51
|
Björk P, Wieslander L. Integration of mRNP formation and export. Cell Mol Life Sci 2017; 74:2875-2897. [PMID: 28314893 PMCID: PMC5501912 DOI: 10.1007/s00018-017-2503-3] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 12/13/2022]
Abstract
Expression of protein-coding genes in eukaryotes relies on the coordinated action of many sophisticated molecular machineries. Transcription produces precursor mRNAs (pre-mRNAs) and the active gene provides an environment in which the pre-mRNAs are processed, folded, and assembled into RNA–protein (RNP) complexes. The dynamic pre-mRNPs incorporate the growing transcript, proteins, and the processing machineries, as well as the specific protein marks left after processing that are essential for export and the cytoplasmic fate of the mRNPs. After release from the gene, the mRNPs move by diffusion within the interchromatin compartment, making up pools of mRNPs. Here, splicing and polyadenylation can be completed and the mRNPs recruit the major export receptor NXF1. Export competent mRNPs interact with the nuclear pore complex, leading to export, concomitant with compositional and conformational changes of the mRNPs. We summarize the integrated nuclear processes involved in the formation and export of mRNPs.
Collapse
Affiliation(s)
- Petra Björk
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| | - Lars Wieslander
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, 106 91 Stockholm, Sweden
| |
Collapse
|
52
|
Lan S, Kamel W, Punga T, Akusjärvi G. The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding. Nucleic Acids Res 2017; 45:1731-1742. [PMID: 27899607 PMCID: PMC5389519 DOI: 10.1093/nar/gkw1145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing.
Collapse
Affiliation(s)
- Susan Lan
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| |
Collapse
|
53
|
Agarwal N, Ansari A. Enhancement of Transcription by a Splicing-Competent Intron Is Dependent on Promoter Directionality. PLoS Genet 2016; 12:e1006047. [PMID: 27152651 PMCID: PMC4859611 DOI: 10.1371/journal.pgen.1006047] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/20/2016] [Indexed: 11/23/2022] Open
Abstract
Enhancement of transcription by a splicing-competent intron is an evolutionarily conserved feature among eukaryotes. The molecular mechanism underlying the phenomenon, however, is not entirely clear. Here we show that the intron is an important regulator of promoter directionality. Employing strand-specific transcription run-on (TRO) analysis, we show that the transcription of mRNA is favored over the upstream anti-sense transcripts (uaRNA) initiating from the promoter in the presence of an intron. Mutation of either the 5′ or 3′ splice site resulted in the reversal of promoter directionality, thereby suggesting that it is not merely the 5′ splice site but the entire splicing-competent intron that regulates transcription directionality. ChIP analysis revealed the recruitment of termination factors near the promoter region in the presence of an intron. Removal of intron or the mutation of splice sites adversely affected the promoter localization of termination factors. We have earlier demonstrated that the intron-mediated enhancement of transcription is dependent on gene looping. Here we show that gene looping is crucial for the recruitment of termination factors in the promoter-proximal region of an intron-containing gene. In a looping-defective mutant, despite normal splicing, the promoter occupancy of factors required for poly(A)-dependent termination of transcription was compromised. This was accompanied by a concomitant loss of transcription directionality. On the basis of these results, we propose that the intron-dependent gene looping places the terminator-bound factors in the vicinity of the promoter region for termination of the promoter-initiated upstream antisense transcription, thereby conferring promoter directionality. Eukaryotic genes differ from their prokaryotic counterparts in having intervening non-coding sequences called introns. The precise biological role of introns in eukaryotic systems remains unclear even more than forty years after their initial discovery. One function of intron that has been remarkably conserved during evolution is their ability to enhance the transcription of genes that harbor them. How does the intron regulate transcription, however, is not known. Here we show that the intron enhances gene expression by affecting direction of the promoter-initiated transcription. In the presence of an intron, polymerase tends to transcribe the downstream coding region producing mRNA, while in the absence of a splicing-competent intron polymerase starts transcribing promoter upstream region producing upstream antisense RNA (uaRNA). Intron-mediated promoter directionality was dependent on gene looping, which is the interaction off the promoter and terminator region of a gene in a transcription-dependent manner. We show that the intron-dependent gene looping facilitates the recruitment of termination factors in the promoter-proximal region. The recruited termination factors stop uaRNA synthesis thereby conferring directionality to the promoter-bound polymerase.
Collapse
Affiliation(s)
- Neha Agarwal
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Athar Ansari
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
54
|
Towards understanding pre-mRNA splicing mechanisms and the role of SR proteins. Gene 2016; 587:107-19. [PMID: 27154819 DOI: 10.1016/j.gene.2016.04.057] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 04/30/2016] [Indexed: 01/04/2023]
Abstract
Alternative pre-mRNA splicing provides a source of vast protein diversity by removing non-coding sequences (introns) and accurately linking different exonic regions in the correct reading frame. The regulation of alternative splicing is essential for various cellular functions in both pathological and physiological conditions. In eukaryotic cells, this process is commonly used to increase proteomic diversity and to control gene expression either co- or post-transcriptionally. Alternative splicing occurs within a megadalton-sized, multi-component machine consisting of RNA and proteins; during the splicing process, this complex undergoes dynamic changes via RNA-RNA, protein-protein and RNA-protein interactions. Co-transcriptional splicing functionally integrates the transcriptional machinery, thereby enabling the two processes to influence one another, whereas post-transcriptional splicing facilitates the coupling of RNA splicing with post-splicing events. This review addresses the structural aspects of spliceosomes and the mechanistic implications of their stepwise assembly on the regulation of pre-mRNA splicing. Moreover, the role of phosphorylation-based, signal-induced changes in the regulation of the splicing process is demonstrated.
Collapse
|
55
|
Burgess HM, Mohr I. Cellular 5'-3' mRNA exonuclease Xrn1 controls double-stranded RNA accumulation and anti-viral responses. Cell Host Microbe 2015; 17:332-344. [PMID: 25766294 PMCID: PMC4826345 DOI: 10.1016/j.chom.2015.02.003] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/23/2014] [Accepted: 01/28/2015] [Indexed: 12/30/2022]
Abstract
By accelerating global mRNA decay, many viruses impair host protein synthesis, limiting host defenses and stimulating virus mRNA translation. Vaccinia virus (VacV) encodes two decapping enzymes (D9, D10) that remove protective 5′ caps on mRNAs, presumably generating substrates for degradation by the host exonuclease Xrn1. Surprisingly, we find VacV infection of Xrn1-depleted cells inhibits protein synthesis, compromising virus growth. These effects are aggravated by D9 deficiency and dependent upon a virus transcription factor required for intermediate and late mRNA biogenesis. Considerable double-stranded RNA (dsRNA) accumulation in Xrn1-depleted cells is accompanied by activation of host dsRNA-responsive defenses controlled by PKR and 2′-5′ oligoadenylate synthetase (OAS), which respectively inactivate the translation initiation factor eIF2 and stimulate RNA cleavage by RNase L. This proceeds despite VacV-encoded PKR and RNase L antagonists being present. Moreover, Xrn1 depletion sensitizes uninfected cells to dsRNA treatment. Thus, Xrn1 is a cellular factor regulating dsRNA accumulation and dsRNA-responsive innate immune effectors. Vaccinia virus (VacV) replication requires the host Xrn1 mRNA decay enzyme The 5′-3′ mRNA exonuclease Xrn1 limits dsRNA accumulation In the absence of Xrn1, host dsRNA-responsive innate immune defenses are activated VacV antagonists of dsRNA-responsive host defenses are Xrn1 dependent
Collapse
Affiliation(s)
- Hannah M Burgess
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA
| | - Ian Mohr
- Department of Microbiology and NYU Cancer Institute, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
56
|
Stein S, Lu ZX, Bahrami-Samani E, Park JW, Xing Y. Discover hidden splicing variations by mapping personal transcriptomes to personal genomes. Nucleic Acids Res 2015; 43:10612-22. [PMID: 26578562 PMCID: PMC4678817 DOI: 10.1093/nar/gkv1099] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/09/2015] [Indexed: 01/27/2023] Open
Abstract
RNA-seq has become a popular technology for studying genetic variation of pre-mRNA alternative splicing. Commonly used RNA-seq aligners rely on the consensus splice site dinucleotide motifs to map reads across splice junctions. Consequently, genomic variants that create novel splice site dinucleotides may produce splice junction RNA-seq reads that cannot be mapped to the reference genome. We developed and evaluated an approach to identify ‘hidden’ splicing variations in personal transcriptomes, by mapping personal RNA-seq data to personal genomes. Computational analysis and experimental validation indicate that this approach identifies personal specific splice junctions at a low false positive rate. Applying this approach to an RNA-seq data set of 75 individuals, we identified 506 personal specific splice junctions, among which 437 were novel splice junctions not documented in current human transcript annotations. 94 splice junctions had splice site SNPs associated with GWAS signals of human traits and diseases. These involve genes whose splicing variations have been implicated in diseases (such as OAS1), as well as novel associations between alternative splicing and diseases (such as ICA1). Collectively, our work demonstrates that the personal genome approach to RNA-seq read alignment enables the discovery of a large but previously unknown catalog of splicing variations in human populations.
