51
|
Cai Y, Song W, Li J, Jing Y, Liang C, Zhang L, Zhang X, Zhang W, Liu B, An Y, Li J, Tang B, Pei S, Wu X, Liu Y, Zhuang CL, Ying Y, Dou X, Chen Y, Xiao FH, Li D, Yang R, Zhao Y, Wang Y, Wang L, Li Y, Ma S, Wang S, Song X, Ren J, Zhang L, Wang J, Zhang W, Xie Z, Qu J, Wang J, Xiao Y, Tian Y, Wang G, Hu P, Ye J, Sun Y, Mao Z, Kong QP, Liu Q, Zou W, Tian XL, Xiao ZX, Liu Y, Liu JP, Song M, Han JDJ, Liu GH. The landscape of aging. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2354-2454. [PMID: 36066811 PMCID: PMC9446657 DOI: 10.1007/s11427-022-2161-3] [Citation(s) in RCA: 193] [Impact Index Per Article: 64.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/05/2022] [Indexed: 02/07/2023]
Abstract
Aging is characterized by a progressive deterioration of physiological integrity, leading to impaired functional ability and ultimately increased susceptibility to death. It is a major risk factor for chronic human diseases, including cardiovascular disease, diabetes, neurological degeneration, and cancer. Therefore, the growing emphasis on "healthy aging" raises a series of important questions in life and social sciences. In recent years, there has been unprecedented progress in aging research, particularly the discovery that the rate of aging is at least partly controlled by evolutionarily conserved genetic pathways and biological processes. In an attempt to bring full-fledged understanding to both the aging process and age-associated diseases, we review the descriptive, conceptual, and interventive aspects of the landscape of aging composed of a number of layers at the cellular, tissue, organ, organ system, and organismal levels.
Collapse
Affiliation(s)
- Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ying Jing
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chuqian Liang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liyuan Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Xia Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Wenhui Zhang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Beibei Liu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Yongpan An
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China
| | - Jingyi Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baixue Tang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Siyu Pei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xueying Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuxuan Liu
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China
| | - Cheng-Le Zhuang
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Xuefeng Dou
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fu-Hui Xiao
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Dingfeng Li
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ya Zhao
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China
| | - Yang Wang
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China
| | - Lihui Wang
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China
| | - Yujing Li
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- The Fifth People's Hospital of Chongqing, Chongqing, 400062, China.
| | - Xiaoyuan Song
- MOE Key Laboratory of Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230026, China.
| | - Jie Ren
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Liang Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Jun Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Peking University Health Science Center, Peking University, Beijing, 100191, China.
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Jianwei Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Ye Tian
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Gelin Wang
- School of Pharmaceutical Sciences, Beijing Advanced Innovation Center for Structural Biology, Ministry of Education Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Tsinghua University, Beijing, 100084, China.
| | - Ping Hu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Colorectal Cancer Center/Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital Affiliated to Tongji University, Shanghai, 200072, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, 510005, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiaotong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, 98195, USA.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Qing-Peng Kong
- State Key Laboratory of Genetic Resources and Evolution/Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Qiang Liu
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute (HARI) and School of Life Science, Nanchang University, and Jiangxi Key Laboratory of Human Aging, Nanchang, 330031, China.
| | - Zhi-Xiong Xiao
- Center of Growth, Metabolism and Aging, Key Laboratory of Bio-Resource and Eco-Environment, Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, China.
| | - Yong Liu
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, College of Life Sciences, Wuhan University, Wuhan, 430071, China.
| | - Jun-Ping Liu
- Institute of Ageing Research, Hangzhou Normal University, School of Basic Medical Sciences, Hangzhou, 311121, China.
- Department of Immunology and Pathology, Monash University Faculty of Medicine, Prahran, Victoria, 3181, Australia.
- Hudson Institute of Medical Research, and Monash University Department of Molecular and Translational Science, Clayton, Victoria, 3168, Australia.
| | - Moshi Song
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology, Peking University, Beijing, 100871, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
52
|
Tsai RX, Fang KC, Yang PC, Hsieh YH, Chiang IT, Chen Y, Lee HG, Lee J, Chu HPC. TERRA regulates DNA G-quadruplex formation and ATRX recruitment to chromatin. Nucleic Acids Res 2022; 50:12217-12234. [PMID: 36440760 PMCID: PMC9757062 DOI: 10.1093/nar/gkac1114] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 10/31/2022] [Accepted: 11/08/2022] [Indexed: 11/29/2022] Open
Abstract
The genome consists of non-B-DNA structures such as G-quadruplexes (G4) that are involved in the regulation of genome stability and transcription. Telomeric-repeat containing RNA (TERRA) is capable of folding into G-quadruplex and interacting with chromatin remodeler ATRX. Here we show that TERRA modulates ATRX occupancy on repetitive sequences and over genes, and maintains DNA G-quadruplex structures at TERRA target and non-target sites in mouse embryonic stem cells. TERRA prevents ATRX from binding to subtelomeric regions and represses H3K9me3 formation. G4 ChIP-seq reveals that G4 abundance decreases at accessible chromatin regions, particularly at transcription start sites (TSS) after TERRA depletion; such G4 reduction at TSS is associated with elevated ATRX occupancy and differentially expressed genes. Loss of ATRX alleviates the effect of gene repression caused by TERRA depletion. Immunostaining analyses demonstrate that knockdown of TERRA diminishes DNA G4 signals, whereas silencing ATRX elevates G4 formation. Our results uncover an epigenetic regulation by TERRA that sequesters ATRX and preserves DNA G4 structures.
Collapse
Affiliation(s)
| | | | | | - Yu-Hung Hsieh
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - I-Tien Chiang
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Yunfei Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, No. 1 Sec. 4 Roosevelt Road, Taipei, Taiwan
| | - Hun-Goo Lee
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | - Jeannie T Lee
- Department of Molecular Biology, Massachusetts General Hospital, Department of Genetics, Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
53
|
Chen L, Zhang C, Ma W, Huang J, Zhao Y, Liu H. METTL3-mediated m6A modification stabilizes TERRA and maintains telomere stability. Nucleic Acids Res 2022; 50:11619-11634. [PMID: 36399511 PMCID: PMC9723618 DOI: 10.1093/nar/gkac1027] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 09/23/2022] [Accepted: 10/21/2022] [Indexed: 11/19/2022] Open
Abstract
Telomeric repeat-containing RNA (TERRA) is a type of long non-coding RNA transcribed from telomeres, and it forms R-loops by invasion into telomeric DNA. Since either an excessive or inadequate number of R-loops leads to telomere instability, the TERRA levels need to be delicately modulated. In this study, we found that m6A modification presents on the subtelomeric regions of TERRA and stabilizes it, and the loss of METTL3 impacts telomere stability. Mechanically, the m6A modification on TERRA is catalyzed by METTL3, recognized and stabilized by the m6A reader YTHDC1. Knockdown of either METTL3 or YTHDC1 enhances TERRA degradation. The m6A-modified TERRA forms R-loops and promotes homologous recombination which is essential for the alternative lengthening of telomeres (ALT) pathway in cancer cells. METTL3 depletion leads to R-loop reduction, telomere shortening and instability. Altogether, these findings reveal that METTL3 protects telomeres by catalyzing m6A modification on TERRA, indicating that inhibition or deletion of METTL3 is potentially a new avenue for ALT cancer therapy.
Collapse
Affiliation(s)
| | | | - Wenbin Ma
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | |
Collapse
|
54
|
Zhang X, Jiang Q, Li J, Zhang S, Cao Y, Xia X, Cai D, Tan J, Chen J, Han JDJ. KCNQ1OT1 promotes genome-wide transposon repression by guiding RNA-DNA triplexes and HP1 binding. Nat Cell Biol 2022; 24:1617-1629. [PMID: 36266489 DOI: 10.1038/s41556-022-01008-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/07/2022] [Indexed: 01/18/2023]
Abstract
Transposon (de)repression and heterochromatin reorganization are dynamically regulated during cell fate determination and are hallmarks of cellular senescence. However, whether they are sequence specifically regulated remains unknown. Here we uncover that the KCNQ1OT1 lncRNA, by sequence-specific Hoogsteen base pairing with double-stranded genomic DNA via its repeat-rich region and binding to the heterochromatin protein HP1α, guides, induces and maintains epigenetic silencing at specific repetitive DNA elements. Repressing KCNQ1OT1 or deleting its repeat-rich region reduces DNA methylation and H3K9me3 on KCNQ1OT1-targeted transposons. Engineering a fusion KCNQ1OT1 with an ectopically targeting guiding triplex sequence induces de novo DNA methylation at the target site. Phenotypically, repressing KCNQ1OT1 induces senescence-associated heterochromatin foci, transposon activation and retrotransposition as well as cellular senescence, demonstrating an essential role of KCNQ1OT1 to safeguard against genome instability and senescence.
