51
|
Molecular basis for the recognition of the human AAUAAA polyadenylation signal. Proc Natl Acad Sci U S A 2017; 115:E1419-E1428. [PMID: 29208711 DOI: 10.1073/pnas.1718723115] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nearly all eukaryotic messenger RNA precursors must undergo cleavage and polyadenylation at their 3'-end for maturation. A crucial step in this process is the recognition of the AAUAAA polyadenylation signal (PAS), and the molecular mechanism of this recognition has been a long-standing problem. Here, we report the cryo-electron microscopy structure of a quaternary complex of human CPSF-160, WDR33, CPSF-30, and an AAUAAA RNA at 3.4-Å resolution. Strikingly, the AAUAAA PAS assumes an unusual conformation that allows this short motif to be bound directly by both CPSF-30 and WDR33. The A1 and A2 bases are recognized specifically by zinc finger 2 (ZF2) of CPSF-30 and the A4 and A5 bases by ZF3. Interestingly, the U3 and A6 bases form an intramolecular Hoogsteen base pair and directly contact WDR33. CPSF-160 functions as an essential scaffold and preorganizes CPSF-30 and WDR33 for high-affinity binding to AAUAAA. Our findings provide an elegant molecular explanation for how PAS sequences are recognized for mRNA 3'-end formation.
Collapse
|
52
|
Brodersen MML, Lampert F, Barnes CA, Soste M, Piwko W, Peter M. CRL4(WDR23)-Mediated SLBP Ubiquitylation Ensures Histone Supply during DNA Replication. Mol Cell 2017; 62:627-35. [PMID: 27203182 DOI: 10.1016/j.molcel.2016.04.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/11/2016] [Accepted: 04/15/2016] [Indexed: 01/07/2023]
Abstract
To maintain genome integrity and epigenetic information, mammalian cells must carefully coordinate the supply and deposition of histones during DNA replication. Here we report that the CUL4 E3 ubiquitin ligase complex CRL4(WDR23) directly regulates the stem-loop binding protein (SLBP), which orchestrates the life cycle of histone transcripts including their stability, maturation, and translation. Lack of CRL4(WDR23) activity is characterized by depletion of histones resulting in inhibited DNA replication and a severe slowdown of growth in human cells. Detailed analysis revealed that CRL4(WDR23) is required for efficient histone mRNA 3' end processing to produce mature histone mRNAs for translation. CRL4(WDR23) binds and ubiquitylates SLBP in vitro and in vivo, and this modification activates SLBP function in histone mRNA 3' end processing without affecting its protein levels. Together, these results establish a mechanism by which CUL4 regulates DNA replication and possible additional chromatin transactions by controlling the concerted expression of core histones.
Collapse
Affiliation(s)
- Mia M L Brodersen
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| | - Fabienne Lampert
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Christopher A Barnes
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Martin Soste
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Wojciech Piwko
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland
| | - Matthias Peter
- Institute of Biochemistry, ETH Zurich, Otto-Stern-Weg 3, 8093 Zürich, Switzerland.
| |
Collapse
|
53
|
Neve J, Patel R, Wang Z, Louey A, Furger AM. Cleavage and polyadenylation: Ending the message expands gene regulation. RNA Biol 2017; 14:865-890. [PMID: 28453393 PMCID: PMC5546720 DOI: 10.1080/15476286.2017.1306171] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/02/2017] [Accepted: 03/09/2017] [Indexed: 12/13/2022] Open
Abstract
Cleavage and polyadenylation (pA) is a fundamental step that is required for the maturation of primary protein encoding transcripts into functional mRNAs that can be exported from the nucleus and translated in the cytoplasm. 3'end processing is dependent on the assembly of a multiprotein processing complex on the pA signals that reside in the pre-mRNAs. Most eukaryotic genes have multiple pA signals, resulting in alternative cleavage and polyadenylation (APA), a widespread phenomenon that is important to establish cell state and cell type specific transcriptomes. Here, we review how pA sites are recognized and comprehensively summarize how APA is regulated and creates mRNA isoform profiles that are characteristic for cell types, tissues, cellular states and disease.
Collapse
Affiliation(s)
- Jonathan Neve
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Radhika Patel
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Zhiqiao Wang
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Alastair Louey
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
54
|
Harrington AW, McKain MR, Michalski D, Bauer KM, Daugherty JM, Steiniger M. Drosophila melanogaster retrotransposon and inverted repeat-derived endogenous siRNAs are differentially processed in distinct cellular locations. BMC Genomics 2017; 18:304. [PMID: 28415970 PMCID: PMC5392987 DOI: 10.1186/s12864-017-3692-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 04/07/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Endogenous small interfering (esi)RNAs repress mRNA levels and retrotransposon mobility in Drosophila somatic cells by poorly understood mechanisms. 21 nucleotide esiRNAs are primarily generated from retrotransposons and two inverted repeat (hairpin) loci in Drosophila culture cells in a Dicer2 dependent manner. Additionally, proteins involved in 3' end processing, such as Symplekin, CPSF73 and CPSR100, have been recently implicated in the esiRNA pathway. RESULTS Here we present evidence of overlap between two essential RNA metabolic pathways: esiRNA biogenesis and mRNA 3' end processing. We have identified a nucleus-specific interaction between the essential esiRNA cleavage enzyme Dicer2 (Dcr2) and Symplekin, a component of the core cleavage complex (CCC) required for 3' end processing of all eukaryotic mRNAs. This interaction is mediated by the N-terminal 271 amino acids of Symplekin; CCC factors CPSF73 and CPSF100 do not contact Dcr2. While Dcr2 binds the CCC, Dcr2 knockdown does not affect mRNA 3' end formation. RNAi-depletion of CCC components Symplekin and CPSF73 causes perturbations in esiRNA abundance that correlate with fluctuations in retrotransposon and hairpin esiRNA precursor levels. We also discovered that esiRNAs generated from retrotransposons and hairpins have distinct physical characteristics including a higher predominance of 22 nucleotide hairpin-derived esiRNAs and differences in 3' and 5' base preference. Additionally, retrotransposon precursors and derived esiRNAs are highly enriched in the nucleus while hairpins and hairpin derived esiRNAs are predominantly cytoplasmic similar to canonical mRNAs. RNAi-depletion of either CPSF73 or Symplekin results in nuclear retention of both hairpin and retrotransposon precursors suggesting that polyadenylation indirectly affects cellular localization of Dcr2 substrates. CONCLUSIONS Together, these observations support a novel mechanism in which differences in localization of esiRNA precursors impacts esiRNA biogenesis. Hairpin-derived esiRNAs are generated in the cytoplasm independent of Dcr2-Symplekin interactions, while retrotransposons are processed in the nucleus.
Collapse
Affiliation(s)
| | - Michael R McKain
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO, 63132, USA
| | - Daniel Michalski
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
| | - Kaylyn M Bauer
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
| | - Joshua M Daugherty
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA
| | - Mindy Steiniger
- Department of Biology, University of Missouri, St. Louis, MO, 63121, USA.
| |
Collapse
|
55
|
Tatomer DC, Terzo E, Curry KP, Salzler H, Sabath I, Zapotoczny G, McKay DJ, Dominski Z, Marzluff WF, Duronio RJ. Concentrating pre-mRNA processing factors in the histone locus body facilitates efficient histone mRNA biogenesis. J Cell Biol 2016; 213:557-70. [PMID: 27241916 PMCID: PMC4896052 DOI: 10.1083/jcb.201504043] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 04/27/2016] [Indexed: 11/22/2022] Open
Abstract
The histone locus body (HLB) assembles at replication-dependent histone genes and concentrates factors required for histone messenger RNA (mRNA) biosynthesis. FLASH (Flice-associated huge protein) and U7 small nuclear RNP (snRNP) are HLB components that participate in 3' processing of the nonpolyadenylated histone mRNAs by recruiting the endonuclease CPSF-73 to histone pre-mRNA. Using transgenes to complement a FLASH mutant, we show that distinct domains of FLASH involved in U7 snRNP binding, histone pre-mRNA cleavage, and HLB localization are all required for proper FLASH function in vivo. By genetically manipulating HLB composition using mutations in FLASH, mutations in the HLB assembly factor Mxc, or depletion of the variant histone H2aV, we find that failure to concentrate FLASH and/or U7 snRNP in the HLB impairs histone pre-mRNA processing. This failure results in accumulation of small amounts of polyadenylated histone mRNA and nascent read-through transcripts at the histone locus. Thus, the HLB concentrates FLASH and U7 snRNP, promoting efficient histone mRNA biosynthesis and coupling 3' end processing with transcription termination.
Collapse
Affiliation(s)
- Deirdre C Tatomer
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Esteban Terzo
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Kaitlin P Curry
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Harmony Salzler
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Ivan Sabath
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Grzegorz Zapotoczny
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599
| | - Daniel J McKay
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599
| | - William F Marzluff
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599
| | - Robert J Duronio
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599 Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599 Integrative Program for Biological and Genome Sciences, University of North Carolina, Chapel Hill, NC 27599 Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599 Department of Genetics, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
56
|
Romeo V, Schümperli D. Cycling in the nucleus: regulation of RNA 3′ processing and nuclear organization of replication-dependent histone genes. Curr Opin Cell Biol 2016; 40:23-31. [DOI: 10.1016/j.ceb.2016.01.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/27/2016] [Accepted: 01/30/2016] [Indexed: 12/01/2022]
|
57
|
Chen F, Zhou Y, Qi YB, Khivansara V, Li H, Chun SY, Kim JK, Fu XD, Jin Y. Context-dependent modulation of Pol II CTD phosphatase SSUP-72 regulates alternative polyadenylation in neuronal development. Genes Dev 2016; 29:2377-90. [PMID: 26588990 PMCID: PMC4691892 DOI: 10.1101/gad.266650.115] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Chen et al. find that loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II C-terminal domain (CTD), dampens transcription termination at a strong intronic poly(A) site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. This work reveals a mechanism by which regulation of CTD phosphorylation controls coding region alternative polyadenylation in the nervous system. Alternative polyadenylation (APA) is widespread in neuronal development and activity-mediated neural plasticity. However, the underlying molecular mechanisms are largely unknown. We used systematic genetic studies and genome-wide surveys of the transcriptional landscape to identify a context-dependent regulatory pathway controlling APA in the Caenorhabditis elegans nervous system. Loss of function in ssup-72, a Ser5 phosphatase for the RNA polymerase II (Pol II) C-terminal domain (CTD), dampens transcription termination at a strong intronic polyadenylation site (PAS) in unc-44/ankyrin yet promotes termination at the weak intronic PAS of the MAP kinase dlk-1. A nuclear protein, SYDN-1, which regulates neuronal development, antagonizes the function of SSUP-72 and several nuclear polyadenylation factors. This regulatory pathway allows the production of a neuron-specific isoform of unc-44 and an inhibitory isoform of dlk-1. Dysregulation of the unc-44 and dlk-1 mRNA isoforms in sydn-1 mutants impairs neuronal development. Deleting the intronic PAS of unc-44 results in increased pre-mRNA processing of neuronal ankyrin and suppresses sydn-1 mutants. These results reveal a mechanism by which regulation of CTD phosphorylation controls coding region APA in the nervous system.
