51
|
Shatsky IN, Terenin IM, Smirnova VV, Andreev DE. Cap-Independent Translation: What's in a Name? Trends Biochem Sci 2018; 43:882-895. [PMID: 29789219 DOI: 10.1016/j.tibs.2018.04.011] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 02/05/2023]
Abstract
Eukaryotic translation initiation relies on the m7G cap present at the 5' end of all mRNAs. Some viral mRNAs employ alternative mechanisms of initiation based on internal ribosome entry. The 'IRES ideology' was adopted by researchers to explain the differential translation of cellular mRNAs when the cap recognition is suppressed. However, some cellular IRESs have already been challenged and others are awaiting their validation. As an alternative cap-independent mechanism, we propose adopting the concept of cap-independent translation enhancers (CITEs) for mammalian mRNAs. Unlike IRESs, CITEs can be located both within 5' and 3' UTRs and bind mRNA-recruiting translational components. The respective 5' UTRs are then inspected by the scanning machinery essentially in the same way as under cap-dependent translation.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia.
| | - Ilya M Terenin
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia; Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya Str. 8-2, 119991, Moscow, Russia
| | - Victoria V Smirnova
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| | - Dmitri E Andreev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Leninskie Gory 1, Bldg. 40, Moscow 119992, Russia
| |
Collapse
|
52
|
Chassé H, Aubert J, Boulben S, Le Corguillé G, Corre E, Cormier P, Morales J. Translatome analysis at the egg-to-embryo transition in sea urchin. Nucleic Acids Res 2018; 46:4607-4621. [PMID: 29660001 PMCID: PMC5961321 DOI: 10.1093/nar/gky258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/09/2018] [Accepted: 03/28/2018] [Indexed: 11/12/2022] Open
Abstract
Early embryogenesis relies on the translational regulation of maternally stored mRNAs. In sea urchin, fertilization triggers a dramatic rise in translation activity, necessary for the onset of cell division. Here, the full spectrum of the mRNAs translated upon fertilization was investigated by polysome profiling and sequencing. The translatome of the early sea urchin embryo gave a complete picture of the polysomal recruitment dynamics following fertilization. Our results indicate that only a subset of maternal mRNAs were selectively recruited onto polysomes, with over-represented functional categories in the translated set. The increase in translation upon fertilization depends on the formation of translation initiation complexes following mTOR pathway activation. Surprisingly, mTOR pathway inhibition differentially affected polysomal recruitment of the newly translated mRNAs, which thus appeared either mTOR-dependent or mTOR-independent. Therefore, our data argue for an alternative to the classical cap-dependent model of translation in early development. The identification of the mRNAs translated following fertilization helped assign translational activation events to specific mRNAs. This translatome is the first step to a comprehensive analysis of the molecular mechanisms governing translation upon fertilization and the translational regulatory networks that control the egg-to-embryo transition as well as the early steps of embryogenesis.
Collapse
Affiliation(s)
- Héloïse Chassé
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julie Aubert
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Sandrine Boulben
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Gildas Le Corguillé
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Erwan Corre
- CNRS, Sorbonne Université, FR2424, ABiMS, Station Biologique, 29680 Roscoff, France
| | - Patrick Cormier
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| | - Julia Morales
- CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
- Sorbonne Université, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, 29688 Roscoff Cedex, France
| |
Collapse
|
53
|
Regulation of Hypoxia-Inducible Factor 1α during Hypoxia by DAP5-Induced Translation of PHD2. Mol Cell Biol 2018. [PMID: 29530922 DOI: 10.1128/mcb.00647-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Death-associated protein 5 (DAP5) is an atypical isoform of the translation initiation scaffolds eukaryotic initiation factor 4GI (eIF4GI) and eIF4GII (eIF4GI/II), which recruit mRNAs to ribosomes in mammals. Unlike eIF4GI/II, DAP5 binds eIF2β, a subunit of the eIF2 complex that delivers methionyl-tRNA to ribosomes. We discovered that DAP5:eIF2β binding depends on specific stimuli, e.g., protein kinase C (PKC)-Raf-extracellular signal-regulated kinase 1/2 (ERK1/2) signals, and determines DAP5's influence on global and template-specific translation. DAP5 depletion caused an unanticipated surge of hypoxia-inducible factor 1α (HIF-1α), the transcription factor and master switch of the hypoxia response. Physiologically, the hypoxia response is tempered through HIF-1α hydroxylation by the oxygen-sensing prolyl hydroxylase-domain protein 2 (PHD2) and subsequent ubiquitination and degradation. We found that DAP5 regulates HIF-1α abundance through DAP5:eIF2β-dependent translation of PHD2. DAP5:eIF2-induced PHD2 translation occurred during hypoxia-associated protein synthesis repression, indicating a role as a safeguard to reverse HIF-1α accumulation and curb the hypoxic response.
Collapse
|
54
|
Sepulveda G, Antkowiak M, Brust-Mascher I, Mahe K, Ou T, Castro NM, Christensen LN, Cheung L, Jiang X, Yoon D, Huang B, Jao LE. Co-translational protein targeting facilitates centrosomal recruitment of PCNT during centrosome maturation in vertebrates. eLife 2018; 7:34959. [PMID: 29708497 PMCID: PMC5976437 DOI: 10.7554/elife.34959] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/30/2018] [Indexed: 12/16/2022] Open
Abstract
As microtubule-organizing centers of animal cells, centrosomes guide the formation of the bipolar spindle that segregates chromosomes during mitosis. At mitosis onset, centrosomes maximize microtubule-organizing activity by rapidly expanding the pericentriolar material (PCM). This process is in part driven by the large PCM protein pericentrin (PCNT), as its level increases at the PCM and helps recruit additional PCM components. However, the mechanism underlying the timely centrosomal enrichment of PCNT remains unclear. Here, we show that PCNT is delivered co-translationally to centrosomes during early mitosis by cytoplasmic dynein, as evidenced by centrosomal enrichment of PCNT mRNA, its translation near centrosomes, and requirement of intact polysomes for PCNT mRNA localization. Additionally, the microtubule minus-end regulator, ASPM, is also targeted co-translationally to mitotic spindle poles. Together, these findings suggest that co-translational targeting of cytoplasmic proteins to specific subcellular destinations may be a generalized protein targeting mechanism. Before a cell divides, it creates a copy of its genetic material (DNA) and evenly distributes it between the new ‘daughter’ cells with the help of a complex called the mitotic spindle. This complex is made of long cable-like protein chains called microtubules. To ensure that each daughter cell receives an equal amount of DNA, structures known as centrosomes organize the microtubules during the division process. Centrosomes have two rigid cores, called centrioles, which are surrounded by a matrix of proteins called the pericentriolar material. It is from this material that the microtubules are organized. The pericentriolar material is a dynamic structure and changes its size by assembling and disassembling its protein components. The larger the pericentriolar material, the more microtubules can form. Before a cell divides, it rapidly expands in a process called centrosome maturation. A protein called pericentrin initiates the maturation by helping to recruit other proteins to the centrosome. Pericentrin molecules are large, and it takes the cell between 10 and 20 minutes to make each one. Nevertheless, the cell can produce and deliver large quantities of pericentrin to the centrosome in a matter of minutes. We do not yet know how this happens. To investigate this further, Sepulveda, Antkowiak, Brust-Mascher et al. used advanced microscopy to study zebrafish embryos and human cells grown in the laboratory. The results showed that cells build and transport pericentrin at the same time. Cells use messenger RNA molecules as templates to build proteins. These feed into protein factories called ribosomes, which assemble the building blocks in the correct order. Rather than waiting for the pericentrin production to finish, the cell moves the active factories to the centrosome with the help of a molecular motor called dynein. By the time the pericentrin molecules are completely made by ribosomes, they are already at the centrosome, ready to help with the recruitment of other proteins during centrosome maturation. These findings improve our understanding of centrosome maturation. The next step is to find out how the cell coordinates this process with the recruitment of other proteins to the centrosome. It is also possible that the cell uses similar processes to deliver other proteins to different parts of the cell.
Collapse
Affiliation(s)
- Guadalupe Sepulveda
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Mark Antkowiak
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, University of California, Davis School of Veterinary Medicine, Davis, United States
| | - Karan Mahe
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Tingyoung Ou
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Noemi M Castro
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lana N Christensen
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Lee Cheung
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Xueer Jiang
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Daniel Yoon
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| | - Bo Huang
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States.,Chan Zuckerberg Biohub, San Francisco, United States
| | - Li-En Jao
- Department of Cell Biology and Human Anatomy, University of California, Davis School of Medicine, Davis, United States
| |
Collapse
|
55
|
Heerma van Voss MR, Kammers K, Vesuna F, Brilliant J, Bergman Y, Tantravedi S, Wu X, Cole RN, Holland A, van Diest PJ, Raman V. Global Effects of DDX3 Inhibition on Cell Cycle Regulation Identified by a Combined Phosphoproteomics and Single Cell Tracking Approach. Transl Oncol 2018; 11:755-763. [PMID: 29684792 PMCID: PMC6050443 DOI: 10.1016/j.tranon.2018.04.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 03/29/2018] [Accepted: 04/02/2018] [Indexed: 01/17/2023] Open
Abstract
DDX3 is an RNA helicase with oncogenic properties. The small molecule inhibitor RK-33 is designed to fit into the ATP binding cleft of DDX3 and hereby block its activity. RK-33 has shown potent activity in preclinical cancer models. However, the mechanism behind the antineoplastic activity of RK-33 remains largely unknown. In this study we used a dual phosphoproteomic and single cell tracking approach to evaluate the effect of RK-33 on cancer cells. MDA-MB-435 cells were treated for 24 hours with RK-33 or vehicle control. Changes in phosphopeptide abundance were analyzed with quantitative mass spectrometry using isobaric mass tags (Tandem Mass Tags). At the proteome level we mainly observed changes in mitochondrial translation, cell division pathways and proteins related to cell cycle progression. Analysis of the phosphoproteome indicated decreased CDK1 activity after RK-33 treatment. To further evaluate the effect of DDX3 inhibition on cell cycle progression over time, we performed timelapse microscopy of Fluorescent Ubiquitin Cell Cycle Indicators labeled cells after RK-33 or siDDX3 exposure. Single cell tracking indicated that DDX3 inhibition resulted in a global delay in cell cycle progression in interphase and mitosis. In addition, we observed an increase in endoreduplication. Overall, we conclude that DDX3 inhibition affects cells in all phases and causes a global cell cycle progression delay.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kai Kammers
- Division of Biostatistics and Bioinformatics, Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Farhad Vesuna
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Justin Brilliant
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Yehudit Bergman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Saritha Tantravedi
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Xinyan Wu
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Robert N Cole
- Mass Spectrometry and Proteomics Core, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Andrew Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul J van Diest
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oncology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
56
|
Vaklavas C, Zinn KR, Samuel SL, Meng Z, Grizzle WE, Choi H, Blume SW. Translational control of the undifferentiated phenotype in ER‑positive breast tumor cells: Cytoplasmic localization of ERα and impact of IRES inhibition. Oncol Rep 2018; 39:2482-2498. [PMID: 29620220 PMCID: PMC5983923 DOI: 10.3892/or.2018.6332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 02/12/2018] [Indexed: 01/07/2023] Open
Abstract
Using a series of potential biomarkers relevant to mechanisms of protein synthesis, we observed that estrogen receptor (ER)-positive breast tumor cells exist in two distinct yet interconvertible phenotypic states (of roughly equal proportion) which differ in the degree of differentiation and use of IRES-mediated translation. Nascently translated IGF1R in the cytoplasm positively correlated with IRES activity and the undifferentiated phenotype, while epitope accessibility of RACK1, an integral component of the 40S ribosomal subunit, aligned with the more differentiated IRES-off state. When deprived of soluble growth factors, the entire tumor cell population shifted to the undifferentiated phenotype in which IRES-mediated translation was active, facilitating survival under these adverse microenvironmental conditions. However, if IRES-mediated translation was inhibited, the cells instead were forced to transition uniformly to the more differentiated state. Notably, cytoplasmic localization of estrogen receptor α (ERα/ESR1) precisely mirrored the pattern observed with nascent IGF1R, correlating with the undifferentiated IRES-active phenotype. Inhibition of IRES-mediated translation resulted in both a shift in ERα to the nucleus (consistent with differentiation) and a marked decrease in ERα abundance (consistent with the inhibition of ERα synthesis via its IRES). Although breast tumor cells tolerated forced differentiation without extensive loss of their viability, their reproductive capacity was severely compromised. In addition, CDK1 was decreased, connexin 43 eliminated and Myc translation altered as a consequence of IRES inhibition. Isolated or low-density ER-positive breast tumor cells were particularly vulnerable to IRES inhibition, losing the ability to generate viable cohesive colonies, or undergoing massive cell death. Collectively, these results provide further evidence for the integral relationship between IRES-mediated translation and the undifferentiated phenotype and demonstrate how therapeutic manipulation of this specialized mode of protein synthesis may be used to limit the phenotypic plasticity and incapacitate or eliminate these otherwise highly resilient breast tumor cells.