Collapse
Affiliation(s)
- Xiaoli Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Quanlong Jiang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiyang Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shiqiang Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yaqiang Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xian Xia
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Donghong Cai
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jiaqi Tan
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China
| | - Jiekai Chen
- CAS Key Laboratory of Regenerative Biology, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, China.
| |
Collapse
|
55
|
Abreu PL, Lee YW, Azzalin CM. In Vitro Characterization of the Physical Interactions between the Long Noncoding RNA TERRA and the Telomeric Proteins TRF1 and TRF2. Int J Mol Sci 2022; 23:ijms231810463. [PMID: 36142374 PMCID: PMC9500956 DOI: 10.3390/ijms231810463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 02/08/2023] Open
Abstract
RNA-protein interactions drive key cellular pathways such as protein translation, nuclear organization and genome stability maintenance. The human telomeric protein TRF2 binds to the long noncoding RNA TERRA through independent domains, including its N-terminal B domain. We previously demonstrated that TRF2 B domain binding to TERRA supports invasion of TERRA into telomeric double stranded DNA, leading to the formation of telomeric RNA:DNA hybrids. The other telomeric protein TRF1, which also binds to TERRA, suppresses this TRF2-associated activity by preventing TERRA-B domain interactions. Herein, we show that the binding of both TRF1 and TRF2 to TERRA depends on the ability of the latter to form G-quadruplex structures. Moreover, a cluster of arginines within the B domain is largely responsible for its binding to TERRA. On the other side, a patch of glutamates within the N-terminal A domain of TRF1 mainly accounts for the inhibition of TERRA-B domain complex formation. Finally, mouse TRF2 B domain binds to TERRA, similarly to its human counterpart, while mouse TRF1 A domain lacks the inhibitory activity. Our data shed further light on the complex crosstalk between telomeric proteins and RNAs and suggest a lack of functional conservation in mouse.
Collapse
|
56
|
Soranno A, Incicco JJ, De Bona P, Tomko EJ, Galburt EA, Holehouse AS, Galletto R. Shelterin Components Modulate Nucleic Acids Condensation and Phase Separation in the Context of Telomeric DNA. J Mol Biol 2022; 434:167685. [PMID: 35724929 PMCID: PMC9378516 DOI: 10.1016/j.jmb.2022.167685] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 01/13/2023]
Abstract
Telomeres are nucleoprotein complexes that protect the ends of chromosomes and are essential for chromosome stability in Eukaryotes. In cells, individual telomeres form distinct globules of finite size that appear to be smaller than expected for bare DNA. Moreover, telomeres can cluster together, form telomere-induced-foci or co-localize with promyelocytic leukemia (PML) nuclear bodies. The physical basis for collapse of individual telomeres and coalescence of multiple ones remains unclear, as does the relationship between these two phenomena. By combining single-molecule force spectroscopy measurements, optical microscopy, turbidity assays, and simulations, we show that the telomere scaffolding protein TRF2 can condense individual DNA chains and drives coalescence of multiple DNA molecules, leading to phase separation and the formation of liquid-like droplets. Addition of the TRF2 binding protein hRap1 modulates phase boundaries and tunes the specificity of solution demixing while simultaneously altering the degree of DNA compaction. Our results suggest that the condensation of single telomeres and formation of biomolecular condensates containing multiple telomeres are two different outcomes driven by the same set of molecular interactions. Moreover, binding partners, such as other telomere components, can alter those interactions to promote single-chain DNA compaction over multiple-chain phase separation.
Collapse
Affiliation(s)
- Andrea Soranno
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, United States.
| | - J Jeremías Incicco
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Paolo De Bona
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Alex S Holehouse
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States; Center for Science & Engineering of Living Systems, Washington University in St. Louis, St. Louis, MO 63130, United States
| | - Roberto Galletto
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, United States.
| |
Collapse
|
57
|
Yang K, Liang X, Wen K. Long non‑coding RNAs interact with RNA‑binding proteins to regulate genomic instability in cancer cells (Review). Oncol Rep 2022; 48:175. [PMID: 36004472 PMCID: PMC9478986 DOI: 10.3892/or.2022.8390] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/27/2022] [Indexed: 11/05/2022] Open
Abstract
Genomic instability, a feature of most cancers, contributes to malignant cell transformation and cancer progression due to the accumulation of genetic alterations. Genomic instability is reflected at numerous levels, from single nucleotide to the chromosome levels. However, the exact molecular mechanisms and regulators of genomic instability in cancer remain unclear. Growing evidence indicates that the binding of long non-coding RNAs (lncRNAs) to protein chaperones confers a variety of regulatory functions, including managing of genomic instability. The aim of the present review was to examine the roles of mitosis, telomeres, DNA repair, and epigenetics in genomic instability, and the mechanisms by which lncRNAs regulate them by binding proteins in cancer cells. This review contributes to our understanding of the role of lncRNAs and genomic instability in cancer and can potentially provide entry points and molecular targets for cancer therapies.
Collapse
Affiliation(s)
- Kai Yang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Xiaoxiang Liang
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| | - Kunming Wen
- Department of General Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563000, P.R. China
| |
Collapse
|
58
|
Kroupa M, Tomasova K, Kavec M, Skrobanek P, Buchler T, Kumar R, Vodickova L, Vodicka P. TElomeric repeat-containing RNA (TERRA): Physiological functions and relevance in cancer. Front Oncol 2022; 12:913314. [PMID: 35982970 PMCID: PMC9380590 DOI: 10.3389/fonc.2022.913314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Telomeres are complex protective structures located at the ends of linear eukaryotic chromosomes. Their purpose is to prevent genomic instability. Research progress in telomere biology during the past decades has identified a network of telomeric transcripts of which the best-studied is TElomeric Repeat-containing RNA (TERRA). TERRA was shown to be important not only for the preservation of telomere homeostasis and genomic stability but also for the expression of hundreds of genes across the human genome. These findings added a new level of complexity to telomere biology. Herein we provide insights on the telomere transcriptome, its relevance for proper telomere function, and its implications in human pathology. We also discuss possible clinical opportunities of exosomal telomere transcripts detection as a biomarker in cancer precision medicine.
Collapse
Affiliation(s)
- Michal Kroupa
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| | - Kristyna Tomasova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
| | - Miriam Kavec
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Pavel Skrobanek
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer University Hospital, Prague, Czechia
| | - Rajiv Kumar
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany
| | - Ludmila Vodickova
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
| | - Pavel Vodicka
- Department of the Molecular Biology of Cancer, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University, Pilsen, Czechia
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czechia
- *Correspondence: Michal Kroupa, ; Pavel Vodicka,
| |
Collapse
|
59
|
Zhang Y, Qiao X, Liu L, Han W, Liu Q, Wang Y, Xie T, Tang Y, Wang T, Meng J, Ye A, He S, Chen R, Chen C. Long noncoding RNA MAGI2-AS3 regulates the H2O2 level and cell senescence via HSPA8. Redox Biol 2022; 54:102383. [PMID: 35797800 PMCID: PMC9287730 DOI: 10.1016/j.redox.2022.102383] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Yingmin Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lihui Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wensheng Han
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinghua Liu
- Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuanyuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ting Xie
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiheng Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Tiepeng Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiao Meng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Aojun Ye
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shunmin He
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Runsheng Chen
- University of Chinese Academy of Sciences, Beijing, 100049, China; Key Laboratory of RNA Biology, Center for Big Data Research in Health, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
60
|
Abstract
In eukaryotic organisms, noncoding RNAs (ncRNAs) have been implicated as important regulators of multifaceted biological processes, including transcriptional, posttranscriptional, and epigenetic regulation of gene expression. In recent years, it is becoming clear that protozoan parasites encode diverse ncRNA transcripts; however, little is known about their cellular functions. Recent advances in high-throughput “omic” studies identified many novel long ncRNAs (lncRNAs) in apicomplexan parasites, some of which undergo splicing, polyadenylation, and encode small proteins. To date, only a few of them are characterized, leaving a big gap in our understanding regarding their origin, mode of action, and functions in parasite biology. In this review, we focus on lncRNAs of the human malaria parasite Plasmodium falciparum and highlight their cellular functions and possible mechanisms of action.
Collapse
Affiliation(s)
- Karina Simantov
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Manish Goyal
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Ron Dzikowski
- Department of Microbiology & Molecular Genetics, The Kuvin Center for the Study of Infectious and Tropical Diseases, IMRIC, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- * E-mail:
| |
Collapse
|
61
|
Haws SA, Simandi Z, Barnett RJ, Phillips-Cremins JE. 3D genome, on repeat: Higher-order folding principles of the heterochromatinized repetitive genome. Cell 2022; 185:2690-2707. [PMID: 35868274 DOI: 10.1016/j.cell.2022.06.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 12/16/2022]
Abstract
Nearly half of the human genome is comprised of diverse repetitive sequences ranging from satellite repeats to retrotransposable elements. Such sequences are susceptible to stepwise expansions, duplications, inversions, and recombination events which can compromise genome function. In this review, we discuss the higher-order folding mechanisms of compartmentalization and loop extrusion and how they shape, and are shaped by, heterochromatin. Using primarily mammalian model systems, we contrast mechanisms governing H3K9me3-mediated heterochromatinization of the repetitive genome and highlight emerging links between repetitive elements and chromatin folding.
Collapse
Affiliation(s)
- Spencer A Haws
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zoltan Simandi
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - R Jordan Barnett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jennifer E Phillips-Cremins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
62
|
Integrated lncRNA function upon genomic and epigenomic regulation. Mol Cell 2022; 82:2252-2266. [PMID: 35714586 DOI: 10.1016/j.molcel.2022.05.027] [Citation(s) in RCA: 341] [Impact Index Per Article: 113.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/09/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022]
Abstract
Although some long noncoding (lnc)RNAs are known since the 1950s, the past 25 years have uncovered myriad lncRNAs with diverse sequences, structures, and functions. The advent of high-throughput and sensitive technologies has further uncovered the vast heterogeneity of lncRNA-interacting molecules and patterns of expressed lncRNAs. We propose a unifying functional theme for the expansive family of lncRNAs. At an elementary level, the genomic program of gene expression is elicited via canonical transcription and post-transcriptional mRNA assembly, turnover, and translation. Building upon this regulation, an epigenomic program refines the basic genomic control by modifying chromatin architecture as well as DNA and RNA chemistry. Superimposed over the genomic and epigenomic programs, lncRNAs create an additional regulatory dimension: by interacting with the proteins and nucleic acids that regulate gene expression in the nucleus and cytoplasm, lncRNAs help establish robust, nimble, and specific transcriptional and post-transcriptional control. We describe our present understanding of lncRNA-coordinated control of protein programs and cell fate and discuss challenges and opportunities as we embark on the next 25 years of lncRNA discovery.