Collapse
Affiliation(s)
- Fei Chen
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA
| | - Yu Zhou
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yingchuan B Qi
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA
| | - Vishal Khivansara
- Life Sciences Institute, Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Hairi Li
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Sang Young Chun
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - John K Kim
- Life Sciences Institute, Department of Human Genetics, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Xiang-Dong Fu
- Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| | - Yishi Jin
- Neurobiology Section, Division of Biological Sciences, University of California at San Diego, La Jolla, California 92093, USA; Howard Hughes Medical Institute, University of California at San Diego, La Jolla, California 92093, USA; Department of Cellular and Molecular Medicine, School of Medicine, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
58
|
The Chemical Biology of Human Metallo-β-Lactamase Fold Proteins. Trends Biochem Sci 2016; 41:338-355. [PMID: 26805042 PMCID: PMC4819959 DOI: 10.1016/j.tibs.2015.12.007] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/19/2015] [Accepted: 12/22/2015] [Indexed: 01/30/2023]
Abstract
The αββα metallo β-lactamase (MBL) fold (MBLf) was first observed in bacterial enzymes that catalyze the hydrolysis of almost all β-lactam antibiotics, but is now known to be widely distributed. The MBL core protein fold is present in human enzymes with diverse biological roles, including cell detoxification pathways and enabling resistance to clinically important anticancer medicines. Human (h)MBLf enzymes can bind metals, including zinc and iron ions, and catalyze a range of chemically interesting reactions, including both redox (e.g., ETHE1) and hydrolytic processes (e.g., Glyoxalase II, SNM1 nucleases, and CPSF73). With a view to promoting basic research on MBLf enzymes and their medicinal targeting, here we summarize current knowledge of the mechanisms and roles of these important molecules. MBLs are mono- or di-zinc ion-dependent hydrolases that enable bacterial resistance to almost all β-lactam antibiotics. The αββα MBL core fold is widely distributed and supports a range of catalytic activities, including redox reactions. hMBL proteins are a small family of approximately 18 zinc- and iron-dependent proteins with roles in metabolism and/or detoxification and nucleic acid modification. In a notable parallel with the role of bacterial MBLs in antibiotic resistance, some hMBLf enzymes enable resistance to chemotherapy drugs, such as cisplatin and mitomycin C.
Collapse
|
59
|
Misra A, Green MR. From polyadenylation to splicing: Dual role for mRNA 3' end formation factors. RNA Biol 2015; 13:259-64. [PMID: 26891005 DOI: 10.1080/15476286.2015.1112490] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Recent genome-wide protein-RNA interaction studies have significantly reshaped our understanding of the role of mRNA 3' end formation factors in RNA biology. Originally thought to function solely in mediating cleavage and polyadenylation of mRNAs during their maturation, 3' end formation factors have now been shown to play a role in alternative splicing, even at internal introns--an unanticipated role for factors thought only to act at the 3' end of the mRNA. Here, we discuss the recent advances in our understanding of the role of 3' end formation factors in promoting global changes in alternative splicing at internal exon-intron junctions and how they act as cofactors for well known splicing regulators. Additionally, we review the mechanism by which these factors affect the recruitment of early intron recognition components to the 5' and 3' splice site. Our understanding of the roles of 3' end formation factors is still evolving, and the final picture might be more complex than originally envisioned.
Collapse
Affiliation(s)
- Ashish Misra
- a Howard Hughes Medical Institute and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester , MA USA
| | - Michael R Green
- a Howard Hughes Medical Institute and Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School , Worcester , MA USA
| |
Collapse
|
60
|
Antisense Transcription of Retrotransposons in Drosophila: An Origin of Endogenous Small Interfering RNA Precursors. Genetics 2015; 202:107-21. [PMID: 26534950 DOI: 10.1534/genetics.115.177196] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/23/2015] [Indexed: 11/18/2022] Open
Abstract
Movement of transposons causes insertions, deletions, and chromosomal rearrangements potentially leading to premature lethality in Drosophila melanogaster. To repress these elements and combat genomic instability, eukaryotes have evolved several small RNA-mediated defense mechanisms. Specifically, in Drosophila somatic cells, endogenous small interfering (esi)RNAs suppress retrotransposon mobility. EsiRNAs are produced by Dicer-2 processing of double-stranded RNA precursors, yet the origins of these precursors are unknown. We show that most transposon families are transcribed in both the sense (S) and antisense (AS) direction in Dmel-2 cells. LTR retrotransposons Dm297, mdg1, and blood, and non-LTR retrotransposons juan and jockey transcripts, are generated from intraelement transcription start sites with canonical RNA polymerase II promoters. We also determined that retrotransposon antisense transcripts are less polyadenylated than sense. RNA-seq and small RNA-seq revealed that Dicer-2 RNA interference (RNAi) depletion causes a decrease in the number of esiRNAs mapping to retrotransposons and an increase in expression of both S and AS retrotransposon transcripts. These data support a model in which double-stranded RNA precursors are derived from convergent transcription and processed by Dicer-2 into esiRNAs that silence both sense and antisense retrotransposon transcripts. Reduction of sense retrotransposon transcripts potentially lowers element-specific protein levels to prevent transposition. This mechanism preserves genomic integrity and is especially important for Drosophila fitness because mobile genetic elements are highly active.
Collapse
|
61
|
Tatomer DC, Rizzardi LF, Curry KP, Witkowski AM, Marzluff WF, Duronio RJ. Drosophila Symplekin localizes dynamically to the histone locus body and tricellular junctions. Nucleus 2015; 5:613-25. [PMID: 25493544 DOI: 10.4161/19491034.2014.990860] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The scaffolding protein Symplekin is part of multiple complexes involved in generating and modifying the 3' end of mRNAs, including cleavage-polyadenylation, histone pre-mRNA processing and cytoplasmic polyadenylation. To study these functions in vivo, we examined the localization of Symplekin during development and generated mutations of the Drosophila Symplekin gene. Mutations in Symplekin that reduce Symplekin protein levels alter the efficiency of both poly A(+) and histone mRNA 3' end formation resulting in lethality or sterility. Histone mRNA synthesis takes place at the histone locus body (HLB) and requires a complex composed of Symplekin and several polyadenylation factors that associates with the U7 snRNP. Symplekin is present in the HLB in the early embryo when Cyclin E/Cdk2 is active and histone genes are expressed and is absent from the HLB in cells that have exited the cell cycle. During oogenesis, Symplekin is preferentially localized to HLBs during S-phase in endoreduplicating follicle cells when histone mRNA is synthesized. After the completion of endoreplication, Symplekin accumulates in the cytoplasm, in addition to the nucleoplasm, and localizes to tricellular junctions of the follicle cell epithelium. This localization depends on the RNA binding protein ypsilon schachtel. CPSF-73 and a number of mRNAs are localized at this same site, suggesting that Symplekin participates in cytoplasmic polyadenylation at tricellular junctions.
Collapse
Key Words
- CTD, RNA polymerase II C-terminal domain
- Drosophila
- HCC, histone cleavage complex
- HDE, histone downstream element
- HLB, histone locus body
- Madm, MLF1-adaptor molecule
- PAP, poly (A) polymerase
- PAS, poly A signal
- RNA processing, Symplekin
- Rp49, ribosomal protein L32
- SL, stem loop
- SLBP, stem loop binding protein
- Sym, Symplekin
- cas, castor
- gene expression
- histone mRNA
- nuclear bodies
- sop, ribosomal protein S2
- yps, ypsilon schachtel
Collapse
Affiliation(s)
- Deirdre C Tatomer
- a Department of Biology ; University of North Carolina ; Chapel Hill , NC USA
| | | | | | | | | | | |
Collapse
|
62
|
Michalski D, Steiniger M. In vivo characterization of the Drosophila mRNA 3' end processing core cleavage complex. RNA (NEW YORK, N.Y.) 2015; 21:1404-18. [PMID: 26081560 PMCID: PMC4509931 DOI: 10.1261/rna.049551.115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/15/2015] [Indexed: 05/07/2023]
Abstract
A core cleavage complex (CCC) consisting of CPSF73, CPSF100, and Symplekin is required for cotranscriptional 3' end processing of all metazoan pre-mRNAs, yet little is known about the in vivo molecular interactions within this complex. The CCC is a component of two distinct complexes, the cleavage/polyadenylation complex and the complex that processes nonpolyadenylated histone pre-mRNAs. RNAi-depletion of CCC factors in Drosophila culture cells causes reduction of CCC processing activity on histone mRNAs, resulting in read through transcription. In contrast, RNAi-depletion of factors only required for histone mRNA processing allows use of downstream cryptic polyadenylation signals to produce polyadenylated histone mRNAs. We used Dmel-2 tissue culture cells stably expressing tagged CCC components to determine that amino acids 272-1080 of Symplekin and the C-terminal approximately 200 amino acids of both CPSF73 and CPSF100 are required for efficient CCC formation in vivo. Additional experiments reveal that the C-terminal 241 amino acids of CPSF100 are sufficient for histone mRNA processing indicating that the first 524 amino acids of CPSF100 are dispensable for both CCC formation and histone mRNA 3' end processing. CCCs containing deletions of Symplekin lacking the first 271 amino acids resulted in dramatic increased use of downstream polyadenylation sites for histone mRNA 3' end processing similar to RNAi-depletion of histone-specific 3' end processing factors FLASH, SLBP, and U7 snRNA. We propose a model in which CCC formation is mediated by CPSF73, CPSF100, and Symplekin C-termini, and the N-terminal region of Symplekin facilitates cotranscriptional 3' end processing of histone mRNAs.
