific lysines of histone tails, has been associated with transcriptional elongation and the DNA damage response. Sites function as scaffolds or docking platforms for proteins involved in transcription or DNA repair; however, not all sites are equal, with some sites resulting in actively transcribed chromatin and others associated with gene silencing. All events are written by E3 ubiquitin ligases, predominantly of the RING (really interesting new gene) finger type. One of the most well-studied events is monoubiquitination of histone H2B at lysine 120 (H2Bub1), written predominantly by the RING finger complex RNF20-RNF40 and generally associated with active transcription. Monoubiquitination of histone H2A at lysine 119 (H2AK119ub1) is also well-studied, its E3 ubiquitin ligase constituting part of the Polycomb Repressor Complex 1 (PRC1), RING1B-BMI1, associated with transcriptional silencing. Both modifications are activated as part of the DNA damage response. Histone monoubiquitination is a key epigenomic event shaping the chromatin landscape of malignancy and influencing how cells respond to DNA damage. This review discusses a number of these sites and the E3 RING finger ubiquitin ligases that write them.
Collapse
Affiliation(s)
- Deborah J Marsh
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| | - Kristie-Ann Dickson
- University of Technology Sydney, Translational Oncology Group, School of Life Sciences, Faculty of Science, Ultimo, NSW 2007, Australia.
| |
Collapse
|
96
|
Fournier LA, Kumar A, Stirling PC. Chromatin as a Platform for Modulating the Replication Stress Response. Genes (Basel) 2018; 9:genes9120622. [PMID: 30544989 PMCID: PMC6316668 DOI: 10.3390/genes9120622] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/03/2018] [Accepted: 12/04/2018] [Indexed: 02/06/2023] Open
Abstract
Eukaryotic DNA replication occurs in the context of chromatin. Recent years have seen major advances in our understanding of histone supply, histone recycling and nascent histone incorporation during replication. Furthermore, much is now known about the roles of histone remodellers and post-translational modifications in replication. It has also become clear that nucleosome dynamics during replication play critical roles in genome maintenance and that chromatin modifiers are important for preventing DNA replication stress. An understanding of how cells deploy specific nucleosome modifiers, chaperones and remodellers directly at sites of replication fork stalling has been building more slowly. Here we will specifically discuss recent advances in understanding how chromatin composition contribute to replication fork stability and restart.
Collapse
Affiliation(s)
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer Agency, Vancouver, BC V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V5Z 1L3, Canada.
| |
Collapse
|
97
|
Kulkarni A, Taylor GP, Klose RJ, Schofield CJ, Bangham CR. Histone H2A monoubiquitylation and p38-MAPKs regulate immediate-early gene-like reactivation of latent retrovirus HTLV-1. JCI Insight 2018; 3:123196. [PMID: 30333309 PMCID: PMC6237452 DOI: 10.1172/jci.insight.123196] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 08/30/2018] [Indexed: 12/30/2022] Open
Abstract
It is not understood how the human T cell leukemia virus human T-lymphotropic virus-1 (HTLV-1), a retrovirus, regulates the in vivo balance between transcriptional latency and reactivation. The HTLV-1 proviral plus-strand is typically transcriptionally silent in freshly isolated peripheral blood mononuclear cells from infected individuals, but after short-term ex vivo culture, there is a strong, spontaneous burst of proviral plus-strand transcription. Here, we demonstrate that proviral reactivation in freshly isolated, naturally infected primary CD4+ T cells has 3 key attributes characteristic of an immediate-early gene. Plus-strand transcription is p38-MAPK dependent and is not inhibited by protein synthesis inhibitors. Ubiquitylation of histone H2A (H2AK119ub1), a signature of polycomb repressive complex-1 (PRC1), is enriched at the latent HTLV-1 provirus, and immediate-early proviral reactivation is associated with rapid deubiquitylation of H2A at the provirus. Inhibition of deubiquitylation by the deubiquitinase (DUB) inhibitor PR619 reverses H2AK119ub1 depletion and strongly inhibits plus-strand transcription. We conclude that the HTLV-1 proviral plus-strand is regulated with characteristics of a cellular immediate-early gene, with a PRC1-dependent bivalent promoter sensitive to p38-MAPK signaling. Finally, we compare the epigenetic signatures of p38-MAPK inhibition, DUB inhibition, and glucose deprivation at the HTLV-1 provirus, and we show that these pathways act as independent checkpoints regulating proviral reactivation from latency.