Collapse
|
63
|
Rocca R, Scionti F, Nadai M, Moraca F, Maruca A, Costa G, Catalano R, Juli G, Di Martino MT, Ortuso F, Alcaro S, Tagliaferri P, Tassone P, Richter SN, Artese A. Chromene Derivatives as Selective TERRA G-Quadruplex RNA Binders with Antiproliferative Properties. Pharmaceuticals (Basel) 2022; 15:ph15050548. [PMID: 35631373 PMCID: PMC9147070 DOI: 10.3390/ph15050548] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 11/30/2022] Open
Abstract
In mammalian cells, telomerase transcribes telomeres in large G-rich non-coding RNA, known as telomeric repeat-containing RNA (TERRA), which folds into noncanonical nucleic acid secondary structures called G-quadruplexes (G4s). Since TERRA G4 has been shown to be involved in telomere length and translation regulation, it could provide valuable insight into fundamental biological processes, such as cancer growth, and TERRA G4 binders could represent an innovative strategy for cancer treatment. In this work, the three best candidates identified in our previous virtual screening campaign on bimolecular DNA/RNA G4s were investigated on the monomolecular Tel DNA and TERRA G4s by means of molecular modelling simulations and in vitro and in cell analysis. The results obtained in this work highlighted the stabilizing power of all the three candidates on TERRA G4. In particular, the two compounds characterized by a chromene scaffold were selective TERRA G4 binders, while the compound with a naphthyridine core acted as a dual Tel/TERRA G4-binder. A biophysical investigation by circular dichroism confirmed the relative stabilization efficiency of the compounds towards TERRA and Tel G4s. The TERRA G4 stabilizing hits showed good antiproliferative activity against colorectal and lung adenocarcinoma cell lines. Lead optimization to increase TERRA G4 stabilization may provide new powerful tools against cancer.
Collapse
Affiliation(s)
- Roberta Rocca
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
| | - Francesca Scionti
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR), 98164 Messina, Italy;
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy;
| | - Federica Moraca
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy
| | - Annalisa Maruca
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giosuè Costa
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Raffaella Catalano
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Giada Juli
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Maria Teresa Di Martino
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Francesco Ortuso
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Stefano Alcaro
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
| | - Pierosandro Tagliaferri
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Pierfrancesco Tassone
- Department of Experimental and Clinical Medicine, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy; (R.R.); (G.J.); (M.T.D.M.); (P.T.); (P.T.)
| | - Sara N. Richter
- Department of Molecular Medicine, University of Padua, Via A. Gabelli 63, 35121 Padua, Italy;
- Correspondence: (S.N.R.); (A.A.)
| | - Anna Artese
- Net4science Srl, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy; (F.M.); (A.M.); (G.C.); (R.C.); (F.O.); (S.A.)
- Department of Health Sciences, Magna Graecia University of Catanzaro, Campus “Salvatore Venuta”, Viale Europa, 88100 Catanzaro, Italy
- Correspondence: (S.N.R.); (A.A.)
| |
Collapse
|
64
|
Methylation of Subtelomeric Chromatin Modifies the Expression of the lncRNA TERRA, Disturbing Telomere Homeostasis. Int J Mol Sci 2022; 23:ijms23063271. [PMID: 35328692 PMCID: PMC8955364 DOI: 10.3390/ijms23063271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 02/01/2023] Open
Abstract
The long noncoding RNA (lncRNA) telomeric repeat-containing RNA (TERRA) has been associated with telomeric homeostasis, telomerase recruitment, and the process of chromosome healing; nevertheless, the impact of this association has not been investigated during the carcinogenic process. Determining whether changes in TERRA expression are a cause or a consequence of cell transformation is a complex task because studies are usually carried out using either cancerous cells or tumor samples. To determine the role of this lncRNA in cellular aging and chromosome healing, we evaluated telomeric integrity and TERRA expression during the establishment of a clone of untransformed myeloid cells. We found that reduced expression of TERRA disturbed the telomeric homeostasis of certain loci, but the expression of the lncRNA was affected only when the methylation of subtelomeric bivalent chromatin domains was compromised. We conclude that the disruption in TERRA homeostasis is a consequence of cellular transformation and that changes in its expression profile can lead to telomeric and genomic instability.
Collapse
|
65
|
Telomeric Repeat-Containing RNA (TERRA): A Review of the Literature and First Assessment in Cutaneous T-Cell Lymphomas. Genes (Basel) 2022; 13:genes13030539. [PMID: 35328092 PMCID: PMC8953746 DOI: 10.3390/genes13030539] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 01/11/2023] Open
Abstract
Telomeric Repeat-containing RNA (TERRA) are long non-coding RNAs transcribed from telomeric DNA sequences from multiple chromosome ends. Major research efforts have been made to understand TERRA roles and functions in several physiological and pathological processes. We summarize herein available data regarding TERRA’s roles in human cells and we report the first investigation in cutaneous T-cells lymphomas (CTCL) using real-time PCR. Among the TERRA analysed, our data suggest a particular role for TERRA 16p downregulation and TERRA 11q upregulation in CTCL lymphomagenesis.
Collapse
|
66
|
Hoque ME, Mahendran T, Basu S. Reversal of G-Quadruplexes' Role in Translation Control When Present in the Context of an IRES. Biomolecules 2022; 12:314. [PMID: 35204814 PMCID: PMC8869680 DOI: 10.3390/biom12020314] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/08/2022] [Accepted: 02/14/2022] [Indexed: 02/01/2023] Open
Abstract
G-quadruplexes (GQs) are secondary nucleic acid structures that play regulatory roles in various cellular processes. G-quadruplex-forming sequences present within the 5' UTR of mRNAs can function not only as repressors of translation but also as elements required for optimum function. Based upon previous reports, the majority of the 5' UTR GQ structures inhibit translation, presumably by blocking the ribosome scanning process that is essential for detection of the initiation codon. However, there are certain mRNAs containing GQs that have been identified as positive regulators of translation, as they are needed for translation initiation. While most cellular mRNAs utilize the 5' cap structure to undergo cap-dependent translation initiation, many rely on cap-independent translation under certain conditions in which the cap-dependent initiation mechanism is not viable or slowed down, for example, during development, under stress and in many diseases. Cap-independent translation mainly occurs via Internal Ribosomal Entry Sites (IRESs) that are located in the 5' UTR of mRNAs and are equipped with structural features that can recruit the ribosome or other factors to initiate translation without the need for a 5' cap. In this review, we will focus only on the role of RNA GQs present in the 5' UTR of mRNAs, where they play a critical role in translation initiation, and discuss the potential mechanism of this phenomenon, which is yet to be fully delineated.
Collapse
Affiliation(s)
| | | | - Soumitra Basu
- Department of Chemistry and Biochemistry, Kent State University, Kent, OH 44242, USA; (M.E.H.); (T.M.)
| |
Collapse
|
67
|
Sato S. Protein Chemical Modification Using Highly Reactive Species and Spatial Control of Catalytic Reactions. Chem Pharm Bull (Tokyo) 2022; 70:95-105. [PMID: 35110442 DOI: 10.1248/cpb.c21-00915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Protein bioconjugation has become an increasingly important research method for introducing artificial functions in to protein with various applications, including therapeutics and biomaterials. Due to its amphiphilic nature, only a few tyrosine residues are exposed on the protein surface. Therefore, tyrosine residue has attracted attention as suitable targets for site-specific modification, and it is the most studied amino acid residue for modification reactions other than lysine and cysteine residues. In this review, we present the progress of our tyrosine chemical modification studies over the past decade. We have developed several different catalytic approaches to selectively modify tyrosine residues using peroxidase, laccase, hemin, and ruthenium photocatalysts. In addition to modifying tyrosine residues by generating radical species through single-electron transfer, we have developed a histidine modification method that utilizes singlet oxygen generated by photosensitizers. These highly reactive chemical species selectively modify proteins in close proximity to the enzyme/catalyst. Taking advantage of the spatially controllable reaction fields, we have developed novel methods for site-specific antibody modification, detecting hotspots of oxidative stress, and target identification of bioactive molecules.
Collapse
Affiliation(s)
- Shinichi Sato
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University
| |
Collapse
|
68
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
69
|
Xu M, Chigumira T, Chen Z, Tones J, Zhao R, Dahl KN, Chenoweth DM, Zhang H. CRISPR Cas13-Based Tools to Track and Manipulate Endogenous Telomeric Repeat-Containing RNAs in Live Cells. Front Mol Biosci 2022; 8:785160. [PMID: 35174207 PMCID: PMC8841788 DOI: 10.3389/fmolb.2021.785160] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/22/2021] [Indexed: 12/23/2022] Open
Abstract
TERRA, TElomeric Repeat-containing RNA, is a long non-coding RNA transcribed from telomeres. Emerging evidence indicates that TERRA regulates telomere maintenance and chromosome end protection in normal and cancerous cells. However, the mechanism of how TERRA contributes to telomere functions is still unclear, partially owing to the shortage of approaches to track and manipulate endogenous TERRA molecules in live cells. Here, we developed a method to visualize TERRA in live cells via a combination of CRISPR Cas13 RNA labeling and SunTag technology. Single-particle tracking reveals that TERRA foci undergo anomalous diffusion in a manner that depends on the timescale and telomeric localization. Furthermore, we used a chemically-induced protein dimerization system to manipulate TERRA subcellular localization in live cells. Overall, our approaches to monitor and control TERRA locations in live cells provide powerful tools to better understand its roles in telomere maintenance and genomic integrity.