Collapse
Affiliation(s)
- Christos Vaklavas
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kurt R Zinn
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Sharon L Samuel
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Zheng Meng
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - William E Grizzle
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Hyoungsoo Choi
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Scott W Blume
- Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
57
|
Tang L, Morris J, Wan J, Moore C, Fujita Y, Gillaspie S, Aube E, Nanda J, Marques M, Jangal M, Anderson A, Cox C, Hiraishi H, Dong L, Saito H, Singh CR, Witcher M, Topisirovic I, Qian SB, Asano K. Competition between translation initiation factor eIF5 and its mimic protein 5MP determines non-AUG initiation rate genome-wide. Nucleic Acids Res 2017; 45:11941-11953. [PMID: 28981728 PMCID: PMC5714202 DOI: 10.1093/nar/gkx808] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
In the human genome, translation initiation from non-AUG codons plays an important role in various gene regulation programs. However, mechanisms regulating the non-AUG initiation rate remain poorly understood. Here, we show that the non-AUG initiation rate is nearly consistent under a fixed nucleotide context in various human and insect cells. Yet, it ranges from <1% to nearly 100% compared to AUG translation, depending on surrounding sequences, including Kozak, and possibly additional nucleotide contexts. Mechanistically, this range of non-AUG initiation is controlled in part, by the eIF5-mimic protein (5MP). 5MP represses non-AUG translation by competing with eIF5 for the Met-tRNAi-binding factor eIF2. Consistently, eIF5 increases, whereas 5MP decreases translation of NAT1/EIF4G2/DAP5, whose sole start codon is GUG. By modulating eIF5 and 5MP1 expression in combination with ribosome profiling we identified a handful of previously unknown non-AUG initiation sites, some of which serve as the exclusive start codons. If the initiation rate for these codons is low, then an AUG-initiated downstream ORF prevents the generation of shorter, AUG-initiated isoforms. We propose that the homeostasis of the non-AUG translatome is maintained through balanced expression of eIF5 and 5MP.
Collapse
Affiliation(s)
- Leiming Tang
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Jacob Morris
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Ji Wan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Chelsea Moore
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Yoshihiko Fujita
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Sarah Gillaspie
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Eric Aube
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | | | - Maud Marques
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Maika Jangal
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Abbey Anderson
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Christian Cox
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Hiroyuki Hiraishi
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Leiming Dong
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hirohide Saito
- Center for iPS Cell Research and Application, Kyoto University, Sakyo-ku, Kyoto 606-8507, Japan
| | - Chingakham Ranjit Singh
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Michael Witcher
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ivan Topisirovic
- Lady Davis Institute, and the Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shu-Bing Qian
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Katsura Asano
- Molecular Cellular and Developmental Biology Program, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
58
|
Abstract
This review by Kearse and Wilusz discusses the profound impact of non-AUG start codons in eukaryotic translation. It describes how misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and how modulation of non-AUG usage may represent a novel therapeutic strategy. Although it was long thought that eukaryotic translation almost always initiates at an AUG start codon, recent advancements in ribosome footprint mapping have revealed that non-AUG start codons are used at an astonishing frequency. These non-AUG initiation events are not simply errors but instead are used to generate or regulate proteins with key cellular functions; for example, during development or stress. Misregulation of non-AUG initiation events contributes to multiple human diseases, including cancer and neurodegeneration, and modulation of non-AUG usage may represent a novel therapeutic strategy. It is thus becoming increasingly clear that start codon selection is regulated by many trans-acting initiation factors as well as sequence/structural elements within messenger RNAs and that non-AUG translation has a profound impact on cellular states.
Collapse
Affiliation(s)
- Michael G Kearse
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, 19104 USA
| |
Collapse
|
59
|
Hall H, Medina P, Cooper DA, Escobedo SE, Rounds J, Brennan KJ, Vincent C, Miura P, Doerge R, Weake VM. Transcriptome profiling of aging Drosophila photoreceptors reveals gene expression trends that correlate with visual senescence. BMC Genomics 2017; 18:894. [PMID: 29162050 PMCID: PMC5698953 DOI: 10.1186/s12864-017-4304-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/14/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Aging is associated with functional decline of neurons and increased incidence of both neurodegenerative and ocular disease. Photoreceptor neurons in Drosophila melanogaster provide a powerful model for studying the molecular changes involved in functional senescence of neurons since decreased visual behavior precedes retinal degeneration. Here, we sought to identify gene expression changes and the genomic features of differentially regulated genes in photoreceptors that contribute to visual senescence. RESULTS To identify gene expression changes that could lead to visual senescence, we characterized the aging transcriptome of Drosophila sensory neurons highly enriched for photoreceptors. We profiled the nuclear transcriptome of genetically-labeled photoreceptors over a 40 day time course and identified increased expression of genes involved in stress and DNA damage response, and decreased expression of genes required for neuronal function. We further show that combinations of promoter motifs robustly identify age-regulated genes, suggesting that transcription factors are important in driving expression changes in aging photoreceptors. However, long, highly expressed and heavily spliced genes are also more likely to be downregulated with age, indicating that other mechanisms could contribute to expression changes at these genes. Lastly, we identify that circular RNAs (circRNAs) strongly increase during aging in photoreceptors. CONCLUSIONS Overall, we identified changes in gene expression in aging Drosophila photoreceptors that could account for visual senescence. Further, we show that genomic features predict these age-related changes, suggesting potential mechanisms that could be targeted to slow the rate of age-associated visual decline.
Collapse
Affiliation(s)
- Hana Hall
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Patrick Medina
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Daphne A Cooper
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | - Spencer E Escobedo
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | - Jeremiah Rounds
- Department of Statistics, Purdue University, West Lafayette, IN, 47907, USA
| | - Kaelan J Brennan
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | - Pedro Miura
- Department of Biology, University of Nevada, Reno, NV, 89557, USA
| | | | - Vikki M Weake
- Department of Biochemistry, Purdue University, West Lafayette, IN, 47907, USA. .,Purdue University Center for Cancer Research, Purdue University, West Lafayette, 47907, USA.
| |
Collapse
|
60
|
Marques-Ramos A, Candeias MM, Menezes J, Lacerda R, Willcocks M, Teixeira A, Locker N, Romão L. Cap-independent translation ensures mTOR expression and function upon protein synthesis inhibition. RNA (NEW YORK, N.Y.) 2017; 23:1712-1728. [PMID: 28821580 PMCID: PMC5648038 DOI: 10.1261/rna.063040.117] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 08/15/2017] [Indexed: 06/07/2023]
Abstract
The mechanistic/mammalian target of rapamycin (mTOR) is a conserved serine/threonine kinase that integrates cellular signals from the nutrient and energy status to act, namely, on the protein synthesis machinery. While major advances have emerged regarding the regulators and effects of the mTOR signaling pathway, little is known about the regulation of mTOR gene expression. Here, we show that the human mTOR transcript can be translated in a cap-independent manner, and that its 5' untranslated region (UTR) is a highly folded RNA scaffold capable of binding directly to the 40S ribosomal subunit. We further demonstrate that mTOR is able to bypass the cap requirement for translation both in normal and hypoxic conditions. Moreover, our data reveal that the cap-independent translation of mTOR is necessary for its ability to induce cell-cycle progression into S phase. These results suggest a novel regulatory mechanism for mTOR gene expression that integrates the global protein synthesis changes induced by translational inhibitory conditions.
Collapse
Affiliation(s)
- Ana Marques-Ramos
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Marco M Candeias
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Juliane Menezes
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Rafaela Lacerda
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Margaret Willcocks
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Alexandre Teixeira
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
| | - Nicolas Locker
- Microbial and Cellular Sciences Department, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7TE, United Kingdom
| | - Luísa Romão
- Departamento de Genética Humana, Instituto Nacional de Saúde Doutor Ricardo Jorge, 1649-016 Lisboa, Portugal
- Biosystems and Integrative Sciences Institute (BioISI), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
61
|
Heerma van Voss MR, van Diest PJ, Raman V. Targeting RNA helicases in cancer: The translation trap. Biochim Biophys Acta Rev Cancer 2017; 1868:510-520. [PMID: 28965870 DOI: 10.1016/j.bbcan.2017.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/25/2017] [Accepted: 09/26/2017] [Indexed: 12/14/2022]
Abstract
Cancer cells are reliant on the cellular translational machinery for both global elevation of protein synthesis and the translation of specific mRNAs that promote tumor cell survival. Targeting translational control in cancer is therefore increasingly recognized as a promising therapeutic strategy. In this regard, DEAD/H box RNA helicases are a very interesting group of proteins, with several family members regulating mRNA translation in cancer cells. In this review, we delineate the mechanisms by which DEAD/H box proteins modulate oncogenic translation and how inhibition of these RNA helicases can be exploited for anti-cancer therapeutics.