Collapse
Affiliation(s)
- Shayna Stein
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhi-Xiang Lu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emad Bahrami-Samani
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Juw Won Park
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yi Xing
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
57
|
Kwong PN, Chambers M, Vashisht AA, Turki-Judeh W, Yau TY, Wohlschlegel JA, Courey AJ. The Central Region of the Drosophila Co-repressor Groucho as a Regulatory Hub. J Biol Chem 2015; 290:30119-30. [PMID: 26483546 DOI: 10.1074/jbc.m115.681171] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Indexed: 12/23/2022] Open
Abstract
Groucho (Gro) is a Drosophila co-repressor that regulates the expression of a large number of genes, many of which are involved in developmental control. Previous studies have shown that its central region is essential for function even though its three domains are poorly conserved and intrinsically disordered. Using these disordered domains as affinity reagents, we have now identified multiple embryonic Gro-interacting proteins. The interactors include protein complexes involved in chromosome organization, mRNA processing, and signaling. Further investigation of the interacting proteins using a reporter assay showed that many of them modulate Gro-mediated repression either positively or negatively. The positive regulators include components of the spliceosomal subcomplex U1 small nuclear ribonucleoprotein (U1 snRNP). A co-immunoprecipitation experiment confirms this finding and suggests that a sizable fraction of nuclear U1 snRNP is associated with Gro. The use of RNA-seq to analyze the gene expression profile of cells subjected to knockdown of Gro or snRNP-U1-C (a component of U1 snRNP) showed a significant overlap between genes regulated by these two factors. Furthermore, comparison of our RNA-seq data with Gro and RNA polymerase II ChIP data led to a number of insights, including the finding that Gro-repressed genes are enriched for promoter-proximal RNA polymerase II. We conclude that the Gro central domains mediate multiple interactions required for repression, thus functioning as a regulatory hub. Furthermore, interactions with the spliceosome may contribute to repression by Gro.
Collapse
Affiliation(s)
- Pak N Kwong
- From the Departments of Chemistry and Biochemistry and
| | | | | | - Wiam Turki-Judeh
- From the Departments of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Tak Yu Yau
- From the Departments of Chemistry and Biochemistry and
| | - James A Wohlschlegel
- Biological Chemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095
| | - Albert J Courey
- From the Departments of Chemistry and Biochemistry and Molecular Biology Institute, UCLA, Los Angeles, California 90095
| |
Collapse
|
58
|
Bouton C, Geldreich A, Ramel L, Ryabova LA, Dimitrova M, Keller M. Cauliflower mosaic virus Transcriptome Reveals a Complex Alternative Splicing Pattern. PLoS One 2015; 10:e0132665. [PMID: 26162084 PMCID: PMC4498817 DOI: 10.1371/journal.pone.0132665] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/18/2015] [Indexed: 12/23/2022] Open
Abstract
The plant pararetrovirus Cauliflower mosaic virus (CaMV) uses alternative splicing to generate several isoforms from its polycistronic pregenomic 35S RNA. This pro-cess has been shown to be essential for infectivity. Previous works have identified four splice donor sites and a single splice acceptor site in the 35S RNA 5' region and suggested that the main role of CaMV splicing is to downregulate expression of open reading frames (ORFs) I and II. In this study, we show that alternative splicing is a conserved process among CaMV isolates. In Cabb B-JI and Cabb-S isolates, splicing frequently leads to different fusion between ORFs, particularly between ORF I and II. The corresponding P1P2 fusion proteins expressed in E. coli interact with viral proteins P2 and P3 in vitro. However, they are detected neither during infection nor upon transient expression in planta, which suggests rapid degradation after synthesis and no important biological role in the CaMV infectious cycle. To gain a better understanding of the functional relevance of 35S RNA alternative splicing in CaMV infectivity, we inactivated the previously described splice sites. All the splicing mutants were as pathogenic as the corresponding wild-type isolate. Through RT-PCR-based analysis we demonstrate that CaMV 35S RNA exhibits a complex splicing pattern, as we identify new splice donor and acceptor sites whose selection leads to more than thirteen 35S RNA isoforms in infected turnip plants. Inactivating splice donor or acceptor sites is not lethal for the virus, since disrupted sites are systematically rescued by the activation of cryptic and/or seldom used splice sites. Taken together, our data depict a conserved, complex and flexible process, involving multiple sites, that ensures splicing of 35S RNA.
Collapse
Affiliation(s)
- Clément Bouton
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Angèle Geldreich
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Laëtitia Ramel
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Lyubov A. Ryabova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
| | - Maria Dimitrova
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| | - Mario Keller
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, France
- * E-mail: (MD); (MK)
| |
Collapse
|
59
|
RNA-RNA interactions enable specific targeting of noncoding RNAs to nascent Pre-mRNAs and chromatin sites. Cell 2015; 159:188-199. [PMID: 25259926 DOI: 10.1016/j.cell.2014.08.018] [Citation(s) in RCA: 383] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/20/2014] [Accepted: 08/18/2014] [Indexed: 12/21/2022]
Abstract
Intermolecular RNA-RNA interactions are used by many noncoding RNAs (ncRNAs) to achieve their diverse functions. To identify these contacts, we developed a method based on RNA antisense purification to systematically map RNA-RNA interactions (RAP-RNA) and applied it to investigate two ncRNAs implicated in RNA processing: U1 small nuclear RNA, a component of the spliceosome, and Malat1, a large ncRNA that localizes to nuclear speckles. U1 and Malat1 interact with nascent transcripts through distinct targeting mechanisms. Using differential crosslinking, we confirmed that U1 directly hybridizes to 5' splice sites and 5' splice site motifs throughout introns and found that Malat1 interacts with pre-mRNAs indirectly through protein intermediates. Interactions with nascent pre-mRNAs cause U1 and Malat1 to localize proximally to chromatin at active genes, demonstrating that ncRNAs can use RNA-RNA interactions to target specific pre-mRNAs and genomic sites. RAP-RNA is sensitive to lower abundance RNAs as well, making it generally applicable for investigating ncRNAs.
Collapse
|
60
|
Merkin JJ, Chen P, Alexis MS, Hautaniemi SK, Burge CB. Origins and impacts of new mammalian exons. Cell Rep 2015; 10:1992-2005. [PMID: 25801031 DOI: 10.1016/j.celrep.2015.02.058] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023] Open
Abstract
Mammalian genes are composed of exons, but the evolutionary origins and functions of new internal exons are poorly understood. Here, we analyzed patterns of exon gain using deep cDNA sequencing data from five mammals and one bird, identifying thousands of species- and lineage-specific exons. Most new exons derived from unique rather than repetitive intronic sequence. Unlike exons conserved across mammals, species-specific internal exons were mostly located in 5' UTRs and alternatively spliced. They were associated with upstream intronic deletions, increased nucleosome occupancy, and RNA polymerase II pausing. Genes containing new internal exons had increased gene expression, but only in tissues in which the exon was included. Increased expression correlated with the level of exon inclusion, promoter proximity, and signatures of cotranscriptional splicing. Altogether, these findings suggest that increased splicing at the 5' ends of genes enhances expression and that changes in 5' end splicing alter gene expression between tissues and between species.
Collapse
Affiliation(s)
- Jason J Merkin
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Ping Chen
- Research Programs Unit, Genome-Scale Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Maria S Alexis
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Sampsa K Hautaniemi
- Research Programs Unit, Genome-Scale Biology and Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Christopher B Burge
- Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Program in Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
61
|
Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, Zhu P, Chang Z, Wu Q, Zhao Y, Jia Y, Xu P, Liu H, Shan G. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol 2015; 22:256-64. [PMID: 25664725 DOI: 10.1038/nsmb.2959] [Citation(s) in RCA: 2195] [Impact Index Per Article: 219.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Accepted: 12/19/2014] [Indexed: 02/06/2023]
Abstract
Noncoding RNAs (ncRNAs) have numerous roles in development and disease, and one of the prominent roles is to regulate gene expression. A vast number of circular RNAs (circRNAs) have been identified, and some have been shown to function as microRNA sponges in animal cells. Here, we report a class of circRNAs associated with RNA polymerase II in human cells. In these circRNAs, exons are circularized with introns 'retained' between exons; we term them exon-intron circRNAs or EIciRNAs. EIciRNAs predominantly localize in the nucleus, interact with U1 snRNP and promote transcription of their parental genes. Our findings reveal a new role for circRNAs in regulating gene expression in the nucleus, in which EIciRNAs enhance the expression of their parental genes in cis, and highlight a regulatory strategy for transcriptional control via specific RNA-RNA interaction between U1 snRNA and EIciRNAs.