Collapse
Affiliation(s)
- Daniel Michalski
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| | - Mindy Steiniger
- Department of Biology, University of Missouri-St. Louis, St. Louis, Missouri 63121, USA
| |
Collapse
|
63
|
Shi Y, Manley JL. The end of the message: multiple protein-RNA interactions define the mRNA polyadenylation site. Genes Dev 2015; 29:889-97. [PMID: 25934501 PMCID: PMC4421977 DOI: 10.1101/gad.261974.115] [Citation(s) in RCA: 199] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Recent studies have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition. Here, Shi and Manley review the recent advances in this area and provide a perspective for future studies. The key RNA sequence elements and protein factors necessary for 3′ processing of polyadenylated mRNA precursors are well known. Recent studies, however, have significantly reshaped current models for the protein–RNA interactions involved in poly(A) site recognition, painting a picture more complex than previously envisioned and also providing new insights into regulation of this important step in gene expression. Here we review the recent advances in this area and provide a perspective for future studies.
Collapse
Affiliation(s)
- Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA;
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
64
|
Brocato J, Chen D, Liu J, Fang L, Jin C, Costa M. A Potential New Mechanism of Arsenic Carcinogenesis: Depletion of Stem-Loop Binding Protein and Increase in Polyadenylated Canonical Histone H3.1 mRNA. Biol Trace Elem Res 2015; 166:72-81. [PMID: 25893362 PMCID: PMC4470754 DOI: 10.1007/s12011-015-0296-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 03/03/2015] [Indexed: 12/27/2022]
Abstract
Canonical histones are synthesized with a peak in S-phase, whereas histone variants are formed throughout the cell cycle. Unlike messenger RNA (mRNA) for all other genes with a poly(A) tail, canonical histone mRNAs contain a stem-loop structure at their 3'-ends. This stem-loop structure is the binding site for the stem-loop binding protein (SLBP), a protein involved in canonical histone mRNA processing. Recently, we found that arsenic depletes SLBP by enhancing its proteasomal degradation and epigenetically silencing the promoter of the SLBP gene. The loss of SLBP disrupts histone mRNA processing and induces aberrant polyadenylation of canonical histone H3.1 mRNA. Here, we present new data supporting the idea that the lack of SLBP allows the H3.1 mRNA to be polyadenylated using the downstream poly(A) signal. SLBP was also depleted in arsenic-transformed bronchial epithelial cells (BEAS-2B), which led us to hypothesize the involvement of SLBP and polyadenylated H3.1 mRNA in carcinogenesis. Here, for the first time, we report that overexpression of H3.1 polyadenylated mRNA, and knockdown of SLBP enhances anchorage-independent cell growth. A pcDNA-H3.1 vector with a poly(A) signal sequence was stably transfected into BEAS-2B cells. Polyadenylated H3.1 mRNA and exogenous H3.1 protein levels were significantly increased in cells containing the pcDNA-H3.1 vector. A soft agar assay revealed that cells containing the vector formed significantly higher numbers of colonies compared to wild-type cells. Moreover, small hairpin RNA for SLBP (shSLBP) was used to knockdown the expression of SLBP. Cells stably transfected with the shSLBP vector grew significantly more colonies in soft agar than cells transfected with a control vector. These data suggest that upregulation of polyadenylated H3.1 mRNA holds potential as a mechanism to facilitate carcinogenesis by toxicants such as arsenic that depletes SLBP.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Danqi Chen
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Jianli Liu
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Lei Fang
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Chunyuan Jin
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| | - Max Costa
- Department of Environmental Medicine, NYU School of Medicine, NY, NY, 10016 USA
| |
Collapse
|
65
|
Misra A, Ou J, Zhu LJ, Green MR. Global Promotion of Alternative Internal Exon Usage by mRNA 3' End Formation Factors. Mol Cell 2015; 58:819-31. [PMID: 25921069 DOI: 10.1016/j.molcel.2015.03.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 02/12/2015] [Accepted: 03/11/2015] [Indexed: 12/21/2022]
Abstract
The mechanisms that regulate alternative precursor mRNA (pre-mRNA) splicing are largely unknown. Here, we perform an RNAi screen to identify factors required for alternative splicing regulation by RBFOX2, an RNA-binding protein that promotes either exon inclusion or exclusion. Unexpectedly, we find that two mRNA 3' end formation factors, cleavage and polyadenylation specificity factor (CPSF) and SYMPK, are RBFOX2 cofactors for both inclusion and exclusion of internal exons. RBFOX2 interacts with CPSF/SYMPK and recruits it to the pre-mRNA. RBFOX2 and CPSF/SYMPK then function together to regulate binding of the early intron recognition factors U2AF and U1 small nuclear ribonucleoprotein particle (snRNP). Genome-wide analysis reveals that CPSF also mediates alternative splicing of many internal exons in the absence of RBFOX2. Accordingly, we show that CPSF/SYMPK is also a cofactor of NOVA2 and heterologous nuclear ribonucleoprotein A1 (HNRNPA1), RNA-binding proteins that also regulate alternative splicing. Collectively, our results reveal an unanticipated role for mRNA 3' end formation factors in global promotion of alternative splicing.
Collapse
Affiliation(s)
- Ashish Misra
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Jianhong Ou
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Lihua J Zhu
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA; Program in Bioinformatics and Integrative Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Michael R Green
- Howard Hughes Medical Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA; Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
66
|
Skaar JR, Ferris AL, Wu X, Saraf A, Khanna KK, Florens L, Washburn MP, Hughes SH, Pagano M. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res 2015; 25:288-305. [PMID: 25675981 PMCID: PMC4349240 DOI: 10.1038/cr.2015.19] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 11/22/2014] [Accepted: 12/25/2014] [Indexed: 02/08/2023] Open
Abstract
Complexes containing INTS3 and either NABP1 or NABP2 were initially characterized in DNA damage responses, but their biochemical function remained unknown. Using affinity purifications and HIV Integration targeting-sequencing (HIT-Seq), we find that these complexes are part of the Integrator complex, which binds RNA Polymerase II and regulates specific target genes. Integrator cleaves snRNAs as part of their processing to their mature form in a mechanism that is intimately coupled with transcription termination. However, HIT-Seq reveals that Integrator also binds to the 3' end of replication-dependent histones and promoter proximal regions of genes with polyadenylated transcripts. Depletion of Integrator subunits results in transcription termination failure, disruption of histone mRNA processing, and polyadenylation of snRNAs and histone mRNAs. Furthermore, promoter proximal binding of Integrator negatively regulates expression of genes whose transcripts are normally polyadenylated. Integrator recruitment to all three gene classes is DSIF-dependent, suggesting that Integrator functions as a termination complex at DSIF-dependent RNA Polymerase II pause sites.
Collapse
Affiliation(s)
- Jeffrey R Skaar
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
| | - Andrea L Ferris
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Xiaolin Wu
- Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Anita Saraf
- The Stowers Institute for Medical Research, Kansas City, MO 6411, USA
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, Herston, Brisbane, Queensland 4006, Australia
| | - Laurence Florens
- The Stowers Institute for Medical Research, Kansas City, MO 6411, USA
| | - Michael P Washburn
- The Stowers Institute for Medical Research, Kansas City, MO 6411, USA
- Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Stephen H Hughes
- HIV Drug Resistance Program, National Cancer Institute, Frederick, MD 21702, USA
| | - Michele Pagano
- Department of Pathology, Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine, 522 First Avenue, New York, NY 10016, USA
- Howard Hughes Medical Institute, 522 First Avenue New York, NY 10016, USA
| |
Collapse
|
67
|
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, Ule J, Manley JL, Shi Y. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing. Genes Dev 2014. [PMID: 25301780 DOI: 10.1101/gad.250993.114.these] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2023]
Abstract
AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF (cleavage and polyadenylation specificity factor) complex. Despite its critical functions in mRNA 3' end formation, the molecular basis for CPSF-AAUAAA interaction remains poorly defined. The CPSF subunit CPSF160 has been implicated in AAUAAA recognition, but direct evidence has been lacking. Using in vitro and in vivo assays, we unexpectedly found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. Importantly, the CPSF30-RNA interaction is essential for mRNA 3' processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3' processing. Our data suggest that AAUAAA recognition in mammalian mRNA 3' processing is more complex than previously thought and involves multiple protein-RNA interactions.
Collapse
Affiliation(s)
- Serena L Chan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Ina Huppertz
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chengguo Yao
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Lingjie Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA; Institute for Genomics and Bioinformatics, Department of Computer Science, University of California at Irvine Irvine, California 92697, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jernej Ule
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| |
Collapse
|
68
|
Chan SL, Huppertz I, Yao C, Weng L, Moresco JJ, Yates JR, Ule J, Manley JL, Shi Y. CPSF30 and Wdr33 directly bind to AAUAAA in mammalian mRNA 3' processing. Genes Dev 2014; 28:2370-80. [PMID: 25301780 PMCID: PMC4215182 DOI: 10.1101/gad.250993.114] [Citation(s) in RCA: 174] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF complex. Chan et al. found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. The CPSF30–RNA interaction is essential for mRNA 3′ processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3′ processing. AAUAAA is the most highly conserved motif in eukaryotic mRNA polyadenylation sites and, in mammals, is specifically recognized by the multisubunit CPSF (cleavage and polyadenylation specificity factor) complex. Despite its critical functions in mRNA 3′ end formation, the molecular basis for CPSF–AAUAAA interaction remains poorly defined. The CPSF subunit CPSF160 has been implicated in AAUAAA recognition, but direct evidence has been lacking. Using in vitro and in vivo assays, we unexpectedly found that CPSF subunits CPSF30 and Wdr33 directly contact AAUAAA. Importantly, the CPSF30–RNA interaction is essential for mRNA 3′ processing and is primarily mediated by its zinc fingers 2 and 3, which are specifically targeted by the influenza protein NS1A to suppress host mRNA 3′ processing. Our data suggest that AAUAAA recognition in mammalian mRNA 3′ processing is more complex than previously thought and involves multiple protein–RNA interactions.