Collapse
Affiliation(s)
- Meng Xu
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Tafadzwa Chigumira
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Ziheng Chen
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Jason Tones
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Rongwei Zhao
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Kris Noel Dahl
- Department of Chemical Engineering, College of Engineering, Carnegie Mellon University, Pittsburgh, PA, United States
| | - David M. Chenoweth
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - Huaiying Zhang
- Department of Biological Sciences, Mellon College of Science, Carnegie Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
70
|
Jack A, Kim Y, Strom AR, Lee DSW, Williams B, Schaub JM, Kellogg EH, Finkelstein IJ, Ferro LS, Yildiz A, Brangwynne CP. Compartmentalization of telomeres through DNA-scaffolded phase separation. Dev Cell 2022; 57:277-290.e9. [PMID: 35077681 PMCID: PMC8988007 DOI: 10.1016/j.devcel.2021.12.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 08/25/2021] [Accepted: 12/15/2021] [Indexed: 12/20/2022]
Abstract
Telomeres form unique nuclear compartments that prevent degradation and fusion of chromosome ends by recruiting shelterin proteins and regulating access of DNA damage repair factors. To understand how these dynamic components protect chromosome ends, we combine in vivo biophysical interrogation and in vitro reconstitution of human shelterin. We show that shelterin components form multicomponent liquid condensates with selective biomolecular partitioning on telomeric DNA. Tethering and anomalous diffusion prevent multiple telomeres from coalescing into a single condensate in mammalian cells. However, telomeres coalesce when brought into contact via an optogenetic approach. TRF1 and TRF2 subunits of shelterin drive phase separation, and their N-terminal domains specify interactions with telomeric DNA in vitro. Telomeric condensates selectively recruit telomere-associated factors and regulate access of DNA damage repair factors. We propose that shelterin mediates phase separation of telomeric chromatin, which underlies the dynamic yet persistent nature of the end-protection mechanism.
Collapse
Affiliation(s)
- Amanda Jack
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Yoonji Kim
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Amy R Strom
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel S W Lee
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | - Byron Williams
- Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Jeffrey M Schaub
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | | | - Ilya J Finkelstein
- Department of Molecular Biosciences, Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA; Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Luke S Ferro
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA; Physics Department, University of California, Berkeley, CA 94720, USA.
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Howard Hughes Medical Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
71
|
Mou X, Liew SW, Kwok CK. Identification and targeting of G-quadruplex structures in MALAT1 long non-coding RNA. Nucleic Acids Res 2022; 50:397-410. [PMID: 34904666 PMCID: PMC8754639 DOI: 10.1093/nar/gkab1208] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/07/2021] [Accepted: 11/24/2021] [Indexed: 12/11/2022] Open
Abstract
RNA G-quadruplexes (rG4s) have functional roles in many cellular processes in diverse organisms. While a number of rG4 examples have been reported in coding messenger RNAs (mRNA), so far only limited works have studied rG4s in non-coding RNAs (ncRNAs), especially in long non-coding RNAs (lncRNAs) that are of emerging interest and significance in biology. Herein, we report that MALAT1 lncRNA contains conserved rG4 motifs, forming thermostable rG4 structures with parallel topology. We also show that rG4s in MALAT1 lncRNA can interact with NONO protein with high specificity and affinity in vitro and in nuclear cell lysate, and we provide cellular data to support that NONO protein recognizes MALAT1 lncRNA via rG4 motifs. Notably, we demonstrate that rG4s in MALAT1 lncRNA can be targeted by the rG4-specific small molecule, peptide, and L-aptamer, leading to the dissociation of MALAT1 rG4-NONO protein interaction. Altogether, this study uncovers new and important rG4s in MALAT1 lncRNAs, reveals their specific interactions with NONO protein, offers multiple strategies for targeting MALAT1 and its RNA-protein complex via its rG4 structure and illustrates the prevalence and significance of rG4s in ncRNAs.
Collapse
Affiliation(s)
- Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City
University of Hong Kong, Kowloon Tong, Hong Kong
SAR, China
- Shenzhen Research Institute of City University of Hong Kong,
Shenzhen, China
| |
Collapse
|
72
|
Vicari MR, Bruschi DP, Cabral-de-Mello DC, Nogaroto V. Telomere organization and the interstitial telomeric sites involvement in insects and vertebrates chromosome evolution. Genet Mol Biol 2022; 45:e20220071. [DOI: 10.1590/1678-4685-gmb-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 09/24/2022] [Indexed: 11/16/2022] Open
|
73
|
Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32:527-536. [DOI: 10.1016/j.tcb.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
|
74
|
Kaur P, Barnes R, Pan H, Detwiler AC, Liu M, Mahn C, Hall J, Messenger Z, You C, Piehler J, Smart R, Riehn R, Opresko PL, Wang H. TIN2 is an architectural protein that facilitates TRF2-mediated trans- and cis-interactions on telomeric DNA. Nucleic Acids Res 2021; 49:13000-13018. [PMID: 34883513 PMCID: PMC8682769 DOI: 10.1093/nar/gkab1142] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
The telomere specific shelterin complex, which includes TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, prevents spurious recognition of telomeres as double-strand DNA breaks and regulates telomerase and DNA repair activities at telomeres. TIN2 is a key component of the shelterin complex that directly interacts with TRF1, TRF2 and TPP1. In vivo, the large majority of TRF1 and TRF2 are in complex with TIN2 but without TPP1 and POT1. Since knockdown of TIN2 also removes TRF1 and TRF2 from telomeres, previous cell-based assays only provide information on downstream effects after the loss of TRF1/TRF2 and TIN2. Here, we investigated DNA structures promoted by TRF2-TIN2 using single-molecule imaging platforms, including tracking of compaction of long mouse telomeric DNA using fluorescence imaging, atomic force microscopy (AFM) imaging of protein-DNA structures, and monitoring of DNA-DNA and DNA-RNA bridging using the DNA tightrope assay. These techniques enabled us to uncover previously unknown unique activities of TIN2. TIN2S and TIN2L isoforms facilitate TRF2-mediated telomeric DNA compaction (cis-interactions), dsDNA-dsDNA, dsDNA-ssDNA and dsDNA-ssRNA bridging (trans-interactions). Furthermore, TIN2 facilitates TRF2-mediated T-loop formation. We propose a molecular model in which TIN2 functions as an architectural protein to promote TRF2-mediated trans and cis higher-order nucleic acid structures at telomeres.
Collapse
Affiliation(s)
- Parminder Kaur
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
| | - Ryan Barnes
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hai Pan
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Ariana C Detwiler
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Ming Liu
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Chelsea Mahn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Jonathan Hall
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Zach Messenger
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Changjiang You
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Jacob Piehler
- Department of Biology/Chemistry, Universität Osnabrück, Osnabrück 49076, Germany
| | - Robert C Smart
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| | - Robert Riehn
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
| | - Patricia L Opresko
- Department of Environmental and Occupational Health, University of Pittsburgh, UPMC Hillman Cancer Center, PA 15213, USA
| | - Hong Wang
- Physics Department, North Carolina State University, Raleigh, NC27695, USA
- Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27695, USA
- Toxicology Program, North Carolina State University, Raleigh, NC27695, USA
| |
Collapse
|
75
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
76
|
Impact of Chromatin Dynamics and DNA Repair on Genomic Stability and Treatment Resistance in Pediatric High-Grade Gliomas. Cancers (Basel) 2021; 13:cancers13225678. [PMID: 34830833 PMCID: PMC8616465 DOI: 10.3390/cancers13225678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Pediatric high-grade gliomas (pHGGs) are the leading cause of mortality in pediatric neuro-oncology, due in great part to treatment resistance driven by complex DNA repair mechanisms. pHGGs have recently been divided into molecular subtypes based on mutations affecting the N-terminal tail of the histone variant H3.3 and the ATRX/DAXX histone chaperone that deposits H3.3 at repetitive heterochromatin loci that are of paramount importance to the stability of our genome. This review addresses the functions of H3.3 and ATRX/DAXX in chromatin dynamics and DNA repair, as well as the impact of mutations affecting H3.3/ATRX/DAXX on treatment resistance and how the vulnerabilities they expose could foster novel therapeutic strategies. Abstract Despite their low incidence, pediatric high-grade gliomas (pHGGs), including diffuse intrinsic pontine gliomas (DIPGs), are the leading cause of mortality in pediatric neuro-oncology. Recurrent, mutually exclusive mutations affecting K27 (K27M) and G34 (G34R/V) in the N-terminal tail of histones H3.3 and H3.1 act as key biological drivers of pHGGs. Notably, mutations in H3.3 are frequently associated with mutations affecting ATRX and DAXX, which encode a chaperone complex that deposits H3.3 into heterochromatic regions, including telomeres. The K27M and G34R/V mutations lead to distinct epigenetic reprogramming, telomere maintenance mechanisms, and oncogenesis scenarios, resulting in distinct subgroups of patients characterized by differences in tumor localization, clinical outcome, as well as concurrent epigenetic and genetic alterations. Contrasting with our understanding of the molecular biology of pHGGs, there has been little improvement in the treatment of pHGGs, with the current mainstays of therapy—genotoxic chemotherapy and ionizing radiation (IR)—facing the development of tumor resistance driven by complex DNA repair pathways. Chromatin and nucleosome dynamics constitute important modulators of the DNA damage response (DDR). Here, we summarize the major DNA repair pathways that contribute to resistance to current DNA damaging agent-based therapeutic strategies and describe the telomere maintenance mechanisms encountered in pHGGs. We then review the functions of H3.3 and its chaperones in chromatin dynamics and DNA repair, as well as examining the impact of their mutation/alteration on these processes. Finally, we discuss potential strategies targeting DNA repair and epigenetic mechanisms as well as telomere maintenance mechanisms, to improve the treatment of pHGGs.