Collapse
Affiliation(s)
- Zhaoyong Li
- 1] School of Life Sciences, University of Science and Technology of China, Hefei, China. [2] Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| | - Chuan Huang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Chun Bao
- 1] School of Life Sciences, University of Science and Technology of China, Hefei, China. [2] Department of Physics, Central China Normal University, Wuhan, China. [3] Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Liang Chen
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Mei Lin
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Xiaolin Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Guolin Zhong
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Bin Yu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wanchen Hu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Limin Dai
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Pengfei Zhu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Zhaoxia Chang
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Qingfa Wu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Yi Zhao
- Institute of Computing Technology, Chinese Academy of Sciences, Beijing, China
| | - Ya Jia
- 1] Department of Physics, Central China Normal University, Wuhan, China. [2] Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Ping Xu
- National Center for Protein Sciences, Beijing, China
| | - Huijie Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Ge Shan
- 1] School of Life Sciences, University of Science and Technology of China, Hefei, China. [2] Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, University of Science and Technology of China, Hefei, China
| |
Collapse
|
62
|
Vaz-Drago R, Pinheiro MT, Martins S, Enguita FJ, Carmo-Fonseca M, Custódio N. Transcription-coupled RNA surveillance in human genetic diseases caused by splice site mutations. Hum Mol Genet 2015; 24:2784-95. [PMID: 25652404 DOI: 10.1093/hmg/ddv039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 01/31/2015] [Indexed: 12/15/2022] Open
Abstract
Current estimates indicate that approximately one-third of all disease-causing mutations are expected to disrupt splicing. Abnormal splicing often leads to disruption of the reading frame with introduction of a premature termination codon (PTC) that targets the mRNA for degradation in the cytoplasm by nonsense mediated decay (NMD). In addition to NMD there are RNA surveillance mechanisms that act in the nucleus while transcripts are still associated with the chromatin template. However, the significance of nuclear RNA quality control in the context of human genetic diseases is unknown. Here we used patient-derived lymphoblastoid cell lines as disease models to address how biogenesis of mRNAs is affected by splice site mutations. We observed that most of the mutations analyzed introduce PTCs and trigger mRNA degradation in the cytoplasm. However, for some mutant transcripts, RNA levels associated with chromatin were found down-regulated. Quantification of nascent transcripts further revealed that a subset of genes containing splicing mutations (SM) have reduced transcriptional activity. Following treatment with the translation inhibitor cycloheximide the cytoplasmic levels of mutant RNAs increased, while the levels of chromatin-associated transcripts remained unaltered. These results suggest that transcription-coupled surveillance mechanisms operate independently from NMD to reduce cellular levels of abnormal RNAs caused by SM.
Collapse
Affiliation(s)
- Rita Vaz-Drago
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Marco T Pinheiro
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Sandra Martins
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Francisco J Enguita
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| | - Noélia Custódio
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisboa 1649-028, Portugal
| |
Collapse
|
63
|
Sei E, Wang T, Hunter OV, Xie Y, Conrad NK. HITS-CLIP analysis uncovers a link between the Kaposi's sarcoma-associated herpesvirus ORF57 protein and host pre-mRNA metabolism. PLoS Pathog 2015; 11:e1004652. [PMID: 25710169 PMCID: PMC4339584 DOI: 10.1371/journal.ppat.1004652] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/02/2015] [Indexed: 11/19/2022] Open
Abstract
The Kaposi's sarcoma associated herpesvirus (KSHV) is an oncogenic virus that causes Kaposi's sarcoma, primary effusion lymphoma (PEL), and some forms of multicentric Castleman's disease. The KSHV ORF57 protein is a conserved posttranscriptional regulator of gene expression that is essential for virus replication. ORF57 is multifunctional, but most of its activities are directly linked to its ability to bind RNA. We globally identified virus and host RNAs bound by ORF57 during lytic reactivation in PEL cells using high-throughput sequencing of RNA isolated by cross-linking immunoprecipitation (HITS-CLIP). As expected, ORF57-bound RNA fragments mapped throughout the KSHV genome, including the known ORF57 ligand PAN RNA. In agreement with previously published ChIP results, we observed that ORF57 bound RNAs near the oriLyt regions of the genome. Examination of the host RNA fragments revealed that a subset of the ORF57-bound RNAs was derived from transcript 5' ends. The position of these 5'-bound fragments correlated closely with the 5'-most exon-intron junction of the pre-mRNA. We selected four candidates (BTG1, EGR1, ZFP36, and TNFSF9) and analyzed their pre-mRNA and mRNA levels during lytic phase. Analysis of both steady-state and newly made RNAs revealed that these candidate ORF57-bound pre-mRNAs persisted for longer periods of time throughout infection than control RNAs, consistent with a role for ORF57 in pre-mRNA metabolism. In addition, exogenous expression of ORF57 was sufficient to increase the pre-mRNA levels and, in one case, the mRNA levels of the putative ORF57 targets. These results demonstrate that ORF57 interacts with specific host pre-mRNAs during lytic reactivation and alters their processing, likely by stabilizing pre-mRNAs. These data suggest that ORF57 is involved in modulating host gene expression in addition to KSHV gene expression during lytic reactivation.
Collapse
Affiliation(s)
- Emi Sei
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Tao Wang
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Olga V. Hunter
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yang Xie
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Nicholas K. Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| |
Collapse
|
64
|
U1 interference (U1i) for Antiviral Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 848:51-69. [DOI: 10.1007/978-1-4939-2432-5_3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
65
|
Stubbs SH, Conrad NK. Depletion of REF/Aly alters gene expression and reduces RNA polymerase II occupancy. Nucleic Acids Res 2014; 43:504-19. [PMID: 25477387 PMCID: PMC4288173 DOI: 10.1093/nar/gku1278] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Pre-mRNA processing is mechanistically linked to transcription with RNA pol II serving as a platform to recruit RNA processing factors to nascent transcripts. The TREX complex member, REF/Aly, has been suggested to play roles in transcription and nuclear RNA stability in addition to its more broadly characterized role in mRNA export. We employed RNA-seq to identify a subset of transcripts with decreased expression in both nuclear and cytoplasmic fractions upon REF/Aly knockdown, which implies that REF/Aly affects their expression upstream of its role in mRNA export. Transcription inhibition experiments and metabolic labeling assays argue that REF/Aly does not affect stability of selected candidate transcripts. Instead, ChIP assays and nuclear run-on analysis reveal that REF/Aly depletion diminishes the transcription of these candidate genes. Furthermore, we determined that REF/Aly binds directly to candidate transcripts, supporting a direct effect of REF/Aly on candidate gene transcription. Taken together, our data suggest that the importance of REF/Aly is not limited to RNA export, but that REF/Aly is also critical for gene expression at the level of transcription. Our data are consistent with the model that REF/Aly is involved in linking splicing with transcription efficiency.
Collapse
Affiliation(s)
- Sarah H Stubbs
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| | - Nicholas K Conrad
- Department of Microbiology, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390-9048, USA
| |
Collapse
|
66
|
Chai Y, Sun Y, Guo L, Li D, Ding Y. Investigating the role of introns in the regulation of regenerating gene 1 expression. Oncol Lett 2014; 9:875-880. [PMID: 25621062 PMCID: PMC4301469 DOI: 10.3892/ol.2014.2712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 10/31/2014] [Indexed: 01/15/2023] Open
Abstract
Gastrin is a hormone that physiologically regulates gastric acid secretion and contributes to the maintenance of gastric epithelial architecture by regulating the expression of genes such as regenerating gene 1 (Reg1). Reg1 is involved in gastric carcinogenesis as an antiapoptotic factor. The current study explores the molecular mechanism of gastrin-regulated Reg1 expression in human gastric cancer cells. In total, five intron fragments of the Reg1 gene were cloned by polymerase chain reaction and inserted into luciferase reporter vector pGL3 to construct intron-luciferase reporter vectors. After confirmation by Xho I/Hind III digestion and DNA sequencing, the five constructs were transfected into the SGC7901 gastric cancer cell line. The luciferase activity of the cells transfected with each of the five constructs was detected following incubation without or with gastrin. The five intron fragments of Reg1 were also randomly labeled with digoxin as a probe, and nuclear proteins of gastric cancer cells were extracted following treatment with or without gastrin. Southwestern blotting was subsequently performed to detect transcription factors that bind to the introns. The results indicated that the luciferase activity was significantly higher in cells transfected with recombinant vectors containing introns 2, 3, 4 or 5 than that in the cells transfected with an empty vector (P<0.05). However, no statistically significant difference in luciferase activity was identified between cells transfected with pGL3-intron 1 and those transfected with pGL3-Basic (P>0.05). Following incubation with gastrin, no significant difference was identified (P>0.05). The five introns of Reg1 can bind a number of transcription factors and gastrin may affect this interaction. Introns 2–5 of Reg1 potentially have transcriptional control over gene expression in gastric cancer cells. In conclusion, gastrin may regulate the expression of the Reg1 gene via the interaction of the introns by binding to the transcription factors.