Collapse
Affiliation(s)
- Serena L Chan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Ina Huppertz
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Chengguo Yao
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| | - Lingjie Weng
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA; Institute for Genomics and Bioinformatics, Department of Computer Science, University of California at Irvine Irvine, California 92697, USA
| | - James J Moresco
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - John R Yates
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Jernej Ule
- Department of Molecular Neuroscience, University College London Institute of Neurology, London WC1N 3BG, United Kingdom; Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - James L Manley
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | - Yongsheng Shi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California at Irvine, Irvine, California 92697, USA
| |
Collapse
|
69
|
Schönemann L, Kühn U, Martin G, Schäfer P, Gruber AR, Keller W, Zavolan M, Wahle E. Reconstitution of CPSF active in polyadenylation: recognition of the polyadenylation signal by WDR33. Genes Dev 2014; 28:2381-93. [PMID: 25301781 PMCID: PMC4215183 DOI: 10.1101/gad.250985.114] [Citation(s) in RCA: 162] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cleavage and polyadenylation specificity factor (CPSF) is the central component of the 3′ processing machinery for polyadenylated mRNAs in metazoans. Schönemann et al. determined that four polypeptides (CPSF160, CPSF30, hFip1, and WDR33) are necessary and sufficient to reconstitute a CPSF subcomplex active in AAUAAA-dependent polyadenylation. WDR33 is required for binding of reconstituted CPSF to AAUAAA-containing RNA and can be specifically UV cross-linked to such RNAs. Cleavage and polyadenylation specificity factor (CPSF) is the central component of the 3′ processing machinery for polyadenylated mRNAs in metazoans: CPSF recognizes the polyadenylation signal AAUAAA, providing sequence specificity in both pre-mRNA cleavage and polyadenylation, and catalyzes pre-mRNA cleavage. Here we show that of the seven polypeptides that have been proposed to constitute CPSF, only four (CPSF160, CPSF30, hFip1, and WDR33) are necessary and sufficient to reconstitute a CPSF subcomplex active in AAUAAA-dependent polyadenylation, whereas CPSF100, CPSF73, and symplekin are dispensable. WDR33 is required for binding of reconstituted CPSF to AAUAAA-containing RNA and can be specifically UV cross-linked to such RNAs, as can CPSF30. Transcriptome-wide identification of WDR33 targets by photoactivatable ribonucleoside-enhanced cross-linking and immunoprecipitation (PAR-CLIP) showed that WDR33 binds in and very close to the AAUAAA signal in vivo with high specificity. Thus, our data indicate that the large CPSF subunit participating in recognition of the polyadenylation signal is WDR33 and not CPSF160, as suggested by previous studies.
Collapse
Affiliation(s)
- Lars Schönemann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Uwe Kühn
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Georges Martin
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Peter Schäfer
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany
| | - Andreas R Gruber
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Walter Keller
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Mihaela Zavolan
- Computational and Systems Biology, Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Elmar Wahle
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, D-06099 Halle, Germany;
| |
Collapse
|
70
|
CstF64: cell cycle regulation and functional role in 3' end processing of replication-dependent histone mRNAs. Mol Cell Biol 2014; 34:4272-84. [PMID: 25266659 DOI: 10.1128/mcb.00791-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The 3' end processing of animal replication-dependent histone mRNAs is activated during G1/S-phase transition. The processing site is recognized by stem-loop binding protein and the U7 snRNP, but cleavage additionally requires a heat-labile factor (HLF), composed of cleavage/polyadenylation specificity factor, symplekin, and cleavage stimulation factor 64 (CstF64). Although HLF has been shown to be cell cycle regulated, the mechanism of this regulation is unknown. Here we show that levels of CstF64 increase toward the S phase and its depletion affects histone RNA processing, S-phase progression, and cell proliferation. Moreover, analyses of the interactions between CstF64, symplekin, and the U7 snRNP-associated proteins FLASH and Lsm11 indicate that CstF64 is important for recruiting HLF to histone precursor mRNA (pre-mRNA)-resident proteins. Thus, CstF64 is central to the function of HLF and appears to be at least partly responsible for its cell cycle regulation. Additionally, we show that misprocessed histone transcripts generated upon CstF64 depletion mainly accumulate in the nucleus, where they are targets of the exosome machinery, while a small cytoplasmic fraction is partly associated with polysomes.
Collapse
|
71
|
Brocato J, Fang L, Chervona Y, Chen D, Kiok K, Sun H, Tseng HC, Xu D, Shamy M, Jin C, Costa M. Arsenic induces polyadenylation of canonical histone mRNA by down-regulating stem-loop-binding protein gene expression. J Biol Chem 2014; 289:31751-31764. [PMID: 25266719 DOI: 10.1074/jbc.m114.591883] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The replication-dependent histone genes are the only metazoan genes whose messenger RNA (mRNA) does not terminate with a poly(A) tail at the 3'-end. Instead, the histone mRNAs display a stem-loop structure at their 3'-end. Stem-loop-binding protein (SLBP) binds the stem-loop and regulates canonical histone mRNA metabolism. Here we report that exposure to arsenic, a carcinogenic metal, decreased cellular levels of SLBP by inducing its proteasomal degradation and inhibiting SLBP transcription via epigenetic mechanisms. Notably, arsenic exposure dramatically increased polyadenylation of canonical histone H3.1 mRNA possibly through down-regulation of SLBP expression. The polyadenylated H3.1 mRNA induced by arsenic was not susceptible to normal degradation that occurs at the end of S phase, resulting in continued presence into mitosis, increased total H3.1 mRNA, and increased H3 protein levels. Excess expression of canonical histones have been shown to increase sensitivity to DNA damage as well as increase the frequency of missing chromosomes and induce genomic instability. Thus, polyadenylation of canonical histone mRNA following arsenic exposure may contribute to arsenic-induced carcinogenesis.
Collapse
Affiliation(s)
- Jason Brocato
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Lei Fang
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Yana Chervona
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Danqi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Kathrin Kiok
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Hong Sun
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Hsiang-Chi Tseng
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Dazhong Xu
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| | - Magdy Shamy
- Department of Environmental Sciences, Faculty of Meteorology, Environment, and Arid Land Agriculture, King Abdulaziz University, Jeddah 21432, Saudi Arabia
| | - Chunyuan Jin
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and.
| | - Max Costa
- Department of Environmental Medicine, New York University School of Medicine, New York, New York 10016 and
| |
Collapse
|
72
|
Youngblood BA, MacDonald CC. CstF-64 is necessary for endoderm differentiation resulting in cardiomyocyte defects. Stem Cell Res 2014; 13:413-21. [PMID: 25460602 DOI: 10.1016/j.scr.2014.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/06/2014] [Accepted: 09/16/2014] [Indexed: 12/23/2022] Open
Abstract
Although adult cardiomyocytes have the capacity for cellular regeneration, they are unable to fully repair severely injured hearts. The use of embryonic stem cell (ESC)-derived cardiomyocytes as transplantable heart muscle cells has been proposed as a solution, but is limited by the lack of understanding of the developmental pathways leading to specification of cardiac progenitors. Identification of these pathways will enhance the ability to differentiate cardiomyocytes into a clinical source of transplantable cells. Here, we show that the mRNA 3' end processing protein, CstF-64, is essential for cardiomyocyte differentiation in mouse ESCs. Loss of CstF-64 in mouse ESCs results in loss of differentiation potential toward the endodermal lineage. However, CstF-64 knockout (Cstf2(E6)) cells were able to differentiate into neuronal progenitors, demonstrating that some differentiation pathways were still intact. Markers for mesodermal differentiation were also present, although Cstf2(E6) cells were defective in forming beating cardiomyocytes and expressing cardiac specific markers. Since the extraembryonic endoderm is needed for cardiomyocyte differentiation and endodermal markers were decreased, we hypothesized that endodermal factors were required for efficient cardiomyocyte formation in the Cstf2(E6) cells. Using conditioned medium from the extraembryonic endodermal (XEN) stem cell line we were able to restore cardiomyocyte differentiation in Cstf2(E6) cells, suggesting that CstF-64 has a role in regulating endoderm differentiation that is necessary for cardiac specification and that extraembryonic endoderm signaling is essential for cardiomyocyte development.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA.
| |
Collapse
|
73
|
Yamamoto J, Hagiwara Y, Chiba K, Isobe T, Narita T, Handa H, Yamaguchi Y. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat Commun 2014; 5:4263. [PMID: 24968874 DOI: 10.1038/ncomms5263] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 06/01/2014] [Indexed: 01/26/2023] Open
Abstract
The elongation factors DSIF and NELF are responsible for promoter-proximal RNA polymerase II (Pol II) pausing. NELF is also involved in 3' processing of replication-dependent histone genes, which produce non-polyadenylated mRNAs. Here we show that DSIF and NELF contribute to the synthesis of small nuclear RNAs (snRNAs) through their association with Integrator, the large multisubunit complex responsible for 3' processing of pre-snRNAs. In HeLa cells, Pol II, Integrator, DSIF and NELF accumulate at the 3' end of the U1 snRNA gene. Knockdown of NELF results in misprocessing of U1, U2, U4 and U5 snRNAs, while DSIF is required for proper transcription of these genes. Knocking down NELF also disrupts transcription termination and induces the production of polyadenylated U1 transcripts caused by an enhanced recruitment of cleavage stimulation factor. Our results indicate that NELF plays a key role in determining the post-transcriptional fate of Pol II-transcribed genes.
Collapse
Affiliation(s)
- Junichi Yamamoto
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Yuri Hagiwara
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Kunitoshi Chiba
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Tomoyasu Isobe
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takashi Narita
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Hiroshi Handa
- Department of Nanoparticle Translational Research, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yuki Yamaguchi
- 1] Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan [2] PRESTO, Japan Science and Technology Agency, Kawaguchi 332-0012, Japan
| |
Collapse
|
74
|
Youngblood BA, Grozdanov PN, MacDonald CC. CstF-64 supports pluripotency and regulates cell cycle progression in embryonic stem cells through histone 3' end processing. Nucleic Acids Res 2014; 42:8330-42. [PMID: 24957598 PMCID: PMC4117776 DOI: 10.1093/nar/gku551] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Embryonic stem cells (ESCs) exhibit a unique cell cycle with a shortened G1 phase that supports their pluripotency, while apparently buffering them against pro-differentiation stimuli. In ESCs, expression of replication-dependent histones is a main component of this abbreviated G1 phase, although the details of this mechanism are not well understood. Similarly, the role of 3' end processing in regulation of ESC pluripotency and cell cycle is poorly understood. To better understand these processes, we examined mouse ESCs that lack the 3' end-processing factor CstF-64. These ESCs display slower growth, loss of pluripotency and a lengthened G1 phase, correlating with increased polyadenylation of histone mRNAs. Interestingly, these ESCs also express the τCstF-64 paralog of CstF-64. However, τCstF-64 only partially compensates for lost CstF-64 function, despite being recruited to the histone mRNA 3' end-processing complex. Reduction of τCstF-64 in CstF-64-deficient ESCs results in even greater levels of histone mRNA polyadenylation, suggesting that both CstF-64 and τCstF-64 function to inhibit polyadenylation of histone mRNAs. These results suggest that CstF-64 plays a key role in modulating the cell cycle in ESCs while simultaneously controlling histone mRNA 3' end processing.