Collapse
|
77
|
Marilovtseva EV, Studitsky VM. Guanine Quadruplexes in Cell Nucleus Metabolism. Mol Biol 2021. [DOI: 10.1134/s0026893321040075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Forsyth RG, Krenács T, Athanasou N, Hogendoorn PCW. Cell Biology of Giant Cell Tumour of Bone: Crosstalk between m/wt Nucleosome H3.3, Telomeres and Osteoclastogenesis. Cancers (Basel) 2021; 13:5119. [PMID: 34680268 PMCID: PMC8534144 DOI: 10.3390/cancers13205119] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Giant cell tumour of bone (GCTB) is a rare and intriguing primary bone neoplasm. Worrisome clinical features are its local destructive behaviour, its high tendency to recur after surgical therapy and its ability to create so-called benign lung metastases (lung 'plugs'). GCTB displays a complex and difficult-to-understand cell biological behaviour because of its heterogenous morphology. Recently, a driver mutation in histone H3.3 was found. This mutation is highly conserved in GCTB but can also be detected in glioblastoma. Denosumab was recently introduced as an extra option of medical treatment next to traditional surgical and in rare cases, radiotherapy. Despite these new insights, many 'old' questions about the key features of GCTB remain unanswered, such as the presence of telomeric associations (TAs), the reactivation of hTERT, and its slight genomic instability. This review summarises the recent relevant literature of histone H3.3 in relation to the GCTB-specific G34W mutation and pays specific attention to the G34W mutation in relation to the development of TAs, genomic instability, and the characteristic morphology of GCTB. As pieces of an etiogenetic puzzle, this review tries fitting all these molecular features and the unique H3.3 G34W mutation together in GCTB.
Collapse
Affiliation(s)
- Ramses G. Forsyth
- Department of Pathology, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Brussels, Belgium;
- Labaratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
| | - Tibor Krenács
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllöi ut 26, 1085 Budapest, Hungary;
| | - Nicholas Athanasou
- Department of Histopathology, Nuffield Orthopaedic Centre, University of Oxford, NDORMS, Oxford OX3 7HE, UK;
| | - Pancras C. W. Hogendoorn
- Department of Pathology, University Hospital Brussels (UZB), Laarbeeklaan 101, 1090 Brussels, Belgium;
- Labaratorium for Experimental Pathology (EXPA), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, 1090 Brussels, Belgium
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, Üllöi ut 26, 1085 Budapest, Hungary;
- Department of Histopathology, Nuffield Orthopaedic Centre, University of Oxford, NDORMS, Oxford OX3 7HE, UK;
- Department of Pathology, Leiden University Medical Center (LUMC), Albinusdreef 2, 2300 RC Leiden, The Netherlands
| |
Collapse
|
79
|
Figueiredo J, Santos T, Miranda A, Alexandre D, Teixeira B, Simões P, Lopes-Nunes J, Cruz C. Ligands as Stabilizers of G-Quadruplexes in Non-Coding RNAs. Molecules 2021; 26:6164. [PMID: 34684745 PMCID: PMC8540333 DOI: 10.3390/molecules26206164] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/03/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
The non-coding RNAs (ncRNA) are RNA transcripts with different sizes, structures and biological functions that do not encode functional proteins. RNA G-quadruplexes (rG4s) have been found in small and long ncRNAs. The existence of an equilibrium between rG4 and stem-loop structures in ncRNAs and its effect on biological processes remains unexplored. For example, deviation from the stem-loop leads to deregulated mature miRNA levels, demonstrating that miRNA biogenesis can be modulated by ions or small molecules. In light of this, we report several examples of rG4s in certain types of ncRNAs, and the implications of G4 stabilization using small molecules, also known as G4 ligands, in the regulation of gene expression, miRNA biogenesis, and miRNA-mRNA interactions. Until now, different G4 ligands scaffolds were synthesized for these targets. The regulatory role of the above-mentioned rG4s in ncRNAs can be used as novel therapeutic approaches for adjusting miRNA levels.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Carla Cruz
- CICS-UBI—Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Hen-rique, 6200-506 Covilhã, Portugal; (J.F.); (T.S.); (A.M.); (D.A.); (B.T.); (P.S.); (J.L.-N.)
| |
Collapse
|
80
|
Loss of telomere silencing is accompanied by dysfunction of Polo kinase and centrosomes during Drosophila oogenesis and early development. PLoS One 2021; 16:e0258156. [PMID: 34624021 PMCID: PMC8500440 DOI: 10.1371/journal.pone.0258156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/18/2021] [Indexed: 12/03/2022] Open
Abstract
Telomeres are nucleoprotein complexes that protect the ends of eukaryotic linear chromosomes from degradation and fusions. Telomere dysfunction leads to cell growth arrest, oncogenesis, and premature aging. Telomeric RNAs have been found in all studied species; however, their functions and biogenesis are not clearly understood. We studied the mechanisms of development disorders observed upon overexpression of telomeric repeats in Drosophila. In somatic cells, overexpression of telomeric retrotransposon HeT-A is cytotoxic and leads to the accumulation of HeT-A Gag near centrosomes. We found that RNA and RNA-binding protein Gag encoded by the telomeric retrotransposon HeT-A interact with Polo and Cdk1 mitotic kinases, which are conserved regulators of centrosome biogenesis and cell cycle. The depletion of proteins Spindle E, Ccr4 or Ars2 resulting in HeT-A overexpression in the germline was accompanied by mislocalization of Polo as well as its abnormal stabilization during oogenesis and severe deregulation of centrosome biogenesis leading to maternal-effect embryonic lethality. These data suggest a mechanistic link between telomeric HeT-A ribonucleoproteins and cell cycle regulators that ensures the cell response to telomere dysfunction.
Collapse
|
81
|
Trigiante G, Blanes Ruiz N, Cerase A. Emerging Roles of Repetitive and Repeat-Containing RNA in Nuclear and Chromatin Organization and Gene Expression. Front Cell Dev Biol 2021; 9:735527. [PMID: 34722514 PMCID: PMC8552494 DOI: 10.3389/fcell.2021.735527] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/09/2021] [Indexed: 12/14/2022] Open
Abstract
Genomic repeats have been intensely studied as regulatory elements controlling gene transcription, splicing and genome architecture. Our understanding of the role of the repetitive RNA such as the RNA coming from genomic repeats, or repetitive sequences embedded in mRNA/lncRNAs, in nuclear and cellular functions is instead still limited. In this review we discuss evidence supporting the multifaceted roles of repetitive RNA and RNA binding proteins in nuclear organization, gene regulation, and in the formation of dynamic membrane-less aggregates. We hope that our review will further stimulate research in the consolidating field of repetitive RNA biology.
Collapse
Affiliation(s)
| | | | - Andrea Cerase
- Centre for Genomics and Child Health, Barts and The London School of Medicine and Dentistry, Blizard Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
82
|
Yang L, Wang B, Jiao X, Zhou C, Chen S, Gao X, Sun W, Song S, Li J, Liu J, Wang Y, Liu P. TAZ maintains telomere length in TNBC cells by mediating Rad51C expression. Breast Cancer Res 2021; 23:89. [PMID: 34488828 PMCID: PMC8422726 DOI: 10.1186/s13058-021-01466-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 08/25/2021] [Indexed: 11/10/2022] Open
Abstract
Background Telomere maintenance is crucial for the unlimited proliferation of cancer cells and essential for the “stemness” of multiple cancer cells. TAZ is more extensively expressed in triple negative breast cancers (TNBC) than in other types of breast cancers, and promotes proliferation, transformation and EMT of cancer cells. It was reported that TAZ renders breast cancer cells with cancer stem cell features. However, whether TAZ regulates telomeres is still unclear. In this study, we explored the roles of TAZ in the regulation of telomere maintenance in TNBC cells. Methods siRNA and shRNA was used to generate TAZ-depleted TNBC cell lines. qPCR and Southern analysis of terminal restriction fragments techniques were used to test telomere length. Co-immunoprecipitation, Western blotting, immunofluorescence, Luciferase reporter assay and Chromatin-IP were conducted to investigate the underlying mechanism. Results By knocking down the expression of TAZ in TNBC cells, we found, for the first time, that TAZ is essential for the maintenance of telomeres in TNBC cells. Moreover, loss of TAZ causes senescence phenotype of TNBC cells. The observed extremely shortened telomeres in late passages of TAZ knocked down cells correlate with an elevated hTERT expression, reductions of shelterin proteins, and an activated DNA damage response pathway. Our data also showed that depletion of TAZ results in overexpression of TERRAs, which are a group of telomeric repeat‐containing RNAs and regulate telomere length and integrity. Furthermore, we discovered that TAZ maintains telomere length of TNBC cells likely by facilitating the expression of Rad51C, a crucial element of homologous recombination pathway that promotes telomere replication. Conclusions This study supports the notion that TAZ is an oncogenic factor in TNBC, and further reveals a novel telomere-related pathway that is employed by TAZ to regulate TNBC. Supplementary Information The online version contains supplementary material available at 10.1186/s13058-021-01466-z.