Collapse
Affiliation(s)
- Marise R Heerma van Voss
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Paul J van Diest
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University, School of Medicine, MD, USA
| | - Venu Raman
- Department of Radiology and Radiological Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA; Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands; Department of Oncology, Johns Hopkins University, School of Medicine, MD, USA.
| |
Collapse
|
62
|
Park JE, Yi H, Kim Y, Chang H, Kim VN. Regulation of Poly(A) Tail and Translation during the Somatic Cell Cycle. Mol Cell 2017; 62:462-471. [PMID: 27153541 DOI: 10.1016/j.molcel.2016.04.007] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 03/07/2016] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Poly(A) tails are critical for mRNA stability and translation. However, recent studies have challenged this view, showing that poly(A) tail length and translation efficiency are decoupled in non-embryonic cells. Using TAIL-seq and ribosome profiling, we investigate poly(A) tail dynamics and translational control in the somatic cell cycle. We find dramatic changes in poly(A) tail lengths of cell-cycle regulatory genes like CDK1, TOP2A, and FBXO5, explaining their translational repression in M phase. We also find that poly(A) tail length is coupled to translation when the poly(A) tail is <20 nucleotides. However, as most genes have >20 nucleotide poly(A) tails, their translation is regulated mainly via poly(A) tail length-independent mechanisms during the cell cycle. Specifically, we find that terminal oligopyrimidine (TOP) tract-containing transcripts escape global translational suppression in M phase and are actively translated. Our quantitative and comprehensive data provide a revised view of translational control in the somatic cell cycle.
Collapse
Affiliation(s)
- Jong-Eun Park
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyerim Yi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yoosik Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Hyeshik Chang
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
63
|
Yoffe Y, David M, Kalaora R, Povodovski L, Friedlander G, Feldmesser E, Ainbinder E, Saada A, Bialik S, Kimchi A. Cap-independent translation by DAP5 controls cell fate decisions in human embryonic stem cells. Genes Dev 2017; 30:1991-2004. [PMID: 27664238 PMCID: PMC5066241 DOI: 10.1101/gad.285239.116] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 08/18/2016] [Indexed: 12/21/2022]
Abstract
In this study, Yoffe et al. provide insight into a new regulatory mechanism that is critical for stem cell fate decisions toward several cell lineages. They found that DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions. Multiple transcriptional and epigenetic changes drive differentiation of embryonic stem cells (ESCs). This study unveils an additional level of gene expression regulation involving noncanonical, cap-independent translation of a select group of mRNAs. This is driven by death-associated protein 5 (DAP5/eIF4G2/NAT1), a translation initiation factor mediating IRES-dependent translation. We found that the DAP5 knockdown from human ESCs (hESCs) resulted in persistence of pluripotent gene expression, delayed induction of differentiation-associated genes in different cell lineages, and defective embryoid body formation. The latter involved improper cellular organization, lack of cavitation, and enhanced mislocalized apoptosis. RNA sequencing of polysome-associated mRNAs identified candidates with reduced translation efficiency in DAP5-depleted hESCs. These were enriched in mitochondrial proteins involved in oxidative respiration, a pathway essential for differentiation, the significance of which was confirmed by the aberrant mitochondrial morphology and decreased oxidative respiratory activity in DAP5 knockdown cells. Further analysis identified the chromatin modifier HMGN3 as a cap-independent DAP5 translation target whose knockdown resulted in defective differentiation. Thus, DAP5-mediated translation of a specific set of proteins is critical for the transition from pluripotency to differentiation, highlighting the importance of cap-independent translation in stem cell fate decisions.
Collapse
Affiliation(s)
- Yael Yoffe
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Maya David
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Rinat Kalaora
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Lital Povodovski
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Gilgi Friedlander
- Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ester Feldmesser
- Bioinformatics Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Elena Ainbinder
- Stem Cell Core Unit, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Shani Bialik
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Adi Kimchi
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
64
|
Fatima S, Wagstaff KM, Lieu KG, Davies RG, Tanaka SS, Yamaguchi YL, Loveland KL, Tam PP, Jans DA. Interactome of the inhibitory isoform of the nuclear transporter Importin 13. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:546-561. [DOI: 10.1016/j.bbamcr.2016.12.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 11/11/2016] [Accepted: 12/15/2016] [Indexed: 10/20/2022]
|
65
|
Heterogeneous nuclear ribonucleoprotein A1 regulates rhythmic synthesis of mouse Nfil3 protein via IRES-mediated translation. Sci Rep 2017; 7:42882. [PMID: 28220845 PMCID: PMC5318856 DOI: 10.1038/srep42882] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/16/2017] [Indexed: 01/06/2023] Open
Abstract
Nuclear factor, interleukin 3, regulated (Nfil3, also known as E4 Promoter-Binding Protein 4 (E4BP4)) protein is a transcription factor that binds to DNA and generally represses target gene expression. In the circadian clock system, Nfil3 binds to a D-box element residing in the promoter of clock genes and contributes to their robust oscillation. Here, we show that the 5'-untranslated region (5'-UTR) of Nfil3 mRNA contains an internal ribosome entry site (IRES) and that IRES-mediated translation occurs in a phase-dependent manner. We demonstrate that heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1) binds to a specific region of Nfil3 mRNA and regulates IRES-mediated translation. Knockdown of hnRNP A1 almost completely abolishes protein oscillation without affecting mRNA oscillation. Moreover, we observe that intracellular calcium levels, which are closely related to bone formation, depend on Nfil3 levels in osteoblast cell lines. We suggest that the 5'-UTR mediated cap-independent translation of Nfil3 mRNA contributes to the rhythmic expression of Nfil3 by interacting with the RNA binding protein hnRNP A1. These data provide new evidence that the posttranscriptional regulation of clock gene expression is important during bone metabolism.
Collapse
|
66
|
Role of Eukaryotic Initiation Factors during Cellular Stress and Cancer Progression. J Nucleic Acids 2016; 2016:8235121. [PMID: 28083147 PMCID: PMC5204094 DOI: 10.1155/2016/8235121] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 11/14/2016] [Indexed: 12/12/2022] Open
Abstract
Protein synthesis can be segmented into distinct phases comprising mRNA translation initiation, elongation, and termination. Translation initiation is a highly regulated and rate-limiting step of protein synthesis that requires more than 12 eukaryotic initiation factors (eIFs). Extensive evidence shows that the transcriptome and corresponding proteome do not invariably correlate with each other in a variety of contexts. In particular, translation of mRNAs specific to angiogenesis, tumor development, and apoptosis is altered during physiological and pathophysiological stress conditions. In cancer cells, the expression and functions of eIFs are hampered, resulting in the inhibition of global translation and enhancement of translation of subsets of mRNAs by alternative mechanisms. A precise understanding of mechanisms involving eukaryotic initiation factors leading to differential protein expression can help us to design better strategies to diagnose and treat cancer. The high spatial and temporal resolution of translation control can have an immediate effect on the microenvironment of the cell in comparison with changes in transcription. The dysregulation of mRNA translation mechanisms is increasingly being exploited as a target to treat cancer. In this review, we will focus on this context by describing both canonical and noncanonical roles of eIFs, which alter mRNA translation.
Collapse
|
67
|
Grassilli E, Pisano F, Cialdella A, Bonomo S, Missaglia C, Cerrito MG, Masiero L, Ianzano L, Giordano F, Cicirelli V, Narloch R, D'Amato F, Noli B, Ferri GL, Leone BE, Stanta G, Bonin S, Helin K, Giovannoni R, Lavitrano M. A novel oncogenic BTK isoform is overexpressed in colon cancers and required for RAS-mediated transformation. Oncogene 2016; 35:4368-78. [PMID: 26804170 PMCID: PMC4994017 DOI: 10.1038/onc.2015.504] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 12/07/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023]
Abstract
Bruton's tyrosine kinase (BTK) is essential for B-cell proliferation/differentiation and it is generally believed that its expression and function are limited to bone marrow-derived cells. Here, we report the identification and characterization of p65BTK, a novel isoform abundantly expressed in colon carcinoma cell lines and tumour tissue samples. p65BTK protein is expressed, through heterogeneous nuclear ribonucleoprotein K (hnRNPK)-dependent and internal ribosome entry site-driven translation, from a transcript containing an alternative first exon in the 5'-untranslated region, and is post-transcriptionally regulated, via hnRNPK, by the mitogen-activated protein kinase (MAPK) pathway. p65BTK is endowed with strong transforming activity that depends on active signal-regulated protein kinases-1/2 (ERK1/2) and its inhibition abolishes RAS transforming activity. Accordingly, p65BTK overexpression in colon cancer tissues correlates with ERK1/2 activation. Moreover, p65BTK inhibition affects growth and survival of colon cancer cells. Our data reveal that BTK, via p65BTK expression, is a novel and powerful oncogene acting downstream of the RAS/MAPK pathway and suggest that its targeting may be a promising therapeutic approach.
Collapse
Affiliation(s)
- E Grassilli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- BiOnSil srl, Monza, Italy
| | - F Pisano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- BiOnSil srl, Monza, Italy
| | - A Cialdella
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- BiOnSil srl, Monza, Italy
| | - S Bonomo
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - C Missaglia
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - M G Cerrito
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - L Masiero
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - L Ianzano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - F Giordano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - V Cicirelli
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - R Narloch
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - F D'Amato
- NEF-Laboratory, Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - B Noli
- NEF-Laboratory, Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - G L Ferri
- NEF-Laboratory, Department of Biomedical Science, University of Cagliari, Monserrato, Italy
| | - B E Leone
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - G Stanta
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - S Bonin
- Department of Medical Sciences, University of Trieste, Cattinara Hospital, Trieste, Italy
| | - K Helin
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
- Center for Epigenetics, University of Copenhagen, Copenhagen, Denmark
- Danish Stem Cell Center (Danstem), University of Copenhagen, Copenhagen, Denmark
| | - R Giovannoni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - M Lavitrano
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| |
Collapse
|
68
|
Yu L, Shang ZF, Wang J, Wang H, Huang F, Zhang Z, Wang Y, Zhou J, Li S. PC-1/PrLZ confers resistance to rapamycin in prostate cancer cells through increased 4E-BP1 stability. Oncotarget 2016; 6:20356-69. [PMID: 26011939 PMCID: PMC4653010 DOI: 10.18632/oncotarget.3931] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/29/2015] [Indexed: 01/12/2023] Open
Abstract
An important strategy for improving advanced PCa treatment is targeted therapies combined with chemotherapy. PC-1, a prostate Leucine Zipper gene (PrLZ), is specifically expressed in prostate tissue as an androgen-induced gene and is up-regulated in advanced PCa. Recent work confirmed that PC-1 expression promotes PCa growth and androgen-independent progression. However, how this occurs and whether this can be used as a biomarker is uncertain. Here, we report that PC-1 overexpression confers PCa cells resistance to rapamycin treatment by antagonizing rapamycin-induced cytostasis and autophagy (rapamycin-sensitivity was observed in PC-1-deficient (shPC-1) C4-2 cells). Analysis of the mTOR pathway in PCa cells with PC-1 overexpressed and depressed revealed that eukaryotic initiation factor 4E-binding protein 1(4E-BP1) was highly regulated by PC-1. Immunohistochemistry assays indicated that 4E-BP1 up-regulation correlates with increased PC-1 expression in human prostate tumors and in PCa cells. Furthermore, PC-1 interacts directly with 4E-BP1 and stabilizes 4E-BP1 protein via inhibition of its ubiquitination and proteasomal degradation. Thus, PC-1 is a novel regulator of 4E-BP1 and our work suggests a potential mechanism through which PC-1 enhances PCa cell survival and malignant progression and increases chemoresistance. Thus, the PC-1-4E-BP1 interaction may represent a therapeutic target for treating advanced PCa.