Collapse
Affiliation(s)
- Yurong Chai
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yun Sun
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Linxia Guo
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Dan Li
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Yi Ding
- Department of Histology and Embryology, College of Basic Medicine, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
67
|
Core LJ, Martins AL, Danko CG, Waters CT, Siepel A, Lis JT. Analysis of nascent RNA identifies a unified architecture of initiation regions at mammalian promoters and enhancers. Nat Genet 2014; 46:1311-20. [PMID: 25383968 PMCID: PMC4254663 DOI: 10.1038/ng.3142] [Citation(s) in RCA: 476] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 10/15/2014] [Indexed: 12/14/2022]
Abstract
Despite the conventional distinction between them, promoters and enhancers share
many features in mammals, including divergent transcription and similar modes of
transcription factor binding. Here, we examine the architecture of transcription
initiation through comprehensive mapping of transcription start sites (TSSs) in human
lymphoblastoid B-cell (GM12878) and chronic myelogenous leukemic (K562) tier 1, ENCODE
cell lines. Using a nuclear run-on protocol called GRO-cap, which captures TSSs for both
stable and unstable transcripts, we conduct detailed comparisons of thousands of promoters
and enhancers in human cells. These analyses reveal a common architecture of initiation,
including tightly spaced (110 bp) divergent initiation, similar frequencies of
core-promoter sequence elements, highly positioned flanking nucleosomes, and two modes of
transcription factor binding. Post-initiation transcript stability provides a more
fundamental distinction between promoters and enhancers than patterns of histone
modifications, transcription factors or co-activators. These results support a unified
model of transcription initiation at promoters and enhancers.
Collapse
Affiliation(s)
- Leighton J Core
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - André L Martins
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
| | - Charles G Danko
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
| | - Colin T Waters
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| | - Adam Siepel
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York, USA
| | - John T Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
68
|
Mueller N, van Bel N, Berkhout B, Das AT. HIV-1 splicing at the major splice donor site is restricted by RNA structure. Virology 2014; 468-470:609-620. [PMID: 25305540 DOI: 10.1016/j.virol.2014.09.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/11/2014] [Accepted: 09/19/2014] [Indexed: 11/29/2022]
Abstract
The 5' leader region of the HIV-1 RNA contains the major 5' splice site (ss) that is used in the production of all spliced viral RNAs. This splice-donor (SD) region can fold a stem-loop structure. We demonstrate that whereas stabilization of this SD hairpin reduces splicing efficiency, destabilization increases splicing. Both stabilization and destabilization reduce viral fitness. These results demonstrate that the stability of the SD hairpin can modulate the level of splicing, most likely by controlling the accessibility of the 5'ss for the splicing machinery. The natural stability of the SD hairpin restricts splicing and this stability seems to be fine-tuned to reach the optimal balance between unspliced and spliced RNAs for efficient virus replication. The 5'ss region of different HIV-1 isolates and the related SIVmac239 can fold a similar structure. This evolutionary conservation supports the importance of this structure in viral replication.
Collapse
Affiliation(s)
- Nancy Mueller
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Nikki van Bel
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| | - Atze T Das
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands.
| |
Collapse
|
69
|
Guiro J, O'Reilly D. Insights into the U1 small nuclear ribonucleoprotein complex superfamily. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 6:79-92. [DOI: 10.1002/wrna.1257] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 06/17/2014] [Accepted: 07/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- J Guiro
- Institute of Biosciences; University of Sao Paulo; Sao Paulo Brazil
| | - D O'Reilly
- Sir William Dunn School of Pathology; Oxford United Kingdom
| |
Collapse
|
70
|
Xiao G, Zhang ZQ, Yin CF, Liu RY, Wu XM, Tan TL, Chen SY, Lu CM, Guan CY. Characterization of the promoter and 5'-UTR intron of oleic acid desaturase (FAD2) gene in Brassica napus. Gene 2014; 545:45-55. [PMID: 24811682 DOI: 10.1016/j.gene.2014.05.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 12/31/2022]
Abstract
In the present study, we characterized the transcriptional regulatory region (KF038144) controlling the expression of a constitutive FAD2 in Brassica napus. There are multiple FAD2 gene copies in B. napus genome. The FAD2 gene characterized and analyzed in the study is located on chromosome A5 and was designated as BnFAD2A5-1. BnFAD2A5-1 harbors an intron (1,192 bp) within its 5'-untranslated region (5'-UTR). This intron demonstrated promoter activity. Deletion analysis of the BnFAD2A5-1 promoter and intron through the β-glucuronidase (GUS) reporter system revealed that the -220 to -1 bp is the minimum promoter region, while -220 to -110 bp and +34 to +285 bp are two important regions conferring high-levels of transcription. BnFAD2 transcripts were induced by light, low temperature, and abscisic acid (ABA). These observations demonstrated that not only the promoter but also the intron are involved in controlling the expression of the BnFAD2A5-1 gene. The intron-mediated regulation is an essential aspect of the gene expression regulation.
Collapse
Affiliation(s)
- Gang Xiao
- Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China; Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, PR China; The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Zhen Qian Zhang
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Chang Fa Yin
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Rui Yang Liu
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Xian Meng Wu
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Tai Long Tan
- Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, PR China; The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - She Yuan Chen
- The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China
| | - Chang Ming Lu
- Key Laboratory of Oil Crop Biology of Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei 430062, China
| | - Chun Yun Guan
- Pre-State Key Laboratory for Germplasm Innovation and Resource Utilization of Crops, Changsha 410128, PR China; The Oil Crops Research Institute/National Oil Crops Improvement Center, Changsha 410128, PR China.
| |
Collapse
|
71
|
Quality control of mRNP biogenesis: networking at the transcription site. Semin Cell Dev Biol 2014; 32:37-46. [PMID: 24713468 DOI: 10.1016/j.semcdb.2014.03.033] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 03/28/2014] [Indexed: 11/20/2022]
Abstract
Eukaryotic cells carry out quality control (QC) over the processes of RNA biogenesis to inactivate or eliminate defective transcripts, and to avoid their production. In the case of protein-coding transcripts, the quality controls can sense defects in the assembly of mRNA-protein complexes, in the processing of the precursor mRNAs, and in the sequence of open reading frames. Different types of defect are monitored by different specialized mechanisms. Some of them involve dedicated factors whose function is to identify faulty molecules and target them for degradation. Others are the result of a more subtle balance in the kinetics of opposing activities in the mRNA biogenesis pathway. One way or another, all such mechanisms hinder the expression of the defective mRNAs through processes as diverse as rapid degradation, nuclear retention and transcriptional silencing. Three major degradation systems are responsible for the destruction of the defective transcripts: the exosome, the 5'-3' exoribonucleases, and the nonsense-mediated mRNA decay (NMD) machinery. This review summarizes recent findings on the cotranscriptional quality control of mRNA biogenesis, and speculates that a protein-protein interaction network integrates multiple mRNA degradation systems with the transcription machinery.
Collapse
|
72
|
de Almeida SF, Carmo-Fonseca M. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin Cell Dev Biol 2014; 32:2-10. [PMID: 24657193 DOI: 10.1016/j.semcdb.2014.03.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/11/2014] [Indexed: 10/25/2022]
Abstract
Here we review recent findings showing that chromatin organization adds another layer of complexity to the already intricate network of splicing regulatory mechanisms. Chromatin structure can impact splicing by either affecting the elongation rate of RNA polymerase II or by signaling the recruitment of splicing regulatory proteins. The C-terminal domain of the RNA polymerase II largest subunit serves as a coordination platform that binds factors required for adapting chromatin structure to both efficient transcription and processing of the newly synthesized RNA. Reciprocal interconnectivity of steps required for gene activation plays a critical role ensuring efficiency and fidelity of gene expression.