Collapse
Affiliation(s)
- Bradford A Youngblood
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Petar N Grozdanov
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| | - Clinton C MacDonald
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430-6540, USA
| |
Collapse
|
75
|
Hoefig KP, Heissmeyer V. Degradation of oligouridylated histone mRNAs: see UUUUU and goodbye. WILEY INTERDISCIPLINARY REVIEWS-RNA 2014; 5:577-89. [PMID: 24692427 DOI: 10.1002/wrna.1232] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
Abstract
During the cell cycle the expression of replication-dependent histones is tightly coupled to DNA synthesis. Histone messenger RNA (mRNA) levels strongly increase during early S-phase and rapidly decrease at the end of it. Here, we review the degradation of replication-dependent histone mRNAs, a paradigm of post-transcriptional gene regulation, in the context of processing, translation, and oligouridylation. Replication-dependent histone transcripts are characterized by the absence of introns and by the presence of a stem-loop structure at the 3' end of a very short 3' untranslated region (UTR). These features, together with a need for active translation, are a prerequisite for their rapid decay. The degradation is induced by 3' end additions of untemplated uridines, performed by terminal uridyl transferases. Such 3' oligouridylated transcripts are preferentially bound by the heteroheptameric LSM1-7 complex, which also interacts with the 3'→5' exonuclease ERI1 (also called 3'hExo). Presumably in cooperation with LSM1-7 and aided by the helicase UPF1, ERI1 degrades through the stem-loop of oligouridylated histone mRNAs in repeated rounds of partial degradation and reoligouridylation. Although histone mRNA decay is now known in some detail, important questions remain open: How is ceasing nuclear DNA replication relayed to the cytoplasmic histone mRNA degradation? Why is translation important for this process? Recent research on factors such as SLIP1, DBP5, eIF3, CTIF, CBP80/20, and ERI1 has provided new insights into the 3' end formation, the nuclear export, and the translation of histone mRNAs. We discuss how these results fit with the preparation of histone mRNAs for degradation, which starts as early as these transcripts are generated.
Collapse
Affiliation(s)
- Kai P Hoefig
- Institute of Molecular Immunology, Research Unit of Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | | |
Collapse
|
76
|
Jurado AR, Tan D, Jiao X, Kiledjian M, Tong L. Structure and function of pre-mRNA 5'-end capping quality control and 3'-end processing. Biochemistry 2014; 53:1882-98. [PMID: 24617759 PMCID: PMC3977584 DOI: 10.1021/bi401715v] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Messenger RNA precursors (pre-mRNAs)
are produced as the nascent
transcripts of RNA polymerase II (Pol II) in eukaryotes and must undergo
extensive maturational processing, including 5′-end capping,
splicing, and 3′-end cleavage and polyadenylation. This review
will summarize the structural and functional information reported
over the past few years on the large machinery required for the 3′-end
processing of most pre-mRNAs, as well as the distinct machinery for
the 3′-end processing of replication-dependent histone pre-mRNAs,
which have provided great insights into the proteins and their subcomplexes
in these machineries. Structural and biochemical studies have also
led to the identification of a new class of enzymes (the DXO family
enzymes) with activity toward intermediates of the 5′-end capping
pathway. Functional studies demonstrate that these enzymes are part
of a novel quality surveillance mechanism for pre-mRNA 5′-end
capping. Incompletely capped pre-mRNAs are produced in yeast and human
cells, in contrast to the general belief in the field that capping
always proceeds to completion, and incomplete capping leads to defects
in splicing and 3′-end cleavage in human cells. The DXO family
enzymes are required for the detection and degradation of these defective
RNAs.
Collapse
Affiliation(s)
- Ashley R Jurado
- Department of Biological Sciences, Columbia University , New York, New York 10027, United States
| | | | | | | | | |
Collapse
|
77
|
Delineating the structural blueprint of the pre-mRNA 3'-end processing machinery. Mol Cell Biol 2014; 34:1894-910. [PMID: 24591651 DOI: 10.1128/mcb.00084-14] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Processing of mRNA precursors (pre-mRNAs) by polyadenylation is an essential step in gene expression. Polyadenylation consists of two steps, cleavage and poly(A) synthesis, and requires multiple cis elements in the pre-mRNA and a megadalton protein complex bearing the two essential enzymatic activities. While genetic and biochemical studies remain the major approaches in characterizing these factors, structural biology has emerged during the past decade to help understand the molecular assembly and mechanistic details of the process. With structural information about more proteins and higher-order complexes becoming available, we are coming closer to obtaining a structural blueprint of the polyadenylation machinery that explains both how this complex functions and how it is regulated and connected to other cellular processes.
Collapse
|
78
|
Sabath I, Skrajna A, Yang XC, Dadlez M, Marzluff WF, Dominski Z. 3'-End processing of histone pre-mRNAs in Drosophila: U7 snRNP is associated with FLASH and polyadenylation factors. RNA (NEW YORK, N.Y.) 2013; 19:1726-44. [PMID: 24145821 PMCID: PMC3884669 DOI: 10.1261/rna.040360.113] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
3'-End cleavage of animal replication-dependent histone pre-mRNAs is controlled by the U7 snRNP. Lsm11, the largest component of the U7-specific Sm ring, interacts with FLASH, and in mammalian nuclear extracts these two proteins form a platform that recruits the CPSF73 endonuclease and other polyadenylation factors to the U7 snRNP. FLASH is limiting, and the majority of the U7 snRNP in mammalian extracts exists as a core particle consisting of the U7 snRNA and the Sm ring. Here, we purified the U7 snRNP from Drosophila nuclear extracts and characterized its composition by mass spectrometry. In contrast to the mammalian U7 snRNP, a significant fraction of the Drosophila U7 snRNP contains endogenous FLASH and at least six subunits of the polyadenylation machinery: symplekin, CPSF73, CPSF100, CPSF160, WDR33, and CstF64. The same composite U7 snRNP is recruited to histone pre-mRNA for 3'-end processing. We identified a motif in Drosophila FLASH that is essential for the recruitment of the polyadenylation complex to the U7 snRNP and analyzed the role of other factors, including SLBP and Ars2, in 3'-end processing of Drosophila histone pre-mRNAs. SLBP that binds the upstream stem-loop structure likely recruits a yet-unidentified essential component(s) to the processing machinery. In contrast, Ars2, a protein previously shown to interact with FLASH in mammalian cells, is dispensable for processing in Drosophila. Our studies also demonstrate that Drosophila symplekin and three factors involved in cleavage and polyadenylation-CPSF, CstF, and CF Im-are present in Drosophila nuclear extracts in a stable supercomplex.
Collapse
Affiliation(s)
- Ivan Sabath
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Aleksandra Skrajna
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00-901 Warsaw, Poland
| | - Xiao-cui Yang
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Michał Dadlez
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 00-901 Warsaw, Poland
- Institute of Genetics and Biotechnology, Warsaw University, 02-106 Warsaw, Poland
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Zbigniew Dominski
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Corresponding authorE-mail
| |
Collapse
|
79
|
Affiliation(s)
- Jiannan Guo
- Biochemistry Department, University of Iowa , Iowa City, Iowa 52242, United States
| | | |
Collapse
|
80
|
Chen J, Waltenspiel B, Warren WD, Wagner EJ. Functional analysis of the integrator subunit 12 identifies a microdomain that mediates activation of the Drosophila integrator complex. J Biol Chem 2013; 288:4867-77. [PMID: 23288851 DOI: 10.1074/jbc.m112.425892] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The Drosophila integrator complex consists of 14 subunits that associate with the C terminus of Rpb1 and catalyze the endonucleolytic cleavage of nascent snRNAs near their 3' ends. Although disruption of almost any integrator subunit causes snRNA misprocessing, very little is known about the role of the individual subunits or the network of structural and functional interactions that exist within the complex. Here we developed an RNAi rescue assay in Drosophila S2 cells to identify functional domains within integrator subunit 12 (IntS12) required for snRNA 3' end formation. Surprisingly, the defining feature of the Ints12 protein, a highly conserved and centrally located plant homeodomain finger domain, is not required for reporter snRNA 3' end cleavage. Rather, we find a small, 45-amino acid N-terminal microdomain to be both necessary and nearly sufficient for snRNA biogenesis in cells depleted of endogenous IntS12 protein. This IntS12 microdomain can function autonomously, restoring full integrator processing activity when introduced into a heterologous protein. Moreover, mutations within the microdomain not only disrupt IntS12 function but also abolish binding to other integrator subunits. Finally, the IntS12 microdomain is sufficient to interact and stabilize the putative scaffold integrator subunit, IntS1. Collectively, these results identify an unexpected interaction between the largest and smallest integrator subunits that is essential for the 3' end formation of Drosophila snRNA.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
81
|
Chen J, Ezzeddine N, Waltenspiel B, Albrecht TR, Warren WD, Marzluff WF, Wagner EJ. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3'-end formation. RNA (NEW YORK, N.Y.) 2012; 18:2148-2156. [PMID: 23097424 PMCID: PMC3504667 DOI: 10.1261/rna.035725.112] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Accepted: 09/17/2012] [Indexed: 06/01/2023]
Abstract
Formation of the 3' end of RNA polymerase II-transcribed snRNAs requires a poorly understood group of proteins called the Integrator complex. Here we used a fluorescence-based read-through reporter that expresses GFP in response to snRNA misprocessing and performed a genome-wide RNAi screen in Drosophila S2 cells to identify novel factors required for snRNA 3'-end formation. In addition to the known Integrator complex members, we identified Asunder and CG4785 as additional Integrator subunits. Functional and biochemical experiments revealed that Asunder and CG4785 are additional core members of the Integrator complex. We also identified a conserved requirement in both fly and human snRNA 3'-end processing for cyclin C and Cdk8 that is distinct from their function in the Mediator Cdk8 module. Moreover, we observed biochemical association between Integrator proteins and cyclin C/Cdk8, and that overexpression of a kinase-dead Cdk8 causes snRNA misprocessing. These data functionally define the Drosophila Integrator complex and demonstrate an additional function for cyclin C/Cdk8 unrelated to its function in Mediator.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| | - Nader Ezzeddine
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - Bernhard Waltenspiel
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD 4811, Queensland, Australia
| | - Todd R. Albrecht
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | - William D. Warren
- Comparative Genomics Centre, School of Pharmacy and Molecular Sciences, James Cook University, Townsville QLD 4811, Queensland, Australia
| | - William F. Marzluff
- Department of Biochemistry and Biophysics, Program in Molecular Biology and Biotechnology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School at Houston, Houston, Texas 77030, USA
- The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77030, USA
| |
Collapse
|
82
|
RNA polymerase II pausing downstream of core histone genes is different from genes producing polyadenylated transcripts. PLoS One 2012; 7:e38769. [PMID: 22701709 PMCID: PMC3372504 DOI: 10.1371/journal.pone.0038769] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 05/13/2012] [Indexed: 11/19/2022] Open
Abstract
Recent genome-wide chromatin immunoprecipitation coupled high throughput sequencing (ChIP-seq) analyses performed in various eukaryotic organisms, analysed RNA Polymerase II (Pol II) pausing around the transcription start sites of genes. In this study we have further investigated genome-wide binding of Pol II downstream of the 3′ end of the annotated genes (EAGs) by ChIP-seq in human cells. At almost all expressed genes we observed Pol II occupancy downstream of the EAGs suggesting that Pol II pausing 3′ from the transcription units is a rather common phenomenon. Downstream of EAGs Pol II transcripts can also be detected by global run-on and sequencing, suggesting the presence of functionally active Pol II. Based on Pol II occupancy downstream of EAGs we could distinguish distinct clusters of Pol II pause patterns. On core histone genes, coding for non-polyadenylated transcripts, Pol II occupancy is quickly dropping after the EAG. In contrast, on genes, whose transcripts undergo polyA tail addition [poly(A)+], Pol II occupancy downstream of the EAGs can be detected up to 4–6 kb. Inhibition of polyadenylation significantly increased Pol II occupancy downstream of EAGs at poly(A)+ genes, but not at the EAGs of core histone genes. The differential genome-wide Pol II occupancy profiles 3′ of the EAGs have also been confirmed in mouse embryonic stem (mES) cells, indicating that Pol II pauses genome-wide downstream of the EAGs in mammalian cells. Moreover, in mES cells the sharp drop of Pol II signal at the EAG of core histone genes seems to be independent of the phosphorylation status of the C-terminal domain of the large subunit of Pol II. Thus, our study uncovers a potential link between different mRNA 3′ end processing mechanisms and consequent Pol II transcription termination processes.