Collapse
Affiliation(s)
- Lan Yu
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Zeng-Fu Shang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu 215123, PR China
| | - Jian Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Hongtao Wang
- State Key Laboratory of Experimental Hematology Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300200, PR China
| | - Fang Huang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Zhe Zhang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Ying Wang
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Jianguang Zhou
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| | - Shanhu Li
- Laboratory of Medical Molecular Biology, Beijing Institute of Biotechnology, Beijing 100850, PR China
| |
Collapse
|
69
|
Yosef R, Pilpel N, Tokarsky-Amiel R, Biran A, Ovadya Y, Cohen S, Vadai E, Dassa L, Shahar E, Condiotti R, Ben-Porath I, Krizhanovsky V. Directed elimination of senescent cells by inhibition of BCL-W and BCL-XL. Nat Commun 2016; 7:11190. [PMID: 27048913 PMCID: PMC4823827 DOI: 10.1038/ncomms11190] [Citation(s) in RCA: 685] [Impact Index Per Article: 76.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023] Open
Abstract
Senescent cells, formed in response to physiological and oncogenic stresses, facilitate protection from tumourigenesis and aid in tissue repair. However, accumulation of such cells in tissues contributes to age-related pathologies. Resistance of senescent cells to apoptotic stimuli may contribute to their accumulation, yet the molecular mechanisms allowing their prolonged viability are poorly characterized. Here we show that senescent cells upregulate the anti-apoptotic proteins BCL-W and BCL-XL. Joint inhibition of BCL-W and BCL-XL by siRNAs or the small-molecule ABT-737 specifically induces apoptosis in senescent cells. Notably, treatment of mice with ABT-737 efficiently eliminates senescent cells induced by DNA damage in the lungs as well as senescent cells formed in the epidermis by activation of p53 through transgenic p14(ARF). Elimination of senescent cells from the epidermis leads to an increase in hair-follicle stem cell proliferation. The finding that senescent cells can be eliminated pharmacologically paves the way to new strategies for the treatment of age-related pathologies.
Collapse
Affiliation(s)
- Reut Yosef
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Noam Pilpel
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ronit Tokarsky-Amiel
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Anat Biran
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yossi Ovadya
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Snir Cohen
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Ezra Vadai
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Liat Dassa
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Elisheva Shahar
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Reba Condiotti
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Ittai Ben-Porath
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel
| | - Valery Krizhanovsky
- Department of Molecular Cell Biology, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
70
|
Bisio A, Latorre E, Andreotti V, Bressac-de Paillerets B, Harland M, Scarra GB, Ghiorzo P, Spitale RC, Provenzani A, Inga A. The 5'-untranslated region of p16INK4a melanoma tumor suppressor acts as a cellular IRES, controlling mRNA translation under hypoxia through YBX1 binding. Oncotarget 2015; 6:39980-39994. [PMID: 26498684 PMCID: PMC4741874 DOI: 10.18632/oncotarget.5387] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 10/05/2015] [Indexed: 12/20/2022] Open
Abstract
CDKN2A/p16INK4a is an essential tumor suppressor gene that controls cell cycle progression and replicative senescence. It is also the main melanoma susceptibility gene. Here we report that p16INK4a 5'UTR mRNA acts as a cellular Internal Ribosome Entry Site (IRES). The potential for p16INK4a 5'UTR to drive cap-independent translation was evaluated by dual-luciferase assays using bicistronic and monocistronic vectors. Results of reporters' relative activities coupled to control analyses for actual bicistronic mRNA transcription, indicated that the wild type p16INK4a 5'UTR could stimulate cap-independent translation. Notably, hypoxic stress and the treatment with mTOR inhibitors enhanced the translation-stimulating property of p16INK4a 5'UTR. RNA immunoprecipitation performed in melanoma-derived SK-Mel-28 and in a patient-derived lymphoblastoid cell line indicated that YBX1 can bind the wild type p16INK4a mRNA increasing its translation efficiency, particularly during hypoxic stress. Modulation of YBX1 expression further supported its involvement in cap-independent translation of the wild type p16INK4a but not a c.-42T>A variant. RNA SHAPE assays revealed local flexibility changes for the c.-42T>A variant at the predicted YBX1 binding site region. Our results indicate that p16INK4a 5'UTR contains a cellular IRES that can enhance mRNA translation efficiency, in part through YBX1.
Collapse
Affiliation(s)
- Alessandra Bisio
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Elisa Latorre
- Laboratory of Genomic Screening, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Virginia Andreotti
- Laboratory of Genetics of Rare Hereditary Cancers, DiMI, University of Genoa, Italy and IRCCS AOU San Martino-IST, Genoa, Italy
| | | | - Mark Harland
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK
| | - Giovanna Bianchi Scarra
- Laboratory of Genetics of Rare Hereditary Cancers, DiMI, University of Genoa, Italy and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Paola Ghiorzo
- Laboratory of Genetics of Rare Hereditary Cancers, DiMI, University of Genoa, Italy and IRCCS AOU San Martino-IST, Genoa, Italy
| | - Robert C. Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, USA
| | - Alessandro Provenzani
- Laboratory of Genomic Screening, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| | - Alberto Inga
- Laboratory of Transcriptional Networks, Centre for Integrative Biology, CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
71
|
Cleavage of DAP5 by coxsackievirus B3 2A protease facilitates viral replication and enhances apoptosis by altering translation of IRES-containing genes. Cell Death Differ 2015; 23:828-40. [PMID: 26586572 DOI: 10.1038/cdd.2015.145] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 09/17/2015] [Accepted: 09/25/2015] [Indexed: 12/22/2022] Open
Abstract
Cleavage of eukaryotic translation initiation factor 4G (eIF4G) by enterovirus proteases during infection leads to the shutoff of cellular cap-dependent translation, but does not affect the initiation of cap-independent translation of mRNAs containing an internal ribosome entry site (IRES). Death-associated protein 5 (DAP5), a structural homolog of eIF4G, is a translation initiation factor specific for IRES-containing mRNAs. Coxsackievirus B3 (CVB3) is a positive single-stranded RNA virus and a primary causal agent of human myocarditis. Its RNA genome harbors an IRES within the 5'-untranslated region and is translated by a cap-independent, IRES-driven mechanism. Previously, we have shown that DAP5 is cleaved during CVB3 infection. However, the protease responsible for cleavage, cleavage site and effects on the translation of target genes during CVB3 infection have not been investigated. In the present study, we demonstrated that viral protease 2A but not 3C is responsible for DAP5 cleavage, generating 45- and 52-kDa N- (DAP5-N) and C-terminal (DAP5-C) fragments, respectively. By site-directed mutagenesis, we found that DAP5 is cleaved at amino acid G434. Upon cleavage, DAP5-N largely translocated to the nucleus at the later time points of infection, whereas the DAP5-C largely remained in the cytoplasm. Overexpression of these DAP5 truncates demonstrated that DAP5-N retained the capability of initiating IRES-driven translation of apoptosis-associated p53, but not the prosurvival Bcl-2 (B-cell lymphoma 2) when compared with the full-length DAP5. Similarly, DAP5-N expression promoted CVB3 replication and progeny release; on the other hand, DAP5-C exerted a dominant-negative effect on cap-dependent translation. Taken together, viral protease 2A-mediated cleavage of DAP5 results in the production of two truncates that exert differential effects on protein translation of the IRES-containing genes, leading to enhanced host cell death.
Collapse
|
72
|
NSun2 Promotes Cell Growth via Elevating Cyclin-Dependent Kinase 1 Translation. Mol Cell Biol 2015; 35:4043-52. [PMID: 26391950 DOI: 10.1128/mcb.00742-15] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 09/14/2015] [Indexed: 11/20/2022] Open
Abstract
The tRNA methytransferase NSun2 promotes cell proliferation, but the molecular mechanism has not been elucidated. Here, we report that NSun2 regulates cyclin-dependent kinase 1 (CDK1) expression in a cell cycle-dependent manner. Knockdown of NSun2 decreased the CDK1 protein level, while overexpression of NSun2 elevated it without altering CDK1 mRNA levels. Further studies revealed that NSun2 methylated CDK1 mRNA in vitro and in cells and that methylation by NSun2 enhanced CDK1 translation. Importantly, NSun2-mediated regulation of CDK1 expression had an impact on the cell division cycle. These results provide new insight into the regulation of CDK1 during the cell division cycle.