Collapse
Affiliation(s)
| | - Maria Carmo-Fonseca
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal.
| |
Collapse
|
73
|
A splicing-dependent transcriptional checkpoint associated with prespliceosome formation. Mol Cell 2014; 53:779-90. [PMID: 24560925 PMCID: PMC3988880 DOI: 10.1016/j.molcel.2014.01.017] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 11/26/2013] [Accepted: 01/17/2014] [Indexed: 11/21/2022]
Abstract
There is good evidence for functional interactions between splicing and transcription in eukaryotes, but how and why these processes are coupled remain unknown. Prp5 protein (Prp5p) is an RNA-stimulated adenosine triphosphatase (ATPase) required for prespliceosome formation in yeast. We demonstrate through in vivo RNA labeling that, in addition to a splicing defect, the prp5-1 mutation causes a defect in the transcription of intron-containing genes. We present chromatin immunoprecipitation evidence for a transcriptional elongation defect in which RNA polymerase that is phosphorylated at Ser5 of the largest subunit’s heptad repeat accumulates over introns and that this defect requires Cus2 protein. A similar accumulation of polymerase was observed when prespliceosome formation was blocked by a mutation in U2 snRNA. These results indicate the existence of a transcriptional elongation checkpoint that is associated with prespliceosome formation during cotranscriptional spliceosome assembly. We propose a role for Cus2p as a potential checkpoint factor in transcription. Transcriptional elongation is inhibited when prespliceosome formation is blocked The defect is characterized by RNA polymerase accumulation on introns This checkpoint can be triggered by mutations in either PRP5 or U2 snRNA The U2-associated Cus2 protein is a candidate checkpoint factor
Collapse
|
74
|
Abstract
The discovery that many intron-containing genes can be cotranscriptionally spliced has led to an increased understanding of how splicing and transcription are intricately intertwined. Cotranscriptional splicing has been demonstrated in a number of different organisms and has been shown to play roles in coordinating both constitutive and alternative splicing. The nature of cotranscriptional splicing suggests that changes in transcription can dramatically affect splicing, and new evidence suggests that splicing can, in turn, influence transcription. In this chapter, we discuss the mechanisms and consequences of cotranscriptional splicing and introduce some of the tools used to measure this process.
Collapse
Affiliation(s)
- Evan C Merkhofer
- Molecular Biology Section, Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
75
|
Abstract
The mammalian genome is extensively transcribed, a large fraction of which is divergent transcription from promoters and enhancers that is tightly coupled with active gene transcription. Here, we propose that divergent transcription may shape the evolution of the genome by new gene origination.
Collapse
Affiliation(s)
- Xuebing Wu
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Computational and Systems Biology Graduate Program, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | |
Collapse
|
76
|
Metze S, Herzog VA, Ruepp MD, Mühlemann O. Comparison of EJC-enhanced and EJC-independent NMD in human cells reveals two partially redundant degradation pathways. RNA (NEW YORK, N.Y.) 2013; 19:1432-48. [PMID: 23962664 PMCID: PMC3854533 DOI: 10.1261/rna.038893.113] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/08/2013] [Indexed: 05/18/2023]
Abstract
Nonsense-mediated mRNA decay (NMD) is a eukaryotic post-transcriptional gene regulation mechanism that eliminates mRNAs with the termination codon (TC) located in an unfavorable environment for efficient translation termination. The best-studied NMD-targeted mRNAs contain premature termination codons (PTCs); however, NMD regulates even many physiological mRNAs. An exon-junction complex (EJC) located downstream from a TC acts as an NMD-enhancing signal, but is not generally required for NMD. Here, we compared these "EJC-enhanced" and "EJC-independent" modes of NMD with regard to their requirement for seven known NMD factors in human cells using two well-characterized NMD reporter genes (immunoglobulin μ and β-Globin) with or without an intron downstream from the PTC. We show that both NMD modes depend on UPF1 and SMG1, but detected transcript-specific differences with respect to the requirement for UPF2 and UPF3b, consistent with previously reported UPF2- and UPF3-independent branches of NMD. In addition and contrary to expectation, a higher sensitivity of EJC-independent NMD to reduced UPF2 and UPF3b concentrations was observed. Our data further revealed a redundancy of the endo- and exonucleolytic mRNA degradation pathways in both modes of NMD. Moreover, the relative contributions of both decay pathways differed between the reporters, with PTC-containing immunoglobulin μ transcripts being preferentially subjected to SMG6-mediated endonucleolytic cleavage, whereas β-Globin transcripts were predominantly degraded by the SMG5/SMG7-dependent pathway. Overall, the surprising heterogeneity observed with only two NMD reporter pairs suggests the existence of several mechanistically distinct branches of NMD in human cells.
Collapse
Affiliation(s)
- Stefanie Metze
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - Veronika A. Herzog
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Marc-David Ruepp
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
| | - Oliver Mühlemann
- Department of Chemistry and Biochemistry, University of Bern, 3012 Bern, Switzerland
- Corresponding authorE-mail
| |
Collapse
|
77
|
Zhou HL, Luo G, Wise JA, Lou H. Regulation of alternative splicing by local histone modifications: potential roles for RNA-guided mechanisms. Nucleic Acids Res 2013; 42:701-13. [PMID: 24081581 PMCID: PMC3902899 DOI: 10.1093/nar/gkt875] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The molecular mechanisms through which alternative splicing and histone modifications regulate gene expression are now understood in considerable detail. Here, we discuss recent studies that connect these two previously separate avenues of investigation, beginning with the unexpected discoveries that nucleosomes are preferentially positioned over exons and DNA methylation and certain histone modifications also show exonic enrichment. These findings have profound implications linking chromatin structure, histone modification and splicing regulation. Complementary single gene studies provided insight into the mechanisms through which DNA methylation and histones modifications modulate alternative splicing patterns. Here, we review an emerging theme resulting from these studies: RNA-guided mechanisms integrating chromatin modification and splicing. Several groundbreaking papers reported that small noncoding RNAs affect alternative exon usage by targeting histone methyltransferase complexes to form localized facultative heterochromatin. More recent studies provided evidence that pre-messenger RNA itself can serve as a guide to enable precise alternative splicing regulation via local recruitment of histone-modifying enzymes, and emerging evidence points to a similar role for long noncoding RNAs. An exciting challenge for the future is to understand the impact of local modulation of transcription elongation rates on the dynamic interplay between histone modifications, alternative splicing and other processes occurring on chromatin.
Collapse
Affiliation(s)
- Hua-Lin Zhou
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, People's Republic of China, Department of Genetics and Genome Sciences, Case Comprehensive Cancer Center and Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA
| | | | | | | |
Collapse
|
78
|
Affiliation(s)
- Dirk Eick
- Department of Molecular Epigenetics, Helmholtz Center Munich and Center for Integrated Protein Science Munich (CIPSM), Marchioninistrasse 25, 81377 Munich,
Germany
| | - Matthias Geyer
- Center of Advanced European Studies and Research, Group Physical Biochemistry,
Ludwig-Erhard-Allee 2, 53175 Bonn, Germany
| |
Collapse
|
79
|
Mattioli C, Pianigiani G, Pagani F. A competitive regulatory mechanism discriminates between juxtaposed splice sites and pri-miRNA structures. Nucleic Acids Res 2013; 41:8680-91. [PMID: 23863840 PMCID: PMC3794580 DOI: 10.1093/nar/gkt614] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
We have explored the functional relationships between spliceosome and Microprocessor complex activities in a novel class of microRNAs (miRNAs), named Splice site Overlapping (SO) miRNAs, whose pri-miRNA hairpins overlap splice sites. We focused on the evolutionarily conserved SO miR-34b, and we identified two indispensable elements for recognition of its 3′ splice site: a branch point located in the hairpin and a downstream purine-rich exonic splicing enhancer. In minigene systems, splicing inhibition owing to exonic splicing enhancer deletion or AG 3′ss mutation increases miR-34b levels. Moreover, small interfering-mediated silencing of Drosha and/or DGCR8 improves splicing efficiency and abolishes miR-34b production. Thus, the processing of this 3′ SO miRNA is regulated in an antagonistic manner by the Microprocessor and the spliceosome owing to competition between these two machineries for the nascent transcript. We propose that this novel mechanism is commonly used to regulate the relative amount of SO miRNA and messenger RNA produced from primary transcripts.