Collapse
|
83
|
Neusiedler J, Mocquet V, Limousin T, Ohlmann T, Morris C, Jalinot P. INT6 interacts with MIF4GD/SLIP1 and is necessary for efficient histone mRNA translation. RNA (NEW YORK, N.Y.) 2012; 18:1163-1177. [PMID: 22532700 PMCID: PMC3358639 DOI: 10.1261/rna.032631.112] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/06/2012] [Indexed: 05/31/2023]
Abstract
The INT6/EIF3E protein has been implicated in mouse and human breast carcinogenesis. This subunit of the eIF3 translation initiation factor that includes a PCI domain exhibits specific features such as presence in the nucleus and ability to interact with other important cellular protein complexes like the 26S proteasome and the COP9 signalosome. It has been previously shown that INT6 was not essential for bulk translation, and this protein is considered to regulate expression of specific mRNAs. Based on the results of a two-hybrid screen performed with INT6 as bait, we characterize in this article the MIF4GD/SLIP1 protein as an interactor of this eIF3 subunit. MIF4GD was previously shown to associate with SLBP, which binds the stem-loop located at the 3' end of the histone mRNAs, and to be necessary for efficient translation of these cell cycle-regulated mRNAs that lack a poly(A) tail. In line with the interaction of both proteins, we show using the RNA interference approach that INT6 is also essential to S-phase histone mRNA translation. This was observed by analyzing expression of endogenous histones and by testing heterologous constructs placing the luciferase reporter gene under the control of the stem-loop element of various histone genes. With such a reporter plasmid, silencing and overexpression of INT6 exerted opposite effects. In agreement with these results, INT6 and MIF4GD were observed to colocalize in cytoplasmic foci. We conclude from these data that INT6, by establishing interactions with MIF4GD and SLBP, plays an important role in translation of poly(A) minus histone mRNAs.
Collapse
Affiliation(s)
- Julia Neusiedler
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Vincent Mocquet
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Taran Limousin
- Virologie Humaine, Unité 758, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Theophile Ohlmann
- Virologie Humaine, Unité 758, Institut National de la Santé et de la Recherche Médicale, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Christelle Morris
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| | - Pierre Jalinot
- Laboratoire de Biologie Moléculaire de la Cellule, Unité Mixte de Recherche 5239, Centre National de la Recherche Scientifique, Ecole Normale Supérieure de Lyon, 69364 Lyon cedex 07, France
| |
Collapse
|
84
|
MacDonald CC, McMahon KW. Tissue-specific mechanisms of alternative polyadenylation: testis, brain, and beyond. WILEY INTERDISCIPLINARY REVIEWS-RNA 2012; 1:494-501. [PMID: 21956945 DOI: 10.1002/wrna.29] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Changing the position of the poly(A) tail in an mRNA--alternative polyadenylation--is an important mechanism to increase the diversity of gene expression, especially in metazoans. Alternative polyadenylation often occurs in a tissue- or developmental stage-specific manner and can significantly affect gene activity by changing the protein product generated, the stability of the transcript, its localization, or its translatability. Despite the important regulatory effects that alternative polyadenylation have on gene expression, only a sparse few examples have been mechanistically characterized. Here, we review the known mechanisms for the control of alternative polyadenylation, catalog the tissues that demonstrate a propensity for alternative polyadenylation, and focus on the proteins that are known to regulate alternative polyadenylation in specific tissues. We conclude that the field of alternative polyadenylation remains in its infancy, with possibilities for future investigation on the horizon. Given the profound effect alternative polyadenylation can have on gene expression and human health, improved understanding of alternative polyadenylation could lead to numerous advances in control of gene activity.
Collapse
Affiliation(s)
- Clinton C MacDonald
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430-6540, USA.
| | | |
Collapse
|
85
|
Non-canonical Cajal bodies form in the nucleus of late stage avian oocytes lacking functional nucleolus. Histochem Cell Biol 2012; 138:57-73. [PMID: 22382586 DOI: 10.1007/s00418-012-0938-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
In the somatic cell nucleus, there are several universal domains such as nucleolus, SC35-domains, Cajal bodies (CBs) and histone locus bodies (HLBs). Among them, CBs were described more than 100 years ago; however, we still do not have a final understanding of their nature and biological significance. The giant nucleus of avian and amphibian growing oocytes represents an advantageous model for analysis of functions and biogenesis of various nuclear domains. Nevertheless, in large-sized avian oocytes that contain transcriptionally active lampbrush chromosomes, CB-like organelles have not been identified yet. Here we demonstrate that in the pigeon (Columba livia) oocyte nucleus, characterized by absence of any functional nucleoli, extrachromosomal spherical bodies contain TMG-capped spliceosomal snRNAs, core proteins of Sm snRNPs and the protein coilin typical for CBs, but not splicing factor SC35 nor the histone pre-mRNA 3'-end processing factor symplekin. The results establish that coilin-rich nuclear organelles in pigeon late-stage oocyte are not the equivalents of HLBs but belong to a group of CBs. At the same time, they do not contain the snoRNP/scaRNP protein fibrillarin involved in 2'-O-methylation of snoRNAs and snRNAs. Thus, the nucleus of late-stage pigeon oocytes houses CB-like organelles that have an unusual molecular composition and are implicated in the snRNP biogenesis pathway. These data demonstrate that snRNP-rich non-canonical CBs can form in the absence of nucleolus. We argue that pigeon oocytes represent a new promising model to investigate CB modular organization, functions and formation mechanism.
Collapse
|
86
|
snRNA 3' end formation requires heterodimeric association of integrator subunits. Mol Cell Biol 2012; 32:1112-23. [PMID: 22252320 DOI: 10.1128/mcb.06511-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The Integrator Complex is a group of proteins responsible for the endonucleolytic cleavage of primary small nuclear RNA (snRNA) transcripts within the nucleus. Integrator subunits 9 and 11 (IntS9/11) are thought to contain the catalytic activity based on their high sequence similarity to CPSF100 and CPSF73, which have been shown to be components of both the poly(A)(+) and histone pre-mRNA cleavage complex. Here we demonstrate that the specific heterodimeric interaction between IntS9 and IntS11 is mediated by a discrete domain present at the extreme C terminus of IntS9 and within the C terminus of IntS11, adjacent to the predicted active site of this endonuclease. This domain is highly conserved within IntS11 but conspicuously absent in CPSF73. Using a cell-based complementation assay that measures Integrator activity, we determined that the IntS9 interaction domain within IntS11 is required for its ability to restore snRNA 3' end processing after RNA interference (RNAi)-mediated depletion of IntS11. Moreover, overexpression of these interaction domains alone elicits snRNA misprocessing through a dominant-negative titration of endogenous Integrator subunits. These data collectively explain the mechanism by which the IntS11/9 and, by analogy, the CPSF73/100 heterodimeric cleavage factors distinguish themselves from each other and demonstrate that the heterodimeric interaction is functionally required for snRNA 3' end formation.
Collapse
|
87
|
Abstract
Polyadenylation [poly(A)] signals (PAS) are a defining feature of eukaryotic protein-coding genes. The central sequence motif AAUAAA was identified in the mid-1970s and subsequently shown to require flanking, auxiliary elements for both 3'-end cleavage and polyadenylation of premessenger RNA (pre-mRNA) as well as to promote downstream transcriptional termination. More recent genomic analysis has established the generality of the PAS for eukaryotic mRNA. Evidence for the mechanism of mRNA 3'-end formation is outlined, as is the way this RNA processing reaction communicates with RNA polymerase II to terminate transcription. The widespread phenomenon of alternative poly(A) site usage and how this interrelates with pre-mRNA splicing is then reviewed. This shows that gene expression can be drastically affected by how the message is ended. A central theme of this review is that while genomic analysis provides generality for the importance of PAS selection, detailed mechanistic understanding still requires the direct analysis of specific genes by genetic and biochemical approaches.