Collapse
|
73
|
Tanenbaum ME, Stern-Ginossar N, Weissman JS, Vale RD. Regulation of mRNA translation during mitosis. eLife 2015; 4. [PMID: 26305499 PMCID: PMC4548207 DOI: 10.7554/elife.07957] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 08/02/2015] [Indexed: 12/21/2022] Open
Abstract
Passage through mitosis is driven by precisely-timed changes in transcriptional regulation and protein degradation. However, the importance of translational regulation during mitosis remains poorly understood. Here, using ribosome profiling, we find both a global translational repression and identified ∼200 mRNAs that undergo specific translational regulation at mitotic entry. In contrast, few changes in mRNA abundance are observed, indicating that regulation of translation is the primary mechanism of modulating protein expression during mitosis. Interestingly, 91% of the mRNAs that undergo gene-specific regulation in mitosis are translationally repressed, rather than activated. One of the most pronounced translationally-repressed genes is Emi1, an inhibitor of the anaphase promoting complex (APC) which is degraded during mitosis. We show that full APC activation requires translational repression of Emi1 in addition to its degradation. These results identify gene-specific translational repression as a means of controlling the mitotic proteome, which may complement post-translational mechanisms for inactivating protein function. DOI:http://dx.doi.org/10.7554/eLife.07957.001 The human body contains billions of cells, most of which formed via a process called mitosis in which a single cell divides to produce two new daughter cells. Actively dividing cells pass through a series of events (or phases) that are collectively known as the cell cycle. These phases allow the cell to grow in size, copy its genetic material, and then make preparations for cell division before taking the final decision to divide. Many proteins are involved in regulating the cell cycle and each protein has a particular role in specific phases. The levels of these proteins in cells may change during the cycle, which is often crucial to allow the cell to progress to the next phase. For example, cells need a group of proteins called the anaphase-promoting complex (or APC for short) to destroy other specific proteins at the end of mitosis. Another way in which the amount of protein in a cell can be adjusted is by controlling how much new protein is made during a process known as translation. During this process, a molecule called a messenger RNA (mRNA)—which contains information copied from a particular gene—is used as a template to assemble a new protein. However, it is not clear whether regulation of translation is involved in control of the cell division. Tanenbaum et al. now address this question using a technique called ribosome profiling to measure the translation of individual mRNA molecules. The experiments analysed the changes in protein production before, during and after mitosis. The overall level of translation of all the mRNAs was about 35% lower during mitosis. However, some mRNAs in particular experienced a very large reduction in the level of translation (between three- and ten-fold less than the levels before mitosis). One example of an mRNA whose translation is turned off in mitosis is the mRNA that makes a protein called Emi1. It is known from previous work that Emi1 inhibits the activity of the APC. Therefore, Emi1 needs to be inactivated in mitosis so that the APC can become active and promote progression to the next phase of the cell cycle. It was previously shown that Emi1 is destroyed during mitosis to allow the APC to operate. Tanenbaum et al. found that translation of the Emi1 mRNA must also be suppressed during mitosis in order to keep Emi1 protein levels very low and allow the APC to become fully active. These findings uncover a new role for the control of protein production in regulating the cell cycle. The next challenge will be to find out whether suppression of translation is also used in other biological systems where proteins need to be rapidly inactivated. DOI:http://dx.doi.org/10.7554/eLife.07957.002
Collapse
Affiliation(s)
- Marvin E Tanenbaum
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Noam Stern-Ginossar
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| | - Ronald D Vale
- Department of Cellular and Molecular Pharmacology, Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
74
|
Vaklavas C, Meng Z, Choi H, Grizzle WE, Zinn KR, Blume SW. Small molecule inhibitors of IRES-mediated translation. Cancer Biol Ther 2015; 16:1471-85. [PMID: 26177060 PMCID: PMC4846101 DOI: 10.1080/15384047.2015.1071729] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Many genes controlling cell proliferation and survival (those most important to cancer biology) are now known to be regulated specifically at the translational (RNA to protein) level. The internal ribosome entry site (IRES) provides a mechanism by which the translational efficiency of an individual or group of mRNAs can be regulated independently of the global controls on general protein synthesis. IRES-mediated translation has been implicated as a significant contributor to the malignant phenotype and chemoresistance, however there has been no effective means by which to interfere with this specialized mode of protein synthesis. A cell-based empirical high-throughput screen was performed in attempt to identify compounds capable of selectively inhibiting translation mediated through the IGF1R IRES. Results obtained using the bicistronic reporter system demonstrate selective inhibition of second cistron translation (IRES-dependent). The lead compound and its structural analogs completely block de novo IGF1R protein synthesis in genetically-unmodified cells, confirming activity against the endogenous IRES. Spectrum of activity extends beyond IGF1R to include the c-myc IRES. The small molecule IRES inhibitor differentially modulates synthesis of the oncogenic (p64) and growth-inhibitory (p67) isoforms of Myc, suggesting that the IRES controls not only translational efficiency, but also choice of initiation codon. Sustained IRES inhibition has profound, detrimental effects on human tumor cells, inducing massive (>99%) cell death and complete loss of clonogenic survival in models of triple-negative breast cancer. The results begin to reveal new insights into the inherent complexity of gene-specific translational regulation, and the importance of IRES-mediated translation to tumor cell biology.
Collapse
Affiliation(s)
- Christos Vaklavas
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Zheng Meng
- c Department of Biochemistry and Molecular Genetics; University of Alabama at Birmingham ; Birmingham , AL USA.,d Current address: Analytical Development Department; Novavax Inc. ; Gaithersburg , MD USA
| | - Hyoungsoo Choi
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,e Current address: Department of Pediatrics; Seoul National University Bundang Hospital; Gyeonggi-do , Korea
| | - William E Grizzle
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,f Department of Pathology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Kurt R Zinn
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,f Department of Pathology; University of Alabama at Birmingham ; Birmingham , AL USA
| | - Scott W Blume
- a Comprehensive Cancer Center; University of Alabama at Birmingham ; Birmingham , AL USA.,b Department of Medicine , Division of Hematology / Oncology; University of Alabama at Birmingham ; Birmingham , AL USA.,c Department of Biochemistry and Molecular Genetics; University of Alabama at Birmingham ; Birmingham , AL USA
| |
Collapse
|
75
|
miR-139-5p controls translation in myeloid leukemia through EIF4G2. Oncogene 2015; 35:1822-31. [PMID: 26165837 DOI: 10.1038/onc.2015.247] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/21/2015] [Accepted: 05/22/2015] [Indexed: 12/15/2022]
Abstract
MicroRNAs (miRNAs) are crucial components of homeostatic and developmental gene regulation. In turn, dysregulation of miRNA expression is a common feature of different types of cancer, which can be harnessed therapeutically. Here we identify miR-139-5p suppression across several cytogenetically defined acute myeloid leukemia (AML) subgroups. The promoter of mir-139 was transcriptionally silenced and could be reactivated by histone deacetylase inhibitors in a dose-dependent manner. Restoration of mir-139 expression in cell lines representing the major AML subgroups (t[8;21], inv[16], mixed lineage leukemia-rearranged and complex karyotype AML) caused cell cycle arrest and apoptosis in vitro and in xenograft mouse models in vivo. During normal hematopoiesis, mir-139 is exclusively expressed in terminally differentiated neutrophils and macrophages. Ectopic expression of mir-139 repressed proliferation of normal CD34(+)-hematopoietic stem and progenitor cells and perturbed myelomonocytic in vitro differentiation. Mechanistically, mir-139 exerts its effects by repressing the translation initiation factor EIF4G2, thereby reducing overall protein synthesis while specifically inducing the translation of cell cycle inhibitor p27(Kip1). Knockdown of EIF4G2 recapitulated the effects of mir-139, whereas restoring EIF4G2 expression rescued the mir-139 phenotype. Moreover, elevated miR-139-5p expression is associated with a favorable outcome in a cohort of 165 pediatric patients with AML. Thus, mir-139 acts as a global tumor suppressor-miR in AML by controlling protein translation. As AML cells are dependent on high protein synthesis rates controlling the expression of mir-139 constitutes a novel path for the treatment of AML.
Collapse
|
76
|
Abstract
ATP-binding cassette 50 (ABC50; also known as ABCF1) binds to eukaryotic initiation factor 2 (eIF2) and is required for efficient translation initiation. An essential step of this process is accurate recognition and selection of the initiation codon. It is widely accepted that the presence and movement of eIF1, eIF1A and eIF5 are key factors in modulating the stringency of start-site selection, which normally requires an AUG codon in an appropriate sequence context. In the present study, we show that expression of ABC50 mutants, which cannot hydrolyse ATP, decreases general translation and relaxes the discrimination against the use of non-AUG codons at translation start sites. These mutants do not appear to alter the association of key initiation factors to 40S subunits. The stringency of start-site selection can be restored through overexpression of eIF1, consistent with the role of that factor in enhancing stringency. The present study indicates that interfering with the function of ABC50 influences the accuracy of initiation codon selection.
Collapse
|
77
|
Thompson R, Shah RB, Liu PH, Gupta YK, Ando K, Aggarwal AK, Sidi S. An Inhibitor of PIDDosome Formation. Mol Cell 2015; 58:767-79. [PMID: 25936804 DOI: 10.1016/j.molcel.2015.03.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 02/25/2015] [Accepted: 03/27/2015] [Indexed: 12/31/2022]
Abstract
The PIDDosome-PIDD-RAIDD-caspase-2 complex-is a proapoptotic caspase-activation platform of elusive significance. DNA damage can initiate complex assembly via ATM phosphorylation of the PIDD death domain (DD), which enables RAIDD recruitment to PIDD. In contrast, the mechanisms limiting PIDDosome formation have remained unclear. We identify the mitotic checkpoint factor BubR1 as a direct PIDDosome inhibitor, acting in a noncanonical role independent of Mad2. Following its phosphorylation by ATM at DNA breaks, "primed" PIDD relocates to kinetochores via a direct interaction with BubR1. BubR1 binds the PIDD DD, competes with RAIDD recruitment, and negates PIDDosome-mediated apoptosis after ionizing radiation. The PIDDosome thus sequentially integrates DNA damage and mitotic checkpoint signals to decide cell fate in response to genotoxic stress. We further show that by sequestering PIDD at the kinetochore, BubR1 acts to delay PIDDosome formation until the next cycle, defining a new mechanism by which cells evade apoptosis during mitosis.
Collapse
Affiliation(s)
- Ruth Thompson
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Richa B Shah
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Peter H Liu
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yogesh K Gupta
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kiyohiro Ando
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Aneel K Aggarwal
- Department of Structural and Chemical Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Samuel Sidi
- Department of Medicine, Division of Hematology/Oncology, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; The Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
78
|
Liberman N, Gandin V, Svitkin YV, David M, Virgili G, Jaramillo M, Holcik M, Nagar B, Kimchi A, Sonenberg N. DAP5 associates with eIF2β and eIF4AI to promote Internal Ribosome Entry Site driven translation. Nucleic Acids Res 2015; 43:3764-75. [PMID: 25779044 PMCID: PMC4402527 DOI: 10.1093/nar/gkv205] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 02/26/2015] [Accepted: 02/27/2015] [Indexed: 12/14/2022] Open
Abstract
Initiation is a highly regulated rate-limiting step of mRNA translation. During cap-dependent translation, the cap-binding protein eIF4E recruits the mRNA to the ribosome. Specific elements in the 5'UTR of some mRNAs referred to as Internal Ribosome Entry Sites (IRESes) allow direct association of the mRNA with the ribosome without the requirement for eIF4E. Cap-independent initiation permits translation of a subset of cellular and viral mRNAs under conditions wherein cap-dependent translation is inhibited, such as stress, mitosis and viral infection. DAP5 is an eIF4G homolog that has been proposed to regulate both cap-dependent and cap-independent translation. Herein, we demonstrate that DAP5 associates with eIF2β and eIF4AI to stimulate IRES-dependent translation of cellular mRNAs. In contrast, DAP5 is dispensable for cap-dependent translation. These findings provide the first mechanistic insights into the function of DAP5 as a selective regulator of cap-independent translation.