Collapse
Affiliation(s)
- Chiara Mattioli
- Human Molecular Genetics, International Centre for Genetic Engineering and Biotechnology, Padriciano 99, 34149, Trieste, Italy
| | | | | |
Collapse
|
80
|
Fontrodona L, Porta-de-la-Riva M, Morán T, Niu W, Díaz M, Aristizábal-Corrales D, Villanueva A, Schwartz S, Reinke V, Cerón J. RSR-2, the Caenorhabditis elegans ortholog of human spliceosomal component SRm300/SRRM2, regulates development by influencing the transcriptional machinery. PLoS Genet 2013; 9:e1003543. [PMID: 23754964 PMCID: PMC3675011 DOI: 10.1371/journal.pgen.1003543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Accepted: 04/20/2013] [Indexed: 02/04/2023] Open
Abstract
Protein components of the spliceosome are highly conserved in eukaryotes and can influence several steps of the gene expression process. RSR-2, the Caenorhabditis elegans ortholog of the human spliceosomal protein SRm300/SRRM2, is essential for viability, in contrast to the yeast ortholog Cwc21p. We took advantage of mutants and RNA interference (RNAi) to study rsr-2 functions in C. elegans, and through genetic epistasis analysis found that rsr-2 is within the germline sex determination pathway. Intriguingly, transcriptome analyses of rsr-2(RNAi) animals did not reveal appreciable splicing defects but instead a slight global decrease in transcript levels. We further investigated this effect in transcription and observed that RSR-2 colocalizes with DNA in germline nuclei and coprecipitates with chromatin, displaying a ChIP-Seq profile similar to that obtained for the RNA Polymerase II (RNAPII). Consistent with a novel transcription function we demonstrate that the recruitment of RSR-2 to chromatin is splicing-independent and that RSR-2 interacts with RNAPII and affects RNAPII phosphorylation states. Proteomic analyses identified proteins associated with RSR-2 that are involved in different gene expression steps, including RNA metabolism and transcription with PRP-8 and PRP-19 being the strongest interacting partners. PRP-8 is a core component of the spliceosome and PRP-19 is the core component of the PRP19 complex, which interacts with RNAPII and is necessary for full transcriptional activity. Taken together, our study proposes that RSR-2 is a multifunctional protein whose role in transcription influences C. elegans development.
Collapse
Affiliation(s)
- Laura Fontrodona
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Montserrat Porta-de-la-Riva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Tomás Morán
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Molecular Biology of Barcelona, IBMB - CSIC, Parc Científic de Barcelona, Barcelona, Spain
| | - Wei Niu
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Mònica Díaz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
- Omnia Molecular, Parc Científic de Barcelona – UB, Barcelona, Spain
| | - David Aristizábal-Corrales
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
| | - Alberto Villanueva
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Simó Schwartz
- Drug Delivery and Targeting, CIBBIM-Nanomedicine, Vall d'Hebron Research Institute, Universidad Autónoma de Barcelona, Barcelona, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Valerie Reinke
- Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Julián Cerón
- Cancer and Human Molecular Genetics, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
- C. elegans Core Facility, Bellvitge Biomedical Research Institute - IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
81
|
Abstract
Precursor mRNA splicing is one of the most highly regulated processes in metazoan species. In addition to generating vast repertoires of RNAs and proteins, splicing has a profound impact on other gene regulatory layers, including mRNA transcription, turnover, transport, and translation. Conversely, factors regulating chromatin and transcription complexes impact the splicing process. This extensive crosstalk between gene regulatory layers takes advantage of dynamic spatial, physical, and temporal organizational properties of the cell nucleus, and further emphasizes the importance of developing a multidimensional understanding of splicing control.
Collapse
|
82
|
Edmond V, Merdzhanova G, Gout S, Brambilla E, Gazzeri S, Eymin B. A new function of the splicing factor SRSF2 in the control of E2F1-mediated cell cycle progression in neuroendocrine lung tumors. Cell Cycle 2013; 12:1267-78. [PMID: 23518498 DOI: 10.4161/cc.24363] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The transcription factor E2F1 belongs to the E2F family and plays a crucial role during cell cycle progression and apoptosis. Ser/Arg-Rich (SR) proteins are a family of RNA-binding phosphoproteins that control both constitutive and alternative pre-mRNA splicing events. We previously identified the SR protein SRSF2 as a new transcriptional target of E2F1 and demonstrated that both proteins cooperate to induce apoptosis in non-small cell lung carcinoma. In this study, we postulated that SRSF2 is also involved in the proliferative functions of E2F1. Using IHC, we first demonstrate that SRSF2 and its phosphorylated form (P-SRSF2) are overexpressed in neuroendocrine lung tumors that are highly proliferative tumors expressing high levels of E2F1. Importantly, we show a direct correlation between cyclin E, an E2F1-target gene controlling S phase, and P-SRSF2 proteins levels (p = 0.0083), suggesting a role of SRSF2 in E2F1-mediated cellular proliferation. Accordingly, using neuroendocrine lung carcinoma cell lines, we demonstrate that SRSF2 is a cell cycle-regulated protein involved in entry and progression into S phase. We also provide evidence that SRSF2 interacts with E2F1 and stimulates its transcriptional control of cell cycle target genes such as cyclin E. Finally, we show that inhibition of AKT signaling pathway prevents SRSF2 phosphorylation and activity toward E2F1 transcriptional function. Taken together, these results identify a new role of SRSF2 in the control of cell cycle progression and reinforce the functional link between SRSF2 and E2F1 proteins.
Collapse
Affiliation(s)
- Valerie Edmond
- INSERM, U823, Equipe 2 Bases Moléculaires de la Progression des Cancers du Poumon, Grenoble, France
| | | | | | | | | | | |
Collapse
|
83
|
Keren-Shaul H, Lev-Maor G, Ast G. Pre-mRNA splicing is a determinant of nucleosome organization. PLoS One 2013; 8:e53506. [PMID: 23326444 PMCID: PMC3542351 DOI: 10.1371/journal.pone.0053506] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/29/2012] [Indexed: 11/19/2022] Open
Abstract
Chromatin organization affects alternative splicing and previous studies have shown that exons have increased nucleosome occupancy compared with their flanking introns. To determine whether alternative splicing affects chromatin organization we developed a system in which the alternative splicing pattern switched from inclusion to skipping as a function of time. Changes in nucleosome occupancy were correlated with the change in the splicing pattern. Surprisingly, strengthening of the 5' splice site or strengthening the base pairing of U1 snRNA with an internal exon abrogated the skipping of the internal exons and also affected chromatin organization. Over-expression of splicing regulatory proteins also affected the splicing pattern and changed nucleosome occupancy. A specific splicing inhibitor was used to show that splicing impacts nucleosome organization endogenously. The effect of splicing on the chromatin required a functional U1 snRNA base pairing with the 5' splice site, but U1 pairing was not essential for U1 snRNA enhancement of transcription. Overall, these results suggest that splicing can affect chromatin organization.
Collapse
Affiliation(s)
- Hadas Keren-Shaul
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Galit Lev-Maor
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Gil Ast
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- * E-mail:
| |
Collapse
|
84
|
Hsin JP, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 2012; 26:2119-37. [PMID: 23028141 DOI: 10.1101/gad.200303.112] [Citation(s) in RCA: 495] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The C-terminal domain (CTD) of the RNA polymerase II largest subunit consists of multiple heptad repeats (consensus Tyr1-Ser2-Pro3-Thr4-Ser5-Pro6-Ser7), varying in number from 26 in yeast to 52 in vertebrates. The CTD functions to help couple transcription and processing of the nascent RNA and also plays roles in transcription elongation and termination. The CTD is subject to extensive post-translational modification, most notably phosphorylation, during the transcription cycle, which modulates its activities in the above processes. Therefore, understanding the nature of CTD modifications, including how they function and how they are regulated, is essential to understanding the mechanisms that control gene expression. While the significance of phosphorylation of Ser2 and Ser5 residues has been studied and appreciated for some time, several additional modifications have more recently been added to the CTD repertoire, and insight into their function has begun to emerge. Here, we review findings regarding modification and function of the CTD, highlighting the important role this unique domain plays in coordinating gene activity.
Collapse
Affiliation(s)
- Jing-Ping Hsin
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | |
Collapse
|
85
|
Andersen PK, Lykke-Andersen S, Jensen TH. Promoter-proximal polyadenylation sites reduce transcription activity. Genes Dev 2012; 26:2169-79. [PMID: 23028143 DOI: 10.1101/gad.189126.112] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Gene expression relies on the functional communication between mRNA processing and transcription. We previously described the negative impact of a point-mutated splice donor (SD) site on transcription. Here we demonstrate that this mutation activates an upstream cryptic polyadenylation (CpA) site, which in turn causes reduced transcription. Functional depletion of U1 snRNP in the context of the wild-type SD triggers the same CpA event accompanied by decreased RNA levels. Thus, in accordance with recent findings, U1 snRNP can shield premature pA sites. The negative impact of unshielded pA sites on transcription requires promoter proximity, as demonstrated using artificial constructs and supported by a genome-wide data set. Importantly, transcription down-regulation can be recapitulated in a gene context devoid of splice sites by placing a functional bona fide pA site/transcription terminator within ~500 base pairs of the promoter. In contrast, promoter-proximal positioning of a pA site-independent histone gene terminator supports high transcription levels. We propose that optimal communication between a pA site-dependent gene terminator and its promoter critically depends on gene length and that short RNA polymerase II-transcribed genes use specialized termination mechanisms to maintain high transcription levels.