Collapse
Affiliation(s)
- Lu Yang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Bo Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Xinyan Jiao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Can Zhou
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Su Chen
- Laboratory of Molecular and Cellular Biology, School of Basic Medical Sciences, Henan University School of Medicine, North Jinming Avenue, Kaifeng, 475004, Henan Province, China
| | - Xiaoqian Gao
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Wei Sun
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Shaoran Song
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Juan Li
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Jie Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Yaochun Wang
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China
| | - Peijun Liu
- Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China. .,Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, 710061, Shaanxi Province, China.
| |
Collapse
|
83
|
Li B, Zhao Y. Regulation of Antigenic Variation by Trypanosoma brucei Telomere Proteins Depends on Their Unique DNA Binding Activities. Pathogens 2021; 10:pathogens10080967. [PMID: 34451431 PMCID: PMC8402208 DOI: 10.3390/pathogens10080967] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/22/2021] [Accepted: 07/27/2021] [Indexed: 01/17/2023] Open
Abstract
Trypanosoma brucei causes human African trypanosomiasis and regularly switches its major surface antigen, Variant Surface Glycoprotein (VSG), to evade the host immune response. Such antigenic variation is a key pathogenesis mechanism that enables T. brucei to establish long-term infections. VSG is expressed exclusively from subtelomere loci in a strictly monoallelic manner, and DNA recombination is an important VSG switching pathway. The integrity of telomere and subtelomere structure, maintained by multiple telomere proteins, is essential for T. brucei viability and for regulating the monoallelic VSG expression and VSG switching. Here we will focus on T. brucei TRF and RAP1, two telomere proteins with unique nucleic acid binding activities, and summarize their functions in telomere integrity and stability, VSG switching, and monoallelic VSG expression. Targeting the unique features of TbTRF and TbRAP1′s nucleic acid binding activities to perturb the integrity of telomere structure and disrupt VSG monoallelic expression may serve as potential therapeutic strategy against T. brucei.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
- Correspondence: (B.L.); (Y.Z.)
| | - Yanxiang Zhao
- Shenzhen Research Institute, The Hong Kong Polytechnic University, Shenzhen, China
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
- Correspondence: (B.L.); (Y.Z.)
| |
Collapse
|
84
|
Singh N. Role of mammalian long non-coding RNAs in normal and neuro oncological disorders. Genomics 2021; 113:3250-3273. [PMID: 34302945 DOI: 10.1016/j.ygeno.2021.07.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/09/2022]
Abstract
Long non-coding RNAs (lncRNAs) are expressed at lower levels than protein-coding genes but have a crucial role in gene regulation. LncRNA is distinct, they are being transcribed using RNA polymerase II, and their functionality depends on subcellular localization. Depending on their niche, they specifically interact with DNA, RNA, and proteins and modify chromatin function, regulate transcription at various stages, forms nuclear condensation bodies and nucleolar organization. lncRNAs may also change the stability and translation of cytoplasmic mRNAs and hamper signaling pathways. Thus, lncRNAs affect the physio-pathological states and lead to the development of various disorders, immune responses, and cancer. To date, ~40% of lncRNAs have been reported in the nervous system (NS) and are involved in the early development/differentiation of the NS to synaptogenesis. LncRNA expression patterns in the most common adult and pediatric tumor suggest them as potential biomarkers and provide a rationale for targeting them pharmaceutically. Here, we discuss the mechanisms of lncRNA synthesis, localization, and functions in transcriptional, post-transcriptional, and other forms of gene regulation, methods of lncRNA identification, and their potential therapeutic applications in neuro oncological disorders as explained by molecular mechanisms in other malignant disorders.
Collapse
Affiliation(s)
- Neetu Singh
- Molecular Biology Unit, Department of Centre for Advance Research, King George's Medical University, Lucknow, Uttar Pradesh 226 003, India.
| |
Collapse
|
85
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
86
|
Multifunctionality of the Telomere-Capping Shelterin Complex Explained by Variations in Its Protein Composition. Cells 2021; 10:cells10071753. [PMID: 34359923 PMCID: PMC8305809 DOI: 10.3390/cells10071753] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/03/2021] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
Protecting telomere from the DNA damage response is essential to avoid the entry into cellular senescence and organismal aging. The progressive telomere DNA shortening in dividing somatic cells, programmed during development, leads to critically short telomeres that trigger replicative senescence and thereby contribute to aging. In several organisms, including mammals, telomeres are protected by a protein complex named Shelterin that counteract at various levels the DNA damage response at chromosome ends through the specific function of each of its subunits. The changes in Shelterin structure and function during development and aging is thus an intense area of research. Here, we review our knowledge on the existence of several Shelterin subcomplexes and the functional independence between them. This leads us to discuss the possibility that the multifunctionality of the Shelterin complex is determined by the formation of different subcomplexes whose composition may change during aging.
Collapse
|
87
|
Novo CL. A Tale of Two States: Pluripotency Regulation of Telomeres. Front Cell Dev Biol 2021; 9:703466. [PMID: 34307383 PMCID: PMC8300013 DOI: 10.3389/fcell.2021.703466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/08/2021] [Indexed: 01/01/2023] Open
Abstract
Inside the nucleus, chromatin is functionally organized and maintained as a complex three-dimensional network of structures with different accessibility such as compartments, lamina associated domains, and membraneless bodies. Chromatin is epigenetically and transcriptionally regulated by an intricate and dynamic interplay of molecular processes to ensure genome stability. Phase separation, a process that involves the spontaneous organization of a solution into separate phases, has been proposed as a mechanism for the timely coordination of several cellular processes, including replication, transcription and DNA repair. Telomeres, the repetitive structures at the end of chromosomes, are epigenetically maintained in a repressed heterochromatic state that prevents their recognition as double-strand breaks (DSB), avoiding DNA damage repair and ensuring cell proliferation. In pluripotent embryonic stem cells, telomeres adopt a non-canonical, relaxed epigenetic state, which is characterized by a low density of histone methylation and expression of telomere non-coding transcripts (TERRA). Intriguingly, this telomere non-canonical conformation is usually associated with chromosome instability and aneuploidy in somatic cells, raising the question of how genome stability is maintained in a pluripotent background. In this review, we will explore how emerging technological and conceptual developments in 3D genome architecture can provide novel mechanistic perspectives for the pluripotent epigenetic paradox at telomeres. In particular, as RNA drives the formation of LLPS, we will consider how pluripotency-associated high levels of TERRA could drive and coordinate phase separation of several nuclear processes to ensure genome stability. These conceptual advances will provide a better understanding of telomere regulation and genome stability within the highly dynamic pluripotent background.
Collapse
Affiliation(s)
- Clara Lopes Novo
- The Francis Crick Institute, London, United Kingdom
- Imperial College London, London, United Kingdom
| |
Collapse
|
88
|
Lyu K, Chow EYC, Mou X, Chan TF, Kwok CK. RNA G-quadruplexes (rG4s): genomics and biological functions. Nucleic Acids Res 2021; 49:5426-5450. [PMID: 33772593 PMCID: PMC8191793 DOI: 10.1093/nar/gkab187] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/02/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
G-quadruplexes (G4s) are non-classical DNA or RNA secondary structures that have been first observed decades ago. Over the years, these four-stranded structural motifs have been demonstrated to have significant regulatory roles in diverse biological processes, but challenges remain in detecting them globally and reliably. Compared to DNA G4s (dG4s), the study of RNA G4s (rG4s) has received less attention until recently. In this review, we will summarize the innovative high-throughput methods recently developed to detect rG4s on a transcriptome-wide scale, highlight the many novel and important functions of rG4 being discovered in vivo across the tree of life, and discuss the key biological questions to be addressed in the near future.
Collapse
Affiliation(s)
- Kaixin Lyu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Eugene Yui-Ching Chow
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Xi Mou
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China
| | - Ting-Fung Chan
- School of Life Sciences, and State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong SAR, China.,Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China
| |
Collapse
|
89
|
Saha A, Gaurav AK, Pandya UM, Afrin M, Sandhu R, Nanavaty V, Schnur B, Li B. TbTRF suppresses the TERRA level and regulates the cell cycle-dependent TERRA foci number with a TERRA binding activity in its C-terminal Myb domain. Nucleic Acids Res 2021; 49:5637-5653. [PMID: 34048580 PMCID: PMC8191777 DOI: 10.1093/nar/gkab401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/05/2021] [Accepted: 04/29/2021] [Indexed: 02/07/2023] Open
Abstract
Telomere repeat-containing RNA (TERRA) has been identified in multiple organisms including Trypanosoma brucei, a protozoan parasite that causes human African trypanosomiasis. T. brucei regularly switches its major surface antigen, VSG, to evade the host immune response. VSG is expressed exclusively from subtelomeric expression sites, and we have shown that telomere proteins play important roles in the regulation of VSG silencing and switching. In this study, we identify several unique features of TERRA and telomere biology in T. brucei. First, the number of TERRA foci is cell cycle-regulated and influenced by TbTRF, the duplex telomere DNA binding factor in T. brucei. Second, TERRA is transcribed by RNA polymerase I mainly from a single telomere downstream of the active VSG. Third, TbTRF binds TERRA through its C-terminal Myb domain, which also has the duplex DNA binding activity, in a sequence-specific manner and suppresses the TERRA level without affecting its half-life. Finally, levels of the telomeric R-loop and telomere DNA damage were increased upon TbTRF depletion. Overexpression of an ectopic allele of RNase H1 that resolves the R-loop structure in TbTRF RNAi cells can partially suppress these phenotypes, revealing an underlying mechanism of how TbTRF helps maintain telomere integrity.