Collapse
Affiliation(s)
- Noa Liberman
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Valentina Gandin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Yuri V Svitkin
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Maya David
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Geneviève Virgili
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Groupe de Recherche Axé sur la Structure des Protéines, Montréal, Québec H3A 1A3, Canada
| | - Maritza Jaramillo
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario K1N 6N5, Canada
| | - Bhushan Nagar
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Groupe de Recherche Axé sur la Structure des Protéines, Montréal, Québec H3A 1A3, Canada
| | - Adi Kimchi
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montréal, Québec H3A 1A3, Canada Rosalind and Morris Goodman Cancer Centre, Montréal, Québec H3A 1A3, Canada
| |
Collapse
|
79
|
Skliris A, Papadaki O, Kafasla P, Karakasiliotis I, Hazapis O, Reczko M, Grammenoudi S, Bauer J, Kontoyiannis DL. Neuroprotection requires the functions of the RNA-binding protein HuR. Cell Death Differ 2014; 22:703-18. [PMID: 25301069 DOI: 10.1038/cdd.2014.158] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 08/17/2014] [Accepted: 09/01/2014] [Indexed: 12/14/2022] Open
Abstract
Alterations in the functions of neuronal RNA-binding proteins (RBPs) can contribute to neurodegenerative diseases. However, neurons also express a set of widely distributed RBPs that may have developed specialized functions. Here, we show that the ubiquitous member of the otherwise neuronal Elavl/Hu family of RNA-binding proteins, Elavl1/HuR, has a neuroprotective role. Mice engineered to lack exclusively HuR in the hippocampal neurons of the central nervous system (CNS), maintain physiologic levels of neuronal Elavls and develop a partially diminished seizure response following strong glutamatergic excitation; however, they display an exacerbated neurodegenerative response subsequent to the initial excitotoxic event. This response was phenocopied in hippocampal cells devoid of ionotropic glutamate receptors in which the loss of HuR results in enhanced mitochondrial dysfunction, oxidative damage and programmed necrosis solely after glutamate challenge. The molecular dissection of HuR and nElavl mRNA targets revealed the existence of a HuR-restricted posttranscriptional regulon that failed in HuR-deficient neurons and is involved in cellular energetics and oxidation defense. Thus, HuR acts as a specialized controller of oxidative metabolism in neurons to confer protection from neurodegeneration.
Collapse
Affiliation(s)
- A Skliris
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - O Papadaki
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - P Kafasla
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - I Karakasiliotis
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - O Hazapis
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - M Reczko
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - S Grammenoudi
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| | - J Bauer
- Centre for Brain Research, Medical University of Vienna, A109 Vienna, Austria
| | - D L Kontoyiannis
- Biomedical Sciences Research Centre 'Alexander Fleming', 16672 Vari, Greece
| |
Collapse
|
80
|
Faye MD, Holcik M. The role of IRES trans-acting factors in carcinogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:887-97. [PMID: 25257759 DOI: 10.1016/j.bbagrm.2014.09.012] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 09/09/2014] [Accepted: 09/14/2014] [Indexed: 02/06/2023]
Abstract
Regulation of protein expression through RNA metabolism is a key aspect of cellular homeostasis. Upon specific cellular stresses, distinct transcripts are selectively controlled to modify protein output in order to quickly and appropriately respond to stress. Reprogramming of the translation machinery is one node of this strict control that typically consists of an attenuation of the global, cap-dependent translation and accompanying switch to alternative mechanisms of translation initiation, such as internal ribosome entry site (IRES)-mediated initiation. In cancer, many aspects of the RNA metabolism are frequently misregulated to provide cancer cells with a growth and survival advantage. This includes changes in the expression and function of RNA binding proteins termed IRES trans-acting factors (ITAFs) that are central to IRES translation. In this review, we will examine select emerging, as well as established, ITAFs with important roles in cancer initiation and progression, and in particular their role in IRES-mediated translation. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Mame Daro Faye
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada
| | - Martin Holcik
- Apoptosis Research Centre, Children's Hospital of Eastern Ontario Research Institute, 401 Smyth Road, Ottawa K1H 8L1, Canada; Department of Biochemistry, Microbiology and Immunology, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada; Department of Pediatrics, University of Ottawa, 451 Smyth Road, Ottawa K1H 8M5, Canada.
| |
Collapse
|
81
|
Shatsky IN, Dmitriev SE, Andreev DE, Terenin IM. Transcriptome-wide studies uncover the diversity of modes of mRNA recruitment to eukaryotic ribosomes. Crit Rev Biochem Mol Biol 2014; 49:164-77. [PMID: 24520918 DOI: 10.3109/10409238.2014.887051] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The conventional paradigm of translation initiation in eukaryotes states that the cap-binding protein complex eIF4F (consisting of eIF4E, eIF4G and eIF4A) plays a central role in the recruitment of capped mRNAs to ribosomes. However, a growing body of evidence indicates that this paradigm should be revised. This review summarizes the data which have been mostly accumulated in a post-genomic era owing to revolutionary techniques of transcriptome-wide analysis. Unexpectedly, these techniques have uncovered remarkable diversity in the recruitment of cellular mRNAs to eukaryotic ribosomes. These data enable a preliminary classification of mRNAs into several groups based on their requirement for particular components of eIF4F. They challenge the widely accepted concept which relates eIF4E-dependence to the extent of secondary structure in the 5' untranslated regions of mRNAs. Moreover, some mRNA species presumably recruit ribosomes to their 5' ends without the involvement of either the 5' m(7)G-cap or eIF4F but instead utilize eIF4G or eIF4G-like auxiliary factors. The long-standing concept of internal ribosome entry site (IRES)-elements in cellular mRNAs is also discussed.
Collapse
Affiliation(s)
- Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University , Moscow , Russia and
| | | | | | | |
Collapse
|
82
|
Sharathchandra A, Katoch A, Das S. IRES mediated translational regulation of p53 isoforms. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 5:131-9. [PMID: 24343861 DOI: 10.1002/wrna.1202] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 09/14/2013] [Accepted: 09/21/2013] [Indexed: 01/08/2023]
Abstract
p53 is a well known tumor suppressor protein that plays a critical role in cell cycle arrest and apoptosis. It has several isoforms which are produced by transcriptional and posttranscriptional regulatory mechanisms. p53 mRNA has been demonstrated to be translated into two isoforms, full-length p53 (FL-p53) and a truncated isoform ΔN-p53 by the use of alternative translation initiation sites. The mechanism of translation regulation of these two isoforms was further elucidated by the discovery of IRES elements in the p53 mRNA. These two IRESs were shown to regulate the translation of p53 and ΔN-p53 in a distinct cell-cycle phase-dependent manner. This review focuses on the current understanding of the regulation of p53 IRES mediated translation and the role of cis and trans acting factors that influence expression of p53 isoforms.
Collapse
|
83
|
Mextli is a novel eukaryotic translation initiation factor 4E-binding protein that promotes translation in Drosophila melanogaster. Mol Cell Biol 2013; 33:2854-64. [PMID: 23716590 DOI: 10.1128/mcb.01354-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Translation is a fundamental step in gene expression, and translational control is exerted in many developmental processes. Most eukaryotic mRNAs are translated by a cap-dependent mechanism, which requires recognition of the 5'-cap structure of the mRNA by eukaryotic translation initiation factor 4E (eIF4E). eIF4E activity is controlled by eIF4E-binding proteins (4E-BPs), which by competing with eIF4G for eIF4E binding act as translational repressors. Here, we report the discovery of Mextli (Mxt), a novel Drosophila melanogaster 4E-BP that in sharp contrast to other 4E-BPs, has a modular structure, binds RNA, eIF3, and several eIF4Es, and promotes translation. Mxt is expressed at high levels in ovarian germ line stem cells (GSCs) and early-stage cystocytes, as is eIF4E-1, and we demonstrate the two proteins interact in these cells. Phenotypic analysis of mxt mutants indicates a role for Mxt in germ line stem cell (GSC) maintenance and in early embryogenesis. Our results support the idea that Mxt, like eIF4G, coordinates the assembly of translation initiation complexes, rendering Mxt the first example of evolutionary convergence of eIF4G function.
Collapse
|
84
|
Pichon X, Wilson LA, Stoneley M, Bastide A, King HA, Somers J, Willis AEE. RNA binding protein/RNA element interactions and the control of translation. Curr Protein Pept Sci 2013; 13:294-304. [PMID: 22708490 PMCID: PMC3431537 DOI: 10.2174/138920312801619475] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/10/2012] [Accepted: 01/20/2012] [Indexed: 01/18/2023]
Abstract
A growing body of work demonstrates the importance of post-transcriptional control, in particular translation
initiation, in the overall regulation of gene expression. Here we focus on the contribution of regulatory elements within the
5’ and 3’ untranslated regions of mRNA to gene expression in eukaryotic cells including terminal oligopyrimidine tracts,
internal ribosome entry segments, upstream open reading frames and cytoplasmic polyadenylation elements. These
mRNA regulatory elements may adopt complex secondary structures and/or contain sequence motifs that allow their interaction
with a variety of regulatory proteins, RNAs and RNA binding proteins, particularly hnRNPs. The resulting interactions
are context-sensitive, and provide cells with a sensitive and fast response to cellular signals such as hormone exposure
or cytotoxic stress. Importantly, an increasing number of diseases have been identified, particularly cancers and
those associated with neurodegeneration, which originate either from mutation of these regulatory motifs, or from deregulation
of their cognate binding partners.
Collapse
Affiliation(s)
- Xavier Pichon
- Medical Research Council Toxicology Unit, Leicester, UK
| | | | | | | | | | | | | |
Collapse
|
85
|
Virgili G, Frank F, Feoktistova K, Sawicki M, Sonenberg N, Fraser CS, Nagar B. Structural analysis of the DAP5 MIF4G domain and its interaction with eIF4A. Structure 2013; 21:517-27. [PMID: 23478064 DOI: 10.1016/j.str.2013.01.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 12/24/2012] [Accepted: 01/19/2013] [Indexed: 11/30/2022]
Abstract
Death-associated protein 5 (DAP5/p97) is a homolog of the eukaryotic initiation factor 4G (eIF4G) that promotes the IRES-driven translation of multiple cellular mRNAs. Central to its function is the middle domain (MIF4G), which recruits the RNA helicase eIF4A. The middle domain of eIF4G consists of tandem HEAT repeats that coalesce to form a solenoid-type structure. Here, we report the crystal structure of the DAP5 MIF4G domain. Its overall fold is very similar to that of eIF4G; however, significant conformational variations impart distinct surface properties that could explain the observed differences in IRES binding between the two proteins. Interestingly, quantitative analysis of the DAP5-eIF4A interaction using isothermal titration calorimetry reveals a 10-fold lower affinity than with the eIF4G-eIF4A interaction that appears to affect their ability to stimulate eIF4A RNA unwinding activity in vitro. This difference in stability of the complex may have functional implications in selecting the mode of translation initiation.
Collapse
Affiliation(s)
- Geneviève Virgili
- Department of Biochemistry, McGill University, Montreal, QC H3G 0B1, Canada
| | | | | | | | | | | | | |
Collapse
|
86
|
Trivigno D, Bornes L, Huber SM, Rudner J. Regulation of protein translation initiation in response to ionizing radiation. Radiat Oncol 2013; 8:35. [PMID: 23402580 PMCID: PMC3577660 DOI: 10.1186/1748-717x-8-35] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 02/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Proliferating tumor cells require continuous protein synthesis. De novo synthesis of most proteins is regulated through cap-dependent translation. Cellular stress such as ionizing radiation (IR) blocks cap-dependent translation resulting in shut-down of global protein translation which saves resources and energy needed for the stress response. At the same time, levels of proteins required for stress response are maintained or even increased. The study aimed to analyze the regulation of signaling pathways controlling protein translation in response to IR and the impact on Mcl-1, an anti-apoptotic and radioprotective protein, which levels rapidly decline upon IR. Methods Protein levels and processing were analyzed by Western blot. The assembly of the translational pre-initiation complex was examined by Immunoprecipitation and pull-down experiments with 7-methyl GTP agarose. To analyze IR-induced cell death, dissipation of the mitochondrial membrane potential and DNA fragmentation were determined by flow cytometry. Protein levels of the different initiation factors were down-regulated using RNA interference approach. Results IR induced caspase-dependent cleavage of the translational initiation factors eIF4G1, eIF3A, and eIF4B resulting in disassembly of the cap-dependent initiation complex. In addition, DAP5-dependent initiation complex that regulates IRES-dependent translation was disassembled in response to IR. Moreover, IR resulted in dephosphorylation of 4EBP1, an inhibitor of cap-dependent translation upstream of caspase activation. However, knock-down of eIF4G1, eIF4B, DAP5, or 4EBP1 did not affect IR-induced decline of the anti-apoptotic protein Mcl-1. Conclusion Our data shows that cap-dependent translation is regulated at several levels in response to IR. However, the experiments indicate that IR-induced Mcl-1 decline is not a consequence of translational inhibition in Jurkat cells.