Collapse
Affiliation(s)
- Anurag Kulkarni
- Division of Infectious Diseases, Department of Medicine, Imperial College, London, United Kingdom
| | - Graham P. Taylor
- Division of Infectious Diseases, Department of Medicine, Imperial College, London, United Kingdom
| | - Robert J. Klose
- Laboratory of Chromatin Biology and Transcription, Department of Biochemistry, and
| | - Christopher J. Schofield
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - Charles R.M. Bangham
- Division of Infectious Diseases, Department of Medicine, Imperial College, London, United Kingdom
| |
Collapse
|
98
|
Lavender P, Kelly A, Hendy E, McErlean P. CRISPR-based reagents to study the influence of the epigenome on gene expression. Clin Exp Immunol 2018; 194:9-16. [PMID: 30030848 PMCID: PMC6156815 DOI: 10.1111/cei.13190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2018] [Indexed: 12/22/2022] Open
Abstract
The use of epigenome editing is set to expand our knowledge of how epigenetic landscapes facilitate gene expression capacity within a given cell. As epigenetic landscape profiling in health and disease becomes more commonplace, so does the requirement to assess the functional impact that particular regulatory domains and DNA methylation profiles have upon gene expression capacity. That functional assessment is particularly pertinent when analysing epigenomes in disease states where the reversible nature of histone and DNA modification might yield plausible therapeutic targets. In this review we discuss first the nature of the epigenetic landscape, secondly the types of factors that deposit and erase the various modifications, consider how modifications transduce their signals, and lastly address current tools for experimental epigenome editing with particular emphasis on the immune system.
Collapse
Affiliation(s)
- P. Lavender
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial ScienceMRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College LondonLondonUK
| | - A. Kelly
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial ScienceMRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College LondonLondonUK
| | - E. Hendy
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial ScienceMRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College LondonLondonUK
| | - P. McErlean
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial ScienceMRC and Asthma UK Centre in Allergic Mechanisms of Asthma, King’s College LondonLondonUK
| |
Collapse
|
99
|
Abstract
Differentiation of stem cells into highly specialised cells requires gene expression changes brought about by remodelling of the chromatin architecture. During this lineage-commitment process, the majority of DNA needs to be packaged into inactive heterochromatin, allowing only a subset of regulatory elements to remain open and functionally required genes to be expressed. Epigenetic mechanisms such as DNA methylation, post-translational modifications to histone tails, and nucleosome positioning all potentially contribute to the changes in higher order chromatin structure during differentiation. The mammary gland is a particularly useful model to study these complex epigenetic processes since the majority of its development is postnatal, the gland is easily accessible, and development occurs in a highly reproducible manner. Inappropriate epigenetic remodelling can also drive tumourigenesis; thus, insights into epigenetic remodelling during mammary gland development advance our understanding of breast cancer aetiology. We review the current literature surrounding DNA methylation and histone modifications in the developing mammary gland and its implications for breast cancer.
Collapse
Affiliation(s)
- Holly Holliday
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Laura A Baker
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Simon R Junankar
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia.,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia
| | - Susan J Clark
- St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.,Epigenetics Research Program, Genomics and Epigenetics Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - Alexander Swarbrick
- The Kinghorn Cancer Centre, Cancer Research Division, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia. .,St Vincent's Clinical School, Faculty of Medicine, UNSW, Darlinghurst, NSW, 2010, Australia.
| |
Collapse
|
100
|
Abstract
Conventional root canal therapies yield high success rates. The treatment outcomes are negatively affected by the presence of apical periodontitis (AP), which reflects active root canal infection and inflammatory responses. Also, cross-sectional studies revealed surprisingly high prevalence of AP in the general population, especially in those with prior endodontic treatments. Hence, AP is an ongoing disease entity in endodontics that needs further understanding of the pathogenesis and disease progression. The current Chapter will discuss the basic mechanisms of AP with emphasis on emerging role of epigenetic regulators in regulation of inflammatory mediators.
Collapse
|