Collapse
Affiliation(s)
- Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Amit Kumar Gaurav
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Unnati M Pandya
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Marjia Afrin
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Ranjodh Sandhu
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Vishal Nanavaty
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Brittny Schnur
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, 2121 Euclid Avenue, Cleveland, OH 44115, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA.,Center for RNA Science and Therapeutics, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, USA
| |
Collapse
|
90
|
Li B. Keeping Balance Between Genetic Stability and Plasticity at the Telomere and Subtelomere of Trypanosoma brucei. Front Cell Dev Biol 2021; 9:699639. [PMID: 34291053 PMCID: PMC8287324 DOI: 10.3389/fcell.2021.699639] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Telomeres, the nucleoprotein complexes at chromosome ends, are well-known for their essential roles in genome integrity and chromosome stability. Yet, telomeres and subtelomeres are frequently less stable than chromosome internal regions. Many subtelomeric genes are important for responding to environmental cues, and subtelomeric instability can facilitate organismal adaptation to extracellular changes, which is a common theme in a number of microbial pathogens. In this review, I will focus on the delicate and important balance between stability and plasticity at telomeres and subtelomeres of a kinetoplastid parasite, Trypanosoma brucei, which causes human African trypanosomiasis and undergoes antigenic variation to evade the host immune response. I will summarize the current understanding about T. brucei telomere protein complex, the telomeric transcript, and telomeric R-loops, focusing on their roles in maintaining telomere and subtelomere stability and integrity. The similarities and differences in functions and underlying mechanisms of T. brucei telomere factors will be compared with those in human and yeast cells.
Collapse
Affiliation(s)
- Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH, United States.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, United States.,Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States.,Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
91
|
Abstract
The MRN complex (MRX in Saccharomyces cerevisiae, made of Mre11, Rad50 and Nbs1/Xrs2) initiates double-stranded DNA break repair and activates the Tel1/ATM kinase in the DNA damage response. Telomeres counter both outcomes at chromosome ends, partly by keeping MRN-ATM in check. We show that MRX is disabled by telomeric protein Rif2 through an N-terminal motif (MIN, MRN/X-inhibitory motif). MIN executes suppression of Tel1, DNA end-resection and non-homologous end joining by binding the Rad50 N-terminal region. Our data suggest that MIN promotes a transition within MRX that is not conductive for endonuclease activity, DNA-end tethering or Tel1 kinase activation, highlighting an Achilles' heel in MRN, which we propose is also exploited by the RIF2 paralog ORC4 (Origin Recognition Complex 4) in Kluyveromyces lactis and the Schizosaccharomyces pombe telomeric factor Taz1, which is evolutionarily unrelated to Orc4/Rif2. This raises the possibility that analogous mechanisms might be deployed in other eukaryotes as well.
Collapse
|
92
|
TERRA transcription destabilizes telomere integrity to initiate break-induced replication in human ALT cells. Nat Commun 2021; 12:3760. [PMID: 34145295 PMCID: PMC8213692 DOI: 10.1038/s41467-021-24097-6] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 05/31/2021] [Indexed: 01/22/2023] Open
Abstract
Alternative Lengthening of Telomeres (ALT) is a Break-Induced Replication (BIR)-based mechanism elongating telomeres in a subset of human cancer cells. While the notion that spontaneous DNA damage at telomeres is required to initiate ALT, the molecular triggers of this physiological telomere instability are largely unknown. We previously proposed that the telomeric long noncoding RNA TERRA may represent one such trigger; however, given the lack of tools to suppress TERRA transcription in cells, our hypothesis remained speculative. We have developed Transcription Activator-Like Effectors able to rapidly inhibit TERRA transcription from multiple chromosome ends in an ALT cell line. TERRA transcription inhibition decreases marks of DNA replication stress and DNA damage at telomeres and impairs ALT activity and telomere length maintenance. We conclude that TERRA transcription actively destabilizes telomere integrity in ALT cells, thereby triggering BIR and promoting telomere elongation. Our data point to TERRA transcription manipulation as a potentially useful target for therapy. TERRA RNA has previously been linked to Alternative lengthening of telomeres (ALT). Here the authors developed a tool to rapidly inhibit TERRA transcription from different chromosome ends in an ALT cell line to show that TERRA transcription actively promotes break induced replication (BIR) and destabilizes telomere integrity in ALT cells.
Collapse
|
93
|
Vohhodina J, Goehring LJ, Liu B, Kong Q, Botchkarev VV, Huynh M, Liu Z, Abderazzaq FO, Clark AP, Ficarro SB, Marto JA, Hatchi E, Livingston DM. BRCA1 binds TERRA RNA and suppresses R-Loop-based telomeric DNA damage. Nat Commun 2021; 12:3542. [PMID: 34112789 PMCID: PMC8192922 DOI: 10.1038/s41467-021-23716-6] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
R-loop structures act as modulators of physiological processes such as transcription termination, gene regulation, and DNA repair. However, they can cause transcription-replication conflicts and give rise to genomic instability, particularly at telomeres, which are prone to forming DNA secondary structures. Here, we demonstrate that BRCA1 binds TERRA RNA, directly and physically via its N-terminal nuclear localization sequence, as well as telomere-specific shelterin proteins in an R-loop-, and a cell cycle-dependent manner. R-loop-driven BRCA1 binding to CpG-rich TERRA promoters represses TERRA transcription, prevents TERRA R-loop-associated damage, and promotes its repair, likely in association with SETX and XRN2. BRCA1 depletion upregulates TERRA expression, leading to overly abundant TERRA R-loops, telomeric replication stress, and signs of telomeric aberrancy. Moreover, BRCA1 mutations within the TERRA-binding region lead to an excess of TERRA-associated R-loops and telomeric abnormalities. Thus, normal BRCA1/TERRA binding suppresses telomere-centered genome instability. BRCA1-mediated resolution of R-loops has previously been described. Here the authors reveal a functional association of BRCA1 with TERRA RNA at telomeres, which develops in an R-loop-, and a cell cycle-dependent manner.
Collapse
Affiliation(s)
- Jekaterina Vohhodina
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | - Liana J Goehring
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ben Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Qing Kong
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Vladimir V Botchkarev
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Mai Huynh
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Zhiqi Liu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Fieda O Abderazzaq
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Allison P Clark
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Scott B Ficarro
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jarrod A Marto
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Blais Proteomics Center, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elodie Hatchi
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.,Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - David M Livingston
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA. .,Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
94
|
Schwerdtfeger M, Desiderio V, Kobold S, Regad T, Zappavigna S, Caraglia M. Long non-coding RNAs in cancer stem cells. Transl Oncol 2021; 14:101134. [PMID: 34051619 PMCID: PMC8176362 DOI: 10.1016/j.tranon.2021.101134] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/29/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Long non coding RNAs are involved in the regulation of multiple cellular processes. Cancer stemness and escape from immunological anti-cancer mechanisms are important mechanisms of resistance to anti-cancer agents and are pivotal in controlling cancer development and metastases. Long non coding RNAs have deep effects on the immune-modulation and on the control of cancer stem cells. Several pathways involved in immunological escape and cancer stemness are modulated by long non coding RNAs. Targeting long non coding RNAs is a potential new strategy to control tumor development and metastases.
In recent years, it has been evidenced that the human transcriptome includes several types of non-coding RNAs (ncRNAs) that are mainly involved in the regulation of different cellular processes. Among ncRNAs, long-non-coding RNAs (lncRNAs) are defined as longer than 200 nucleotides and have been shown to be involved in several physiological and pathological events, including immune system regulation and cancer. Cancer stem cells (CSCs) are defined as a population of cancer cells that possess characteristics, such as resistance to standard treatments, cancer initiation, ability to undergo epithelial-to-mesenchymal transition, and the ability to invade, spread, and generate metastases. The cancer microenvironment, together with genetic and epigenetic factors, is fundamental for CSC maintenance and tumor growth and progression. Unsurprisingly, lncRNAs have been involved in both CSC biology and cancer progression, prognosis and recurrence. Here we review the most recent literature on IncRNAs involvement in CSC biology and function.
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy; Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL)
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Germany, Member of the German Center for Lung Research (DZL); German Center for Translational Cancer Research (DKTK), Partner site Munich, Munich, Germany
| | - Tarik Regad
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.
| |
Collapse
|
95
|
Non-coding RNAs and lipids mediate the function of extracellular vesicles in cancer cross-talk. Semin Cancer Biol 2021; 74:121-133. [PMID: 34033894 DOI: 10.1016/j.semcancer.2021.04.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 11/22/2022]
Abstract
Research on extracellular vesicles (EVs) has been expanded, especially in the field of cancer. The cargoes in EVs, especially those in small EVs such as exosomes include microRNAs (miRNAs), mRNA, proteins, and lipids, are assumed to work cooperatively in the tumor microenvironment. In 2007, it was reported that miRNAs were abundant among the non-coding RNAs present in exosomes. Since then, many studies have investigated the functions of miRNAs and have tried to apply these molecules to aid in the diagnosis of cancer. Accordingly, many reviews of non-coding RNAs in EVs have been published for miRNAs. This review focuses on relatively new cargoes, covering long noncoding (lnc) RNAs, circular RNAs, and repeat RNAs, among non-coding RNAs. These RNAs, regardless of EV or cell type, have newly emerged due to the innovation of sequencing technology. The poor conservation, low quantity, and technical difficulty in detecting these RNA types have made it difficult to elucidate their functions and expression patterns. We herein summarize a limited number of studies. Although lipids are major components of EVs, current research on EVs focuses on miRNA and protein biology, while the roles of lipids in exosomes have not drawn attention. However, several recent studies revealed that phospholipids, which are components of the EV membrane, play important roles in the intercommunication between cells and in the generation of lipid mediators. Here, we review the reported roles of these molecules, and describe their potential in cancer biology.