Collapse
Affiliation(s)
- Donatella Trivigno
- Department of Radiation Oncology, University Hospital of Tuebingen, Hoppe-Seyler-Str, 3, 72076, Tübingen, Germany
| | | | | | | |
Collapse
|
87
|
Ruggero D. Translational control in cancer etiology. Cold Spring Harb Perspect Biol 2013; 5:cshperspect.a012336. [PMID: 22767671 DOI: 10.1101/cshperspect.a012336] [Citation(s) in RCA: 234] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The link between perturbations in translational control and cancer etiology is becoming a primary focus in cancer research. It has now been established that genetic alterations in several components of the translational apparatus underlie spontaneous cancers as well as an entire class of inherited syndromes known as "ribosomopathies" associated with increased cancer susceptibility. These discoveries have illuminated the importance of deregulations in translational control to very specific cellular processes that contribute to cancer etiology. In addition, a growing body of evidence supports the view that deregulation of translational control is a common mechanism by which diverse oncogenic pathways promote cellular transformation and tumor development. Indeed, activation of these key oncogenic pathways induces rapid and dramatic translational reprogramming both by increasing overall protein synthesis and by modulating specific mRNA networks. These translational changes promote cellular transformation, impacting almost every phase of tumor development. This paradigm represents a new frontier in the multihit model of cancer formation and offers significant promise for innovative cancer therapies. Current research, in conjunction with cutting edge technologies, will further enable us to explore novel mechanisms of translational control, functionally identify translationally controlled mRNA groups, and unravel their impact on cellular transformation and tumorigenesis.
Collapse
Affiliation(s)
- Davide Ruggero
- Helen Diller Cancer Center, School of Medicine, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
88
|
Weingarten-Gabbay S, Khan D, Liberman N, Yoffe Y, Bialik S, Das S, Oren M, Kimchi A. The translation initiation factor DAP5 promotes IRES-driven translation of p53 mRNA. Oncogene 2013; 33:611-8. [DOI: 10.1038/onc.2012.626] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 11/08/2012] [Accepted: 11/27/2012] [Indexed: 12/21/2022]
|
89
|
Changes in translational control after pro-apoptotic stress. Int J Mol Sci 2012; 14:177-90. [PMID: 23344027 PMCID: PMC3565257 DOI: 10.3390/ijms14010177] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 11/06/2012] [Accepted: 12/10/2012] [Indexed: 01/17/2023] Open
Abstract
In stressed cells, a general decrease in the rate of protein synthesis occurs due to modifications in the activity of translation initiation factors. Compelling data now indicate that these changes also permit a selective post-transcriptional expression of proteins necessary for either cell survival or completion of apoptosis when cells are exposed to severe or prolonged stress. In this review, we summarize the modifications that inhibit the activity of the main canonical translation initiation factors, and the data explaining how certain mRNAs encoding proteins involved in either cell survival or apoptosis can be selectively translated.
Collapse
|
90
|
Badura M, Braunstein S, Zavadil J, Schneider RJ. DNA damage and eIF4G1 in breast cancer cells reprogram translation for survival and DNA repair mRNAs. Proc Natl Acad Sci U S A 2012; 109:18767-72. [PMID: 23112151 PMCID: PMC3503184 DOI: 10.1073/pnas.1203853109] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The cellular response to DNA damage is mediated through multiple pathways that regulate and coordinate DNA repair, cell cycle arrest, and cell death. We show that the DNA damage response (DDR) induced by ionizing radiation (IR) is coordinated in breast cancer cells by selective mRNA translation mediated by high levels of translation initiation factor eIF4G1 (eukaryotic initiation factor 4γ1). Increased expression of eIF4G1, common in breast cancers, was found to selectively increase translation of mRNAs involved in cell survival and the DDR, preventing autophagy and apoptosis [Survivin, hypoxia inducible factor 1α (HIF1α), X-linked inhibitor of apoptosis (XIAP)], promoting cell cycle arrest [growth arrest and DNA damage protein 45a (GADD45a), protein 53 (p53), ATR-interacting protein (ATRIP), Check point kinase 1 (Chk1)] and DNA repair [p53 binding protein 1 (53BP1), breast cancer associated proteins 1, 2 (BRCA1/2), Poly-ADP ribose polymerase (PARP), replication factor c2-5 (Rfc2-5), ataxia telangiectasia mutated gene 1 (ATM), meiotic recombination protein 11 (MRE-11), and others]. Reduced expression of eIF4G1, but not its homolog eIF4G2, greatly sensitizes cells to DNA damage by IR, induces cell death by both apoptosis and autophagy, and significantly delays resolution of DNA damage foci with little reduction of overall protein synthesis. Although some mRNAs selectively translated by higher levels of eIF4G1 were found to use internal ribosome entry site (IRES)-mediated alternate translation, most do not. The latter group shows significantly reduced dependence on eIF4E for translation, facilitated by an enhanced requirement for eIF4G1. Increased expression of eIF4G1 therefore promotes specialized translation of survival, growth arrest, and DDR mRNAs that are important in cell survival and DNA repair following genotoxic DNA damage.
Collapse
Affiliation(s)
| | | | | | - Robert J. Schneider
- Department of Microbiology
- NYU Cancer Institute, and
- Department of Radiation Oncology, New York University School of Medicine, New York, NY 10016
| |
Collapse
|
91
|
NAT1/DAP5/p97 and atypical translational control in the Drosophila Circadian Oscillator. Genetics 2012; 192:943-57. [PMID: 22904033 DOI: 10.1534/genetics.112.143248] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Circadian rhythms are driven by gene expression feedback loops in metazoans. Based on the success of genetic screens for circadian mutants in Drosophila melanogaster, we undertook a targeted RNAi screen to study the impact of translation control genes on circadian locomotor activity rhythms in flies. Knockdown of vital translation factors in timeless protein-positive circadian neurons caused a range of effects including lethality. Knockdown of the atypical translation factor NAT1 had the strongest effect and lengthened circadian period. It also dramatically reduced PER protein levels in pigment dispersing factor (PDF) neurons. BELLE (BEL) protein was also reduced by the NAT1 knockdown, presumably reflecting a role of NAT1 in belle mRNA translation. belle and NAT1 are also targets of the key circadian transcription factor Clock (CLK). Further evidence for a role of NAT1 is that inhibition of the target of rapamycin (TOR) kinase increased oscillator activity in cultured wings, which is absent under conditions of NAT1 knockdown. Moreover, the per 5'- and 3'-UTRs may function together to facilitate cap-independent translation under conditions of TOR inhibition. We suggest that NAT1 and cap-independent translation are important for per mRNA translation, which is also important for the circadian oscillator. A circadian translation program may be especially important in fly pacemaker cells.
Collapse
|
92
|
Ottina E, Tischner D, Herold MJ, Villunger A. A1/Bfl-1 in leukocyte development and cell death. Exp Cell Res 2012; 318:1291-303. [PMID: 22342458 PMCID: PMC3405526 DOI: 10.1016/j.yexcr.2012.01.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/24/2012] [Accepted: 01/25/2012] [Indexed: 12/17/2022]
Abstract
The function of the anti-apoptotic Bcl-2 family member Bcl2a1/Bfl-1/A1 is poorly understood due to the lack of appropriate loss-of-function mouse models and redundant effects with other Bcl-2 pro-survival proteins upon overexpression. Expression analysis of A1 suggests predominant roles in leukocyte development, their survival upon viral or bacterial infection, as well as during allergic reactions. In addition, A1 has been implicated in autoimmunity and the pathology and therapy resistance of hematological as well as solid tumors that may aberrantly express this protein. In this review, we aim to summarize current knowledge on A1 biology, focusing on its role in the immune system and compare it to that of other pro-survival Bcl-2 proteins.
Collapse
Affiliation(s)
- Eleonora Ottina
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Denise Tischner
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
| | - Marco J. Herold
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Innsbruck Medical University, Innsbruck, Austria
- Corresponding author at: Division of Developmental Immunology, BIOCENTER, Innsbruck Medical University, A-6020 Innsbruck, Austria. Fax: + 43 512 9003 73960.
| |
Collapse
|
93
|
Ruan Y, Sun L, Hao Y, Wang L, Xu J, Zhang W, Xie J, Guo L, Zhou L, Yun X, Zhu H, Shen A, Gu J. Ribosomal RACK1 promotes chemoresistance and growth in human hepatocellular carcinoma. J Clin Invest 2012; 122:2554-66. [PMID: 22653060 DOI: 10.1172/jci58488] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2011] [Accepted: 04/24/2012] [Indexed: 01/14/2023] Open
Abstract
Coordinated translation initiation is coupled with cell cycle progression and cell growth, whereas excessive ribosome biogenesis and translation initiation often lead to tumor transformation and survival. Hepatocellular carcinoma (HCC) is among the most common and aggressive cancers worldwide and generally displays inherently high resistance to chemotherapeutic drugs. We found that RACK1, the receptor for activated C-kinase 1, was highly expressed in normal liver and frequently upregulated in HCC. Aberrant expression of RACK1 contributed to in vitro chemoresistance as well as in vivo tumor growth of HCC. These effects depended on ribosome localization of RACK1. Ribosomal RACK1 coupled with PKCβII to promote the phosphorylation of eukaryotic initiation factor 4E (eIF4E), which led to preferential translation of the potent factors involved in growth and survival. Inhibition of PKCβII or depletion of eIF4E abolished RACK1-mediated chemotherapy resistance of HCC in vitro. Our results imply that RACK1 may function as an internal factor involved in the growth and survival of HCC and suggest that targeting RACK1 may be an efficacious strategy for HCC treatment.