Collapse
Affiliation(s)
- Pia K Andersen
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology and Genetics, Aarhus University, DK-8000 Aarhus, Denmark
| | | | | |
Collapse
|
86
|
Khodor YL, Menet JS, Tolan M, Rosbash M. Cotranscriptional splicing efficiency differs dramatically between Drosophila and mouse. RNA (NEW YORK, N.Y.) 2012; 18:2174-86. [PMID: 23097425 PMCID: PMC3504670 DOI: 10.1261/rna.034090.112] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Spliceosome assembly and/or splicing of a nascent transcript may be crucial for proper isoform expression and gene regulation in higher eukaryotes. We recently showed that cotranscriptional splicing occurs efficiently in Drosophila, but there are not comparable genome-wide nascent splicing data from mammals. To provide this comparison, we analyze a recently generated, high-throughput sequencing data set of mouse liver nascent RNA, originally studied for circadian transcriptional regulation. Cotranscriptional splicing is approximately twofold less efficient in mouse liver than in Drosophila, i.e., nascent intron levels relative to exon levels are ∼0.55 in mouse versus 0.25 in the fly. An additional difference between species is that only mouse cotranscriptional splicing is optimal when 5'-exon length is between 50 and 500 bp, and intron length does not correlate with splicing efficiency, consistent with exon definition. A similar analysis of intron and exon length dependence in the fly is more consistent with intron definition. Contrasted with these differences are many similarities between the two systems: Alternatively annotated introns are less efficiently spliced cotranscriptionally than constitutive introns, and introns of single-intron genes are less efficiently spliced than introns from multi-intron genes. The most striking common feature is intron position: Cotranscriptional splicing is much more efficient when introns are far from the 3' ends of their genes. Additionally, absolute gene length correlates positively with cotranscriptional splicing efficiency independently of intron location and position, in flies as well as in mice. The gene length and distance effects indicate that more "nascent time" gives rise to greater cotranscriptional splicing efficiency in both systems.
Collapse
Affiliation(s)
- Yevgenia L. Khodor
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Jerome S. Menet
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Tolan
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
| | - Michael Rosbash
- Howard Hughes Medical Institute and National Center for Behavioral Genomics, Department of Biology, Brandeis University, Waltham, Massachusetts 02454, USA
- Corresponding authorE-mail
| |
Collapse
|
87
|
Lenasi T, Barboric M. Mutual relationships between transcription and pre-mRNA processing in the synthesis of mRNA. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012. [PMID: 23184646 DOI: 10.1002/wrna.1148] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The generation of messenger RNA (mRNA) in eukaryotes is achieved by transcription from the DNA template and pre-mRNA processing reactions of capping, splicing, and polyadenylation. Although RNA polymerase II (RNAPII) catalyzes the synthesis of pre-mRNA, it also serves as a principal coordinator of the processing reactions in the course of transcription. In this review, we focus on the interplay between transcription and cotranscriptional pre-mRNA maturation events, mediated by the recruitment of RNA processing factors to differentially phosphorylated C-terminal domain of Rbp1, the largest subunit of RNAPII. Furthermore, we highlight the bidirectional nature of the interplay by discussing the impact of RNAPII kinetics on pre-mRNA processing as well as how the processing events reach back to different phases of gene transcription.
Collapse
Affiliation(s)
- Tina Lenasi
- Institute of Biomedicine, Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| | | |
Collapse
|
88
|
Bedez F, Linard B, Brochet X, Ripp R, Thompson JD, Moras D, Lecompte O, Poch O. Functional insights into the core-TFIIH from a comparative survey. Genomics 2012; 101:178-86. [PMID: 23147676 DOI: 10.1016/j.ygeno.2012.11.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/31/2012] [Accepted: 11/02/2012] [Indexed: 10/27/2022]
Abstract
TFIIH is a eukaryotic complex composed of two subcomplexes, the CAK (Cdk activating kinase) and the core-TFIIH. The core-TFIIH, composed of seven subunits (XPB, XPD, P62, P52, P44, P34, and P8), plays a crucial role in transcription and repair. Here, we performed an extended sequence analysis to establish the accurate phylogenetic distribution of the core-TFIIH in 63 eukaryotic organisms. In spite of the high conservation of the seven subunits at the sequence and genomic levels, the non-enzymatic P8, P34, P52 and P62 are absent from one or a few unicellular species. To gain insight into their respective roles, we undertook a comparative genomic analysis of the whole proteome to identify the gene sets sharing similar presence/absence patterns. While little information was inferred for P8 and P62, our studies confirm the known role of P52 in repair and suggest for the first time the implication of the core TFIIH in mRNA splicing via P34.
Collapse
Affiliation(s)
- Florence Bedez
- Laboratoire de Bioinformatique et Génomique Intégratives, Institut de Génétique et de Biologie Moléculaire et Cellulaire (CNRS, INSERM, UDS), BP163, 67404 Illkirch Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
89
|
O'Reilly D, Dienstbier M, Cowley SA, Vazquez P, Drozdz M, Taylor S, James WS, Murphy S. Differentially expressed, variant U1 snRNAs regulate gene expression in human cells. Genome Res 2012; 23:281-91. [PMID: 23070852 PMCID: PMC3561869 DOI: 10.1101/gr.142968.112] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Human U1 small nuclear (sn)RNA, required for splicing of pre-mRNA, is encoded by genes on chromosome 1 (1p36). Imperfect copies of these U1 snRNA genes, also located on chromosome 1 (1q12-21), were thought to be pseudogenes. However, many of these "variant" (v)U1 snRNA genes produce fully processed transcripts. Using antisense oligonucleotides to block the activity of a specific vU1 snRNA in HeLa cells, we have identified global transcriptome changes following interrogation of the Affymetrix Human Exon ST 1.0 array. Our results indicate that this vU1 snRNA regulates expression of a subset of target genes at the level of pre-mRNA processing. This is the first indication that variant U1 snRNAs have a biological function in vivo. Furthermore, some vU1 snRNAs are packaged into unique ribonucleoproteins (RNPs), and many vU1 snRNA genes are differentially expressed in human embryonic stem cells (hESCs) and HeLa cells, suggesting developmental control of RNA processing through expression of different sets of vU1 snRNPs.
Collapse
Affiliation(s)
- Dawn O'Reilly
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Schmid M, Jensen TH. Transcription-associated quality control of mRNP. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1829:158-68. [PMID: 22982197 DOI: 10.1016/j.bbagrm.2012.08.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/24/2012] [Accepted: 08/29/2012] [Indexed: 01/06/2023]
Abstract
Although a prime purpose of transcription is to produce RNA, a substantial amount of transcript is nevertheless turned over very early in its lifetime. During transcription RNAs are matured by nucleases from longer precursors and activities are also employed to exert quality control over the RNA synthesis process so as to discard, retain or transcriptionally silence unwanted molecules. In this review we discuss the somewhat paradoxical circumstance that the retention or turnover of RNA is often linked to its synthesis. This occurs via the association of chromatin, or the transcription elongation complex, with RNA degradation (co)factors. Although our main focus is on protein-coding genes, we also discuss mechanisms of transcription-connected turnover of non-protein-coding RNA from where important general principles are derived. This article is part of a Special Issue entitled: RNA polymerase II Transcript Elongation.
Collapse
Affiliation(s)
- Manfred Schmid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C., Denmark
| | | |
Collapse
|
91
|
Abstract
Splicing is a key process for mRNA maturation, particularly in higher eukaryotes where most protein-coding transcripts contain multiple introns. It is achieved by the concerted action of five snRNAs (small nuclear RNAs) and hundreds of accessory proteins that form the spliceosome. Although snRNAs are present in equal amounts in the spliceosome, there is an overall excess of U1 in human cells. This finding led to the opinion that U1 might be involved in processes other than splicing. Research has shown that this is indeed the case and some examples found from studies in human cell systems are described briefly in the present review.