Collapse
Affiliation(s)
- Nick J Proudfoot
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, United Kingdom.
| |
Collapse
|
88
|
White AE, Burch BD, Yang XC, Gasdaska PY, Dominski Z, Marzluff WF, Duronio RJ. Drosophila histone locus bodies form by hierarchical recruitment of components. ACTA ACUST UNITED AC 2011; 193:677-94. [PMID: 21576393 PMCID: PMC3166876 DOI: 10.1083/jcb.201012077] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
An assembly process involving sequential recruitment of components and hierarchical dependency drives formation of the nuclear structures known as histone locus bodies. Nuclear bodies are protein- and RNA-containing structures that participate in a wide range of processes critical to genome function. Molecular self-organization is thought to drive nuclear body formation, but whether this occurs stochastically or via an ordered, hierarchical process is not fully understood. We addressed this question using RNAi and proteomic approaches in Drosophila melanogaster to identify and characterize novel components of the histone locus body (HLB), a nuclear body involved in the expression of replication-dependent histone genes. We identified the transcription elongation factor suppressor of Ty 6 (Spt6) and a homologue of mammalian nuclear protein of the ataxia telangiectasia–mutated locus that is encoded by the homeotic gene multisex combs (mxc) as novel HLB components. By combining genetic manipulation in both cell culture and embryos with cytological observations of Mxc, Spt6, and the known HLB components, FLICE-associated huge protein, Mute, U7 small nuclear ribonucleoprotein, and MPM-2 phosphoepitope, we demonstrated sequential recruitment and hierarchical dependency for localization of factors to HLBs during development, suggesting that ordered assembly can play a role in nuclear body formation.
Collapse
Affiliation(s)
- Anne E White
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Burch BD, Godfrey AC, Gasdaska PY, Salzler HR, Duronio RJ, Marzluff WF, Dominski Z. Interaction between FLASH and Lsm11 is essential for histone pre-mRNA processing in vivo in Drosophila. RNA (NEW YORK, N.Y.) 2011; 17:1132-47. [PMID: 21525146 PMCID: PMC3096045 DOI: 10.1261/rna.2566811] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Metazoan replication-dependent histone mRNAs are the only nonpolyadenylated cellular mRNAs. Formation of the histone mRNA 3' end requires the U7 snRNP, which contains Lsm10 and Lsm11, and FLASH, a processing factor that binds Lsm11. Here, we identify sequences in Drosophila FLASH (dFLASH) that bind Drosophila Lsm11 (dLsm11), allow localization of dFLASH to the nucleus and histone locus body (HLB), and participate in histone pre-mRNA processing in vivo. Amino acids 105-154 of dFLASH bind to amino acids 1-78 of dLsm11. A two-amino acid mutation of dLsm11 that prevents dFLASH binding but does not affect localization of U7 snRNP to the HLB cannot rescue the lethality or histone pre-mRNA processing defects resulting from an Lsm11 null mutation. The last 45 amino acids of FLASH are required for efficient localization to the HLB in Drosophila cultured cells. Removing the first 64 amino acids of FLASH has no effect on processing in vivo. Removal of 13 additional amino acids of dFLASH results in a dominant negative protein that binds Lsm11 but inhibits processing of histone pre-mRNA in vivo. Inhibition requires the Lsm11 binding site, suggesting that the mutant dFLASH protein sequesters the U7 snRNP in an inactive complex and that residues between 64 and 77 of dFLASH interact with a factor required for processing. Together, these studies demonstrate that direct interaction between dFLASH and dLsm11 is essential for histone pre-mRNA processing in vivo and for proper development and viability in flies.
Collapse
MESH Headings
- Animals
- Binding Sites
- Carrier Proteins/chemistry
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cells, Cultured
- Drosophila/genetics
- Drosophila/metabolism
- Drosophila Proteins/chemistry
- Drosophila Proteins/genetics
- Drosophila Proteins/metabolism
- Histones/genetics
- Histones/metabolism
- RNA Precursors/metabolism
- RNA Processing, Post-Transcriptional
- RNA, Heterogeneous Nuclear/genetics
- RNA, Heterogeneous Nuclear/metabolism
- RNA, Messenger/metabolism
- Ribonucleoprotein, U7 Small Nuclear/genetics
- Ribonucleoprotein, U7 Small Nuclear/metabolism
- Ribonucleoproteins, Small Nuclear/chemistry
- Ribonucleoproteins, Small Nuclear/genetics
- Ribonucleoproteins, Small Nuclear/metabolism
Collapse
Affiliation(s)
- Brandon D Burch
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | | | | | | | | | | | | |
Collapse
|
90
|
Ji X, Kong J, Liebhaber SA. An RNA-protein complex links enhanced nuclear 3' processing with cytoplasmic mRNA stabilization. EMBO J 2011; 30:2622-33. [PMID: 21623344 DOI: 10.1038/emboj.2011.171] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Accepted: 04/19/2011] [Indexed: 01/09/2023] Open
Abstract
Post-transcriptional controls are critical to gene regulation. These controls are frequently based on sequence-specific binding of trans-acting proteins to cis-acting motifs on target RNAs. Prior studies have revealed that the KH-domain protein, αCP, binds to a 3' UTR C-rich motif of hα-globin mRNA and contributes to its cytoplasmic stability. Here, we report that this 3' UTR αCP complex regulates the production of mature α-globin mRNA by enhancing 3' processing of the hα-globin transcript. We go on to demonstrate that this nuclear activity reflects enhancement of both the cleavage and the polyadenylation reactions and that αCP interacts in vivo with core components of the 3' processing complex. Consistent with its nuclear processing activity, our studies reveal that αCP assembles co-transcriptionally at the hα-globin chromatin locus and that this loading is selectively enriched at the 3' terminus of the gene. The demonstrated linkage of nuclear processing with cytoplasmic stabilization via a common RNA-protein complex establishes a basis for integration of sequential controls critical to robust and sustained expression of a target mRNA.
Collapse
Affiliation(s)
- Xinjun Ji
- Department of Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
91
|
Yang Q, Doublié S. Structural biology of poly(A) site definition. WILEY INTERDISCIPLINARY REVIEWS-RNA 2011; 2:732-47. [PMID: 21823232 DOI: 10.1002/wrna.88] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
3' processing is an essential step in the maturation of all messenger RNAs (mRNAs) and is a tightly coupled two-step reaction: endonucleolytic cleavage at the poly(A) site is followed by the addition of a poly(A) tail, except for metazoan histone mRNAs, which are cleaved but not polyadenylated. The recognition of a poly(A) site is coordinated by the sequence elements in the mRNA 3' UTR and associated protein factors. In mammalian cells, three well-studied sequence elements, UGUA, AAUAAA, and GU-rich, are recognized by three multisubunit factors: cleavage factor I(m) (CFI(m) ), cleavage and polyadenylation specificity factor (CPSF), and cleavage stimulation factor (CstF), respectively. In the yeast Saccharomyces cerevisiae, UA repeats and A-rich sequence elements are recognized by Hrp1p and cleavage factor IA. Structural studies of protein-RNA complexes have helped decipher the mechanisms underlying sequence recognition and shed light on the role of protein factors in poly(A) site selection and 3' processing machinery assembly. In this review we focus on the interactions between the mRNA cis-elements and the protein factors (CFI(m) , CPSF, CstF, and homologous factors from yeast and other eukaryotes) that define the poly(A) site. WIREs RNA 2011 2 732-747 DOI: 10.1002/wrna.88 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Qin Yang
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, USA
| | | |
Collapse
|
92
|
Danckwardt S, Gantzert AS, Macher-Goeppinger S, Probst HC, Gentzel M, Wilm M, Gröne HJ, Schirmacher P, Hentze MW, Kulozik AE. p38 MAPK controls prothrombin expression by regulated RNA 3' end processing. Mol Cell 2011; 41:298-310. [PMID: 21292162 DOI: 10.1016/j.molcel.2010.12.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 11/10/2010] [Accepted: 12/23/2010] [Indexed: 12/16/2022]
Abstract
Thrombin is a key protease involved in blood coagulation, complement activation, inflammation, angiogenesis, and tumor invasion. Although induced in many (patho-)physiological conditions, the underlying mechanisms controlling prothrombin expression remained enigmatic. We have now discovered that prothrombin expression is regulated by a posttranscriptional regulatory mechanism responding to stress and inflammation. This mechanism is triggered by external stimuli that activate p38 MAPK. In turn, p38 MAPK upmodulates canonical 3' end processing components and phosphorylates the RNA-binding proteins FBP2 and FBP3, which inhibit 3' end processing of mRNAs, such as prothrombin mRNA, that bear a defined upstream sequence element (USE) in their 3'UTRs. Upon phosphorylation, FBP2 and FBP3 dissociate from the USE, making it accessible to proteins that stimulate 3' end processing. We provide in vivo evidence suggesting the importance of this mechanism in inflammatory hypercoagulation and tumor invasion. Regulated 3' end processing thus emerges as a key mechanism of gene regulation with broad biological and medical implications.
Collapse
Affiliation(s)
- Sven Danckwardt
- Department of Pediatric Oncology, Hematology, and Immunology, University of Heidelberg, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
The fission yeast Schizosaccharomyces pombe has two distinct tRNase ZLs encoded by two different genes and differentially targeted to the nucleus and mitochondria. Biochem J 2011; 435:103-11. [DOI: 10.1042/bj20101619] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
tRNase Z is the endonuclease that is involved in tRNA 3′-end maturation by removal of the 3′-trailer sequences from tRNA precursors. Most eukaryotes examined to date, including the budding yeast Saccharomyces cerevisiae and humans, have a single long form of tRNase Z (tRNase ZL). In contrast, the fission yeast Schizosaccharomyces pombe contains two candidate tRNase ZLs encoded by the essential genes sptrz1+ and sptrz2+. In the present study, we have expressed recombinant SpTrz1p and SpTrz2p in S. pombe. Both recombinant proteins possess precursor tRNA 3′-endonucleolytic activity in vitro. SpTrz1p localizes to the nucleus and has a simian virus 40 NLS (nuclear localization signal)-like NLS at its N-terminus, which contains four consecutive arginine and lysine residues between residues 208 and 211 that are critical for the NLS function. In contrast, SpTrz2p is a mitochondrial protein with an N-terminal MTS (mitochondrial-targeting signal). High-level overexpression of sptrz1+ has no detectable phenotypes. In contrast, strong overexpression of sptrz2+ is lethal in wild-type cells and results in morphological abnormalities, including swollen and round cells, demonstrating that the correct expression level of sptrz2+ is critical. The present study provides evidence for partitioning of tRNase Z function between two different proteins in S. pombe, although we cannot rule out specialized functions for each protein.