Collapse
Affiliation(s)
- Yuanyuan Ruan
- Key Laboratory of Glycoconjugate Research, Ministry of Public Health, Shanghai Medical College of Fudan University, Shanghai, People’s Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Gao JJ, Cai GY, Ning YC, Liu L, Yang JR, Dong D, Fu B, Lu Y, Cui SY, Chen XM. DAP5 ameliorates cisplatin-induced apoptosis of renal tubular cells. Am J Nephrol 2012; 35:456-65. [PMID: 22555068 DOI: 10.1159/000338302] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2012] [Accepted: 03/23/2012] [Indexed: 11/19/2022]
Abstract
BACKGROUND Nephrotoxicity of cisplatin limits its clinical application. Cisplatin-induced acute renal tubular epithelial cell apoptosis is one of the major mechanisms of cisplatin nephrotoxicity. Here, the role and regulation of death-associated protein 5 (DAP5) in cisplatin-induced tubular cell apoptosis were investigated. METHODS After upregulation of DAP5 expression by plasmid transfection and downregulation of DAP5 expression by small interfering RNA in human kidney tubular epithelial cell line (HKC) cells, the degree of cell apoptosis was assessed by flow cytometric analysis. The expression of Bax and Bcl-2 proteins was detected by Western blot analysis. The relationship between the PI3K/Akt/mTOR signaling pathway and DAP5 was also evaluated. RESULTS During cisplatin-induced apoptosis in HKC cells, DAP5 underwent proteolytic fragmentation, yielding an 86-kDa species, DAP5/p86. Overexpression of DAP5/p97 and DAP5/p86 increased the translation of Bcl-2 and reduced the extent of cisplatin-induced apoptosis. Knockdown of DAP5 expression using small interfering RNA decreased the translation of Bcl-2 and increased the degree of apoptosis. Neither manipulation affected the expression of Bax. DAP5 expression was positively regulated by the PI3K/Akt/mTOR signaling pathway. CONCLUSION Collectively, the results from the present study revealed a new role for DAP5 in cisplatin-induced apoptosis: DAP5/p97 and DAP5/p86 enhanced the translation of the anti-apoptotic protein Bcl-2 and inhibited cisplatin-induced apoptosis. The PI3K/Akt/mTOR signaling pathway may positively regulate the expression of DAP5.
Collapse
Affiliation(s)
- Jian-jun Gao
- Department of Nephrology, State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Hanson PJ, Zhang HM, Hemida MG, Ye X, Qiu Y, Yang D. IRES-Dependent Translational Control during Virus-Induced Endoplasmic Reticulum Stress and Apoptosis. Front Microbiol 2012; 3:92. [PMID: 22461781 PMCID: PMC3307021 DOI: 10.3389/fmicb.2012.00092] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 02/23/2012] [Indexed: 12/11/2022] Open
Abstract
Many virus infections and stresses can induce endoplasmic reticulum (ER) stress response, a host self-defense mechanism against viral invasion and stress. During this event, viral and cellular gene expression is actively regulated and often encounters a switching of the translation initiation from cap-dependent to internal ribosome-entry sites (IRES)-dependent. This switching is largely dependent on the mRNA structure of the 5′ untranslated region (5′ UTR) and on the particular stress stimuli. Picornaviruses and some other viruses contain IRESs within their 5′ UTR of viral genome and employ an IRES-driven mechanism for translation initiation. Recently, a growing number of cellular genes involved in growth control, cell cycle progression and apoptosis were also found to contain one or more IRES within their long highly structured 5′ UTRs. These genes initiate translation usually by a cap-dependent mechanism under normal physiological conditions; however, in certain environments, such as infection, starvation, and heat shock they shift translation initiation to an IRES-dependent modality. Although the molecular mechanism is not entirely understood, a number of studies have revealed that several cellular biochemical processes are responsible for the switching of translation initiation to IRES-dependent. These include the cleavage of translation initiation factors by viral and/or host proteases, phosphorylation (inactivation) of host factors for translation initiation, overproduction of homologous proteins of cap-binding protein eukaryotic initiation factors (eIF)4E, suppression of cap-binding protein eIF4E expression by specific microRNA, activation of enzymes for mRNA decapping, as well as others. Here, we summarize the recent advances in our understanding of the molecular mechanisms for the switching of translation initiation, particularly for the proteins involved in cell survival and apoptosis in the ER stress pathways during viral infections.
Collapse
Affiliation(s)
- Paul J Hanson
- Department of Pathology and Laboratory Medicine, The Institute for Heart and Lung Health, St. Paul's Hospital, University of British Columbia Vancouver, BC, Canada
| | | | | | | | | | | |
Collapse
|
96
|
Alternative Mechanisms to Initiate Translation in Eukaryotic mRNAs. Comp Funct Genomics 2012; 2012:391546. [PMID: 22536116 PMCID: PMC3321441 DOI: 10.1155/2012/391546] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Accepted: 01/20/2012] [Indexed: 12/13/2022] Open
Abstract
The composition of the cellular proteome is under the control of multiple processes, one of the most important being translation initiation. The majority of eukaryotic cellular mRNAs initiates translation by the cap-dependent or scanning mode of translation initiation, a mechanism that depends on the recognition of the m(7)G(5')ppp(5')N, known as the cap. However, mRNAs encoding proteins required for cell survival under stress bypass conditions inhibitory to cap-dependent translation; these mRNAs often harbor internal ribosome entry site (IRES) elements in their 5'UTRs that mediate internal initiation of translation. This mechanism is also exploited by mRNAs expressed from the genome of viruses infecting eukaryotic cells. In this paper we discuss recent advances in understanding alternative ways to initiate translation across eukaryotic organisms.
Collapse
|
97
|
Naydenov NG, Harris G, Brown B, Schaefer KL, Das SK, Fisher PB, Ivanov AI. Loss of soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP) induces epithelial cell apoptosis via down-regulation of Bcl-2 expression and disruption of the Golgi. J Biol Chem 2011; 287:5928-41. [PMID: 22194596 DOI: 10.1074/jbc.m111.278358] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intracellular trafficking represents a key mechanism that regulates cell fate by participating in either prodeath or prosurvival signaling. Soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein α (αSNAP) is a well known component of vesicle trafficking machinery that mediates intermembrane fusion. αSNAP increases cell resistance to cytotoxic stimuli, although mechanisms of its prosurvival function are poorly understood. In this study, we found that either siRNA-mediated knockdown of αSNAP or expression of its dominant negative mutant induced epithelial cell apoptosis. Apoptosis was not caused by activation of the major prodeath regulators Bax and p53 and was independent of a key αSNAP binding partner, NSF. Instead, death of αSNAP-depleted cells was accompanied by down-regulation of the antiapoptotic Bcl-2 protein; it was mimicked by inhibition and attenuated by overexpression of Bcl-2. Knockdown of αSNAP resulted in impairment of Golgi to endoplasmic reticulum (ER) trafficking and fragmentation of the Golgi. Moreover, pharmacological disruption of ER-Golgi transport by brefeldin A and eeyarestatin 1 or siRNA-mediated depletion of an ER/Golgi-associated p97 ATPase recapitulated the effects of αSNAP inhibition by decreasing Bcl-2 level and triggering apoptosis. These results reveal a novel role for αSNAP in promoting epithelial cell survival by unique mechanisms involving regulation of Bcl-2 expression and Golgi biogenesis.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Medicine, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Sivan G, Aviner R, Elroy-Stein O. Mitotic modulation of translation elongation factor 1 leads to hindered tRNA delivery to ribosomes. J Biol Chem 2011; 286:27927-35. [PMID: 21665947 PMCID: PMC3151038 DOI: 10.1074/jbc.m111.255810] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 06/06/2011] [Indexed: 01/31/2023] Open
Abstract
Translation elongation in eukaryotes is mediated by the concerted actions of elongation factor 1A (eEF1A), which delivers aminoacylated tRNA to the ribosome; elongation factor 1B (eEF1B) complex, which catalyzes the exchange of GDP to GTP on eEF1A; and eEF2, which facilitates ribosomal translocation. Here we present evidence in support of a novel mode of translation regulation by hindered tRNA delivery during mitosis. A conserved consensus phosphorylation site for the mitotic cyclin-dependent kinase 1 on the catalytic delta subunit of eEF1B (termed eEF1D) is required for its posttranslational modification during mitosis, resulting in lower affinity to its substrate eEF1A. This modification is correlated with reduced availability of eEF1A·tRNA complexes, as well as reduced delivery of tRNA to and association of eEF1A with elongating ribosomes. This mode of regulation by hindered tRNA delivery, although first discovered in mitosis, may represent a more globally applicable mechanism employed under other physiological conditions that involve down-regulation of protein synthesis at the elongation level.
Collapse
Affiliation(s)
- Gilad Sivan
- From the Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ranen Aviner
- From the Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Orna Elroy-Stein
- From the Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
99
|
Pan P, van Breukelen F. Preference of IRES-mediated initiation of translation during hibernation in golden-mantled ground squirrels, Spermophilus lateralis. Am J Physiol Regul Integr Comp Physiol 2011; 301:R370-7. [PMID: 21613577 DOI: 10.1152/ajpregu.00748.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian hibernation involves virtual cessation of energetically consumptive processes normally vital to homeostasis, including gene transcription and protein synthesis. As animals enter torpor, the bulk of initiation of translation is blocked at a body temperature of 18°C in golden-mantled ground squirrels [Spermophilus (Callospermophilus) lateralis]. Previous data demonstrated regulation of cap-dependent initiation of translation during torpor. We asked what happens to cap-independent, specifically, internal ribosome entry site (IRES)-mediated initiation of translation during hibernation. We analyzed polysome fractions for mRNAs that are known to contain or not to contain IRES elements. Here, we show that mRNAs harboring IRES elements preferentially associate with ribosomes as a torpor bout progresses. Squirrels allowed to naturally complete a torpor cycle have a higher IRES preference index than those animals that are prematurely aroused from torpor. Data indicate that this change in preference is not associated with gene expression, i.e., change is due to change in mRNA association with ribosomes as opposed to mRNA abundance. Thus, although processes like transcription and translation are virtually arrested during torpor, ribosomes are preferentially loaded with IRES-containing transcripts when squirrels arouse from torpor and translation resumes. Differential translation of preexisting mRNAs may allow for the preferential production of key stress proteins critical for survival of physiological insults that are lethal to other mammals.
Collapse
Affiliation(s)
- Peipei Pan
- School of Life Sciences, University of Nevada, Las Vegas, Nevada, USA
| | | |
Collapse
|
100
|
Komar AA, Hatzoglou M. Cellular IRES-mediated translation: the war of ITAFs in pathophysiological states. Cell Cycle 2011; 10:229-40. [PMID: 21220943 DOI: 10.4161/cc.10.2.14472] [Citation(s) in RCA: 305] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Translation of cellular mRNAs via initiation at Internal Ribosome Entry Sites (IRESs) has received increased attention during recent years due to its emerging significance for many physiological and pathological stress conditions in eukaryotic cells. Expression of genes bearing IRES elements in their mRNAs is controlled by multiple molecular mechanisms, with IRES-mediated translation favored under conditions when cap-dependent translation is compromised. In this review, we discuss recent advances in the field and future directions that may bring us closer to understanding the complex mechanisms that guide cellular IRES-mediated expression. We present examples in which the competitive action of IRES-transacting factors (ITAFs) plays a pivotal role in IRES-mediated translation and thereby controls cell-fate decisions leading to either pro-survival stress adaptation or cell death.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH, USA.
| | | |
Collapse
|