Collapse
|
96
|
RTEL1 influences the abundance and localization of TERRA RNA. Nat Commun 2021; 12:3016. [PMID: 34021146 PMCID: PMC8140157 DOI: 10.1038/s41467-021-23299-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/22/2021] [Indexed: 12/13/2022] Open
Abstract
Telomere repeat containing RNAs (TERRAs) are a family of long non-coding RNAs transcribed from the subtelomeric regions of eukaryotic chromosomes. TERRA transcripts can form R-loops at chromosome ends; however the importance of these structures or the regulation of TERRA expression and retention in telomeric R-loops remain unclear. Here, we show that the RTEL1 (Regulator of Telomere Length 1) helicase influences the abundance and localization of TERRA in human cells. Depletion of RTEL1 leads to increased levels of TERRA RNA while reducing TERRA-containing R loops at telomeres. In vitro, RTEL1 shows a strong preference for binding G-quadruplex structures which form in TERRA. This binding is mediated by the C-terminal region of RTEL1, and is independent of the RTEL1 helicase domain. RTEL1 binding to TERRA appears to be essential for cell viability, underscoring the importance of this function. Degradation of TERRA-containing R-loops by overexpression of RNAse H1 partially recapitulates the increased TERRA levels and telomeric instability associated with RTEL1 deficiency. Collectively, these data suggest that regulation of TERRA is a key function of the RTEL1 helicase, and that loss of that function may contribute to the disease phenotypes of patients with RTEL1 mutations. Long non coding RNA TERRA transcripts can form R-loops at chromosome ends. Here, the authors reveal a role for the helicase RTEL in affecting TERRA levels and localization.
Collapse
|
97
|
Luo J, Qu L, Gao F, Lin J, Liu J, Lin A. LncRNAs: Architectural Scaffolds or More Potential Roles in Phase Separation. Front Genet 2021; 12:626234. [PMID: 33868368 PMCID: PMC8044363 DOI: 10.3389/fgene.2021.626234] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecules specifically aggregate in the cytoplasm and nucleus, driving liquid-liquid phase separation (LLPS) formation and diverse biological processes. Extensive studies have focused on revealing multiple functional membraneless organelles in both the nucleus and cytoplasm. Condensation compositions of LLPS, such as proteins and RNAs affecting the formation of phase separation, have been gradually unveiled. LncRNAs possessing abundant second structures usually promote phase separation formation by providing architectural scaffolds for diverse RNAs and proteins interaction in both the nucleus and cytoplasm. Beyond scaffolds, lncRNAs may possess more diverse functions, such as functioning as enhancer RNAs or buffers. In this review, we summarized current studies on the function of phase separation and its related lncRNAs, mainly in the nucleus. This review will facilitate our understanding of the formation and function of phase separation and the role of lncRNAs in these processes and related biological activities. A deeper understanding of the formation and maintaining of phase separation will be beneficial for disease diagnosis and treatment.
Collapse
Affiliation(s)
- Jie Luo
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lei Qu
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Feiran Gao
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Jun Lin
- Department of Obstetrics and Gynecology, Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jian Liu
- Department of Respiratory and Critical Care Medicine, The Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou, China.,Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, Zhejiang University, Haining, China
| | - Aifu Lin
- College of Life Sciences, Zhejiang University, Hangzhou, China.,Breast Center of The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
98
|
Nelson CB, Alturki TM, Luxton JJ, Taylor LE, Maranon DG, Muraki K, Murnane JP, Bailey SM. Telomeric Double Strand Breaks in G1 Human Cells Facilitate Formation of 5' C-Rich Overhangs and Recruitment of TERRA. Front Genet 2021; 12:644803. [PMID: 33841503 PMCID: PMC8027502 DOI: 10.3389/fgene.2021.644803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Telomeres, repetitive nucleoprotein complexes that protect chromosomal termini and prevent them from activating inappropriate DNA damage responses (DDRs), shorten with cell division and thus with aging. Here, we characterized the human cellular response to targeted telomeric double-strand breaks (DSBs) in telomerase-positive and telomerase-independent alternative lengthening of telomere (ALT) cells, specifically in G1 phase. Telomeric DSBs in human G1 cells elicited early signatures of a DDR; however, localization of 53BP1, an important regulator of resection at broken ends, was not observed at telomeric break sites. Consistent with this finding and previously reported repression of classical non-homologous end-joining (c-NHEJ) at telomeres, evidence for c-NHEJ was also lacking. Likewise, no evidence of homologous recombination (HR)-dependent repair of telomeric DSBs in G1 was observed. Rather, and supportive of rapid truncation events, telomeric DSBs in G1 human cells facilitated formation of extensive tracks of resected 5′ C-rich telomeric single-stranded (ss)DNA, a previously proposed marker of the recombination-dependent ALT pathway. Indeed, induction of telomeric DSBs in human ALT cells resulted in significant increases in 5′ C-rich (ss)telomeric DNA in G1, which rather than RPA, was bound by the complementary telomeric RNA, TERRA, presumably to protect these exposed ends so that they persist into S/G2 for telomerase-mediated or HR-dependent elongation, while also circumventing conventional repair pathways. Results demonstrate the remarkable adaptability of telomeres, and thus they have important implications for persistent telomeric DNA damage in normal human G1/G0 cells (e.g., lymphocytes), as well as for therapeutically relevant targets to improve treatment of ALT-positive tumors.
Collapse
Affiliation(s)
- Christopher B Nelson
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Taghreed M Alturki
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Jared J Luxton
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| | - Lynn E Taylor
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - David G Maranon
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States
| | - Keiko Muraki
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - John P Murnane
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, United States
| | - Susan M Bailey
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO, United States.,Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
99
|
Kang S, Cao J, Zhang M, Li X, Guo QL, Zeng H, Wei Z, Gong X, Wang J, Liu B, Shu B, Xu X, Huang ZS, Li D. Transcriptional regulation of telomeric repeat-containing RNA by acridine derivatives. RNA Biol 2021; 18:2261-2277. [PMID: 33749516 DOI: 10.1080/15476286.2021.1899652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Telomere is a specialized DNA-protein complex that plays an important role in maintaining chromosomal integrity. Shelterin is a protein complex formed by six different proteins, with telomeric repeat factors 1 (TRF1) and 2 (TRF2) binding to double-strand telomeric DNA. Telomeric DNA consists of complementary G-rich and C-rich repeats, which could form G-quadruplex and intercalated motif (i-motif), respectively, during cell cycle. Its G-rich transcription product, telomeric repeat-containing RNA (TERRA), is essential for telomere stability and heterochromatin formation. After extensive screening, we found that acridine derivative 2c and acridine dimer DI26 could selectively interact with TRF1 and telomeric i-motif, respectively. Compound 2c blocked the binding of TRF1 with telomeric duplex DNA, resulting in up-regulation of TERRA. Accumulated TERRA could bind with TRF1 at its allosteric site and further destabilize its binding with telomeric DNA. In contrast, DI26 could destabilize telomeric i-motif, resulting in down-regulation of TERRA. Both compounds exhibited anti-tumour activity for A549 cells, but induced different DNA damage pathways. Compound 2c significantly suppressed tumour growth in A549 xenograft mouse model. The function of telomeric i-motif structure was first studied with a selective binding ligand, which could play an important role in regulating TERRA transcription. Our results showed that appropriate level of TERRA transcript could be important for stability of telomere, and acridine derivatives could be further developed as anti-cancer agents targeting telomere. This research increased understanding for biological roles of telomeric i-motif, TRF1 and TERRA, as potential anti-cancer drug targets.
Collapse
Affiliation(s)
- Shuangshuang Kang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jiaojiao Cao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Meiling Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xiaoya Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Qian-Liang Guo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Huang Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Zuzhuang Wei
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Xue Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Jing Wang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bobo Liu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Bing Shu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China.,School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou and P.R. China
| | - Xiaoli Xu
- Instrumental Analysis & Research Center, South China Agricultural University, Guangzhou and P.R. China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| | - Ding Li
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou University City, Guangzhou and P.R. China
| |
Collapse
|
100
|
El-Desoky MM, Hewidy AA, Fouda AM, Hisham FA. Telomeric repeat-containing ribonucleic acid (TERRA) expression in patients with idiopathic pulmonary fibrosis. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2021. [DOI: 10.1186/s43042-021-00141-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Idiopathic pulmonary fibrosis (IPF) represents a chronic disease with a progressive course. It is characterized by excessive lung scarring that ultimately contributes to irreversible lung function reduction. Interestingly, a type of long non-coding RNA termed as telomeric repeat-containing RNA (TERRA) is linked to fibrosis pathophysiology, including IPF. In this study, the expression profile of TERRA was investigated in IPF patients on radiological diagnosis [unusual interstitial pattern (UIP) in high-resolution computed tomography (HRCT)] to evaluate whether it could be employed as a reliable diagnostic biomarker.
Results
TERRA expression level was significantly higher in IPF patients over healthy controls. The expression level was significantly inversely correlated with the percentage of forced vital capacity predicted (FVC% predicted). By contrast, it was significantly directly correlated with HRCT reticular extent score.
Conclusion
TERRA expression is an essential biomarker in peripheral blood of IPF patients, providing a valuable non-invasive tool for IPF diagnosis. Moreover, TERRA expression is strongly correlated with UIP in HRCT reticular extent score.
Collapse
|