Collapse
|
92
|
Bieberstein N, Carrillo Oesterreich F, Straube K, Neugebauer K. First Exon Length Controls Active Chromatin Signatures and Transcription. Cell Rep 2012; 2:62-8. [DOI: 10.1016/j.celrep.2012.05.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/17/2012] [Accepted: 05/22/2012] [Indexed: 01/28/2023] Open
|
93
|
Asang C, Erkelenz S, Schaal H. The HIV-1 major splice donor D1 is activated by splicing enhancer elements within the leader region and the p17-inhibitory sequence. Virology 2012; 432:133-45. [PMID: 22749061 DOI: 10.1016/j.virol.2012.06.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2012] [Revised: 04/05/2012] [Accepted: 06/07/2012] [Indexed: 11/25/2022]
Abstract
Usage of the HIV-1 major 5' splice site D1 is a prerequisite for generation of all spliced viral mRNAs encoding essential regulatory and structural proteins. We set out to determine whether flanking sequences ensure D1-activation. We found that an exonic splicing enhancer function is exerted by the region upstream of D1, which is crucially required for its activation. Additionally, we identified an intronic splicing regulatory element within the p17-instability element of the Gag-ORF enhancing D1-activation. Furthermore, our experimental data demonstrated that sequence motifs displaying high similarity to consensus binding sites for SR protein SC35 (SRSF2) overlapping with D1 fine-tune its activation. Our results reveal that D1-activation is safe-guarded by the interplay of upstream and downstream located splicing enhancer elements ensuring usage of D1 even if its strength is decreased upon mutation. The identification of sequence elements activating D1-usage sheds further light on the balanced expression of alternatively spliced HIV-1 mRNAs.
Collapse
Affiliation(s)
- Corinna Asang
- Institut für Virologie, Universitätsklinikum Düsseldorf, Universitätsstr. 1, D-40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
94
|
de Almeida SF, Carmo-Fonseca M. Design principles of interconnections between chromatin and pre-mRNA splicing. Trends Biochem Sci 2012; 37:248-53. [DOI: 10.1016/j.tibs.2012.02.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/01/2012] [Accepted: 02/06/2012] [Indexed: 11/24/2022]
|
95
|
Role for gene looping in intron-mediated enhancement of transcription. Proc Natl Acad Sci U S A 2012; 109:8505-10. [PMID: 22586116 DOI: 10.1073/pnas.1112400109] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Intron-containing genes are often transcribed more efficiently than nonintronic genes. The effect of introns on transcription of genes is an evolutionarily conserved feature, being exhibited by such diverse organisms as yeast, plants, flies, and mammals. The mechanism of intron-mediated transcriptional activation, however, is not entirely clear. To address this issue, we inserted an intron in INO1, which is a nonintronic gene, and deleted the intron from ASC1, which contains a natural intron. We then compared transcription of INO1 and ASC1 genes in the presence and absence of an intron. Transcription of both genes was significantly stimulated by the intron. The introns have a direct role in enhancing transcription of INO1 and ASC1 because there was a marked increase in nascent transcripts from these genes in the presence of an intron. Intron-mediated enhancement of transcription required a splicing competent intron. Interestingly, both INO1 and ASC1 were in a looped configuration when their genes contained an intron. Intron-dependent gene looping involved a physical interaction of the promoter and the terminator regions. In addition, the promoter region interacted with the 5' splice site and the terminator with the 3' splice site. Intron-mediated enhancement of transcription was completely abolished in the looping defective sua7-1 strain. No effect on splicing, however, was observed in sua7-1 strain. On the basis of these results, we propose a role for gene looping in intron-mediated transcriptional activation of genes in yeast.
Collapse
|
96
|
Abstract
The intron–exon architecture of many eukaryotic genes raises the intriguing question of whether this unique organization serves any function, or is it simply a result of the spread of functionless introns in eukaryotic genomes. In this review, we show that introns in contemporary species fulfill a broad spectrum of functions, and are involved in virtually every step of mRNA processing. We propose that this great diversity of intronic functions supports the notion that introns were indeed selfish elements in early eukaryotes, but then independently gained numerous functions in different eukaryotic lineages. We suggest a novel criterion of evolutionary conservation, dubbed intron positional conservation, which can identify functional introns.
Collapse
Affiliation(s)
- Michal Chorev
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem Jerusalem, Israel
| | | |
Collapse
|
97
|
Hnilicová J, Staněk D. Where splicing joins chromatin. Nucleus 2012; 2:182-8. [PMID: 21818411 DOI: 10.4161/nucl.2.3.15876] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 04/18/2011] [Accepted: 04/19/2011] [Indexed: 12/14/2022] Open
Abstract
There are numerous data suggesting that two key steps in gene expression-transcription and splicing influence each other closely. For a long time it was known that chromatin modifications regulate transcription, but only recently it was shown that chromatin and histone modifications play a significant role in pre-mRNA splicing. Here we summarize interactions between splicing machinery and chromatin and discuss their potential functional significance. We focus mainly on histone acetylation and methylation and potential mechanisms of their role in splicing. It seems that whereas histone acetylation acts mainly by alterating the transcription rate, histone methylation can also influence splicing directly by recruiting various splicing components.
Collapse
Affiliation(s)
- Jarmila Hnilicová
- Department of RNA Biology, Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Prague
| | | |
Collapse
|
98
|
Vitaliano-Prunier A, Babour A, Hérissant L, Apponi L, Margaritis T, Holstege FCP, Corbett AH, Gwizdek C, Dargemont C. H2B ubiquitylation controls the formation of export-competent mRNP. Mol Cell 2012; 45:132-9. [PMID: 22244335 DOI: 10.1016/j.molcel.2011.12.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 09/15/2011] [Accepted: 11/01/2011] [Indexed: 01/18/2023]
Abstract
Histone H2B ubiquitylation is a transcription-dependent modification that not only regulates nucleosome dynamics but also controls the trimethylation of histone H3 on lysine 4 by promoting ubiquitylation of Swd2, a component of both the histone methyltransferase COMPASS complex and the cleavage and polyadenylation factor(CPF). We show that preventing either H2B ubiquitylation or H2B-dependent modification of Swd2 results in nuclear accumulation of poly(A) RNA due to a defect in the integrity and stability of APT, a subcomplex of the CPF. Ubiquitin-regulated APT complex dynamics is required for the correct recruitment of the mRNA export receptor Mex67 to nuclear mRNPs. While H2B ubiquitylation controls the recruitment of the different Mex67 adaptors to mRNPs, the effect of Swd2 ubiquitylation is restricted to Yra1 and Nab2, which, in turn, controls poly(A) tail length. Modification of H2B thus participates in the crosstalk between cotranscriptional events and assembly of mRNPs linking nuclear processing and mRNA export.
Collapse
Affiliation(s)
- Adeline Vitaliano-Prunier
- Institut Jacques Monod, Université Paris Diderot, CNRS, Bâtiment Buffon, 15 rue Hélène Brion, 75205 Paris Cedex 13, France
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Schmid M, Jensen TH. Nuclear quality control of RNA polymerase II transcripts. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:474-85. [PMID: 21956943 DOI: 10.1002/wrna.24] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eukaryotic RNA polymerase II produces an astounding diversity of transcripts. These may need to be 5(') capped, spliced, polyadenylated, and packaged with proteins before their export to the cytoplasm. Unscheduled accumulation of any RNA species can interfere with normal RNA metabolism and poses a serious hazard to cells. Yet, given the amount of primary transcripts and the complexity of the RNA maturation process, production of aberrant RNA species is unavoidable. Cells, therefore, employ nuclear RNA quality control mechanisms to rapidly degrade, actively retain, or transcriptionally silence unwanted RNAs. Pathways that monitor mRNA production are best understood and similar pathways are employed to destroy transcriptional noise. Finally, related mechanisms also contribute to gene regulation during normal growth.
Collapse
Affiliation(s)
- Manfred Schmid
- Centre for mRNP Biogenesis and Metabolism, Department of Molecular Biology, Aarhus University, C.F. Møllers Alle, Bldg. 130, 8000 Aarhus C., Denmark
| | | |
Collapse
|
100
|
Khodor YL, Rodriguez J, Abruzzi KC, Tang CHA, Marr MT, Rosbash M. Nascent-seq indicates widespread cotranscriptional pre-mRNA splicing in Drosophila. Genes Dev 2012; 25:2502-12. [PMID: 22156210 DOI: 10.1101/gad.178962.111] [Citation(s) in RCA: 196] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
To determine the prevalence of cotranscriptional splicing in Drosophila, we sequenced nascent RNA transcripts from Drosophila S2 cells as well as from Drosophila heads. Eighty-seven percent of the introns assayed manifest >50% cotranscriptional splicing. The remaining 13% are cotranscriptionally spliced poorly or slowly, with ∼3% being almost completely retained in nascent pre-mRNA. Although individual introns showed slight but statistically significant differences in splicing efficiency, similar global levels of splicing were seen from both sources. Importantly, introns with low cotranscriptional splicing efficiencies are present in the same primary transcript with efficiently spliced introns, indicating that splicing is intron-specific. The analysis also indicates that cotranscriptional splicing is less efficient for first introns, longer introns, and introns annotated as alternative. Finally, S2 cells expressing the slow RpII215(C4) mutant show substantially less intron retention than wild-type S2 cells.
Collapse
Affiliation(s)
- Yevgenia L Khodor
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, Brandeis University, Waltham, Massachusetts 02454, USA
| | | | | | | | | | | |
Collapse
|