Collapse
|
94
|
A subset of Drosophila integrator proteins is essential for efficient U7 snRNA and spliceosomal snRNA 3'-end formation. Mol Cell Biol 2010; 31:328-41. [PMID: 21078872 DOI: 10.1128/mcb.00943-10] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Proper gene expression relies on a class of ubiquitously expressed, uridine-rich small nuclear RNAs (snRNAs) transcribed by RNA polymerase II (RNAPII). Vertebrate snRNAs are transcribed from a unique promoter, which is required for proper 3'-end formation, and cleavage of the nascent transcript involves the activity of a poorly understood set of proteins called the Integrator complex. To examine 3'-end formation in Drosophila melanogaster, we developed a cell-based reporter that monitors aberrant 3'-end formation of snRNA through the gain in expression of green fluorescent protein (GFP). We used this reporter in Drosophila S2 cells to determine requirements for U7 snRNA 3'-end formation and found that processing was strongly dependent upon nucleotides located within the 3' stem-loop as well as sequences likely to comprise the Drosophila equivalent of the vertebrate 3' box. Substitution of the actin promoter for the snRNA promoter abolished proper 3'-end formation, demonstrating the conserved requirement for an snRNA promoter in Drosophila. We tested the requirement for all Drosophila Integrator subunits and found that Integrators 1, 4, 9, and 11 were essential for 3'-end formation and that Integrators 3 and 10 may be dispensable for processing. Depletion of cleavage and polyadenylation factors or of histone pre-mRNA processing factors did not affect U7 snRNA processing efficiency, demonstrating that the Integrator complex does not share components with the mRNA 3'-end processing machinery. Finally, flies harboring mutations in either Integrator 4 or 7 fail to complete development and accumulate significant levels of misprocessed snRNA in the larval stages.
Collapse
|
95
|
Chan S, Choi EA, Shi Y. Pre-mRNA 3'-end processing complex assembly and function. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:321-35. [PMID: 21957020 DOI: 10.1002/wrna.54] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The 3'-ends of almost all eukaryotic mRNAs are formed in a two-step process, an endonucleolytic cleavage followed by polyadenylation (the addition of a poly-adenosine or poly(A) tail). These reactions take place in the pre-mRNA 3' processing complex, a macromolecular machinery that consists of more than 20 proteins. A general framework for how the pre-mRNA 3' processing complex assembles and functions has emerged from extensive studies over the past several decades using biochemical, genetic, computational, and structural approaches. In this article, we review what we have learned about this important cellular machine and discuss the remaining questions and future challenges.
Collapse
Affiliation(s)
- Serena Chan
- Department of Microbiology and Molecular Genetics, University of California, Irvine, CA, USA
| | | | | |
Collapse
|
96
|
Zhao W, Yu H, Li S, Huang Y. Identification and analysis of candidate fungal tRNA 3'-end processing endonucleases tRNase Zs, homologs of the putative prostate cancer susceptibility protein ELAC2. BMC Evol Biol 2010; 10:272. [PMID: 20819227 PMCID: PMC2942849 DOI: 10.1186/1471-2148-10-272] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/06/2010] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND tRNase Z is the endonuclease that is responsible for the 3'-end processing of tRNA precursors, a process essential for tRNA 3'-CCA addition and subsequent tRNA aminoacylation. Based on their sizes, tRNase Zs can be divided into the long (tRNase ZL) and short (tRNase ZS) forms. tRNase ZL is thought to have arisen from a tandem gene duplication of tRNase ZS with further sequence divergence. The species distribution of tRNase Z is complex. Fungi represent an evolutionarily diverse group of eukaryotes. The recent proliferation of fungal genome sequences provides an opportunity to explore the structural and functional diversity of eukaryotic tRNase Zs. RESULTS We report a survey and analysis of candidate tRNase Zs in 84 completed fungal genomes, spanning a broad diversity of fungi. We find that tRNase ZL is present in all fungi we have examined, whereas tRNase ZS exists only in the fungal phyla Basidiomycota, Chytridiomycota and Zygomycota. Furthermore, we find that unlike the Pezizomycotina and Saccharomycotina, which contain a single tRNase ZL, Schizosaccharomyces fission yeasts (Taphrinomycotina) contain two tRNase ZLs encoded by two different tRNase ZL genes. These two tRNase ZLs are most likely localized to the nucleus and mitochondria, respectively, suggesting partitioning of tRNase Z function between two different tRNase ZLs in fission yeasts. The fungal tRNase Z phylogeny suggests that tRNase ZSs are ancestral to tRNase ZLs. Additionally, the evolutionary relationship of fungal tRNase ZLs is generally consistent with known phylogenetic relationships among the fungal species and supports tRNase ZL gene duplication in certain fungal taxa, including Schizosaccharomyces fission yeasts. Analysis of tRNase Z protein sequences reveals putative atypical substrate binding domains in most fungal tRNase ZSs and in a subset of fungal tRNase ZLs. Finally, we demonstrate the presence of pseudo-substrate recognition and catalytic motifs at the N-terminal halves of tRNase ZLs. CONCLUSIONS This study describes the first comprehensive identification and sequence analysis of candidate fungal tRNase Zs. Our results support the proposal that tRNase ZL has evolved as a result of duplication and diversification of the tRNase ZS gene.
Collapse
Affiliation(s)
- Wei Zhao
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Haiyan Yu
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Shuzhen Li
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| | - Ying Huang
- Nanjing Engineering and Technology Research Center for Microbiology, Jiangsu Key Laboratory for Biodiversity and Biotechnology, School of Life Sciences, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
97
|
Abstract
The ubiquitously expressed uridine-rich snRNAs (small nuclear RNAs) are essential for the removal of introns, proper expression of histone mRNA and biosynthesis of ribosomal RNA. Much is known about their assembly into snRNP (small nuclear ribonucleoprotein) particles and their ultimate function in the expression of other genes; however, in comparison, less is known about the biosynthesis of these critical non-coding RNAs. The sequence elements necessary for 3' end formation of snRNAs have been identified and, intriguingly, the processing of snRNAs is uniquely dependent on the snRNA promoter, indicating that co-transcriptional processing is important. However, the trans-acting RNA-processing factors that mediate snRNA processing remained elusive, hindering overall progress. Recently, the factors involved in this process were biochemically purified, and designated the Integrator complex. Since their initial discovery, Integrator proteins have been implicated not only in the production of snRNA, but also in other cellular processes that may be independent of snRNA biogenesis. In the present study, we discuss snRNA biosynthesis and the roles of Integrator proteins. We compare models of 3' end formation for different classes of RNA polymerase II transcripts and formulate/propose a model of Integrator function in snRNA biogenesis.
Collapse
Affiliation(s)
- Jiandong Chen
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, U.S.A., and Graduate School of Biomedical Sciences, University of Texas at Houston, Houston TX 77030, U.S.A
| | - Eric J. Wagner
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX 77030, U.S.A., and Graduate School of Biomedical Sciences, University of Texas at Houston, Houston TX 77030, U.S.A
| |
Collapse
|
98
|
Abstract
The Cajal body (CB) is a nuclear organelle present in all eukaryotes that have been carefully studied. It is identified by the signature protein coilin and by CB-specific RNAs (scaRNAs). CBs contain high concentrations of splicing small nuclear ribonucleoproteins (snRNPs) and other RNA processing factors, suggesting that they are sites for assembly and/or posttranscriptional modification of the splicing machinery of the nucleus. The histone locus body (HLB) contains factors required for processing histone pre-mRNAs. As its name implies, the HLB is associated with the genes that code for histones, suggesting that it may function to concentrate processing factors at their site of action. CBs and HLBs are present throughout the interphase of the cell cycle, but disappear during mitosis. The biogenesis of CBs shows the features of a self-organizing structure.
Collapse
Affiliation(s)
- Zehra Nizami
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | | | | |
Collapse
|
99
|
Abstract
The archetypical member of the SNM1 gene family was discovered 30 years ago in the budding yeast Saccharomyces cerevisiae. This small but ubiquitous gene family is characterized by metallo-beta-lactamase and beta-CASP domains, which together have been demonstrated to comprise a nuclease activity. Three mammalian members of this family, SNM1A, SNM1B/Apollo and Artemis, have been demonstrated to play surprisingly divergent roles in cellular metabolism. These pathways include variable (diversity) joining recombination, nonhomologous end-joining of double-strand breaks, DNA damage and mitotic cell cycle checkpoints, telomere maintenance and protein ubiquitination. Not all of these functions are consistent with a model in which these proteins act only as nucleases, and indicate that the SNM1 gene family encodes multifunctional products that can act in diverse biochemical pathways. In this article we discuss the various functions of SNM1A, SNM1B/Apollo and Artemis.
Collapse
Affiliation(s)
- Yiyi Yan
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Shamima Akhter
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Xiaoshan Zhang
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Randy Legerski
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| |
Collapse
|
100
|
Millevoi S, Vagner S. Molecular mechanisms of eukaryotic pre-mRNA 3' end processing regulation. Nucleic Acids Res 2009; 38:2757-74. [PMID: 20044349 PMCID: PMC2874999 DOI: 10.1093/nar/gkp1176] [Citation(s) in RCA: 303] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Messenger RNA (mRNA) 3′ end formation is a nuclear process through which all eukaryotic primary transcripts are endonucleolytically cleaved and most of them acquire a poly(A) tail. This process, which consists in the recognition of defined poly(A) signals of the pre-mRNAs by a large cleavage/polyadenylation machinery, plays a critical role in gene expression. Indeed, the poly(A) tail of a mature mRNA is essential for its functions, including stability, translocation to the cytoplasm and translation. In addition, this process serves as a bridge in the network connecting the different transcription, capping, splicing and export machineries. It also participates in the quantitative and qualitative regulation of gene expression in a variety of biological processes through the selection of single or alternative poly(A) signals in transcription units. A large number of protein factors associates with this machinery to regulate the efficiency and specificity of this process and to mediate its interaction with other nuclear events. Here, we review the eukaryotic 3′ end processing machineries as well as the comprehensive set of regulatory factors and discuss the different molecular mechanisms of 3′ end processing regulation by proposing several overlapping models of regulation.
Collapse
Affiliation(s)
- Stefania Millevoi
- Institut National de la Santé et de la Recherche Médicale U563, Toulouse, F-31000, France.
| | | |
Collapse
|